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An Algorithm  for  Separating  Patterns by Ellipsoids 

We give an algorithm  forfinding the ellipsoid of least volume containing  a  set of points in afinite-dimensional Euclidean space. 
Such  ellipsoids have been proposed  for  separating  patterns in a feature  space. 

Introduction 
Let xI, . - . , x N  be points in n-dimensional Euclidean  space 
En representing sample  patterns of a certain class.  Consider 
the problem of separating  these points from points belonging 
to  other  pattern classes. We  assume  that  the  sample  patterns 
in each class are normally distributed.  It  then  seems reason- 
able to try to separate  the various  classes by ellipsoidal 
domains.  This is the  approach  taken by Rosen  in [ l ] .  He 
proposed finding the ellipsoid of least  volume containing  the 
sample  patterns of each class. In this  paper we show how this 
can be done. It suffices to consider the points x , ,  - - ., xN 
belonging to  one of the  pattern classes. We  assume  that not 
all of these  points  lie in a hyperplane of dimension less than 
n.  

Let E denote  an ellipsoid containing  the points x , ,  , 
xW The  boundary of E can  be  described by a set of the  form 

- C y R ( x  - c) = 1 1 ,  

where c is the  center of the ellipsoid and R is an n x n positive 
definite symmetric  matrix.  We  indicate  that R is positive 
definite by writing R > 0. Since  the xis are in E,  we have 

(x, - C f R ( X ,  - c) 5 1 ,  j = 1, f f - , N .  (1) 

The volume of E is  proportional to  (det R-’)”’.  Thus  the 
problem of determining  the ellipsoid of least  volume contain- 
ing the points xI , - - . , xN is equivalent  to finding a vector 
c € En and  an n x n positive definite symmetric  matrix R 
which minimize det ( R - ’ )  subject  to (1). The  determinant 
det (R-I)  is a  complicated function of the  entries rij of R. 
Our pattern  separation problem is further  complicated by the 
fact  that many highly nonlinear constraints  must be placed on 
the r,,’s to  ensure  that R is positive definite. These  constraints 

are ignored in [ 11. The  treatment of the problem in [ 11 is 
further simplified by replacing det ( K ’ )  with T r ( R - ’ ) .  In 
this  paper we describe a procedure for minimizing  both 
det ( R - I )  and T r ( R - ’ )  subject  to R > 0 and  the  constraints 
(1). We give the  details for minimizing det (R-I) .  Tr(R-I)  
can be minimized in a similar fashion. 

For a given c E E, we denote by V ( c )  the  minimum value 
of det ( R - ’ )  in the optimization  problem  described in the 
previous paragraph. V”’(c)  is proportional to  the volume of 
the ellipsoid of least volume having center c and  containing 
the points x , ,  - ., xN. Our problem is to  determine a c 

which minimizes V ( c ) .  We show that V ( c )  can be minimized 
by a gradient  technique.  Gradient techniques  generally 
require  many function  evaluations. And,  as we have  seen, 
evaluating  Vfor a given c requires  the solution of a  nonlinear 
programming problem. It is therefore  important to start  the 
minimization process with a good initial  guess of an  optimal 
c. If  N is large  and if the points xI, e e -, xN are normally 
distributed,  as we are  assuming,  the  average of these  points 
provides a good initial  guess  for c. This  initial guess should 
require very little  adjusting  to  obtain results satisfactory for 
pattern  separation. 

Evaluating V ( c )  
Assume that c is fixed and consider the problem of minimiz- 
ing f ( R )  = det (R-I )  subject  to  the  constraints  (1).  We first 
show that  this is a convex programming problem on the class 
of n x n positive definite matrices R. Let R,  and R, be n x n 
positive definite matrices,  and  let a satisfying 0 5 a 5 1 be 
given. It  then follows from  Theorem 6 on page 63 of [2] that 

det (aRI + (1 - a)R,) 2 (det  R,)*(det 
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Strict inequality holds if R, f R, and 0 < a < 1. In  addition, 
the inequality 

x"y"" 4 ax + (1 - a ) y  

relating  the  arithmetic  and  geometric  means of x and y holds 
for x, y 2 0 and 0 5 a 5 1. It follows that 

f ( d ,  + (1 - a)R,) 5 (det  Ry')*(det R;')'"' 

I a det (R,') + (1 - a )  det (R; ' )  

= a f ( R 1 )  + ( 1  - a ) f ( R z ) .  

