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Cursive  Script  Recognition by Elastic  Matching 

Dynamic  programming has been found  useful  for  performing nonlinear time warping f o r  matching  patterns  in  automatic 
speech recognition. Here,  this technique is applied to  the  problem of recognizing  cursive script.  The  parameters used in  the 
matchingare derived from  time sequences of x-y coordinate data of words handwritten on an  electronic tablet. Chosen for  their 
properties of invariance  with respect to  size and translation of the writing, these  parameters are found  particularly  suitable  for 
the  elastic  matching technique. A salient feature of the recognition system  is  the  establishment, in  a  training procedure, of 
prototypes  by each  writer  using the  system. In this manner, the  system  is tailored to  the user. Processing is  performed on a 
word-by-word basis  after  the writing is separated into words. Usingprototypes  for each letter,  the  matchingprocedure  allows 
any  letter  to  follow  any  letter and finds  the  letter sequence which best fits  the  unknown word. A major advantage of this 
procedure is  that  it combines letter  segmentation and  recognition in one operation by,  in essence, evaluating recognition at  all 
possible  segmentations,  thus avoiding the  usual segmentation-then-recognition philosophy.  Results on cursive  writing are 
presented where the alphabet is restricted to  the lower-case letters.  Letter recognition  accuracy is over 95 percent for  each of 
three writers. 

1. Introduction 
The  advent in the  early 1960s of electronic  tablets  capable of 
accurately  capturing  the x-y coordinate  data of pen move- 
ment  precipitated activity on cursive  writing  recognition 
[ 1, 21. Except  for an occasional  thesis, activity in this  area 
has  decreased in recent years.  Almost all efforts  have  been 
restricted  to  noncapital  roman  script [ 1, 21. Two  major 
approaches have  been  described in the  literature.  The 
approach  undertaken at   MIT by Eden  and his students was 
basically one of “analysis by synthesis,” where a  model  is 
created  for  the  handwriting process and decoding is per- 
formed by fitting the model’s production parameters [3]. 
Several more direct  approaches were used by Harmon  and 
his colleagues at  Bell Laboratories,  the most  successful  being 
an analysis on a letter-by-letter basis following explicit 
segmentation.  Letter  accuracy for this  technique was  first 
reported a t  60 percent [4] and  later,  after improvements, a t  
90 percent [2] for  carefully  formed  script. 

However, with the increased interest in office systems, 
particularly those that  reduce  the principal’s dependence on 
secretarial  support,  there is also a  growing interest in  com- 
municating  with  machines in a person’s natural modalities, 

such  as speech and  handwriting.  For  direct  written  input by 
principals, perhaps  the most difficult technical problem is 
that of cursive script recognition. 

The  dynamic  programming  technique of elastic  matching 
(dynamic  time  warping) was  applied to speech  recognition 
problems over a decade  ago  and  has  since become  widespread 
[5-71. Recently,  elastic  matching  has been  successfully 
applied to  the recognition of discrete  handwritten  characters, 
where an  input  character is matched  against  each of a set of 
prototypes and assigned the  name corresponding to  the 
prototype yielding the best match [ 8 ] .  Here,  elastic  matching 
is extended  to  the recognition of cursive  writing. The proce- 
dure decodes handwritten words into  estimated  strings of 
letters.  Operating on a word at  a time, using letter proto- 
types, and allowing any  letter  to follow any  letter,  the 
decoder uses elastic matching  to find the prototype  sequence 
which best fits the unknown  word, yielding the corresponding 
letter  sequence  as  the  estimated  letter  string.  Elastic  match- 
ing provides the decoder with  the essential feature of being 
insensitive to minor perturbations of input  letter  shapes 
relative to  prototype  letter shapes. Thus,  elastic  matching is 
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Figure 1 Handwriting  sample  (actual  size) 

Figure 2 Machine  representation of the word “score.” 

