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An Algorithm for Separating Patterns by Ellipsoids

We give an algorithm for finding the ellipsoid of least volume containing a set of points in a finite-dimensional Euclidean space.
Such ellipsoids have been proposed for separating patterns in a feature space.

Introduction

Let x,, - - -, x,, be points in n-dimensional Euclidean space
E, representing sample patterns of a certain class. Consider
the problem of separating these points from points belonging
to other pattern classes. We assume that the sample patterns
in each class are normally distributed. It then seems reason-
able to try to separate the various classes by ellipsoidal
domains. This is the approach taken by Rosen in [1]. He
proposed finding the ellipsoid of least volume containing the
sample patterns of each class. In this paper we show how this
can be done. It suffices to consider the points x,, - - -, x,,
belonging to one of the pattern classes. We assume that not
all of these points lie in a hyperplane of dimension less than
n.

Let E denote an ellipsoid containing the points x, - - -,
x,. The boundary of E can be described by a set of the form

xl(x - )" R(x - ) =11,

where c is the center of the ellipsoid and R is an n x n positive
definite symmetric matrix. We indicate that R is positive
definite by writing R > 0. Since the x’s are in E, we have

(x,— )" R(x;—c)=<1, j=1,---N (N

The volume of E is proportional to (det R, Thus the
problem of determining the ellipsoid of least volume contain-
ing the points x,, - - -, x, is equivalent to finding a vector
¢ € E, and an n x n positive definite symmetric matrix R
which minimize det (R™') subject to (1). The determinant
det (R‘l) is a complicated function of the entries r; of R.
Our pattern separation problem is further complicated by the
fact that many highly nonlinear constraints must be placed on
the r,’s to ensure that R is positive definite. These constraints

are ignored in [1]. The treatment of the problem in [1] is
further simplified by replacing det (R™") with Tr(R™"). In
this paper we describe a procedure for minimizing both
det (R™"Yand TH(R™) subject to R > 0 and the constraints
(1). We give the details for minimizing det (R™'). Tr(R™")
can be minimized in a similar fashion.

For a given ¢ € E we denote by ¥'(c) the minimum value
of det (R™') in the optimization problem described in the
previous paragraph. V'/*(c) is proportional to the volume of
the ellipsoid of least volume having center ¢ and containing
the points x,, + - +, x,. Our problem is to determine a ¢
which minimizes V' (¢). We show that V' (¢) can be minimized
by a gradient technique. Gradient techniques generally
require many function evaluations. And, as we have seen,
evaluating V for a given ¢ requires the solution of a nonlinear
programming problem. It is therefore important to start the
minimization process with a good initial guess of an optimal
c. If N is large and if the points x|, - - -, x,, are normally
distributed, as we are assuming, the average of these points
provides a good initial guess for ¢. This initial guess should
require very little adjusting to obtain results satisfactory for
pattern separation.

Evaluating V(c)

Assume that c is fixed and consider the problem of minimiz-
ing f (R) = det (R™") subject to the constraints (1). We first
show that this is a convex programming problem on the class
of n x n positive definite matrices R. Let R, and R, ben x n
positive definite matrices, and let « satisfying 0 < a < 1 be
given. It then follows from Theorem 6 on page 63 of [2] that

det (@R, + (1 — a)R,) = (det R))"(det R,)' ™.
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Strict inequality holds if R, # R, and 0 < & < 1. In addition,
the inequality

XY =ax + (1 - a)y

relating the arithmetic and geometric means of x and y holds
for x,y = 0and 0 < o < 1. It follows that

f(aR, + (1 — &)R,) = (det R, ")*(det R; ')
=adet (R") + (1 — @) det (R, ")
= af(Rl) + (] - a)f(Rz)

This shows that f'is convex on the class of matrices R > 0.
Minimizing f subject to (1) and R > 0 is therefore a convex
programming problem with linear constraints. In what fol-
lows we make free use of the fact that such problems have
dual formulations in terms of Lagrange multipliers.

