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Cursive Script Recognition by Elastic Matching

Dynamic programming has been found useful for performing nonlinear time warping for matching patterns in automatic
speech recognition. Here, this technique is applied to the problem of recognizing cursive script. The parameters used in the
matching are derived from time sequences of x-y coordinate data of words handwritten on an electronic tablet. Chosen for their
properties of invariance with respect to size and translation of the writing, these parameters are found particularly suitable for
the elastic matching technique. A salient feature of the recognition system is the establishment, in a training procedure, of
prototypes by each writer using the system. In this manner, the system is tailored to the user. Processing is performed on a
word-by-word basis after the writing is separated into words. Using prototypes for each letter, the matching procedure allows
any letter to follow any letter and finds the letter sequence which best fits the unknown word. A major advantage of this
procedure is that it combines letter segmentation and recognition in one operation by, in essence, evaluating recognition at all
possible segmentations, thus avoiding the usual segmentation-then-recognition philosophy. Results on cursive writing are
presented where the alphabet is restricted to the lower-case letters. Letter recognition accuracy is over 95 percent for each of

three writers.

1. Introduction

The advent in the early 1960s of electronic tablets capable of
accurately capturing the x-y coordinate data of pen move-
ment precipitated activity on cursive writing recognition
[1, 2]. Except for an occasional thesis, activity in this area
has decreased in recent years. Almost all efforts have been
restricted to noncapital roman script [1, 2]. Two major
approaches have been described in the literature. The
approach undertaken at MIT by Eden and his students was
basically one of “analysis by synthesis,” where a model is
created for the handwriting process and decoding is per-
formed by fitting the model’s production parameters {3].
Several more direct approaches were used by Harmon and
his colleagues at Bell Laboratories, the most successful being
an analysis on a letter-by-letter basis following explicit
segmentation. Letter accuracy for this technique was first
reported at 60 percent [4] and later, after improvements, at
90 percent [2] for carefully formed script.

However, with the increased interest in office systems,
particularly those that reduce the principal’s dependence on
secretarial support, there is also a growing interest in com-
municating with machines in a person’s natural modalities,

such as speech and handwriting. For direct written input by
principals, perhaps the most difficult technical problem is
that of cursive script recognition.

The dynamic programming technique of elastic matching
(dynamic time warping) was applied to speech recognition.
problems over a decade ago and has since become widespread
[5-7]. Recently, elastic matching has been successfully
applied to the recognition of discrete handwritten characters,
where an input character is matched against each of a set of
prototypes and assigned the name corresponding to the
prototype yielding the best match [8]. Here, elastic matching
is extended to the recognition of cursive writing. The proce-
dure decodes handwritten words into estimated strings of
letters. Operating on a word at a time, using letter proto-
types, and allowing any letter to follow any letter, the
decoder uses elastic matching to find the prototype sequence
which best fits the unknown word, yielding the corresponding
letter sequence as the estimated letter string. Elastic match-
ing provides the decoder with the essential feature of being
insensitive to minor perturbations of input letter shapes
relative to prototype letter shapes. Thus, elastic matching is
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Figure 1 Handwriting sample (actual size).
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Figure 2 Machine representation of the word “score.”

used to normalize expected differences in writing rate which
cause repeated writings of the same letter to vary in the
quantity of sample points and also cause nonlinear time
variation in the shape of a letter. Explicit letter segmentation
is not performed. Rather, elastic matching permits evalua-
tion of recognition at all possible segmentations and simulta-
neously obtains the best combination of segmentation and
recognition. The procedure used here is a one-pass, dynamic
programming match similar to that previously applied in
continuous speech recognition [9-11].

2. Data taking

An electronic tablet is used which detects and quantifies the
motion of a pen to provide digital representations of the x and
y coordinates of the pen tip. A pen up-down signal is also
provided. The tablet has a resolution of 0.005 inch, and data

are sampled at 70 samples/second. Program communication
is via an IBM 3277 terminal. The writing sample is displayed
on a Tektronics 611 direct-view storage display and, if
accepted by the user, transmitted to an IBM System/370
computer for processing. The use of electronic tablets pro-
vides on-line source data of a nearly exact trace of the path of
the tip of the writing instrument; these data give the number,
order, and direction of the strokes used in writing. A stroke
consists of the coordinate points from pen down to pen up.
Lines of words to be recognized are written on Y4-inch lined
paper registered on the tablet. An example of actual data
entered is shown in Fig. 1. Figure 2 shows the machine
representation of the word score of Fig. 1. In this representa-
tion straight lines connect coordinate points.

