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Digital Multi-lmage Analysis: Application to the
Quantification of Rock Microfractography

The microfissuration of a rock sample is analyzed using a multi-image formed of micrographs which were obtained under
Sfluorescence and polarizing microscopy of the same sample area. Image analysis methods are applied to obtain descriptions of
each type of picture, one showing the microfissure network and the other the texture of the rock. Descriptions in the form of
tables of coordinates are used to quantify the features contained in the pictures. Finally, it is shown that relationships between
these descriptions can result in the integration of the available information, providing more knowledge about microfissuration
in the sample, including characterization and quantification of microcrack types according to their position with respect to the

texture of the rock.

1. Introduction

The correct discrimination and quantification of some basic
petrographic parameters, such as fractography, texture, and
mineralogy, are fundamental to understanding the physical
properties of rock materials. In rock mechanics, the predic-
tion of in situ physical properties from models of rock
microcracks is an open question [1]. Applications of such
information range from earthquake prediction and the
exploitation of oil and gas to the storage of heat and the
disposal of nuclear waste.

Despite the importance of the micromechanics of rock
deformation, quantitative analysis of crack patterns is con-
ducted today by manual methods. The discrimination of a
microfissure network can be a tedious and difficult task, even
with the aid of analog image processing systems in which the
microscope is connected to a black and white television
monitor and discrimination is accomplished by means of
brightness and contrast control on the TV screen. Quantifi-
cation of a microfissure network is also done manually based
on arbitrary definitions of crack length and width [2]. Thus,
crack surface area is estimated using photo-mosaics formed
by scanning electron microscope (SEM) micrographs and
counting the number of crack intersections with a test array
placed at different orientations [3]. Another method uses a
protractor and a simple scale to measure on the screen of a
SEM the length and width of cracks that intersect a refer-

ence line drawn on the screen while the sample is traversed in
a direction parallel to the line [2]. Furthermore, these
time-consuming methods produce results that cannot be
quantitatively comparable [3]. Thus an automated approach
in which microcrack networks could be easily discriminated
and geometrically quantified seemed desirable. To this end,
we concluded that digital image analysis methods might be
used, as had been done with different types of images [4, 5].
The author could find no other references in the literature
relating to the problem of microfissure quantification by
means of digital image analysis.

The discrimination and quantification of a fissure network
in a rock sample does not solve the problem. The possibilities
raised by the use of the different microscopy methods
available today to map different types of petrographic
parameters merely constitute pieces of isolated information
to be put together by the geologist when he is faced with a
practical situation. To clarify this point, we consider as an
example the problem of storing radioactive waste in rock
caverns [6]. Here, one needs to quantify the microfissure
network developed in granitic rock specimens when they are
subjected to different in situ heating conditions. But that
information is not enough to predict, for example, the future
behavior of the rock unless other parameters, such as the
texture of the rock, are quantitatively related to microfissu-

© Copyright 1982 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. e VOL. 26 e NO. 6 « NOVEMBER 1982

735

LUIS MONTOTO




736

ration. Thus, of special importance in the study of rock
microfractography is the characertization of fissure positions
with respect to the texture of the rock: intra-, inter-, and
transgranular fissures, depending on whether they are
located inside grains or between grains, or run through
different rock-forming minerals. Additionally, the geologist
would like to know what percentage of the total length of
fissures runs between grains of type A, what fissures are
inside grains of type B, or what the grain size distribution is
for the different mineral species. With the methods available
today, these types of questions about relationships between
fissures and grains can only be answered in a qualitative way

[3].

Thus, the most valuable and complete information is
obtained when, first, different microscopic methods (fluores-
cence, polarizing, acoustical, electron, etc.) are applied to the
same area in the sample, so that basic petrographic parame-
ters are mapped into different pictures with similar resolu-
tions; second, the petrographic features in each picture are
described by digital analysis methods; and, third, the descrip-
tions are correlated in order to integrate all the available
information, providing a complete description of the sample,
including quantitative values. This approach can provide
deeper insight into the problem being considered.

We call the procedure just outlined the multi-image
analysis approach. The term multi-image, as used here,
refers to the set of different pictures or micrographs obtained
by the application of different microscopic techniques to the
same area in the specimen. This method is applicable to other
areas of science to study a given scene or object that can be
mapped into several pictures, each picture highlighting very
different aspects of the original scene.