This shows thatfis convex on the class of matrices R > 0. 
Minimizingfsubject  to ( I )  and R > 0 is therefore a convex 
programming problem  with linear  constraints. In what fol- 
lows we make  free use of the  fact  that such  problems  have 
dual  formulations in terms of Lagrange multipliers. 

Let X,, . . ., X, be trial  Lagrange multipliers  associated 
with the  constraints (1). Since these constraints  are inequali- 
ties, the X,'s are 20. The  Lagrangian associated  with our 
convex programming problem is then 

det(R") + x XJ[(xj - c ) ~ R ( x ~  - e )  - 11 . (2) 

If the XJ's were  chosen  properly, we could find the R which 
solves our convex programming problem by minimizing this 
expression with  respect to R > 0. Let X denote  the vector 
( X l ,  . , AN).  The proper  choice of X is the  one which 
maximizes the  dual objective 

N 

j =  I 

N 

det (R")  + x X j  [(X, ~ c ) ~ R ( x ~  - C) - 11 
X>O j =  1 

subject  to X 3 0. Maximizing g turns  out  to be an easy 
problem. To see this we first find a  simple  expression for g .  
For  this we require  the  Hoffman-Wielandt  inequality  from 
[3]. According to this inequality, i f  A and B are two real 
n x n symmetric  matrices with  eigenvalues a ,  2 . . e z an 
and PI 2 . 2 On, respectively, then 

Let A denote  the n x N matrix whose j t h  column is 
q ( x ,  - e ) .  We  assume  that not all  the points q ( x j  - e )  
lie in a hyperplane of dimension less than n so that A has  rank 
n. We  can  then  write (2) as 

det ( K 1 )  + Tr(ATRA) ~ E X, N 

j=  I 

N 

= det (R-I) + Tr(RAAT) - EXj . 
J=  I 

Let 0 < ul 5 . 5 un denote  the eigenvalues of AAT in 
increasing order.  Let rl 2 . . . 2 rn > 0 denote  the 
eigenvalues of R in decreasing  order.  It  then follows from (4) 
that 

det (R-I)  + Tr(RAAjT - x X, N 

j =  I 

" N 

2 (rl r"1-I + x riui - x ij . ( 5 )  
i =  I J = 1  

Moreover, if 

AAT = UZUT, Z = diag(a,, - - -, u"), 

is the  spectral decomposition of AAT, equality holds in (5) 
for 

R = UDU', D = diag(r,, ., r,,). ( 6 )  

Now  consider the problem of minimizing the expression on 
the  right side of the  inequality in ( 5 )  with respect to  the 
variables r l ,  . -, rn. At  the  minimum we have 

- 
(rl r , , - l  

ri 
+ u i = O ,  i = l , .  . e , n, 

so that 

(., . . . u n ) l / n + l  

r, = 
41 

- (det AAT)I'"+I - i =  1 , .  . -, n. 
ui 

Substituting these  values into ( 5 )  we obtain 

det ( K ' )  + Tr(RAAT) - x X, N 

j =  I 

N 

2 (n + 1)(u1 . . . an)l/n+l - x~~ 
J=  I 
N 

= (n + l)(det AAT)l'n+l - x X j  
,=I 

with equality if R is given by ( 6 )  and (7). Note  that this R 
depends on the XJ's since the eigenvalues and eigenvectors of 
AAT depend  on the X i s .  To  indicate  this  dependence we write 
R = R(X). It follows that 

g(X) = (n + l)(det AAT)l'"+' - f X j  (8) 

and 

R(X) = (det AAT)' /"+' (AAT)- ' .  (9)  

j =  I 

Now  consider the problem of maximizing g.  Since 
N 

AAT = x X j ( X j  - c)(x, - c y ,  
J=  I 

a change in one component of X produces  a  rank-one change 
in AAT. It is easy to  compute  the  changes in det @ A T )  and 
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(AAT)" due  to a  rank-one change in AAT. It is therefore 
easy to  compute  the  changes in g(X) and R(X) due  to a 
change in one  component of X. All this suggests  maximizing g 
by varying one component of X at  a time. Given an initial 
value of X we produce a new value by varying X, to  maximize 
g. We  then increase g a s  much as possible by varying X, in the 
new value of X. Continuing in this way we maximize g with 
respect to  each component of X, choosing the  components in 
order  and cyclically. Thus X, follows X". The  fact  that  this 
procedure converges is proved in [4]. Before we give a 
mathematical  statement of the  algorithm we show how to 
maximize g with respect to one  component, say X j ,  of X. 

