B. J. Dooley

A Model for the Prediction of Assembly,
Rework, and Test Yields

The increase in density and complexity of computer components used as field-replaceable units of the IBM 3081 processors has
required more sophisticated and capital-intense manufacturing and test lines than heretofore seen. To help in the
manufacturing planning effort, a simulation model based on the concepts described in this paper was implemented as a means
for studying the behavior of different assembly/test methodologies and to predict the throughput capabilities of various
manufacturing configurations. By adopting a different simulation philosophy, the model was greatly simplified, and by taking
advantage of the matrix processing features of APL, modeling changes required due to procedure or test-equipment changes
could easily be implemented. This paper reviews the philosophy of the simulation of computer j:art assembly, takes a new look
at modeling, and describes the architectural concepts embodied in the implementing program. It also details some of the more

important concepts needed to complete the simulator.

Introduction

The modules, called TCMs, used in the new generation of
IBM computers represented by the IBM 3081 processor
models are complex, hybrid assemblies of high-density inte-
grated circuit chips on multi-layer ceramic substrates that
normally contain one hundred chips and match the circuit
count and logical power of a typical central processing unit of
a large system of mid-1970s vintage [1]. The circuit boards
into which up to nine of these TCMs can be plugged, called
TCM boards, contain many layers of buried circuitry plus
module sockets which are characterized by close tolerances
and stringent alignment requirements [2]. The density and
complexity of these assemblies have offered unique chal-
lenges for manufacturing planning. Despite low and well-
controlled defect densities for the chips, substrates, boards,
and other components, the assembled modules and circuit
boards could contain at least one defect when first assem-
bled. The rework of these assemblies could, in turn, introduce
further defects.

As part of the packaging design, practically all defects
which can affect system operation are both testable and
repairable, so that scrapping of assemblies is seldom neces-
sary. The manufacturing lines, therefore, were planned to

contain re-entrant test/rework loops, driven by the defect
densities present in the incoming parts and the defect densi-
ties introduced by testing, assembly, and handling. Since the
process tools needed for assembly, testing, and rework are
very much more sophisticated and expensive than in previous
technologies, the need for a simulation model to plan the
right number and mix of processing areas (sectors) for a
targeted manufacturing throughput was readily apparent.
This model could be directed to the prediction of gross
workloads at all main sectors in the assembly line, in terms of
assemblies processed, components placed, and tests per-
formed.

The design of such a model is not as straightforward as it
would seem. Each sector in the process line would require a
complex probability function which could be changed in
response to the particular process sequence in use for each
product type at each period in calendar time. This would
necessitate an exhaustive treatment of the probability of the
assembly being routed from one manufacturing sector to
another. Thus, each change in the process, however small,
which had not been planned for in the creation of the
function, could alter the conditions in the model beyond the

© Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. & VOL. 27 4 NO. | & JANUARY 1983

59

B. J. DOOLEY




60

B. J. DOOLEY

Sub-assembly

operation

#1
Test/ Rework
inspection sector
sector # 1 #1

Sub-assembly
operation

#2
Test/ Rework
inspection sector
sector # 2 #2

T
I
|
|
Y

Sub-assembly

operation

#n
Test/ Rework

inspection sector
sector # n | #n

Figure 1 Conventional manufacturing process flow model.

intent of its design and lead to incorrect conclusions. For
these reasons, we decided to re-examine the fundamental
philosophy of modeling.

This paper reviews the philosophy of the simulation of
computer part assembly. It takes a new approach for the
simulation process and describes the architectural concepts
embodied in the implementing program. It also details some
of the more important concepts needed to complete the
simulator. The new model, called PARTY (prediction of
assembly, rework, and test yields), is written in APL and has
been used as a basis for predicting significant aspects of
workload and tool requirements for manufacture of modules
and boards used in the IBM 3081 processor line. Data
derived from the model are used by several IBM manufac-
turing locations as the basis for assembly line planning.