It is interesting that, regardless of the sophistication of the
techniques available today to obtain multi-images (from
satellite pictures to micrographs) and the increasing number
of digital image analysis methods used to describe the
contents of a picture, there appears to be little corresponding
effort to extract the information available in a multi-image
set.

Multi-image sets of two or three pictures were considered
recently, although no image analysis methods were applied to
describe the original scene. In one case, each picture in the
set was inspected visually to obtain some qualitative informa-
tion about the scene [7, 8]. In the other case the pictures
were combined (after registration when needed) by feeding
them to separate guns of a color TV monitor, thus creating a
color composite picture that could be better interpreted
visually than any one of its parts [9]. In other cases, the
composite picture was created by calculating ratios between
the original pictures in the multi-image [10].
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Multi-band images from earth resources satellites are
simple examples of multi-images, since pictures in the set are
not very different in terms of regions and their shapes. In
fact, multi-band images were created for field classification
purposes {11]. Thus, in the context of multi-image analysis,
field classification has been the only application so far.

In our case, multi-image analysis originated from the need
to detect grain boundaries in rock samples using polarizing
microscopy, which is the most appropriate technique in
petrographic studies. However, regardless of whether neigh-
boring mineral grains in a sample are the same or not, they
can exhibit under crossed polarizers the same interference
color. This gives rise to significant errors in properly delimit-
ing grain borders when only one polarizing microscope
picture is used [12, 13].

In the following section of the paper we consider the digital
multi-image approach. The microfissuration of a rock sam-
ple is analyzed using digital methods. This involves the
following steps: first, a new method of quantifying the
microfissure network is presented in detail; second, the
texture of the rock is analyzed; and third, the multi-image
approach presented in this paper is applied to the analysis of
the rock sample in order to relate in a quantitative way the
network of microfissures to the texture. Finally, a section is
devoted to hardware and software considerations. Some
conclusions are then drawn about the new methods presented
and their possible application to other areas of science.

2. Digital multi-image analysis

Multi-image analysis is merely an extrapolation of the
descriptive process that is presently applied to the contents of
a single picture to the descriptive process of a real object that
is instead mapped into several pictures. To achieve a more
complete description of the object mapped into the multi-
image, one needs descriptions of each picture in the multi-
image set. Then, by properly relating these descriptions,
properties of the original object can be revealed that were not
apparent in the original pictures. To more easily relate
descriptions from different pictures, digital image analysis
methods are applied to each picture in the set by performing
the following steps after picture digitization: segmentation
into regions, region description, and extraction of descrip-
tions. In this way, all of the information originally contained
in raster form is “vectorized.” Final descriptions for each
picture are in the form of tables of coordinates, so that any
property of the objects contained in the pictures can be easily
calculated. Also, relationships among objects within each
picture or among different pictures can be handled by
manipulating the tables of coordinates. This approach has
proved to be successful when dealing with the quantification
of pictured objects. In fact, since descriptions of objects
present in a picture can be obtained from their line drawing
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representations, it seems natural to extract such descriptions
as lists of coordinates of their lines or lists of vertices from
their polynomial approximations.

Knowledge of the specific techniques used to obtain each
picture making up the multi-image allows the user to guide
the different processing techniques required to analyze the
individual pictures in the multi-image.

Picture registration is the extra computational work that
must be done when dealing with multi-images. However,
knowledge of how the image was formed can help in obtain-
ing the transformation polynomial without the need of using
control points. This is particularly useful when using a
computer-driven microscope that uses different techniques to
map a given sample.

3. Analysis of rock microfissuration

The quantification of rock microfissuration is treated here as
an example of a problem where multi-image analysis meth-
ods can give definitive information.