3. Procedures

This section begins with a description of several preliminary
processing steps, the measurements derived from the
sequence of coordinate data, and the metric used to compare
such measurements of the input writing with those of letter
prototypes. The elastic matching procedure is then
described, going from the formulation of an optimization
problem to its dynamic programming solution. Two enhance-
ments which act as constraints on the model are also
presented. Finally, the system’s three modes of operation—
training, recognition, and labeling—are described.
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Several preliminary processing steps are performed on the
data. First, a line of writing is automatically separated into
words; it is assumed that the writer leaves sufficient space
between words. Second, due to inaccuracies of pen up-down
detection in the hardware, occasionally extra data are re-
corded having the appearance of a hook at the beginning or
end of a stroke. Such hooks are eliminated by an algorithm
which looks for big angle changes close to the ends of strokes
and eliminates the points from the angle to the stroke end.
Although this was a severe problem for the recognition of
discrete handwritten characters [8], it is less so for cursive
writing where there are fewer strokes per character. Third, as
a form of “jitter” reduction, the data corresponding to a dot
are reduced to a single point. Fourth, hesitation and pausing
as well as other writer variability with regard to speed of
writing are reduced by retaining those data points which are
roughly equally spaced in distance.

A final processing step is performed on delayed strokes. A
delayed stroke is one used to complete a character but which
does not immediately follow the first portion of that charac-
ter. For example, the word city is generally written with three
strokes—the first is the main portion of the word, the second
the dot of the / and the third the cross of the ¢. Here, the
second and third strokes are delayed. However, because an
unknown word is matched with a direct concatenation of
letter prototypes, it must be possible to partition the time
sequence of strokes into letters. Therefore, a special proce-
dure moves delayed strokes to their appropriate places within
a word. This procedure repeatedly examines the last stroke of
a word and, if it is a dot or cross, cuts (if necessary) the
underlying stroke into two strokes and moves the dot or cross
by reordering the strokes so that it immediately follows the
main part of the character i, j, ¢, or x. The resulting stroke
sequence corresponds to that which would be obtained from
writing in a manner such that each letter is completed before
beginning the next.

From the coordinate data remaining after the above
processing, two measurements are extracted to characterize
each coordinate point. These measurements or model param-
eters were chosen for their properties of invariance with
respect to size and translation of the writing (Fig. 3). The
first of these parameters is the slope angle, ¢, of the tangent
to the curve at an arbitrary point 7. It is approximated simply
by the slope angle of the line segment from one point to the
next. This angle parameter is invariant to size and transla-
tion of the input symbol. The second parameter is the height
of the point, y,, as measured from the current baseline and
normalized by the line spacing of the lined writing paper
attached to the tablet. This parameter is invariant to x-
translation and, because it is normalized, to size of the input
symbol. Except for size and translation these two parameters
can recreate the shape of a stroke and generally of a word as
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Figure 3 Model parameters: angle ¢ and height y.
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Figure 4 Elastic matching.

well. Following preprocessing and parameter derivation a
word token is represented by a sequence of parameter vectors
S=V, V.-, V,, where V, = (¢,,y) and N is its
length.

Letter prototypes are used to provide references against
which the unknown letter sequence is matched. A letter can
have more than one prototype. In order to perform this
matching, a distance or metric is necessary in the comparison
of an arbitary point / in the unknown with a point j in the kth
prototype. The distance used is

d(i, j; k)

= min {I ¢i_¢j,k|’ 360— id)i_qu‘kl} + |y,‘_yj,k |’ (1)
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Figure 5 Lattice of simple, two-prototype model.

where the first term is the magnitude of the angle between
the directed tangents and the second is the magnitude of the
height difference (Fig. 3). Height is scaled to contribute the
same weight as the angle parameter in the metric.