Suppose X j  is changed  to X + a, where a is chosen  such 
that X, + a 2 0. Let h and ;? denote  the corresponding 
changes in X and A. We  then have 
" 

A A T  = AAT + " ( X j  - C ) ( X j  - c)'. 

In order  to  evaluate g(x) by the  formula (8) we require A AT 
to be nonsingular. We have 

det ( A i T )  = (det AAT) [ I  + a(xj  - c ) ~ ( A A ~ ) - ' ( x ~  - e ) ] .  
(10) 

Thus A AT is nonsingular if AA' is nonsingular and 

1 
a >  - 

( X j  - c)T(AAT)-'(XJ - e )  ' 

We  shall see that  the value of a which maximizes g(h) 
satisfies this condition. 

From (8) we see that 
N 

g(x) = (n + I)(det A AT)'/"+' - x X, - a 
J=  I 

= (n + l)(det AAT)""+l 

x [ l  + " ( X j  - C)'(AAT)"(Xj - e ) ] , / "+ ,  
N 

- EXJ - a. 
J=  1 

An easy  calculation shows that  the  maximum of g(x) with 
respect to a, subject to X, + a 2 0, occurs a t  

where 

R = (det AAT)l'"+'(AAT)". 

This value of a satisfies ( 1  1) and so ;? A' is nonsingular, 
provided AAT is nonsingular. 

From (1 2) we see that in order  to maximize g with  respect 
to  another component of X we need expressions for det 

(A>') and (zzT)". Theexpression  fordet ( A A T )  isgiven 
by ( IO) .  The inverse of A AT is given by 

(AAr)-I = (AAT)-1 

ol(AAT)"(Xj - C)(X, ~ c)T(AAT)- l  

1 + " ( X j  - c)T(AAT)- , (XJ - e )  

We  can now give a formal  statement of our algorithm for 
maximizing g: 

1. Choose  a  nonnegative vector X = (Xl, . . ., X,), and let 
A, denote  the n x N matrix whose j t h  column is 
q ( x ,  - c) .  Assume that A,& is nonsingular. Define 
A, = det (A,Al )  and Mo = (A,Ar)" .  

2. For j = 1, 2, . . ., N ,  define recursively 

Pj = (x, ~ c ) T M , - , ( x J  - e ) ,  

- 
3. Let X j  = X, + a,, j = 1 , .  , N ,  and define X = 

- 

( X l ,  - -, hN). Compare 

g(h) = ( n  + l)A;"" - 2 ij 
with 

j =  I 

N 

g(X) = (n + l)Ai'"+' - E X j .  

If g(h) - g(X) is smaller  than some preassigned  small 
positive number E, go to  step 4; otherwise set X = x, A, = 

AN, M ,  = M,, and go to  step 2. 
4. The  algorithm  has converged. V(c) is approximately 

equal  to A,!/'"' and 

j =  I 

is an  approximate solution of min det (R") subject to 
R > 0 and ( I ) .  

Minimizing V(c)  
We  are going to propose a gradient  technique for  minimizing 
the function V ( c ) .  First we give a  result  from convex 
programming theory which will be useful in evaluating 
directional  derivatives of V. 76 
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Let A be an m x n matrix,  and let f be a convex function 
defined on an open  subset X of En.  Let b be a vector in E,,,. 
Let + ( A )  denote  the value of the  minimum in the convex 
programming problem 

minimize f ( x )  

subject to A x  5 b x t X. (13)  

We  are going to  study how @(A)  changes  as A changes in a 
given direction AA.  For this we need to know that 
+(A + aAA)  is defined for all sufficiently small nonnegative 
values of a. We  make some  simple assumptions  to  guarantee 
that this holds. It suffices to  assume  thatf is strictly convex 
on X and  that (13)  has a  solution x*, and  that  the region 
defined by the  constraints in (1 3), with A replaced by A + 
a A A ,  has a  nonempty  interior  for all a 2 0 and sufficiently 
small.  These  assumptions  guarantee  that x* is unique  and 
that  there is a Lagrange multiplier X* E E,,, associated with 
x*.  With these assumptions  the following theorem holds. 