The problem of sample preparation is not a trivial one if
the multi-image is going to have mapped into its different
pictures the different petrographic aspects of the sample
under study. It is especially important to avoid the introduc-
tion of artifacts during sample preparation. Here, and follow-
ing [6], because of the type of rock studied, the problem
addressed, and the sample preparation method used, micro-
fractographic artifacts can be considered to be smaller than
10 um, and microfissures smaller than 100 um in length were
not evaluated. The ion thinning technique was not used. By
using fluorescein-impregnated, gold-metallized, thin (30 um
thick) polished sections of rock samples, different optic and
electron microscopy methods can be applied to the same area
of the sample, and texture, mineralogy, state of alteration,
and fractography can be mapped into different pictures. For
simplicity, we consider such a sample observed under (1)
light-reflected fluorescence microscopy [Fig. 1(a)], where
only the microcrack network is observed, and (2) polarizing
microscopy with crossed polarizers [Fig. 1(b)], where the
mineralogy and texture of the rock are apparent. To solve the
problem of rock microfractography, objects in the multi-
image of Fig. 1 should be described by applying image
analysis methods, and the relationships between those
descriptions should answer questions about the incidence of
cracks in the grains of the rock.

® [mage digitization

Images recorded on 35-mm film are digitized with a flat-bed
microdensitometer (Perkin-Elmer PDS M1010A). To meet
the Nyquist criterion [14], the sampling interval to digitize
an image is taken as W/2 in the x and y directions, where W
is the side of the square sampling window used and is
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Figure 1 Different optic microscopy techniques applied to the
same area of a medium heated Stripa granite (130°C) to relate the
rock microfractography to its texture and mineralogy. (a) Light-
reflected fluorescence microscopy; (b) Polarizing microscopy with
crossed polarizers. Longest side of pictures is 2.7 mm. The set forms
a multi-image of two pictures.

measured in length units relative to the film. Then, the
resolution R of the digital image depends on microscope
magnification, photographic enlargement, and on the W
value, and is given by the product W x s, where s is the
dimensionless scaling factor between sample and film (i.e.,
the ratio between the corresponding linear measure in the
sample and in the film).

The two micrographs of Fig. 1 were chosen such that the
longest side of the negatives, 35 mm, covers 2.72 mm on the
sample so that s == 0.0777 (magnification is 1/s = 13), and
the digitization process was done using w = 100 um, so that
resolution is R = 7.8 um. Pixel size is 7.8 x 7.8 um and pixel
values are coded into 8 bits (a range from 0 to 255). Image
size is usually 460 x 700 pixels.

® [mage registration
Image to image registration is done to relate the digital
images resulting from the pictures in Fig. 1. To this end a
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Figure 2 A digital multi-image resulting from the one in Fig. 1.
The picture 2(b) is registered to that in 2(a). Resolution is 7.8 pm.

spatial transformation algorithm builds a pair of second
order bivariate polynomials using 15 control points (pixels)
scattered throughout the image. The selection of control
points and matching in both images were done visually on the
screen of a display system. The estimated standard deviation
of the errors in the position of the control points was 1.07 and
1.19 pixels in the x and y directions, respectively. Finally,
resampling was done using the nearest-neighbor technique.
The resulting digital images can be seen in Fig. 2, where
images (a) and (b) are now registered to each other.

Work is in progress to connect the microscope used to
obtain the pictures in Fig. 1 to an IBM Series/| computer, so
that digitization can be done with a TV camera attached to
the microscope. Then, changing the microscope technique
(light-reflected fluorescence or polarizing) will result in the
corresponding digital images of Fig. 1. These images are then
registered to each other by a mere translation required by the
different optical paths of the two microscope techniques.

® Analysis of the fissure network

Segmentation into regions  The use of fluorescence micros-
copy to observe a fluorescein-impregnated rock sample is the
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preferred enhancement process to record the object of inter-
est, namely, the fissure network. Other (petrographic)
aspects of the sample, such as mineralogy, do not appear in
the picture. Thus, in this case the segmentation process is
reduced to simple thresholding, which can be done while the
original micrograph is being digitized. To this end one only
needs to properly set the offset and gain of the microdensi-
tometer’s photomultiplier to produce a digital image, Fig.
2(a), where all the background and noise “‘sinks” into the
zero gray level (black in the figure). This digital image is not
a binary one, but the original picture has been segmented
into two regions: the fissure objects (with elongated or
tree-like shapes and pixel values greater than zero) and the
background.