Approaches to assembly simulation

It is customary to visualize a manufacturing process in terms
of a flow of parts, some of which are defective (Fig. 1). This
concept works very well, provided that one has only a general
interest in the nature of the defects and little interest in their
combinational aspects. This is usually the case with fairly
simple assemblies.

Modern electronic assemblies with a dense heterogeneous
population of components mounted upon a multi-layer sub-

strate are not simple assemblies. Even though the density of
any selected type of defect may be extremely low, the
potential range of defect types is so wide that there is a high
probability that many assemblies may contain at least one
defect when first built; many could contain more than one.
Rework of parts to correct observed defects can often intro-
duce new defects, not necessarily of the same type.

If one possesses detailed information as to the types and
densities of defects which can be expected, and the tester
coverages associated with these defect types, one can fairly
readily compute an estimate of the yield to be expected at the
first test pass after initial assembly. The yield which is to be
anticipated at the second test pass is not so readily predicted,
since some defects which were masked by other defects may
now have become detectable. New defects may have been
added in the course of the rework, some rework may have
been unsuccessful, and some errors may have been made in
the first test and/or rework operations. In addition, the
isolation of defects in the course of diagnostic testing may
have necessitated removal of components. Restoration of
such assemblies to their original design may have been
incomplete or may have introduced new problems. From this
discussion it is readily seen that the difficulties in prediction
become progressively worse for subsequent test passes.

Yield, of course, is not the only item affected. Calculation
of the workload to be expected at each of the rework sectors
becomes extremely difficult. The quantities and types of
repair actions and their combinational aspects cannot be
predicted without some form of simulation. In the absence of
such a prediction, construction of adequate and appropriate
tooling plans for the manufacture and testing of the product
becomes a matter of chance.

The form of simulation to be used must be chosen careful-
ly. For example, it may not even be appropriate to use an
average assembly as the basis for prediction since there may
be too great a difference between the assembly types, in
terms of the combinations of defects (and therefore of rework
actions) which can be expected to occur during manufacture.
Simulation must then be applied on an individualized type-
by-type basis.

Application of a Monte Carlo approach would clearly be
inappropriate in such a case, since the amount of time needed
for simulation of the manufacture of many different
assembly types would become prohibitive. This is especially
true when many of the processes display improvement over
time. In such cases, many separate simulations are required
for each assembly type to represent the changes occurring in
successive vintages of product. In addition, the range of
possible defect types is large, with different defect densities
and tester effectiveness for each defect type.

IBM J. RES. DEVELOP. ¢ VOL. 27 @ NO. | « JANUARY 1983




Sub-assembly operation # 1
r——'l‘est/ inspection sector # 1, loop # | ~———

Rework sector # 1, loop # 1
+ea—Test/inspection sector # 1, loop # 2 ———

Rework sector # 1, loop # 2
<—Test/inspectior'1 sector # 1, loop # 3 —
|

Rework sector # 1, loop # n,

[—"Test/inspection sector # 1, loop # n ]-—w

Sub-assembly operation # 2
[—Test/inspection sector # 2, loop # | ————#
Rework sector # 2, loop # 1
L—Test/ inspection sector # 2, loop # 2 ——
Rework sector, # 2, loop # 2

r—Test/inspection sector # 2, loop # 3 —
|

Rework sector # 2, loop # n,

[=+—Test/inspection sector # 2, loop # nlj

i
|
Sub—assembly*operalion #m
l—Test/inspection sector # m, loop # 1———=
Rework sector, # m, loop # 1
[—Test/inspection sector # m, loop # 2——=
Rework sector, # m, loop # 2
<—Test/inspectiorl1 sector # m, loop # 3
1

Rework sector # m, loop # n

—Test/inspection sector # m, loop # n m

v

Parts to scrap

Parts to stock
(a)

From test/inspection

|

Rework -t
operation
type A —
Last Skip n,

Rework

operation

- t B —
Last P Skip ng

Rework
operation

- type C
Last Pe Skip ne

Rework
operation
type Z

To test/inspection
b

Last

Figure 2 Modified manufacturing process flow model showing the test/rework loops unraveled. (b) Model of an individual assembly/rework

sector showing the sequence of assembly/rework steps.