used to  normalize expected  differences in writing rate which 
cause  repeated writings of the  same  letter  to  vary in the 
quantity of sample points and also cause nonlinear time 
variation in the  shape of a letter. Explicit letter  segmentation 
is not performed.  Rather,  elastic  matching  permits evalua- 
tion of recognition at  all possible segmentations  and  simulta- 
neously obtains  the best combination of segmentation  and 
recognition. The  procedure used here is a  one-pass, dynamic 
programming  match  similar to that previously applied in 
continuous  speech  recognition [9-111. 

are  sampled  at  70 samples/second. Program communication 
is via an IBM 3277 terminal.  The writing sample is displayed 
on a Tektronics 611  direct-view storage display and, if 
accepted by the user, transmitted  to  an IBM System/370 
computer for processing. The use of electronic tablets pro- 
vides on-line  source data of a  nearly exact  trace of the  path of 
the  tip of the writing instrument;  these  data give the  number, 
order,  and direction of the  strokes used in writing. A stroke 
consists of the  coordinate points from pen down to pen up. 
Lines of words to be recognized are  written on Yd-inch lined 
paper  registered on the  tablet. An example of actual  data 
entered is shown in Fig. 1. Figure 2 shows the  machine 
representation of the word score of Fig. 1. In this  representa- 
tion straight lines  connect coordinate points. 

3. Procedures 
This section begins with  a  description of several  preliminary 
processing steps,  the  measurements derived from  the 
sequence of coordinate  data,  and  the  metric used to  compare 
such measurements of the  input writing with those of letter 
prototypes.  The  elastic  matching  procedure is then 
described, going from the  formulation of an optimization 
problem to its dynamic  programming solution.  Two enhance- 
ments which act  as  constraints on the model are also 
presented.  Finally, the system’s three modes of operation- 
training, recognition, and labeling-are described. 

2. Data taking 
An electronic tablet is used which detects  and quantifies the 
motion of a pen to provide digital  representations of the x and 
y coordinates of the pen tip. A pen up-down signal is also 
provided. The  tablet  has a  resolution of 0.005 inch, and  data 

IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982 



Several  preliminary processing steps  are performed on the 
data. First,  a  line of writing is automatically  separated  into 
words; it is assumed  that  the  writer leaves sufficient space 
between words. Second,  due  to  inaccuracies of pen up-down 
detection in the  hardware, occasionally extra  data  are re- 
corded  having the  appearance of a hook at  the beginning or 
end of a stroke.  Such hooks are  eliminated by an  algorithm 
which looks for big angle  changes close to  the  ends of strokes 
and  eliminates  the points from  the  angle  to  the  stroke  end. 
Although  this was a  severe  problem for the recognition of 
discrete  handwritten  characters [8], it is less so for  cursive 
writing  where there  are fewer strokes per character.  Third,  as 
a form of “jitter” reduction, the  data corresponding to a dot 
are reduced to a  single  point. Fourth, hesitation and pausing 
as well as  other  writer variability  with regard  to speed of 
writing are reduced by retaining those data points which are 
roughly  equally  spaced in distance. 

Unknown 

Figure 3 Model parameters:  angle @ and  height y .  

A final processing step is performed  on  delayed  strokes. A 
delayed stroke is one used to  complete a character but which 
does  not  immediately follow the first portion of that  charac- 
ter.  For  example,  the word city is generally  written with three 
strokes-the first is the main  portion of the word, the second 
the  dot of the i and  the  third  the cross of the t .  Here,  the 
second and  third  strokes  are  delayed. However,  because an 
unknown word is matched with  a direct  concatenation of 
letter prototypes,  it must be possible to  partition  the  time 
sequence of strokes  into letters. Therefore, a  special proce- 
dure moves delayed strokes  to  their  appropriate places  within 
a  word. This  procedure repeatedly  examines the  last  stroke of 
a word and, if it is a dot or cross, cuts (if necessary) the 
underlying stroke  into two strokes  and moves the  dot or cross 
by reordering  the  strokes so that  it  immediately follows the 
main part of the  character i, j ,  t ,  or x. The  resulting  stroke 
sequence  corresponds to  that which would be obtained from 
writing in a manner  such  that  each  letter is completed  before 
beginning the next. 