The next step in the analysis is to describe those elongated
regions by their medial lines, which are obtained through a
thinning transform. It is well known [15] that noisy bounda-
ries of an object give rise to lateral branches (artifacts) in the
medial line output of the thinning transform. For this reason
these boundaries of the fissure objects should be smoothed
out. Thus a “field-cleaning” algorithm is applied to the
digital picture in Fig. 2(a). The algorithm assigns the central
pixel of a window of a given size (3 x 3 in this case) to the
class fissure-object if the number of pixels of this class inside
the window is greater than the number of pixels belonging to
the class background. The result is a binary image, Fig. 3,
where objects with areas less than a given threshold value
have been erased as well. It should be noted that this
algorithm can also erase fissures one or two pixels wide (up to
16 um). Should this be of importance, the resolution of the
original digital image should be increased by reducing the
sampling window (or increasing the magnification factor of
the microscope).

Description of regions As already stated, elongated or
tree-like objects such as the fissure network can be described
by a thinning transform. The transform used [16] reduces
every object to its medial line, given as a set of curves one
pixel wide, without losing the connectivity of the object. As
an extra result, pixel values at the coordinates (i, j) of the
medial line are equal to the fissure width at the correspond-
ing (i, j) positions. Moreover, the set of coordinates (i, j)
representing the medial line are digital curves coded in the
eight-way form (that is, every pixel of the medial line could
have neighbor pixels in any of the eight allowed positions in
the digital image).

The output after applying the thinning transform to the
picture in Fig. 3 is the digital image in Fig. 4 (where for
printing purposes the medial line pixels (7, j) have been
assigned the same gray level). Let S be the total area covered
by the objects to be thinned (and evaluated by counting the
pixels in every object), and let w(i, j) be the object’s width at
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(i, j) after the thinning has been done. The error of the
algorithm can be evaluated by the expression

S = 2w(i.))
B S

E , (1)
where the sum is extended to all elements in the medial line.
This error arises mainly from the width values w assigned by
the algorithm to the medial line pixels located at end
branches. Thus, it does not affect the calculation of the
medial line length.

The resulting E value when a thinning transform is applied
to the fissure object in Fig. 4 is £ = 5.9%, the mean width of
the object is w = 49.1 um (6.3 pixels), and its elongatedness
(or length/width ratio) is S/w = 337.4. These values are
used to stop any further processing if they are beyond an
established range, so that interactivity between the user and
the image system is not required.

From the w(i, j) values, a histogram of width values and
the densities of objects of a given width can be calculated if
desired.

Extraction of descriptions To calculate the lengths and
directions of the fissure network, represented by the lines in
the picture of Fig. 4, an omnidirectional line-following
algorithm [17] is applied to this picture. The output is a set of
tables of coordinates of ordered pixels belonging to the lines
in the input picture. The algorithm scans the input image row
by row until a pixel value different from zero is encountered.
That pixel belongs to a line that the algorithm starts to
follow. When the line and all its branches have been followed
(and their coordinates registered in the table), the algorithm
returns to the start pixel in the line and continues to scan the
picture until another line, or the bottom right pixel in the
image, is encountered. Inputs to the algorithm are

1. Maximum gap over which to jump to follow a broken line
(3 pixels in this case.).

2. Option to record lateral branches of up to 2 pixels long
(option = no: these lateral branches could be artifacts of
the thinning process, due to noise in the object’s boundary;
thus, because the mean width of the fissures is 6.3 pixels,
and taking into account the magnification used in the
microscope, these lateral branches have no significance
from the point of view of rock fissuration.)

3. Elimination of lines n pixels long from the final list
(n = 3).

4. Pixel size in metric units.

By condition (3) 51 lines (with a total of 85 pixels) were
eliminated and another 50 were left. Note that by allowing
the algorithm to jump over up to 3 pixels, the 85 pixels
eliminated should be noise in the input image. The number of
lines and pixels eliminated acts as a warning for the quality
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Figure 3 Binary image from Fig. 2(a) with the fissure network.

Figure 4 Description by thinning of the fissure network in the
image of Fig. 3.

of the processing done up to this point. In fact, analysis of
fissure networks could be done without monitoring the
resulting digital images.

Quantification The lines followed were situated on a
square grid (the sampling grid) and were represented in the
eight-way code. Thus, the distance between two neighbor
points in the line and their relative directions are quantized
to 1 or v2 pixel length units (strictly speaking, this is the
8 y2-way code in the sense of [18]) and to 0°, 45°, 90°, and
135°. With this encoding scheme the total length of the 50
lines left in the image is 20.35 mm.