The decoder uses elastic matching at the letter level and,
allowing any letter to follow any letter, finds the optimal
letter sequence which uses up all the data points of the input
word. Thus, the decoder finds the sequence of prototypes
which best matches the input word. This is done by minimiz-
ing the expression

NRI
min 2 d(i, w(i); )
W} i=1
Ny,

W} i=1

min
NL,91.92,~ Ry
WNg_ v+,
2778y oL

N’ZL

+ min 2_ d(No+ Ny,
Wit =1

4o+ Ny +Ew@ )l (2)

where L is the estimated number of letters in the word and,
for the jth letter, &, is the best matching letter prototype and
N, the corresponding number of points of the unknown word
used to match that prototype. The N, must sum to XV, the
number of points in the unknown word. This optimization
problem can be viewed as a global optimization of L local
optimizations. For a local letter optimization, the warping
function w maps the index of the unknown to the index of the
prototype. The boundary conditions w(1) =1 and
w(N,) = M,, where M is the length of prototype k, ensure
that the first and last points of a prototype are matched. The
continuity condition w(i + 1) — w(i) = 0, 1, 2, operating
within the scope of the prototype, provides the elasticity so
that successive points in the unknown can be mapped to a
single point, successive points, or points whose indices differ
by two, skipping a point, in the prototype (Fig. 4).

The decoding procedure can be described with reference to
the lattice of possible paths through the model. For purposes
of illustration, the lattice of possible paths for a simple,
two-prototype model is shown in Fig. S. The lattice contains
transitions to the first point of each prototype at the begin-
ning of the unknown, from the last point of each prototype at
the end of the unknown, from the last point of a prototype to
the first of each prototype (where possible), and within each
prototype according to the continuity condition. It is easily
shown that the minimization of (2) is solved efficiently and
optimally by dynamic programming using the recursion
relation

D(i, j: k) = d(i, ji k)
(min (DG~ 1,j3 k), DG —1,j — 1;K),
D(Gi—1,j—2; k) ifj>2

min (DG — 1, j; k), DG —1,j — 1; k)}
+ 9 ifj=2¢ 3

min (DG~ 1, /: K)min DG — 1, M,; m)}}
\ " ifj =1/

where D(i, j; k) is the cumulative distance to point i in the
unknown and point j in prototype k. Starting with
D(1, 1; k) = d(1, 1; k) forall k and D(i, j; k) very large
(infinite) elsewhere, the cumulative distance recurrence rela-
tion is used to obtain, for all possible paths through the
model, the path having the minimum distance. Computation
of cumulative distance proceeds column by column through
the lattice in one forward pass through the unknown input.
The first line of Eq. (3) is the recursion relation which allows
transitions according to the continuity condition. The second
line is similar but, being only at the second point of the
prototype (j = 2), skipping is not permitted because,
according to the boundary conditions, the first prototype
point cannot be skipped. The third line holds at the beginning
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Table 1 Decoder accuracy results.
Writer Accuracy (Correct/All letters) Errors
A 98% (228/233) u—a,o0—a,w—uv—nu—n
B 95% (168/176) y—gh—kQ2,w—uo—au—ao—>er—c
C 96% (353/366) d—cd2),a—uR),v—0(2),i—e(2),
i—r,re—w,e—c,a—ce
All 97% (749/775)

of a prototype (j = 1) and gives the choice of repeating the
prototype point or making a transition between prototypes,
going from the end of one prototype to the beginning of
another. In the transition between prototypes, the cumulative
distance corresponding to the start of each prototype is
obtained by examining the ends of the preceding prototypes
and selecting the minimum cumulative distance. The num-
ber of point distances computed is limited by the size of the
lattice which has less than NMn points, where M is the
average prototype length and » is the number of prototypes.
The letter sequence is estimated by storing pointers, which
refer back to prior optimal states, while stepping through the
recurrence relation, and then tracing them back from
(N, M,; k) for that k which minimizes D(N, M,; k).
Shown in Fig. S in dark lines is a possible path through the
lattice corresponding to the letter sequence ba.

