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Importance of Higher-Order  Components to Multispectral 
Classification 

A Landsat multispectral image  was combined with the corresponding digital terrain  elevation data  to  study several 
information extraction  procedures. Principal component and limited  multispectral classijication  procedures were conducted on 
1024 x I024 four-band Landsat andjive-band  (Landsat  plus terrain data)  images, and color composites  as well  as  quantitative 
information were generated. Selected  results of this  preliminary investigation conjirm the usefulness of the principal 
component analysis in a qualitative  presentation of the multi-band  data and its association with a significant reduction in 
dimensionality. However,  unlike some other  investigators, we found that the full dimensionality  must be retained when the 
information conten! of  the data has to be preserved  quantitatively. 

Introduction 
A single-band  digital  image  generally consists of a 6- 
to-8-bit  representation of the  values of the pixels in the 
image. However, display,  storage,  retrieval,  analysis,  and 
distribution of multi-layer (or multi-band)  digital  data pose 
formidable problems,  especially  when the  images consist of 
more  than  three  data  layers  and  contain  more  than a couple 
of hundred  thousand pixels in each  layer.  Displaying  such 
multi-layer  data  can be difficult  because  there  are only 
three  primary colors (or attributes),  and  each  one of these 
colors can be displayed in a t  most  sixteen different recog- 
nizable levels. Thus,  reduction in the  dimensionality of such 
data becomes an  important  aspect of digital  image process- 
ing and  presentation.  Such  multi-layer  image  data  often 
exhibit high correlation  among  the  layers,  and  hence  the 
classical  principal  component  analysis  procedure  (also 
known as  the  Karhunen-Lo&e  transform)  may provide  a 
new and  smaller  set of layers or image  components  that  are 
generally  uncorrelated  with  each  other [ 1, 21. These new 
layers (or principal  components)  can be ranked  such  that 
each new one  has less variance  than  the  preceding  one.  This 
ranking is carried  out with the  help of the  eigenvalues of a 
dispersion  matrix  the  elements of which are  formed  from 
the  variance in each  band  and  from  the  covariance  among 
the  bands. 

As the  variance of a  principal  component  decreases with 
an increase of its  order,  the “information content” of the 
component  generally  decreases in a statistical sense. (Note 
that  the  phrase “information content”  remains loosely 
defined.) Some investigators (e.g., [3]) have  considered it 
prudent  to  keep  all components for  further analysis. Others, 
however, especially  those primarily involved in the false color 
presentation of data [4-61 have implied that  the  higher- 
order  components  contain  primarily noise and  are  therefore 
of no practical value. They  then recommend the usefulness of 
the principal  component  analysis in reducing the dirnen- 
sionality of multi-layer  image  data. 

Considering the basic  principles of principal  component 
analysis,  this position is understandable provided the  image 
consists of a few major classes. In practice, however, an 
image  can consist of several hundred  thousand pixels with 
10-20 different classes, some  major  and  some minor. Under 
these  circumstances,  the belief that  the higher-order  compo- 
nents are insignificant may or may  not be justified. For a 
false color presentation of multi-layer  data,  one  can only 
work with three color attributes. In this  case, the principal 
component transformation is a powerful tool, but its limita- 
tions must  be recognized. 
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Figure 1 Land use and land cover map of San Jose and vicinity. 

Some of these  statements [4-61 about  principal compo- 
nents may result partly  from limited experimentation on 
small images. That is, they were  based on the  number of 
pixels that  can be handled on most stand-alone  image 
processing systems or on those  with image display hardware 
interfaced with  a large  computer in a “virtual-machine” 
environment.  In  contrast, we have  used the  recently 
announced  IBM  7350, a 1024 x 1024-resolution,  intelligent 
color display  system  with  a local storage of about  eight 
million bytes and  an  arithmetic logic unit for performing 
operations on the locally stored data.  This device first 
became available within IBM in  mid-1981 [7]. Devices for 
displaying  still larger  images have  also been reported [8], 
and  image processing devices capable of very-high-speed 
processing of such images can be expected to follow [9].  It 
therefore  seems  appropriate now to  re-examine  the  informa- 
tion content  aspect of principal  component  analysis. 