If we assume that the measured curved lines are consti-
tuted of small segments of successive tangents to that curve,
the total length / of the fissure network is affected by an
average relative error of

_ I(calculated) — [(true) Q)
N I(true) ’
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Figure 5 Vector image produced from the table of vertices of the
approximated polygons to the lines contained in the image of Fig. 4.

Figure 6 Direction histogram in intervals of 5° corresponding to
the polygons in Fig. 5. As indicated, 7% of the line’s total length is at
0° direction, which results in the most populated one.

which for the encoding scheme used is ¢ = 5.5% [18]. (The
average is related to the orientation of the small segments or
straight lines measured.)

To get rid of the quantization in direction and thus to
calculate the length of the fissures along any given direction,
the lines represented by the final table of coordinates are
approximated by polygons that are accurate within a given
tolerance [19], resulting in a table of the pixel’s coordinates
of the polygon’s vertices. The vertices of the polygonal
approximation were chosen from the points in the original list
in such a way that they are as far apart as possible, while the
maximum distance between the polygon and the approxi-
mated arc stays within some pre-established approximation
threshold p, measured in pixels.

The table of coordinates of the polygon’s vertices is the
final result of the digital processing applied to the original
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input image. This table is also the source used to compute
any description (length, shape, etc.) of the object mapped in
the original picture. Moreover, the table can be used to
reconstruct the fissure network (Figs. 5 and 9) as a vector
image or to calculate an orientation histogram of the network
(Fig. 6). In both examples an approximation threshold p = 1
pixel was used.

The main advantage of the polygonal approximation
(besides that of reducing stored data) is the elimination of
the four quantized directions in the original line. However,
its use raises the question of what approximation threshold p
should be used. An orientation histogram done with a large
value for p (p greater than 5 pixels) enhances the main
directions contained in the fissure network, but, in turn,
decreases the calculated value for the fissure’s total length.
On the other hand, making p = 0 pixels (which does not
mean that the approximation has not been done) gives for
straight lines oriented precisely at 0°, 45°, 90°, or 135° a
calculated length with error ¢ = 0 (this is the limiting
situation in the m-sampling of [18], where every mth point in
the line is selected to construct segments from which the
length of the line is calculated). However, for other straight
lines and curves, the p = 0 pixels approximation raises the
cited error to ¢ = 5.5% in the calculated length. The
orientation histogram calculated from the p = 0 pixels case
reflects the encoding scheme used, so directions are along 0°,
45°,90°, and 135° only.

To find a compromise value for p, the problem is stated in
the opposite way. Given a pair of points P, and P, on a digital
image, find the list of eight-connected points that make up
the straight line P,P,. For every new point to be interpolated
between P, and P, there are three possibilities if the final list
is eight-connected (in fact, only two need be considered in the
implementation), and the choice will be that point, P, out of
the three that gives a minimum distance d; between P, and
the straight line P_P,. If one calculates the maximum vaiue of
all d, encountered when creating lines PP, of length greater
than, say, 10-15 pixels and along all directions between 0°
and 45°, the result is 0.49 pixels. Thus, approximating by
polygons an eight-connected digital curve (or straight line)
using an approximating threshold of p = 0.49 pixels will
result in polygons having the longest side that still results in
the optimum length and directions for the approximated
arc.

It is interesting to try to relate the approximation thresh-
old p to the error e in the calculated length values. In
eight-connected straight lines with no approximation being
considered, the error is e = 5.5%, as was stated. Certainly
this error will be the same if one calculates the length values
doing an approximation of p = 0 pixels (this is not correct if
in the image there are only straight lines oriented precisely at
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the four main directions considered in a digital image). So
one is tempted to look for that p value that yields the true
length value and e = 0O (i.e., the length obtained using no
approximation and corrected for 5.5% in excess). When
using different typical images like the one in Fig. 4, one finds
that to get e = 0, the p values should be near p = 0.6 pixels,
which is very close to the p = 0.49-pixel value mentioned in
the last paragraph.

The approximated polygons could also be used to calculate
the number of their intersections with square grid of a given
size, yielding a result that is often associated with a density of
fissuration.

Results  The calculated total length of the fissure network
coded in the eight-way scheme is 20.35 mm. If the network is
approximated by polygons, with p = 0.49 pixels, the total
length is / = 19.70 mm with an error of ¢ = 2.1%, estimated
by extrapolating the value e = 5.5% when the length is
calculated without approximation.