The numbing complexity of the problem just presented is
derived, in part, from the concept used in its statement. That
concept is the conventional visualization of the manufactur-
ing line in terms of a flow of assemblies, some of which are
defective. But the potential quantities and combinations of
varieties of defects on those assemblies have rendered this
concept of little value in predicting the most probable
outcome.

IBM J. RES. DEVELOP. e VOL. 27 ¢ NO. 1 e JANUARY 1983

The assembly line can be depicted in quite a different
fashion by visualizing the loops in the manufacturing line as
having been unrolled, so that the sectors in any given loop are
replicated successively as many times as necessary to accom-
plish all the work required (Fig. 2). Any assembly which is
free of defects when it reaches a test stage is allowed to
bypass all the remaining sectors which belong to the loop,
and to re-enter the assembly line at the first sector beyond

61

B. J. DOOLEY




62

B. J. DOOLEY

Defects
not Register
found DNF
Test Test
operation operation
I y
Defects Register
found DFD
Rework Rework
operation operation
* y
Defects Register
fixed DFX

(a) (b)

New-part defects

Register
DNF

Assembly defects & A 1 y
Damaged

Damaged

Test

Register
DFD

]

Assembly/Rework

Register
DFX

©)

Figure 3 (a) Conceptual flow of manufacturing defects. (b) Simplified data flow of PARTY model. All defects entering the manufacturing
line are recorded in register DNF (defects not found) which contains the list of defects which have not yet been discovered by inspection or
testing. When a defect is discovered, its record is transferred to register DFD (defects found) which records the defects found but not yet
remedied. When a defect is repaired its record is transferred to register DFX (defects fixed), which retains a list of all repair actions which have
been performed. (c) The same model modified to show the effects of adding test and assembly/rework sectors.

the limit of the unrolled loop. Assemblies are also allowed to
bypass all rework sectors for whose services they have no
need. When viewed in this fashion, the line is seen to be
composed of a continuous linear succession of assembly and
testing sectors, bypassed by a mass of shunt paths.

Viewed from this standpoint, the flow of assemblies
through the manufacturing line may still appear chaotically
complex since all that has been achieved is the substitution of
a multitude of parallel paths for the previously re-entrant
loops. It will remain chaotic as long as the assembly is
considered to be the unit by which flow through the paths is
measured. If one chooses instead to have the detectable
defects become the unit of measure, a dramatic change is
observed: the majority of the shunt paths are now seen to be
empty, and the entire traffic passes through every test sector
in the loop. Knowing the quantity of assemblies which enter
the first sector of the unrolled loop, one can apply simple
probability methods to determine the flow through each
succeeding sector. If the defects can be treated separately by
type, their flows also can be predicted separately and super-
imposed on one another. This merged flow can in turn be
superimposed upon the flow of defective assemblies which
has been predicted from the defect population.

The benefits of this approach are large. Since the existence
and point of origin of the various types of defects are
individually determined, it becomes a relatively trivial proba-
bility exercise to derive, for example, an estimate of how

many of those assemblies which failed at the first stage
would undergo a given combination of rework actions before
re-entering testing. A totally deterministic approach
becomes possible, in which all assemblies can be considered
as having entered the manufacturing line simultaneously.
The calculations for the various defect types can be per-
formed in parallel by array processing. This enables a large
range of defect types to be considered separately, with all
aspects of association and relative significance being prop-
erly addressed.

Defect processor model concepts

This then is the central concept in PARTY: An assembly line
can be modeled as a defect processor rather than as an
assembly processor. Defects flow into the line, borne by the
substrates, boards, or other components. To these are added
defects induced during assembly and testing. Each time that
defects are subtracted by rework of those assemblies recog-
nized as defective, there may be further defects added with
the replacement parts.