From the  coordinate  data  remaining  after  the above 
processing, two measurements  are  extracted  to  characterize 
each  coordinate point. These  measurements or model param- 
eters were  chosen  for their properties of invariance with 
respect to size and  translation of the writing (Fig. 3). The 
first of these parameters is the slope angle, 4i, of the  tangent 
to  the  curve  at  an  arbitrary point i. It is approximated simply 
by the slope angle of the line segment  from  one point to  the 
next. This  angle  parameter is invariant  to size and  transla- 
tion of the  input symbol. The second parameter is the  height 
of the point, yi ,  as  measured  from  the  current baseline and 
normalized by the line  spacing of the lined writing paper 
attached  to  the  tablet.  This  parameter is invariant  to x- 
translation  and, because it is normalized, to size of the  input 
symbol.  Except  for  size and  translation these two parameters 
can  recreate  the  shape of a stroke  and generally of a word as 

IBM J. RES. DEVELOP. e VOL 26 NO. 6 NOVEMBER 1982 

” ””-- 
””” 

7”- ”” ””- “-4 
Prototype k 

Figure 4 Elastic  matching. 

well. Following preprocessing and  parameter derivation  a 
word token is represented by a  sequence of parameter vectors 
S = V, ,  V2, e . , V,, where V,  = (@i, y j )  and N is its 
length. 

Letter prototypes are used to provide references against 
which the unknown letter sequence is matched. A letter  can 
have  more than one  prototype. In  order  to perform this 
matching, a distance or metric is necessary in the comparison 
of an  arbitary point i in the unknown  with  a point j in the  kth 
prototype. The  distance used is 
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Unknown 

Figure 5 Lattice of simple,  two-prototype  model. 

where the first term is the  magnitude of the  angle between 
the  directed  tangents  and  the second is the  magnitude of the 
height  difference (Fig. 3) .  Height is scaled to  contribute  the 
same weight as  the  angle  parameter in the  metric. 

The decoder uses elastic  matching at  the  letter level and, 
allowing any  letter  to follow any  letter, finds the  optimal 
letter  sequence which uses up  all  the  data points of the  input 
word. Thus,  the decoder finds the  sequence of prototypes 
which best matches  the  input word. This is done by minimiz- 
ing the expression 

where L is the  estimated  number of letters in the word and, 
for thej th  letter, Qj is the best matching  letter prototype and 
NR the corresponding number of points of the unknown word 
uskd to  match  that prototype. The NR must  sum  to N ,  the 
number of points in the unknown word. This optimization 
problem can be viewed as a  global  optimization of L local 
optimizations.  For  a local letter  optimization,  the warping 
function w maps the index of the unknown to  the index of the 
prototype.  The  boundary  conditions w ( 1 )  = 1 and 
w(Nk)  = Mk,  where Mk is the length of prototype k,  ensure 
that  the first and  last points of a  prototype are  matched.  The 
continuity condition w(i  + 1 )  - w ( i )  = 0, 1, 2, operating 
within the scope of the prototype, provides the elasticity so 
that successive points in the unknown can be mapped to a 
single  point, successive points, or points whose indices  differ 
by two, skipping  a  point, in the prototype (Fig. 4). 

The decoding procedure  can be described with reference to 
the  lattice of possible paths  through  the model.  For  purposes 
of illustration, the  lattice of possible paths for  a  simple, 
two-prototype model is shown in Fig. 5. The  lattice  contains 
transitions  to  the first point of each  prototype at  the begin- 
ning of the unknown, from  the  last point of each prototype at  
the  end of the unknown, from  the  last point of a  prototype to 
the first of each  prototype  (where possible), and within each 
prototype according  to  the  continuity condition. It is easily 
shown that  the minimization of (2) is solved eficiently and 
optimally by dynamic  programming using the recursion 
relation 

D( i, j ;  k )  = d( i, j ;  k )  

D ( i -  1, j -  2; k ) }  

where D(i ,  j ;  k )  is the  cumulative  distance  to point i in the 
unknown and point j in prototype k .  Starting  with 
D( 1, 1 ; k )  = d( 1, 1;  k )  for all k and D(i ,  j ;  k )  very large 
(infinite)  elsewhere, the  cumulative  distance  recurrence rela- 
tion is used to obtain, for all possible paths  through  the 
model, the  path having the  minimum  distance.  Computation 
of cumulative  distance proceeds  column by column through 
the  lattice in one  forward pass through  the unknown input. 
The first  line of Eq. (3) is the recursion  relation which allows 
transitions according to  the  continuity condition. The second 
line is similar  but, being only at  the second point of the 
prototype ( j  = 2), skipping is not permitted because, 
according to  the  boundary conditions, the first prototype 
point cannot be skipped. The  third line holds at  the beginning 
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Table 1 Decoder  accuracy results. 