® Analysis of the texture (granulometry)

Segmentation into regions  Segmentation of digital images
showing rock texture could be done by the usual thresholding
techniques [20]. If different and neighboring grains in the
sample exhibit the same interference color under polarizing
microscopy, grain boundary detection will fail unless the
microscopist rotates the sample with respect to the crossed
polarizers until each grain is properly mapped (the alterna-
tive [12, 13] is to use different images, as was mentioned in
the Introduction). In Fig. 2(b), segmentation was done using
a median filter in the space domain. Then, to the output
values of the filter a threshold selection was applied based on
the gray level histogram of the original digital image [13].
Next, the “field-cleaning” algorithm explained above and
used now with a 5 x 5 window was applied to the resulting
digital image. The output is the digital image of Fig. 7, where
small areas, arising from noise in the original picture,
disappear, and the vanished pixels are ascribed to the grains
where they are located.

Description of regions The regions located in the picture
of Fig. 7 are described naturally by their boundaries. Boun-
dary detection is a simple task in this image: Boundary points
are those pixels whose four four-way neighbors do not have
the same gray level (or which do not belong to the same
region). The output is a digital image (Fig. 8) where each
region has its own boundary line; that is, region i has all its
boundary pixels with gray value equal to i. Also, boundary
lines are eight-way encoded. The regions (grains) in the
figure have been labeled for reference.

Extraction of descriptions The line-following algorithm
applied to the picture in Fig. 8 produces the tables of
coordinates of grain boundaries. While scanning the digital
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Figure 7 Digital image resulting from segmenting into regions the
image in Fig. 2(b).

Figure 8 Boundary description of the regions (grains) in the image
of Fig. 7. The grains are labeled for reference.

image, the algorithm follows lines of constant pixel values
(unlike the case of the fissure lines). As boundary lines are
closed, the maximum jump allowed by the algorithm is one
pixel (with the result that boundary lines get smoothed).
Also, final lists of lines with 10 pixels or fewer are eliminated,
since they surely came from small regions due to noise.

Quantification  Lists of coordinate points belonging to
boundary lines represented in eight-way code allow the
computation of final values describing the grains in the
original picture of Fig. 2(b). Those lists have been further
reduced in size by using a polygonal approximation with
p = 0.49 pixels. From these lists the primary image parame-
ters can be computed, such as perimeter P, area 4 (from the
Gauss formula, [21]), centroid coordinates, etc., and derived
parameters such as dispersiveness of a region given by the
dimensionless quantity P2/47rA (with a lower bound of one,
measured in the real plane, when the object has the most
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Figure 9 Graphical relationship between information from the

two pictures in the multi-image of Fig. 2.

®

Figure 10 The problem of localization of intergranular fissures
with grain no. 1: (a) representation; (b) solution. See text for
details.

compact possible shape), shape factors, and other features
for grain characterization [22]. Of special importance is the
quantification of those boundaries that are common to two
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Figure 11 Fissures contained in grain no. 3, from which a fissura-
tion density is calculated. Only one intragranular fissure of length
0.33 mm is visible in the center of the lower part of the grain; all
other fissures are portions of transgranular ones.

different classes of grains or to one specific class (for
example, find the percentage of the total boundary length of
grains of class A that are in contact with grains of class B).
This problem is treated in the next section.

Results Table 1 presents under the heading of “grains”
some characteristic values of the grains labeled in Fig. 8.
Dispersiveness factors were determined from the original
values of P and A4 as calculated by the computer, and not
from the rounded ones that appear in the table.

® Analysis of the rock sample

In the preceding sections, features contained in the two
images of Fig. 2 were analyzed separately, without consider-
ing any relationships among the contents of the images.
Certainly more information about the rock sample could be
gained if descriptions from the two pictures were related, as
one would do visually by inspecting the picture of Fig. 9,
where the fissure network has been displayed on top of the
classified grains. Of special importance, as was mentioned in
the Introduction, is, for example, the characterization of the
fissures according to their positions with respect to the
texture of the rock. To solve this problem (and the one stated
above about grain boundary contacts), one has at hand tables
with the coordinates of vertices of planar open polygonal
lines (fissures) and closed polygons (grains). Thus the prob-
lem is reduced to the manipulation of these tables.