Thus, there is a “fund” of defects residing in the manufac-
turing line which is waiting to be discovered and which is
vulnerable only to the testing process. There is also a fund of
defects residing in the line comprised of defects waiting for
remedial action and/or replacement, which is vulnerable
only to the rework process. In addition, there is a record of
defects which have already been both discovered and reme-
died.

IBM J. RES. DEVELOP. & VOL. 27 @« NO. | &« JANUARY 1983




In Fig. 3(a) these three groups are designated as “defects
not found,” “defects found,” and “defects fixed,” respec-
tively, to demonstrate the conceptual flow. These three
groups are represented in the PARTY model by registers
DNF, DFD, and DFX, as shown in Fig. 3(b). The flow
between the groups is then simply a matter of appropriate
transfers of records between the registers.

All defects entering the manufacturing line are recorded
in register DNF, which thus contains the list of defects which
have not yet been discovered by inspection or testing. Any
defects introduced by the rework and test operations fall, of
course, into this category. When a defect is discovered, its
record is transferred to register DFD, which thus contains
the list of defects which have been found but which have not
yet been remedied. When a defect is repaired, its record is
transferred to register DFX, which thus contains a list of all
the repair actions which have been performed.

Adding a typical test stage and a typical assembly/rework
stage to this simple diagram makes clear the principal flow
paths of records within the simulation model [Fig. 3(c)].
When a test stage is simulated, the DNF register provides a
list of the defects which should be detectable at that tester.
The records representing these defects are then removed
from DNF and placed in DFD. When a rework stage is
simulated, the DFD register provides a list of defects which
should be addressed by that type of rework. These records
are removed from DFD and placed in DFX. All records
generated to represent additional defects stemming from
processing or damage are, of course, placed in DNF. Incor-
poration of these flow lines into the diagram of the model
leaves it still fairly simple.

As is immediately evident, register DNF is the hub of the
model. It is in this register that the distinctions are made
between the menus of defects which are detectable at the
various types of tester available. It must also maintain the
up-to-date status of all types of defects, in terms of the
quantities of defects present in each process. Since defects
which are detectable at one type of tester may be undetect-
able at another, a full accounting must be kept of all defects,
detectable or not, in the knowledge that any defects still
present in this register at the end of a simulation are going
out undetected into the next higher level of assembly.

Register structure

At this point it is appropriate to give a general account of the
register structure of the PARTY model. There are eight
main registers, of which one is for input, four are for process
simulation, and three are for output. For the sake of clarity,
the process-simulation registers are addressed first.

IBM J. RES. DEVELOP. @ VOL. 27 e NO. | o JANUARY 1983

Tester A / Tester B / Tester C / Tester D / Tester E

iy 777

Detectable

Defect 1 I

Defect 2 |

Defect 3 |

Defect n

Figure 4 Structure of the DNF register for the case where there
are five tester types, designated testers A through E. Each horizontal
slab in the diagram represents a variety of defect. Thus, for a given
defect, if there are d such defects present, the totals for the various
testers will be the same, but the way in which the 4 divides between
the detectable and the non-detectable categories will be a function of
the coverage afforded by each of the tester types for the particular
defect mode involved.

® Process-simulation registers

In addition to registers DNF and DFD, registers MISSES
and AVAILABLE are defined in this category. Register
MISSES is required as a repository for those records of
defects which have escaped detection because the postulated
testers are not 100% effective. These defect escapes reside
upon assemblies which have been routed into a rework stage.
Their records are presented, along with those from DNF,
when these assemblies next reach a test sector. Register
AVAILABLE does not relate to defects. It is used instead to
control the quantities of assemblies which enter the various
process sector types. A major part of the housekeeping
procedures in PARTY relates to the updating of register
AVAILABLE.

The structure of register DNF is fundamental to the
action of the model. This is the register in which are
maintained the counts of defects which have not yet been
detected by a tester. But there may be many types of defects
and many types of testers, and some testers are not able to
detect some of the defects. In order to accommodate these
differences between testers, the DNF register is constructed
as a three-dimensional array, ¢ x d x 2, with one column for
each type of tester ¢ (see Fig. 4), one row for each type of
defect d, and two planes representing the tester-detectable
and the tester-undetectable defects, respectively.