Writer Accuracy (CorrectlAii letters) Errors 

A 98% 
B 95% 
C 96% 

(228 /233)  u - a , o - a , w - u , u - n , u - n  
(1681176) y - g , h - k ( 2 ) , w - u , o - a , u - a , o - e , r - c  
(3531366) d - c c l ( 2 ) , a - u ( 2 ) , v - o ( 2 ) , i - e ( 2 ) ,  

1 - r , r e - w , e - c , a - r e  

All 97%  (7491775) 

of a  prototype ( j = 1) and gives the choice of repeating  the 
prototype point or making  a transition between  prototypes, 
going from the  end of one  prototype  to  the beginning of 
another. In the  transition between prototypes, the  cumulative 
distance corresponding to  the  start of each  prototype is 
obtained by examining  the  ends of the preceding  prototypes 
and selecting the minimum cumulative  distance.  The  num- 
ber of point distances  computed is limited by the size of the 
lattice which has less than N z n  points,  where is the 
average prototype length  and n is the  number of prototypes. 
The  letter  sequence is estimated by storing pointers, which 
refer  back  to prior optimal  states, while stepping  through  the 
recurrence relation, and  then  tracing  them  back  from 
( N ,  M, ;  k )  for that k which minimizes D(N,  Mk; k ) .  
Shown in Fig.  5 in dark lines is a possible path  through  the 
lattice corresponding to  the  letter  sequence ba. 

For improved performance  this  procedure was modified in 
two ways-limiting segmentation points and using digram 
(letter  pair)  statistics.  Transition  from  one  letter prototype to 
another (i.e.. segmentation) is prohibited at  cusps and cor- 
ners,  points  not headed in the  appropriate  angular direction 
(essentially up  and  to  the  right), points near  ends of strokes 
except the  last point of a stroke,  and points closed above 
within the  same  stroke.  The main intent of this  technique is 
to  inhibit  segmentation at  those  points which are definitely 
not segmentation points with the  aim of avoiding segmenta- 
tion errors  and speeding computation since the possibilities 
are  more limited. 

Digram  frequency  information in the  form of digram 
weights (penalties) derived  from digram  transition probabili- 
ties is employed. On making the  transition  from  one proto- 
type  to  another  the  digram weight  corresponding to  the 
appropriate  letter pair is added  to  the  cumulative  metric. A 
digram weight is proportional to  the negative of the loga- 
rithm of the corresponding transition probability. The  ration- 
ale for  this  definition is essentially that  adding  logarithms 
corresponds to multiplying  probabilities; the  relationship 
between probabilistic  models and  additive  distance  metrics 
can  be found in [ 121. The  transition probabilities used were 
based on a text  containing 10 000 letters; zero transition 
probabilities  were modified to a small value so as not to 
prohibit any  transition. 

The  program in which the procedure is implemented has 
three modes of operation-training,  recognition, and label- 
ing. In the  training mode, an initial  set of prototypes is 
created simply by storing  parameters derived from  script 
letter tokens which are  written discretely. In the recognition 
mode,  recognition is performed by matching  the unknown 
word against  the prototypes as described  above and choosing 
that sequence of letters yielding the  smallest overall distance. 
In the labeling  mode, additional prototypes obtained  from 
cursive  writing are  added  to  the set of prototypes. The 
decoder is forced to yield the  letter sequence of a specified 
text.  This is done for each word by rigging the  digram 
weights so as  to  permit only those letter pairs which occur in 
the word. Since  the decoder yields an  estimate of segmenta- 
tion boundaries  as well as  an  estimated  letter sequence, the 
obtained  segments correspond to  letters  and  are used to 
create new prototypes. 