The  image processing and display  device used for our 
investigations is attached  to  an  IBM  System/370 Model  158 
computer  running in the  VM/CMS  (Virtual  Machine,  Con- 
versational Monitoring  System) environment. This configu- 
ration provides easy  access to  large  (about  100  megabytes) 
data files, and  the  capability of performing complex mathe- 
matical  operations in the host computer if necessary. 716 
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A  special feature  (the  random  addresser for the refresh 
buffer) of the  IBM  7350  enables  the user to  obtain a quick 
evaluation of a matrix whose element  represents  the 
number of pixels with the  ith  and  jth  radiance levels for the 
data  stored in the  nth  and  mth buffers, respectively. This 
matrix forms the basis  for the  generation of a three- 
dimensional histogram  (bi-scatter plot)  representing correla- 
tion between data in any two  bands. It also assists in an 
efficient evaluation of the off-diagonal elements of the 
dispersion matrix  representing  the  covariance of multi-band 
data; see  Eqs. ( I )  and  (2).  We found the  IBM  7350  to be 
especially  convenient  for this work  because  all hardware 
capabilities  are  made  available  to  any  application  program 
written in a high-level language (e.g., FORTRAN). 

In  this  paper, we discuss the results of our investigation  on 
a 1024 x 1024  four-band  (Landsat:  MSS4  to  MSS7),  and on 
a 1024 x 1024 five-band (Landsat plus digital  terrain 
elevation data)  image of the  Santa  Clara  Valley/Mt.  Hamil- 
ton region of northern  California.  Selected original data  and 
the corresponding  principal  component  values are presented 
in the false color composites. Results of the  multispectral 
classification on  a few easily  recognizable  minor  classes in 
the  image  are also  presented  in tabular form. 

image description 
The region we selected  for our investigation has diverse 
characteristics  and  features, including urban,  suburban, 
recreational, forest, mountain,  agricultural,  and hydrological 
categories.  A  land  use and land cover map of this  general 
region (1974- 1976 USGS map, open file 76-640-1) is shown 
in Fig. 1. Residential  and  commercial categories are shown 
in light yellow, while the  urban  land is shown in orange. 
Range  and forest lands  are shown  in  light and  medium (or 
dark)  green, respectively. Agricultural regions are shown in 
different shades of red,  and  water bodies are shown in black. 

Landsat  data 
The  Multi-Spectral  Scanner  (MSS) of the  current  Landsat 
series satellites  scans  the  earth’s  surface in four  spectral 
bands with  a ground level resolution of about 80 m. These 
MSS data  are now geometrically and  radiometrically cor- 
rected  and  are  transformed  to  one of several  conventional 
map projections [lo].  These  partially processed MSS  data 
are grouped into  the so-called Landsat scenes of about  185 
km (cross-track) by about  170 km (along-track). A scene 
consists of four  bands with 2983  scan lines in each  and with 
3548 pixels per scan line. The  spectral  radiance of a pixel is 
represented  in  relative units by a 7-bit  number  (range: 
0-127), which is stored in an  8-bit word. 

The  Landsat  multispectral  image used in our study was 
selected from  the  Landsat 3  scene containing  the  San  Fran- 
cisco Bay area  (NASA scene ID: E-21529-17562-0; centered 
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at  37"21' N, 121'47' W; imaged on March 31, 1979).  The 
selected image consists of 1024 lines, starting  from  the 
1200th  scan  line in this scene, and  1024 pixels starting  from 
pixel number  1350  from  each selected  scan  line. Thus,  there 
are 1 048 576 pixels in the  image.  The  geographical coordi- 
nates  for  the  corners of this  image  are (37.54' N, 122.03" 
W), (37.44' N, 121.38" W),  (36.93' N, 121.51" W), and 
(37.03' N, 122.16" W) starting  from  the  left  top  corner  and 
proceeding in the clockwise direction. 

Digital  terrain  elevation  data 
Digital terrain  data [ 1 11 generated  from  the 1 :250 000-scale 
maps  were used. Values of terrain elevation  (in feet)  are 
given on a 0.254-mm (0.01-in.) grid for Io-latitude, Io- 
longitude  quadrangles.  This resolution  corresponds to  about 
61 m  on the  ground  and  compares well with that of the 
Landsat  measurements.  The positions of the  digital  data 
(i .e. ,  grid points) are given in terms of the x, y map 
coordinates,  and not in terms of latitude  and longitude. The 
x, y coordinates of the  four  corners of the  quadrangles were 
used to  estimate  the  geographical location of a  grid  point. It 
may be noted that  the  latitude,  longitude scales are slightly 
nonlinear. 