A set of algorithms has been developed for polygon
manipulation [23]. Of special importance for the purpose
stated in this section is the following: Given two polygons,
one either open or closed and the other closed, find the
coordinates of crossing points and common points, and label
other points with inside-outside flags. In all cases, outputs of
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Table 1 Numerical results of granulometric and fractographical analysis. Observed area for fissures: 4.89 mm’; observed area for grains:

4.46 mm’(*); total length for fissures: 19.70 mm.

Grains Fissures Fissuration
density
Grain Perimeter Area Dispersive- Covered  Intragranulars Intergranulars Transgranulars (Fi+F)/A
no.t P A ness area (mm™")
(mm) (mm”) P/dm A (%) F(mm) (%) F/(mm) (%) F,(mm) (%)
1 5.76 0.69 3.83 15.5 0.10 0.5 3.03 15.4 1.20 6.1 1.88
2 2.81 0.30 2.13 6.7 0.00 — 1.04 5.3 0.00 — 0.00
3 7.69 2.01 2.34 45.1 0.33 1.7 5.33 27.6 4.05 20.6 2.18
4 7.28 0.90 4,72 20.2 0.08 0.4 4.22 21.4 2.82 14.3 3.22
5 3.26 0.32 2.64 7.2 0.00 — 1.90 9.6 0.32 1.6 1.00
6 0.98 0.056 1.35 1.3 0.00 — 0.69 35 0.00 — 0.00
7 0.54 0.017 1.39 0.4 0.00 — 0.12 0.6 0.00 — 0.00
8 0.54 0.019 1.22 0.4 0.00 — 0.00 — 0.00 e 0.00
9 0.47 0.013 1.38 0.3 0.00 —- 0.02 0.1 0.00 — 0.00
10 0.87 0.019 3.14 0.4 0.00 — 0.00 — 0.00 — 0.00
11 0.57 0.013 2.01 03 0.00 e 0.33 1.7 0.00 — 0.00
*See Fig. 2.
tSee Fig. 8.

the algorithms are tables of coordinates (in fact, pointers to
the input tables of coordinates) from which further quantifi-
cation of new features can be computed.

Nevertheless, the problem of finding intergranular fis-
sures, i.e., the ones common to boundary grains, could not be
resolved by this polygon manipulation. The reason is that if
one attempts to find points common to both fissure lines and
boundary lines from different, though registered, digital
images, the probability of coincidence of points from both
lines, even when they do visually coincide, is very low. For the
same reason, parts of fissures that visually run along bound-
ary lines can be misclassified as being internal to a grain.

This problem could be handled as follows: (1) Create a
rectangle for every segment of the approximated boundary
line given; the segment would be the longest medial axis of
that rectangle, so that a closed polygon would be created for
every segment; (2) Find the fissure lines that are inside the
closed polygons that represent the grain boundary. This
solution takes too much computing time, so the solution
actually implemented is based on the same idea, but it is
easier to implement and faster in execution time:

1. From the original list of coordinates of the given bounda-
ry, create a strip s pixels wide, such that the grain
boundary is its medial line; and '

2. From the original list of coordinates of the fissures, create
a new list with the fissure points that are in the strip.

As for the value s, a strip 5 or 7 pixels wide is sufficient to
compensate for the combined errors in the registration
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process, the situation of the medial line in the thinning
transform, and the segmentation-plus-boundary-detection
algorithms, which affect the location of fissure lines and
grain boundaries. Figure 10(a) shows graphically how to find
the fissures that are common to boundaries of grain no. 1,
and Fig. 10(b) shows a representation of the solution.

Results  The fissures that originally appeared in Fig. 2(a)
have been classified according to their position in relation to
the grains in Fig. 2(b). The following parameters have been
considered for each grain, and their values are listed in Table
1 under the heading “fissures”:

1. Intragranular fissures: length and percent of the total
length of the fissure network, exhibited by fissures which
start and end in the interior of the grain.