Let X, - - -, A, be trial Lagrange multipliers associated
with the constraints (1). Since these constraints are inequali-
ties, the A’s are =0. The Lagrangian associated with our
convex programming problem is then

N
det(R™") + 2_NI(x; — o R(x; — o) — 1. )
j=1
If the A’s were chosen properly, we could find the R which
solves our convex programming problem by minimizing this
expression with respect to R > 0. Let A denote the vector
(A, + - -, Ay). The proper choice of A is the one which
maximizes the dual objective

N
g0 = min {det (R™') + 2_\ [(x; — " R(x; — ¢) — 1]

R=0 i1
(3)

subject to A = 0. Maximizing g turns out to be an easy
problem. To see this we first find a simple expression for g.
For this we require the Hoffman-Wielandt inequality from
[3]. According to this inequality, if 4 and B are two real

n x n symmetric matrices with eigenvalues o, = - - - = @,
and B, = - - . = @, respectively, then

n n

>, ., B =Tr(4B) < Y_aB. 4)

i=1 i=1

Let A denote the n x N matrix whose jth column is
\/xj(xj — ¢). We assume that not all the points \/)\—j(xj —¢)
lie in a hyperplane of dimension less than n so that 4 has rank
n. We can then write (2) as

N
-1 T
det (R™Y) + Tr(A'RA) — _lej
pas

N
=det (R™') + Tr(RAA"Y — )_\,.

=1

Let 0 <o, = . - . < o, denote the eigenvalues of AA" in
increasing order. Let r, = .- . = r, > 0 denote the
eigenvalues of R in decreasing order. It then follows from (4)
that

N
det (R™') + Tr(RAA)" — 3\,
Jj=1

n N
=(r - - .r")_l+Zriai-Z)\j. (5)
i=1 j=1
Moreover, if
AA" = U2V, 2 = diag(o,, - -

] 0',,)’

is the spectral decomposition of AA", equality holds in (5)
for

R =UDU", D = diag(r,, - - -, r,). (6)

Now consider the problem of minimizing the expression on
the right side of the inequality in (5) with respect to the
variables r,, - - -, r . At the minimum we have

-1
F oo r
r
so that
(0'1 . 0")1/"H
r,=
a;
(detAAT)l/nn '
= i=1,--,n 7
A

Substituting these values into (5) we obtain
N
det (R™') + Tr(RAA") — 2\,

j=1

N
=(n+ 1), - -0,)/"" 2N
j=1

N
= (n + 1)(det A4T)""™" = "\,
J=1

with equality if R is given by (6) and (7). Note that this R
depends on the A’s since the eigenvalues and eigenvectors of
AA" depend on the A’s. To indicate this dependence we write
R = R(M). It follows that

g = (n + 1)(det 447)""™" = 3N\ (8)
j=1

and

R\ = (det 447" (44")". 9)

Now consider the problem of maximizing g. Since
N
A4 = Z )xj(xj — c)(xj Y
j=1

a change in one component of A produces a rank-one change
in A4". It is easy to compute the changes in det (44") and
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(447" due to a rank-one change in AA". 1t is therefore
easy to compute the changes in g(A\) and R(\) due to a
change in one component of A. All this suggests maximizing g
by varying one component of A at a time. Given an initial
value of A we produce a new value by varying A| to maximize
g. We then increase g as much as possible by varying A, in the
new value of A. Continuing in this way we maximize g with
respect to each component of A, choosing the components in
order and cyclically. Thus X, follows A . The fact that this
procedure converges is proved in [4]. Before we give a
mathematical statement of the algorithm we show how to
maximize g with respect to one component, say )\j, of \.