In order  to  register  the  digital  terrain elevation data on the 
Landsat scene, latitude  and  longitude of several ground 
control points  easily  identifiable on the  Landsat  scene  and on 
the 1 :250  000-scale maps were determined  from  the  maps. 
The line and pixel numbers of these ground control points 
were then  obtained [ 121. Coefficients of a pair of equations 
relating  the line-pixel parameters  to  the  latitude-longitude 
parameters were calculated using the first two terms of the 
Taylor series for two variables. This  mapping  function was 
used to  determine  the  latitudes  and longitudes of all pixels in 
the  Landsat scene. The  terrain elevation for a Landsat pixel 
was determined by converting its  latitude-longitude  parame- 
ter  into  the x, y coordinates using  all of the information 
provided for the  corners of the corresponding quadrangle  and 
by using the  nearest-neighbor procedure. 

The  aforementioned re-sampling procedure is expected to 
provide registration of the  terrain elevation data on the 
Landsat scene to within 2-3 pixels. Better  registration is not 
practical because of the nonlinear relationship between the x, 
y coordinates  and  the  latitude-longitude  variables mentioned 
earlier  and because of the discontinuities of the grid  points a t  
the  boundaries of the  quadrangle. However, this  small  degree 
of misregistration  cannot  invalidate  any finding of this 
study. 

The  digital  terrain elevation data  cannot be contained in 
8-bit numbers without  scaling,  since  these  values can, in 
general,  range from 0 to  10 000 m. A full Landsat scene 
requires  terrain  data from  several quadrangles of the 
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Table 1 Values of mean  brightness ( b )  and  standard  deviation ( u )  
for bands 4 to 8 of the  image used in this  investigation. 

Band Mean  brightness  Standard  deviation 

4 16.54 
5 

5.1 1 
17.55 7.02 

6 36.57 10.14 
I 36.17 1 1.60 
8 40.93 26.41 

~~ 

1:250  000-scale maps.  Therefore, we generated a terrain 
elevation data file in registration with the  Landsat scene and 
containing  16-bit (half-word integer)  numbers for each pixel. 
The elevation  values in this file were  found to  vary between 0 
and  1282 m. For merging the  terrain  data with the  Landsat 
data,  it was necessary to  scale  the  data  into 7-bit numbers. A 
second terrain elevation file was  produced from  the first one 
using  a vertical scale factor of about 11 m. This second 
terrain elevation file  is referred to as  the "band 8 data" 
throughout  this  paper.  Its  count  range varies from 8 to 127, 
with each  count  representing  approximately 11 m  in eleva- 
tion. 

Several shaded relief images of a part of the  image used in 
this investigation can be found  elsewhere [ 131. 

Principal component transformation 
The  statistical  parameters of mean brightness (1) and  stan- 
dard deviation (u)  for all five bands of the  image described in 
the preceding  section are given in Table 1. The  procedure for 
computing  the principal  component transformation  matrix 
can be found in many textbooks on image processing (e+, 
[ 1-41) and hence is not  described here in detail.  It basically 
starts with  a symmetric dispersion matrix whose main diag- 
onal elements  are given by u2. The off-diagonal element Ck,m 
representing  the covariance of the  data in the  kth  and  mth 
band is defined by 

I N  
' k , m  5 ( R k . n  ~ l k ) ( R m , n  - 1 m ) 3  

where Rk,n (Rm,J is the  radiance of the nth pixel in the  kth 
(mth)  band.  The  upper limit N represents the  total  number 
of pixels in the  image. 

In order  to perform the bulk of the  computations in the 
IBM 7350  where  the  data reside, Eq. ( I )  was modified as 
follows for the 7-bit  case: 

where the  quantityf;,, is as defined earlier  near  the  end of the 
Introduction. After evaluation of all of the  elements of thef;, 



components ?r, to ?r, of any pixel can be computed  from  the 
following equation: 

Figure 2 False  color  display of the  original  image  data  for  the 
Santa  Clara  Valley/Mt.  Hamilton  region.  Data  for  bands 4, 5 ,  and 7 
are shown in 16 different  shades of blue,  green,  and  red, respec- 
tively. 

matrix in the IBM 7350,  the  quantity  Ck,m  can be computed 
in the host (System/370)  after  reading  the  contents of the 
refresh buffer [ 121. 

After all elements of the dispersion matrix have been 
computed,  its eigenvalues and eigenvectors can  be  computed 
using the  standard procedure. These eigenvectors provide 
elements for the principal component  transformation of the 
original image  data.  The normalized  eigenvalues of the 
dispersion matrix  are  frequently used to  characterize  the 
“information  content” of the principal  components. 