The  procedure is implemented in Pascal/VS,  an IBM 
version of Pascal,  and runs on the IBM System/370 com- 
puter.  The  current  total  storage  requirement is 200K  bytes, 
and processing speed in the recognition  mode is 3 letters/ 
second using 52 prototypes. Computation  time is propor- 
tional to  the  number of prototypes used in the  matching 
process. 

4. Preliminary experimental results 
Experimental results  were obtained for carefully produced 
writing  samples from  three writers. The writers  were 
instructed  to include all  ligatures; this  point is discussed 
further in the following section.  For each  writer, a  set of 165 
letter prototypes was established by adding 11 3 prototypes 
from  the cursive  writing of a specified text  to  52 prototypes 
(two of each  letter)  from discretely written cursive charac- 
ters.  The decoder  was then run on new samples of cursive 
writing  from each  writer using  prototypes obtained  from  the 
writer. These new writing  samples  were  based on texts of 
entirely different material  than  that used for obtaining 
prototypes. 

For each of the  three  writers,  letter  accuracy  and a list of 
the  letter  errors  are shown in Table 1. One of the writing 
samples  from writer  C is shown in Fig. 1. The corresponding 
machine  output of the decoder is shown in Fig. 6. For this 

IBM J.  RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982 



770 

5?E.iiE 
Figure 7 Example of missing ligatures. 

writing sample  there were four  letters  incorrectly decoded, 
e - c , a  - ce,a - u, and d - cl. 

5. Discussion 
The above  results, though based on small  samples of writing 
from  three  writers,  indicate  that  elastic  matching is a promis- 
ing technique  for  the recognition of cursive  writing. Since 
these are  early  results of a new application of elastic  match- 
ing,  improvements can be expected  with  refinements of this 
approach. 

Many of the recognition errors  are  the  result of the 
decoder’s inability  to  detect  closure sufficiently. For exam- 
ple, the essential  difference in discriminating between the 
pairs a-u, g-y, 0-u, n-u, a-ce, and d-cl is that  the first member 
of the  pair is more closed on top. Closure is a  global property 
and is not well characterized by the local angle  and height 
measurements. Recognition accuracy should be  substantially 
improved by incorporating  measurements  that  adequately 
detect  degree of closure. The two i - e errors  arose 
primarily  because  the  writer forgot to  dot  these i ’s .  In 
addition,  the decoder does not adequately  detect  the differ- 
ence between loops and cusps. 

In cursive  writing ligatures connect letters  and, in English, 
these ligatures  are normally high (about midline height) 
following b, 0, u, w and low (baseline height) otherwise.  As 
illustrated in Fig. 7, ligatures  can be omitted.  Here,  the 
initial ligature of the first letter,  the initial ligature of a 
medial letter,  and  the final ligature of the final letter  are 
omitted.  In  order  to limit the  number of prototypes  required 
in this  feasibility study,  the writers  were instructed  to 
produce  initial and final ligatures for  all letters. For  cursive 
writing by writers who use the minimal number of pen lifts, 
which accounts for  most, this  means  that  care should be 
taken  to  ensure  that  the first letter of a word has  an  initial 
ligature  and  the  last a final one. Note  that  all  ligatures  are 
included in the writing sample of Fig. 1. Now,  since any 
letter  can follow a letter of the set b, 0, u, w, the procedure 
should account for initial high or low ligature for each  letter. 
Therefore,  the prescribed text  from which additional proto- 
types  were generated was  designed to  be concise and  to 
include  high and low initial ligature tokens of all letters 
except for a few low frequency ones. 