Suppose A, is changed to A, + «, where « is chosen such
that A, + o = 0. Let A and A denote the corresponding
changes in A and 4. We then have

AA" = 44" + alx, — o)(x; — o

In order to evaluate g(X) by the formula (8) we require 4 A"
to be nonsingular. We have

det (4A") = (det AAT)[1 + a(x, — ¢)'(44")'(x; - O)].
(10)

Thus A A" is nonsingular if 44" is nonsingular and
1

> — - T . (11)
(5, — O (AAT) (x, — 0)

We shall see that the value of o which maximizes g(X)
satisfies this condition.

From (8) we see that
N
gX) = (n+ D(det AANH™ 3"\ — @
j=1
= (n + 1)(det 447)"/""!
x [1 + a(x; — )"(447) ' (x, — )]/
N
— Z )\j — a.
j=1

An easy calculation shows that the maximum of g(\) with
respect to «, subject to }\j + a = 0, occurs at

[(x, — )" R(x, ~ )]""" 1
(x, = 9'(44") ' (x; — o)

a = max
= (12)

where

R = (det 447" (447"

This value of « satisfies (11) and so 4 A" is nonsingular,
provided 44" is nonsingular.

From (12) we see that in order to maximize g with respect
to another component of A we need expressions for det

IBM J. RES. DEVELOP. e VOL. 26 « NO. 6 « NOVEMBER 1982

(AATyand (A A7)"". The expression for det (4 ATy is given
by (10). The inverse of 4 A" is given by

(A4’ = @4hH)
a(AA") (x; — o) (x, — )" (44") "
C l+aly— o) (44) ' (x,— o)

We can now give a formal statement of our algorithm for
maximizing g:

1. Choose a nonnegative vector A = (A, - - -, A,), and let
A, denote the n x NN matrix whose jth column is
\/}\_j(xj — ¢). Assume that AOA; is nonsingular. Define
A, = det (4,A47) and M, = (A,4;) "

2. Forj=1,2,.. ., N,define recursively

,3]. - (xj - C)TMjfl(xj - C)a

1/n+1

7j = A/'Al Bj ’
’Y;‘H/” 1
aj = max :8]' '
_}\.’

J
Aj = Aj_1(1 + a Bj)a

and

- (;"f_) M_(x;—o)x,— )" M, .
1+ o, ,8j
3Lleth =\ + a, j =
x . XN). Compare

1,«..,N, and define X\ =

e
— 1/ | N —
n+
gX) = (n+ DAY = X,
j=1
with
1/n+1 X
n+
g = (n+ DA™ =D\,
j=1

If g(A) — g()) is smaller than some preassigned small
positive number €, go to step 4; otherwise set A = X, A, =
A, M, = M,, and go to step 2.

4. The algorithm has converged. V(c) is approximately

equal to AY"*" and

R(\) =A™ M,

is an approximate solution of min det (R™') subject to
R > 0and (1).

Minimizing V(c)

We are going to propose a gradient technique for minimizing
the function V(c). First we give a result from convex
programming theory which will be useful in evaluating
directional derivatives of V.
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Let 4 be an m x n matrix, and let f be a convex function
defined on an open subset X of E,. Let b be a vector in E,.
Let ®(A4) denote the value of the minimum in the convex
programming problem

minimize f (x)

subject to Ax = b x € X. (13)

We are going to study how ®(A4) changes as 4 changes in a
given direction AA. For this we need to know that
$(A4 + aAA) is defined for all sufficiently small nonnegative
values of a. We make some simple assumptions to guarantee
that this holds. It suffices to assume that f is strictly convex
on X and that (13) has a solution x*, and that the region
defined by the constraints in (13), with 4 replaced by 4 +
aA A, has a nonempty interior for all @ = 0 and sufficiently
small. These assumptions guarantee that x* is unique and
that there is a Lagrange multiplier \* € E, associated with
x*. With these assumptions the following theorem holds.