Registers DFD and MISSES are constructed just like the
first plane of register DNF; they are shown in Fig. 5. When

63

B. J. DOOLEY




64

B. J. DOOLEY

Detected § . g
by Tester A Tester B Tester C / Tester D Tester E

Defect |

Defect 2

Defect 3 1

Defect n

Figure 5 The DFD and MISSES registers are identical in struc-
ture to the DNF register, except that they contain only one plane.

defect counts are transferred into DFD from DNF, they
move from their location in the first plane of DNF to the
identical position in DFD. This register, therefore, is two-
dimensional, with ¢ columns to reflect the ¢ types of tester,
and as many rows as there are types of defect. The structure
of MISSES facilitates the return of missed defects into DNF
in the event that the next test stage encountered differs from
the stage at which they were not detected.

It should be clear from the description of AVAILABLE,
given earlier, that it is structured as a string of numbers
representing quantities of assemblies which are available to
enter various types of sectors for which the model has been
set up. The indices of this register match the indices in a
literal matrix named SECTORS in which are stored the
names of the modular functions which simulate the respec-
tive sectors of the assembly process.

® [nput register

The structure of the input register, called BASE, is identical
to that of DNF. BASE is initialized at the start of each
simulation to contain the defect densities for all defect types,
as split between detectable and undetectable portions at the
various testers. When a quantity of components is being
added to the assemblies in the line, the appropriate slabs of
BASE are multiplied by the incoming quantity to generate
the associated defect menu. All other slabs of BASE are
multiplied by zero. The three-dimensional matrix of defect
quantities so produced is added into DNF. The BASE
register, of course, is left unaltered throughout the simula-
tion as source material for all calculations.

o Qutput registers

DFX is considered an output register, and so are two others
called ESCAPES and TAB. The DFX register contains a
record of the quantities of defects which were addressed by

the rework sectors during the simulation. It is a numeric
vector containing a position for every type of defect
addressed by the model. It thus provides the capability for
printing out a list of defects which were encountered, and
also summaries by component type. In the course of each
rework sector simulation, the quantities of affected defects
are summed across register DFD and transferred into this
register to provide a cumulative count by defect type.

The ESCAPES register is similar in structure to both
DFD and MISSES. It is into this register that records are
moved from MISSES to reflect totals that evaded detection
at the testers, although test coverage does exist for the defect
types concerned. Records placed in this register represent
defects which should have been caught but which will go on
to cause problems at later levels of assembly.

The TAB register is the sector-by-sector record of what
occurred during the simulation. It is two-dimensional, con-
taining one row for each process sector encountered. Each
row summarizes the activity in its associated sector. It
becomes apparent that the model concepts lend themselves to
easy implementation in APL [3], and many APL features
are readily embodied in the model. The versatility of
PARTY, in terms of its ability to simulate any reasonable
(i.e., convergent) process sequence, is achieved by a totally
modular structure. Each type of process sector has an
identifying reference number. At this number index, in the
AVAILABLE register, are found the quantities of assem-
blies which should be routed to a sector of this type. At this
same index, in the SECTORS register, is found the name of
the modular program which provides a simulation of such a
sector. The APL execute operator provides a simple and
elegant means of executing the functions as needed, without
the use of a large multiple-branch routine.

The parallel processing of data relating to many different
types of defects, which is fundamental to the concepts of
PARTY, is most conveniently achieved by matrix arith-
metic. The size of the arrays which must be manipulated
varies considerably, depending on the type of manufacturing
sector which is to be simulated, because of the varying menus
of defect types involved. Here again APL is an appropriate
language, as it has great power in generalized array manipu-
lation.