Theorem 1 
I f  H is any real m x n matrix,  the limit 

lim 
a~"O+ a 

exists and is equal to 

max X'HX*, 

where A is the  set of Lagrange multipliers  corresponding to 
x* .  The  analog of this  theorem for linear  programming 
problems,  without the uniqueness assumptions on x*, is 
proved in [ 5 ] .  The extension of that proof to  the present 
situation is straightforward. 

@(A + a H )  - @(A)  

X f A  

This  theorem  can be used to  evaluate  the  directional 
derivative of V ( c )  in any direction Ac. To see this let R be the 
matrix  determined by our algorithm for evaluating V ( c ) .  Let 
X be the corresponding Lagrange  multiplier. R is given by (9) 
with 

N 

AA' = x X,(X, - C ) ( X j  - 
j =  I 

Since  the  optimum value of a convex programming problem 
is equal  to  the  optimum value of its  dual, we have 

g(X) = det R" = (det AA')lintl. 

It follows from (8) that 

x X, = n(det AA')'"'''. 
N 

j =  I 

Let I denote  the set of indices j for which (x j  - e)' x 
R ( x j  - c )  = 1. Let 7 = (v l ,  . ., v N )  2 0 be any 
nonnegative  vector  satisfying 7, = 0 if j $k I and  the 
equations 

It follows from (8) that g(7 )  = g(X). This  argument shows 
that  the  set of Lagrange multipliers  corresponding to R is 
precisely the  set of nonnegative  vectors  satisfying (14)  with 

7, = o if j $1. (15) 

This  set of vectors is denoted by A ( R ) .  

To  evaluate  the  directional derivative of V ( c )  in the 
direction Ac, it is convenient to  write  the  constraint (x j  - c)' 
x R(x j  - c )  5 1 as 

Tr(x, - c) (x j  - c)' R 5 1. 

This shows that  the coefficient of R in this  constraint is 
(x, - c ) ( x j  - c)'. If we replace c by c + aAc, this coefficient 
becomes 

( X j  - C ) ( X j  - e)' 

- ( . [ ( X ,  - c)(Ac)' + (Ac)(xj  - e)'] + O(a2) .  

It follows from  Theorem 1 that 

lim V(c  + aAc) - V(c)  
a-0+ a 

This  formula suggests  a procedure for choosing Ac such that 

V(c  + aAc) < V ( c )  (16) 

for a > 0 and sufficiently small. 

First we solve the  quadratic  programming problem: 

where X is the n x I I I matrix whose columns  are  the vectors 
xj  - e, j E I ,  and 7 is the vector  with  components vj,  j E I .  
The minimization is taken  subject  to  the  constraints 

x V j ( X j  - C ) ( X j  - e)' = AA', 
J E l  

vj 2 0, j € I .  
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If q* is a  solution of this quadratic  programming problem, 
we take 

I AC = x q ; ( ~ ,  - C) = Xq*. 
J t  I 

It  then follows that 

V(c + aAc) - V(c) 
lim = - ~ ( A c ) ~  RAc. (19) 

a-0+ a 

Thus if Ac # 0, (16) holds for a > 0 and sufficiently small. 
The  gradient  technique we propose for  minimizing V(c) is 
the following: 

1. Let co be the  mean of the points xl, . , xN . 
2. Given c,, k z 0, let 

ck+l = Ck + a,'',, 
where Ac, is a descent direction determined by solving the 
quadratic  programming problem ( 1  7)-( 18) with c = ck, 
and a, is the  largest  number of the  form y(@)" such  that 

V(ck)  - V(c, + akAck) 2 - ( A C , ) ~  R,(Ac,)a,. 
1 
2 

@ is a fixed number in the interval (0, I ) ,  y is a fixed 
positive number,  and m ranges over the  integers 2 0. R, is 
the  optimal coefficient matrix for the ellipsoid with center 
c,. Equation ( 1  9) shows that a, is well-defined. This  rule 
for  selecting a, is due  to  Armijo [6]. 