Future  studies should be concerned  with permitting  the no 
initial or final ligature  cases in appropriate  situations.  Three 
possible ways of handling  this  are  to  add prototypes  without 
ligatures,  to  add  additional  entry  and exit  points from 
prototypes  with ligatures,  and  to  add  ligatures where they  are 
omitted in the writing to be recognized. Also, in conjunction 
with  a prototype set the decoder has a model which specifies 
what subset of prototypes, in terms of ligature types, can 
follow another.  At present, any  prototype  can follow any 
other. A more sophisticated model could restrict  the 
sequence of types as follows. The no initial ligature  case  can 
only occur  at  the beginning of a  stroke-that is, at  the 
beginning of a word or at  the beginning of a new letter within 
a word when that  letter begins with a new stroke. Initial high 
ligature  can only occur at  the beginning of a stroke or 
following the  letters b, 0, u, w. Initial low ligature  can occur 
only at  the beginning of a stroke  or following a letter  other 
than b, 0, u, w. Finally, the no final ligature  case  can only 
occur at   the end of a  stroke-that is, at  the end of a word or 
the  end of a letter within  a word when that  letter  ends a 
stroke. 

Best results  with the  elastic  matching  technique  are 
achieved  when  a writer  creates his own prototypes, requiring 
time for the user to  train  the recognition  system to his 
writing. For the system to be viable it is considered  vital that 
it be easily trained  to  the writing style of an individual and 
that  initial  training should require only one or two  examples 
of each  letter so as not to  burden  the  user.  This precludes the 
use of an  elaborate  statistical  approach  requiring extensive 
user data. In addition,  the system  should  have an  adaptive 
capability in the sense that  accuracy improves with use. 
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The present  idea in establishing prototypes is to  create 
progressively better  prototype  sets by a bootstrapping  meth- 
od.  Beginning  with  a set of prototypes obtained  from 
discretely written  letters,  the labeling  (forced matching) 
procedure is used to  add  additional prototypes from cursive 
writing. This  might  be considered  a  second phase of training. 
These prototypes, in turn,  can  be used to  obtain  additional 
prototypes from  other cursive  writings. In  order  to  maintain 
reasonable processing  speed and provide sufficient storage 
for adding new prototypes  in another labeling session, meth- 
ods of deleting poor prototypes might  be investigated. For 
example, prototypes which rarely provide the best match or 
are often involved in misrecognitions could be  deleted since 
they could be considered poor representatives of their respec- 
tive classes. Further  study is needed of procedures for 
establishing  a set of prototypes  for  a writer  and  perhaps  also 
for  modifying  a prototype set over a  period of time.  Estab- 
lishing  prototypes is a critical  procedure for  a decoder of this 
type. 

The use of digram  statistics is, of course, debatable.  It 
gives the decoder an a priori statistical bias and,  although 
this bias tends  to improve  decoding on the  average, by about 
three percent  on  a  portion of our  data, it can  also  introduce 
errors.  Therefore, it can be argued  that it is better  to leave 
the  decoder  unbiased.  Using  digram  statistics is an  attempt 
to  include  language  information.  Perhaps a better method of 
doing this would be  to use  a dictionary  to  limit  the decoder’s 
choice of letter sequences to  dictionary  entries,  since most 
decoding errors  result in letter sequences  not  found in a 
dictionary.  Further investigation is required  in this  area.  The 
other modification which limits segmentation  might  be bet- 
ter  omitted.  An  accuracy increase of one  to two  percent  was 
obtained over a  portion of our  data, but  it is easy  to foresee 
problems with this procedure, particularly with less careful 
writing. Furthermore,  one of the  main reasons  for  limiting 
segmentation,  such  as not permitting  segmentation at  a 
corner, was to  handle special ligature  situations. For exam- 
ple, if segmentation is permitted at  a corner, bo could  easily 
be decoded as lo because the  decoder is allowed to follow an I 
prototype with one for o with a  high  initial ligature.  With 
improved ligature  handling,  as proposed above, such confu- 
sions could not easily  occur and  the  mechanism  for limiting 
segmentation would not be as necessary. 

Finally, it should be mentioned that  future work should 
also deal with increasing the  alphabet to include  upper-case 
letters,  punctuation symbols, and  numerals.  The  potential 
advantage of using  a dictionary  to  aid decoding  was men- 
tioned above. Eventually, especially  for less carefully pro- 
duced writing, the  use of syntax  and  perhaps even semantics 
will probably  also be necessary. 
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