Basic architecture

The power of the PARTY maodel resides in its architecture
rather than in its mathematics. The calculations are all
simple and direct applications of standard probability
manipulation methods, with nothing more sophisticated than
the occasional use of a Poisson distribution. The program-
ming architecture of the model is modular; i.e., each line-
sector is represented by a program which, when executed,

IBM J. RES. DEVELOP. e VOL. 27 ® NO. } « JANUARY 1983



finds all the inputs it needs stored as global variables within
the workspace and updates these variables as appropriate
during its execution.

The names of the modular programs are stored as lines of a
literal matrix. The process sequence is stored as a numeric
vector, in which each number is the index of the appropriate
program name within the literal matrix. Changes in process
sequence can thus be invoked by changing the input numeric
vector which represents the process routing.

Each completed process step is represented by a set of six
numbers (Fig. 6), of which the first identifies the nature of
the activity in the process step and the remaining five
indicate the quantities of assemblies entering, the quantities
of assemblies leaving the step as good, the quantities of
assemblies scrapped, the quantities of components added,
and the quantities of removal or other non-addition activities
performed. These six stored numbers enable the generation
of other desired statistics as needed, such as percentage of the
original starting assemblies which enter the step, tests or
other activities performed per assembly within the step, and
SO on.

Data flow within the model
Apart from some special cases, discussed in another section
of the paper, the flow within the model is as follows:

1. Determine how many assemblies are to be built, and how
many components will be added to each in the assembly
operation.

2. Using the defect densities projected for these new parts,
determine the resulting types and quantities of defects
which enter the process flow. Add these to register DNF.

3. Using the error rates and defect densities projected for the
assembly process concerned, determine the types and
quantities of defects introduced by the process. Add these
also into register DNF.

4. Determine which type of tester is to be used (from the
process sequence). Using the test coverage appropriate to
this tester, compute the types and quantities of defects in
register DNF which will be detected, and transfer these
from register DNF into register DFD.

5. Using the error rates and defect densities projected for
this test process, determine the types and quantities of
defects introduced by testing. Add these into register
DNF.

6. On the basis of the defects detected (vs the assembly
quantity entering testing), determine the quantity of
assemblies sent to be reworked.

7. Simulate the rework operation by transferring the records
stored in register DFD into register DFX. However, many
of these represent additional new components being
installed as replacement parts on the assemblies, so the
simulation re-enters at Step 2. It continues until all the

IBM J. RES. DEVELOP. ¢ VOL. 27 & NO. 1 ¢ JANUARY 1983

Usage Contents
Sector type 3 (= Test)
Total
assemblies in 1000
Good
assemblies out 654
Scrapped 3
assemblies out
Total
components added 0
Total
other activities 1000

Figure 6 Each completed process step consists of a set of six
numbers, as shown. Note that the numbers shown correspond to the
first test stage in the example illustrated in Figs. 7-9.

assemblies which entered at Step 1 have been accounted
for, either as having been shipped to stock or as having
been scrapped.

The data created by PARTY yield, for each type of
assembly, test, or rework activity, the quantities of assem-
blies which must be processed and the number and nature of
the actions which must be performed during the processing.
When coupled with the standard operational data for the
processes involved (time needed to place an assembly into the
fixture; process time per action performed, etc.), the PARTY
data provide a full account of the total time needed at each
step in the manufacturing process, with each step through
the re-entrant test/rework loops accounted for separately.

Special cases

There are several special cases requiring treatment which
deviates from the general flow shown in the previous section.
The most interesting of them are the following;:

® Masking of defects—cases in which the presence of one
defect prevents the detection of another.

® Testing over-kill—cases in which one defect produces the
symptoms of two or more defects, resulting in the unneces-
sary replacement of good parts.

e Test error—cases in which a defect is detected correctly
but the wrong component is marked for replacement.

® Sequential rework—the development of wiring require-
ments to restore circuit function following the deletion of a
substrate short.

® Secondary damage—inadvertent damage to chips which,
while not involved in the actual rework operation, are
closely adjacent to the site.

65

B. J. DOOLEY




66

B. J. DOOLEY

Substrates in

Chip
assembly

!

Wire
assembly

- —
Rework Test Good
> f—————— Scrap

Figure 7 Simple manufacturing sequence for use in the simulated
example.