Let V* denote  the  minimum value of V.  We  then have 
m 

V ( c O )  - V* 1 { V ( c k )  V(ck+l)}  
k = O  

1 "  
2 - 1 ( A C , ) ~  R,(Ac,)~, .  

k=O 

It follows that  the sequence { ( A c , ) ~ , }  converges to zero. 
Also, some  subsequence of the sequence {c,} converges. 
However, it sometimes  happens in gradient  techniques of the 
type we have described that  the  sequence of step sizes {a,} 
converges to zero causing  the sequence {c,} to converge to a 
nonoptimal  point. This is called jamming.  The following 
theorem gives a way of testing  for  convergence. 

Theorem 2 
If the sequence {Ac,} converges to zero, the  sequence { V(c,)} 
converges to V *  and  the corresponding sequence of ellipsoids 
converges to the ellipsoid of least  volume containing  the 
points x,, . . ., xN . 

Proof 
Let 

(x - C ) T S ( X  - C) 5 1 

be any ellipsoid containing  the points xl, . . , xN . We need 

IBM J .  RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982 

4 1  

I 

I 

Figure 1 Converging  ellipsoids. 

only show that, for any positive number E ,  we have V ( c k )  = 

det Rk' < det S" + E for k sufficiently large. 

Let X be the  Lagrange multiplier occurring in the defini- 
tion of Ac,. Then, since X 2 0, 

det(S") 2 det ( S - ' )  +- 1 X j [ ( x J  - C)'S(x, - C) - 11 
I t 1  

= det (.!-I) + x X, [(x, - C,)~S(X, - c k )  - 11 
1 t l  

+ ~ ( A c , ) ~ S ( ~ '  - c,) 

+ (i' ~ CJS(i '  ~ c,) x X,. 
it I 

Now, if k is so large  that 

2(Ac,)TS(i' - c,) + (i' - c , )TS( t  ~ c,) x X, > "E, 
I t 1  

we have 

det ( S " )  

= det R;' + x A, [(x, - c,JTR,(x, - c k )  - 11 - E 

= det R,' - E = V(c,) - E. 

J t l  

This completes the proof. 763 
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Table 1 Experimental  results. 

k ‘ k  V(CJ “ k  rl I r12 r22 x 

0 (-1.1) 22.54 (79.38, -34.56) 0.1856 0.092 0.2846 (21.39, 1.54,0, 22.26,0,0,0) 
1 (-0.03,0.58) 5.88 (10.02, -9.31) 0.43 15 0.096 0.4152 (1.87,4.56,0, 5.32,0,0,0) 
2 (0.35.0.21) 2.66 (-0.81, 3.88) 0.7338 -0.1043 0.5270 (1.95,0,0,0,0.93,0, 2.42) 
3 (0.33,0.30) 2.53 (-0.92, -3.11) 0.7722 -0.1481 0.5382 (0, 1.36, 0, 2.39,  1.32, 0, 0) 
4 (0.31,0.24) 2.44 (0.77,4.36) 0.7524 -0.140 0.5685 (2.14,0.78,0,0,0,0, 1.97) 
5 (0.32.0.26) 2.42 (1.63, 1.31) 0.7496 -0.1278 0.5723 (0.72,  2.13,0, 1.97,0,0,0) 
6 (0.32,0.27) 2.41 (-0.007, -0.02) 0.7605 -0.1343 0.5678 0, 1.45.0,  2.3, 1.07,0,0) 

An example 
To  demonstrate our procedure we take n = 2, N = 7 and  the 3. 
points x, = (1, 3/2), x2 = (3/2,  1/2), xj = (1, 1/2), 

x, = (- 1 /2, 1). See Fig. 1 .  The points are chosen so that no 
one of them is a convex combination of the  others. Also, we 5.  
have  chosen co outside  the convex hull of the points so that we 
can observe the  algorithm in a situation where  a large 
correction in co has  to be made.  The first few c’s and  the 6. 
corresponding  ellipsoids are shown in Fig. 1. In each  update 

x4 = (1/2, - I ) ,  x5 = (-3/4, -1/2), x6 = (-3/4,  1/4), 4. 

of ck we used 

For the purpose of computing Ac,, points  nearly on the 
boundary of the  kth ellipsoid are  treated  as being on the 
boundary.  The  iterates  are shown  in Table 1 .  Since  the 
sequence {Ac,} is converging to zero, the corresponding 
sequence of ellipsoids is converging to  the ellipsoid of least 
volume containing  the points x,, . - -, x,,,, by Theorem 2. 
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