® Theorem |
If His any real m x n matrix, the limit

. ®(A4+ aH) — $(A)
lim

a-+0" o

exists and is equal to

max A Hx*,

ACA

where A is the set of Lagrange multipliers corresponding to
x*. The analog of this theorem for linear programming
problems, without the uniqueness assumptions on x*, is
proved in [5]. The extension of that proof to the present
situation is straightforward.

This theorem can be used to evaluate the directional
derivative of ¥ (c) in any direction Ac. To see this let R be the
matrix determined by our algorithm for evaluating V' (¢). Let
A be the corresponding Lagrange multiplier. R is given by (9)
with

N
A4T =3 Mx - o, —
j=1
Since the optimum value of a convex programming problem
is equal to the optimum value of its dual, we have
g(\) = det R™' = (det 447)'"*".

It follows from (8) that

N
D\ = n(det 447",
j=1

Let I denote the set of indices j for which (xj -7 x
R(xj~c) = 1. Let = (g, « -+, my) = 0 be any
nonnegative vector satisfying n;, = 0 if j gE I and the
equations

Z 7, (x; — o) (x; — ) = 44" (14)
jer

We have

n(det 44N = Tr4A'R

N
=> (%, — c)TR(xj -0 =2 ;.
j=1

jci

It follows from (8) that g() = g(A). This argument shows
that the set of Lagrange multipliers corresponding to R is
precisely the set of nonnegative vectors satisfying (14) with

n,=0 if jEL (15)

This set of vectors is denoted by A(R).

To evaluate the directional derivative of V(c) in the
T

direction Ac, it is convenient to write the constraint (xj - )
><R(xj~c)s1as
Tr(x; — o){x; - O"R=1.

This shows that the coefficient of R in this constraint is
(x;, - o)x; — o)". If we replace ¢ by ¢ + adc, this coefficient
becomes

(x, = o)x, — )"

~al(x; — (A" + (A)(x; — )] + O(e).

It follows from Theorem 1 that

lim V(c + alc) — V(c)

a—0" o

= max —2_n,Tr[(x, — )(A))" + (Ac)x; — IR

1CAR) j=1

N
=2 max —(AC)TR Z nj(xj — C).
j=1

nEAR)

This formula suggests a procedure for choosing Ac such that
Vic + aAc) < V(c) (16)

for « > 0 and sufficiently small.

First we solve the quadratic programming problem:

T
minimize Z n,(x; — c)] R Z n,(x; — ¢) = 7" x" RXy,
= JET

(17)

where X is the n x | Il matrix whose columns are the vectors
x; — ¢, j € I, and 7 is the vector with components nj.,j el
The minimization is taken subject to the constraints

> — o), - O = A, (18)
j€l
7,=0, jEL
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If * is a solution of this quadratic programming problem,
we take

Ac = Z n}‘.“(xj —¢) = Xn*.
JET
It then follows that
Vi Ac) — Vi
im L 98) = V©) x0T R (19)

a—0* a

Thus if Ac # 0, (16) holds for « > 0 and sufficiently small.
The gradient technique we propose for minimizing V'(c) is
the following:

1. Let ¢, be the mean of the points x,, - « -, x, .
2. Given¢,, k=0, let

Coy1 = G + aAcy,

where Ac, is a descent direction determined by solving the
quadratic programming problem (17)—(18) with ¢ = ¢,
and a, is the largest number of the form v(8)™ such that

1
Ve — Vie, + ade) =5 (Ac)" R (Ac)a,.

B is a fixed number in the interval (0, 1), v is a fixed
positive number, and m ranges over the integers = 0. R, is
the optimal coefficient matrix for the ellipsoid with center
¢,- Equation (19) shows that «, is well-defined. This rule
for selecting «, is due to Armijo [6].

Let V* denote the minimum value of V. We then have
V(Co) - V* = Z {V(Ck) - V(ck+1)}
k=0

1

=

i (Ac)” R (Ac))a,.