For improved performance this procedure was modified in
two ways—Ilimiting segmentation points and using digram
(letter pair) statistics. Transition from one letter prototype to
another (i.e., segmentation) is prohibited at cusps and cor-
ners, points not headed in the appropriate angular direction
(essentially up and to the right), points near ends of strokes
except the last point of a stroke, and points closed above
within the same stroke. The main intent of this technique is
to inhibit segmentation at those points which are definitely
not segmentation points with the aim of avoiding segmenta-
tion errors and speeding computation since the possibilities
are more limited.

Digram frequency information in the form of digram
weights (penalties) derived from digram transition probabili-
ties is employed. On making the transition from one proto-
type to another the digram weight corresponding to the
appropriate letter pair is added to the cumulative metric. A
digram weight is proportional to the negative of the loga-
rithm of the corresponding transition probability. The ration-
ale for this definition is essentially that adding logarithms
corresponds to multiplying probabilities; the relationship
between probabilistic models and additive distance metrics
can be found in {12]. The transition probabilities used were
based on a text containing 10 000 letters; zero transition
probabilities were modified to a small value so as not to
prohibit any transition.
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The program in which the procedure is implemented has
three modes of operation—training, recognition, and label-
ing. In the training mode, an initial set of prototypes is
created simply by storing parameters derived from script
letter tokens which are written discretely. In the recognition
mode, recognition is performed by matching the unknown
word against the prototypes as described above and choosing
that sequence of letters yielding the smallest overall distance.
In the labeling mode, additional prototypes obtained from
cursive writing are added to the set of prototypes. The
decoder is forced to yield the letter sequence of a specified
text. This is done for each word by rigging the digram
weights so as to permit only those letter pairs which occur in
the word. Since the decoder yields an estimate of segmenta-
tion boundaries as well as an estimated letter sequence, the
obtained segments correspond to letters and are used to
create new prototypes.

The procedure is implemented in Pascal/VS, an IBM
version of Pascal, and runs on the IBM System/370 com-
puter. The current total storage requirement is 200K bytes,
and processing speed in the recognition mode is 3 letters/
second using 52 prototypes. Computation time is propor-
tional to the number of prototypes used in the matching
process.

4. Preliminary experimental resuits

Experimental results were obtained for carefully produced
writing samples from three writers. The writers were
instructed to include all ligatures; this point is discussed
further in the following section. For each writer, a set of 165
letter prototypes was established by adding 113 prototypes
from the cursive writing of a specified text to 52 prototypes
(two of each letter) from discretely written cursive charac-
ters. The decoder was then run on new samples of cursive
writing from each writer using prototypes obtained from the
writer. These new writing samples were based on texts of
entirely different material than that used for obtaining
prototypes.

For each of the three writers, letter accuracy and a list of
the letter errors are shown in Table 1. One of the writing
samples from writer C is shown in Fig. 1. The corresponding
machine output of the decoder is shown in Fig. 6. For this
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Figure 6 Decoded output.
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Figure 7 Example of missing ligatures.

writing sample there were four letters incorrectly decoded,
e — c,a — ce,a — u,andd — cl.

5. Discussion

The above results, though based on small samples of writing
from three writers, indicate that elastic matching is a promis-
ing technique for the recognition of cursive writing. Since
these are early results of a new application of elastic match-
ing, improvements can be expected with refinements of this
approach.

Many of the recognition errors are the result of the
decoder’s inability to detect closure sufficiently. For exam-
ple, the essential difference in discriminating between the
pairs a-u, g-y, o-v, n-u, a-ce, and d-cl is that the first member
of the pair is more closed on top. Closure is a global property
and is not well characterized by the local angle and height
measurements. Recognition accuracy should be substantially
improved by incorporating measurements that adequately
detect degree of closure. The two [ — e errors arose
primarily because the writer forgot to dot these i’s. In
addition, the decoder does not adequately detect the differ-
ence between loops and cusps.

In cursive writing ligatures connect letters and, in English,
these ligatures are normally high (about midline height)
following b, 0, v, w and low (baseline height) otherwise. As
illustrated in Fig. 7, ligatures can be omitted. Here, the
initial ligature of the first letter, the initial ligature of a
medial letter, and the final ligature of the final letter are
omitted. In order to limit the number of prototypes required
in this feasibility study, the writers were instructed to
produce initial and final ligatures for all letters. For cursive
writing by writers who use the minimal number of pen lifts,
which accounts for most, this means that care should be
taken to ensure that the first letter of a word has an initial
ligature and the last a final one. Note that all ligatures are
included in the writing sample of Fig. 1. Now, since any
letter can follow a letter of the set b, o, v, w, the procedure
should account for initial high or low ligature for each letter.
Therefore, the prescribed text from which additional proto-
types were generated was designed to be concise and to
include high and low initial ligature tokens of all letters
except for a few low frequency ones.