2. Intergranular fissures: as in (1) for portions of fissures
that run along the boundary of the grain.

3. Transgranular fissures: as in (1) for portions of fissures
inside the grain and that run through different grains.

4. Density of fissuration: calculated from the ratio of length
of fissures located inside the grain to grain area.

In point (4), the fissures located in the grain are the
intragranular ones plus those portions of the transgranular
fissures that are located inside the grain. The fissures
contained in grain no. 3 have been displayed in Fig. 11 as an
example. Among all of the fissures, an intragranular fissure
is clearly visible in the middle of the grain; that fissure is 0.33
mm in length according to Table 1. The fissuration density
thus calculated assumes fissures of unit width, although
actual width values are available in the original list of
coordinates of the fissure lines.
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4. Hardware and software

The algorithms employed in this work are written in PL/I
and belong to an image analysis interactive system that has
been used in remote sensing, petrology, and biology applica-
tions [13]. Once a specific problem is defined, the system
helps the user to set up a working procedure to solve it, so
that interactivity can be kept to a minimum or not used at all.
The system, based on a Ramtek RM9351 display terminal
(with color and black and white monitors and a joystick),
runs under VM /CMS in an IBM 370/158 computer. Times
given in this section refer to the average response time in a
time sharing environment.

The analysis of micrographs produced under fluorescence
microscopy containing a network of fissures has been done
with no visual interaction between the user and the images at
the display terminals. Numerical results from the thinning
process, the most problematical of all the steps, replace the
qualitative result based on visual observation. Thus, the
thinning error and the mean width and elongatedness of the
object (fissures) to be thinned are values used to quantify the
process. Another reason to rely upon those numerical values
is the long processing time taken by a thinning transform
[16]. For pictures similar to the one in Fig. 3 with 500 x 500
pixels, it takes about 5 minutes to obtain the medial line of
the objects, depending upon their thickness and area. Then,
using a computer-driven microscope, it is possible to analyze
the microfissuration of a sample by programming different
observations (for statistical purposes), and doing all the steps
of the digital analysis for each observation in an unattended
manner. All other steps in the analysis (preprocessing, line
following, polygonal approximation, etc.) last less than 1
minute in total. In conclusion, for each micrograph obtained
under fluorescence microscopy, the analysis of the fissure
network requires the time for the digitizing process (2-3
minutes with the Perkin-Elmer microdensitometer) plus
about 6 minutes of processing time.

The first and most important step in the analysis of the
texture of the rock using polarizing microscopy micrographs
is the segmentation of the image into regions (grains). Unless
a considerable amount of a priori knowledge about the rock
texture and grain forming minerals is introduced as input to
the process, interactivity should be used in this segmentation
process. Nevertheless, the whole analysis is very fast, lasting
less than 5 minutes, depending of the number of regions in
the image.

Manipulation of polygons to obtain numerical information
from both rock texture and rock microfissuration lasts about
1 minute. Obviously this time depends on the number and
size of the grains and on the number, length, and position of
fissures.
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Image to image registration is very time-consuming while
one is selecting the control points in both images. Subsequent
processing, such as calculation of the transforming polyno-
mial and resampling, takes 2-3 minutes though. As was
mentioned, the whole process could be speeded up if images
to be registered were obtained with the same computer-
driven microscope.

5. Summary and conclusions

The digital multi-image analysis approach has been applied
to the analysis of the microfissuration of a rock sample. Steps
to analyze different kinds of pictures of the same sample
have been considered in detail. Special mention should be
made of the new method presented to analyze fluorescence
microscopy-produced micrographs, where the problem of
object discrimination (image segmentation) is drastically
reduced due to that microscopy technique. In addition the
objects that are going to be quantified, the microfissures,
have elongated and tree-like shapes. Finally, relationships
among vectorized descriptions of objects contained in the two
pictures of the multi-image considered have demonstrated
their importance in the quantifying of microfissuration in
relation to the texture of the rock. Human effort and
computing time seem justified if one considers the already
large investment in sophisticated equipment required to
obtain pictures and the quantitative rather than qualitative
nature of the final results.

Based on the results presented in this paper it would be
worth trying to apply these methods in other areas of science
where image analysis presents similar problems. For exam-
ple, neuronal structures fall into the class of objects with
elongated and tree-like shapes, with the main problem being
how to convert these objects, visualized through a micro-
scope, into a three-dimensional representation. The problem
of object discrimination is partially resolved by special
staining methods. Then, in order to try to automate the
three-dimensional vectorization of the neuronal structures,
digital image analysis could be applied along the lines
presented here to quantify the microfissure network. As for
the multi-image approach, many sophisticated techniques
are available today to map a given scene or object into
different pictures. Medicine, biology, materials science, and
remote sensing are a few of the areas where this approach
should be beneficial as well.
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