N

It follows that the sequence {(Ac,)a,} converges to zero.
Also, some subsequence of the sequence {ck} converges.
However, it sometimes happens in gradient techniques of the
type we have described that the sequence of step sizes {ak}
converges o zero causing the sequence {c, } to converge to a
nonoptimal point. This is called jamming. The following
theorem gives a way of testing for convergence.

® Theorem 2

If the sequence {Ac,} converges to zero, the sequence {V(c,)}
converges to V' * and the corresponding sequence of ellipsoids
converges to the ellipsoid of least volume containing the
points x,, + « -, X .

® Proof
Let
x-—8)"Sx-28 =1

be any ellipsoid containing the points x|, - - -, x, . We need
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Figure 1 Converging ellipsoids.

only show that, for any positive number €, we have V(c,) =
det R;' <det S™' + e for k sufficiently large.

Let A be the Lagrange multiplier occurring in the defini-
tion of Ac,. Then, since A = 0,

det(S™) =det (ST + 2 A[(x,— &) S(x, — &) — 1]
jeiT
=det (™) + D2_N[(x; - ¢) S(x, - ¢) — 1]
JEI
+2(A¢)" 5@ - ¢)

+(@—c¢)' S@E—c) D \.
jici

Now, if k is so large that

2(8¢,) ' S@E—¢) + (@~ ¢)'SE ) D N> e,
jel

we have

det (S

>minldet 7 + 3 A[(x;— ) I(x;—¢) — 11| —¢

JI>0 jer
=det R, + 2N\ [(x;— )R (x,— ) ~ 1] —¢
jE!

=detR,' —e= V() — ¢

This completes the proof.
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Table 1 Experimental results.

k e Vic,) Ac, ™ i, ry A

0 -1, 22.54 (79.38, —34.56) 0.1856 0.092 0.2846 (21.39, 1.54,0,22.26,0, 0, 0)
1 (—0.03,0.58) 5.88 (10.02, —9.31) 0.4315 0.096 0.4152 (1.87,4.56,0,5.32,0,0,0)

2 (0.35,0.21) 2.66 (—0.81, 3.88) 0.7338 —0.1043 0.5270 (1.95,0,0,0,0.93,0, 2.42)

3 (0.33,0.30) 2.53 (-0.92, -3.11) 0.7722 —0.1481 0.5382 (0, 1.36, 0, 2.39, 1.32, 0, 0)

4 (0.31,0.24) 244 (0.77, 4.36) 0.7524 —-0.140 0.5685 (2.14,0.78,0,0,0,0, 1.97)

5 (0.32,0.26) 2.42 (1.63,1.31) 0.7496 —0.1278 0.5723 (0.72,2.13,0,1.97,0,0,0)

6 (0.32,0.27) 2.41 (-0.007, —0.02) 0.7605 —0.1343 0.5678 0,1.45,0,2.3,1.07,0,0)
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An example

To demonstrate our procedure we take n = 2, N = 7 and the
points x, = (1, 3/2), x, = (3/2, 1/2), x, = (1, 1/2),
x, = (1/2, =1), x; = (=3/4, —1/2), x, = (=3/4, 1/4),
x; = (—1/2,1). See Fig. 1. The points are chosen so that no
one of them is a convex combination of the others. Also, we
have chosen ¢, outside the convex hull of the points so that we
can observe the algorithm in a situation where a large
correction in ¢, has to be made. The first few ¢’s and the
corresponding ellipsoids are shown in Fig. 1. In each update
of ¢, we used

> 8
’y = —————-_’
|Ac,|

= 0.8.

For the purpose of computing Ac,, points nearly on the
boundary of the kth ellipsoid are treated as being on the
boundary. The iterates are shown in Table 1. Since the
sequence {Ac,} is converging to zero, the corresponding
sequence of ellipsoids is converging to the ellipsoid of least
volume containing the points x,, - - -, x,, by Theorem 2.
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