Substrates in

1000
| Chip assembly I
‘ 1000
| Wire assembly I
Scrap ‘ 1000 Good
654

3 4——| Test pass # 1

I Chip rework I |

N2 323

l Substrate rework I

3

Wire rework I

305 3

343
I Test pass # 2 I*——v 279
N

l Chip rework —l L Substrate rework |

1

L Wire rework ]

62 vl 1
64
I Test pass # 3

L Test pass # 4

5

L Chip rework ]

13
>

I Test pass # 5
Figure 8 Interpretation of a hypothetical sample simulation
explained in the text. Of the 1000 parts entering the assembly
process, three parts are scrapped after the first testing pass, and
three require five rework processes before the entire batch is
accounted for. The data for this flow is obtained from the PARTY
outpui listing of Fig. 9.

These, and most other extensions of the test/rework
scenario, can generally be accommodated by the provision of
blank positions in registers DNF and DFD into which
additional records can be placed as needed, causing appropri-
ate action sequences to be adopted by the model as the
simulation proceeds. For example, even the requirement for a
rinse operation following certain types of processing can be
encoded into the model by the creation of dummy records in
DFD.

Input data

As is well known, a model is only as good as the information
which is fed into it. The design of the PARTY model
presupposes the availability of a large fund of detailed input
data. These data have to be carefully selected for use by the
model from the many types of information that are avail-
able—some firm and well understood, and others very much
based on engineering judgment. They fall into three general
categories: 1) bills of material for all assembly types, 2)
testing plans and projections of tester coverages, and 3)
defect density estimates.

Though many of the estimates are necessarily based on
intuition, they can be revised routinely on the basis of
experience and process control measurements; and it is
encouraging to note that as the model becomes more refined,
some helpful optimizing effects can be expected from mixing
of overestimated and underestimated values.

Simplified example

To demonstrate the capabilities of the model, consider a
hypothetical module assembly. With defect rates set high
enough to cause traffic through the test and rework loops,
and using a manufacturing sequence illustrated in Fig. 7,
PARTY enables the user to break out the traffic flow as
illustrated in Fig. 8.

The defect categories shown in Fig. 9 were provided as
input to the model, together with their respective probabili-
ties of occurrence. In order to keep the model simple for this
example, we defined four defect types (AA—AD) for circuit
chips arriving from a vendor; four defect types (BA—BD) for
chip joining when new, and three defect types (CA-CC)
during rework; three defect types for substrate wiring when
new (DA-DC), and one defect type during rework (EA);
also, three defect types for new substrates (FA—FC), and one
defect type during rework (GA). With this information, the
model provides the user with a complete account of the defect
types and quantities which caused this traffic flow.

In this particular simulation of the 1000 assemblies
entering the test, 654 passed the first time, 343 were sent to
rework (enter the second column of Fig. 9), and three
assemblies could be categorized as not economical to repair,

IBM J. RES. DEVELOP. ¢ VOL. 27 e NO. | ¢ JANUARY 1983



and consequently would be scrapped. This simulation further
shows that three assemblies would go through rework five
times until they finally passed. A convenient summary of the
rework routings is also provided.

Summary and conclusion

The model is flexible enough to simulate any reasonable
process sequence and provide full accounting of how many
parts passed through any stage in the process. It is capable of
providing a full description of every defect which was
predicted as being detected or reworked at any process stage;
and it can accommodate the use of several different types of
test equipment, both alone and in combinations. The test
coverages provided by each of these testers will differ, but the
degrees of redundancy between two testers may, in some
cases, vary considerably from the simple probabilistic over-
lap [4]. The model is also capable of predicting the types and
quantities of defects which can be expected to escape detec-
tion at the assembly line testers and thus enter the next level
of the manufacturing process.

The model simulation is unconventional in that its empha-
sis is on defect flow rather than assembly flow. It is determin-
istic in nature, providing an assessment of the total workload
imposed upon every sector in the manufacturing process for a
given quantity of parts assembled, without reference to
throughput constraints or processing time.