Future studies should be concerned with permitting the no
initial or final ligature cases in appropriate situations. Three
possible ways of handling this are to add prototypes without
ligatures, to add additional entry and exit points from
prototypes with ligatures, and to add ligatures where they are
omitted in the writing to be recognized. Also, in conjunction
with a prototype set the decoder has a model which specifies
what subset of prototypes, in terms of ligature types, can
follow another. At present, any prototype can follow any
other. A more sophisticated model could restrict the
sequence of types as follows. The no initial ligature case can
only occur at the beginning of a stroke—that is, at the
beginning of a word or at the beginning of a new letter within
a word when that letter begins with a new stroke. Initial high
ligature can only occur at the beginning of a stroke or
following the letters b, o, v, w. Initial low ligature can occur
only at the beginning of a stroke or following a letter other
than b, o, v, w. Finally, the no final ligature case can only
occur at the end of a stroke——that is, at the end of a word or
the end of a letter within a word when that letter ends a
stroke.

Best results with the elastic matching technique are
achieved when a writer creates his own prototypes, requiring
time for the user to train the recognition system to his
writing. For the system to be viable it is considered vital that
it be easily trained to the writing style of an individual and
that initial training should require only one or two examples
of each letter so as not to burden the user. This precludes the
use of an elaborate statistical approach requiring extensive
user data. In addition, the system should have an adaptive
capability in the sense that accuracy improves with use.
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The present idea in establishing prototypes is to create
progressively better prototype sets by a bootstrapping meth-
od. Beginning with a set of prototypes obtained from
discretely written letters, the labeling (forced matching)
procedure is used to add additional prototypes from cursive
writing. This might be considered a second phase of training.
These prototypes, in turn, can be used to obtain additional
prototypes from other cursive writings. In order to maintain
reasonable processing speed and provide sufficient storage
for adding new prototypes in another labeling session, meth-
ods of deleting poor prototypes might be investigated. For
example, prototypes which rarely provide the best match or
are often involved in misrecognitions could be deleted since
they could be considered poor representatives of their respec-
tive classes. Further study is needed of procedures for
establishing a set of prototypes for a writer and perhaps also
for modifying a prototype set over a period of time. Estab-
lishing prototypes is a critical procedure for a decoder of this

type.

The use of digram statistics is, of course, debatable. It
gives the decoder an a priori statistical bias and, although
this bias tends to improve decoding on the average, by about
three percent on a portion of our data, it can also introduce
errors. Therefore, it can be argued that it is better to leave
the decoder unbiased. Using digram statistics is an attempt
to include language information. Perhaps a better method of
doing this would be to use a dictionary to limit the decoder’s
choice of letter sequences to dictionary entries, since most
decoding errors result in letter sequences not found in a
dictionary. Further investigation is required in this area. The
other modification which limits segmentation might be bet-
ter omitted. An accuracy increase of one to two percent was
obtained over a portion of our data, but it is easy to foresee
problems with this procedure, particularly with less careful
writing. Furthermore, one of the main reasons for limiting
segmentation, such as not permitting segmentation at a
corner, was to handle special ligature situations. For exam-
ple, if segmentation is permitted at a corner, bo could easily
be decoded as /o because the decoder is allowed to follow an /
prototype with one for o with a high initial ligature. With
improved ligature handling, as proposed above, such confu-
sions could not easily occur and the mechanism for limiting
segmentation would not be as necessary.

Finally, it should be mentioned that future work should
also deal with increasing the alphabet to include upper-case
letters, punctuation symbols, and numerals. The potential
advantage of using a dictionary to aid decoding was men-
tioned above. Eventually, especially for less carefully pro-
duced writing, the use of syntax and perhaps even semantics
will probably also be necessary.
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