The output of the model is usually normalized, to enable
ready application against scheduled requirements for com-
pleted assemblies in more than one manufacturing location.
It has obvious applications as an input to an iterative
simulation of the manufacturing process and has in fact been
used for that purpose; but it is generally applied directly to
the creation of tool plans, manpower plans, space plans, and
plans for the computer support of manufacturing opera-
tions.

Acknowledgments

The author acknowledges the following contributors to the
work reported: C. J. Kraus, for validating the original model;
A.J. Andres and W. H. McAnney, for discussions leading to
the final model; L. E. Euvino, for providing the input data
base for tuning and the production model; P. H. Bardell and
K. M. Dooley, for support, suggestions, and encouragement
in writing this paper.

References and note

1. A.J. Blodgett and D. R. Barbour, “Thermal Conduction Module:
A High-Performance Multilayer Ceramic Package,” IBM J.
Res. Develop. 26, 30—36 (1982).

2. Donald P. Seraphim, “A New Set of Printed-Circuit Technolo-
gies for the IBM 3081 Processor Unit,” IBM J. Res. Develop. 26,
37-44 (1982).

3. L. Gilman and A. J. Rose, APL: An Interactive Approach, John
Wiley & Sons, Inc., New York, 1976.

IBM J. RES. DEVELOP. ¢ VOL. 27 e NO. | ¢ JANUARY 1983

DEFECT CATEGORY TYPE DEFECT QUANTITIES BY TEST PASS

1 2 3 & 5 6 7
CHIP (NEW) AR 73
AB 133 2
AC 77
AD 21
CHIP JOIN (NEW) BA 29
BB 10
8C 10
BD 10
CHIP JOIN (REWORK) CA 65 14 3
cB 4 2 1
ce 1
WIRES (NEW) DA 1
DB 1
oot 1
WIRES (REWORK) EA 1
SUBSTRATE (NEW) FA 30
FB 3
FC 3
SUBSTRATE (REWORK) GA 1
DIAGNOSED-REMOVED HA 85 15 3 1
TOTALS 487 89 19 5
TEST SUMMARIES:
ASSEMBLIES ENTERING TEST 1000 243 64 14 3
ASSEMBLIES ACCEPTED €54 244 50 1 3
ASSEMBLIES SENT FOR REWORK 343 64 14 3
ASSEMBLIES SCRAPPED 3
REWORK RDUTINGS:
CHIP REWORK ONLY 305 &2 14 3
WIRE REWORK ONLY 3
SUBSTRATE REMWORK ONLY 23 1
CHIF AND WIRE REWORK 1
CHIP AND SUBSTRATE REWORK 12
WIRE AND SUBSTRATE REWORK
CHIP/WIRE/SUBSTRATE REWORK

Figure 9 PARTY output listing of the hypothetical example. The
listing consists of three parts: details of defect discoveries by
test/rework passes, summaries of defect discoveries, and summaries
of rework routings.

4. Note that in some cases, one type of tester may provide a 90%
discovery effectiveness for a particular defect category, vs 75%
for another type of tester, yet the 75% might be contained entirely
within the 90%.

Received September 8, 1981, revised October 14, 1982

Brian J. Dooley IBM Data Systems Division, P.O. Box 950,
Poughkeepsie, New York 12602. Mr. Dooley is an advisory engineer
currently working on technical strategy in the manufacturing engi-
neering organization associated with the advanced sub-products
used in the new generation of IBM computers. Prior to joining IBM
in 1962, he spent ten years with the English Electric Company, Ltd.,
working on the design and development of high-voltage insulation
systems. He received a B.Sc. in physics and mathematics from
Liverpool University in 1952, followed by extensive postgraduate
studies in statistics and electrical engineering at the Liverpool
College of Technology. Since joining IBM, Mr. Dooley has special-
ized primarily in data analysis and prediction, and was for several
years manager of a group studying the reliability of electrical
components in computers.

67

B. J. DOOLEY