The normalized  eigenvalues of the  four-band  (bands 4 to 
7)  image  are  as follows: 0.754, 0.232, 0.010, and 0.005. The 
components P, ,  P,, P,, and P, of any pixel can be computed 
from  the following equation: [ I  = [ x 7 9  0.7667 0.0845 - o . 3 4 o ] I ]  + [ ;] 
where R,, R,, R,, and R, are  the  radiances of the pixel in the 
four MSS bands. 

0.1320 0.1586 0.6535 0.7283 

0.0668 -0.3815 0.7203 -0.5754 

0.8299 -0.4914  -0.2167 0.1510 17 

(3) 

The normalized  eigenvalues of the five-band (bands 4 to 8) 
image  are  as follows: 0.715, 0.221, 0.060, 0.003, 0.001. The 718 
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[I= -0.1016 -0.1118 -0.1250  -0.0724 0.9779 

0.0772 0.0955 0.6325 0.7488 0.1552 

0.5195 0.7872 0.1150 -0.2796  0.1380 

-0.0100 -0.3141 0.7436 -0.5900  0.0144 

0.8448 -0.5099 -0.1347 0.0879 0.0188 1 [“I 15 

The second term in Eqs. ( 3 )  and  (4) is for  avoiding 
negative  principal  component  values. The values of the 
elements of the P and T vectors are also treated  as  7-bit  data; 
if any  element of any pixel exceeds the upper  limit,  it is 
forced to 127. It  may  be noted that because of this forcing 
and  addition of the second term,  these  equations  are not 
invertible  explicitly. 

From Eqs. (3)  and (4), it is clear  that  the  radiances of all 
bands  contribute  somewhat  to  the  magnitude of a given 
component.  However, generally two bands  are  prime  contrib- 
utors in each case.  For discussion purposes, we can  then 
make  the following statements  as a  first approximation: 

Vectors P, and P, are  the weighted sums of R, and R, and 
of R, and R,, respectively. Similarly, P, and P, are  the 
weighted  differences of R, and R, and of R, and R,, 
respectively. 

Vector ?r, essentially represents  the band 8 data, i .e.,  the 
terrain elevation information. Vectors ?r2 and ?r3 are  the 
weighted sums of R, and R7 and of R, and R,, respectively, 
while ?r, and T, are  the weighted  differences of the  same two 
combinations. 

Thus, in a qualitative  manner,  one  can expect most 
information of the  four-band  image  to be contained in the 
first two  components and  that of the five-band image in the 
first three components. The corresponding  ordered  eigen- 
value sets also support this qualitative  statement. However, 
this does  not rule  out  the possibility of the  last two compo- 
nents  having  some information. 

Discussion of results 
Results of our investigation are presented from two different 
viewpoints, viz., false  color images  and  quantitative  informa- 
tion related  to  and derived from  the  multispectral classifica- 
tion.  For  a  false color presentation of multi-layer  data, a 
histogram on a semi-logarithmic  scale  [14] was generated 
for each  band.  The  histogram was then used to  determine  the 
count  range  containing  about 99% of all of the pixels. A 
linear  scale was then used to intensity-code pixels in this 
count  range in 16  different shades of the  appropriate  primary 
color. Pixels to  the  left  and pixels to  the  right of the  count 
range were  assigned the  darkest  and  the  brightest  shade of 
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that color,  respectively.  For components P,, P,, T,,  T,, and 
rS, using a count  range with about 99% of all pixels resulted 
in an  image strongly dominated by the color assigned to  that 
component.  It was therefore necessary to  cut down the lower 
end of the  range  to  obtain  appropriate color balance. 

A modified form of the “box-car”  classification procedure 
(see, e.g., [12]) was  used  in our analysis. With  this,  the 
results  are  independent of the  order in which the classes are 
specified. In this  case, classes  were numbered in the powers 
of  2, i.e., 1, 2, 4, 8, and so on. For  training sites, areas 
consisting of about 220 pixels were used,  and  the  count  range 
containing 90% of all pixels was determined for each  band of 
each  class  from  the corresponding statistical  information. If 
the values of a pixel in  all bands lie in the corresponding 
count  ranges of a given class, it is said  to belong to  that class. 
With  the  aforementioned  numbering  procedure, a mixed (or 
doubtful) pixel belonging to  more  than  one class is assigned 
the  number given by the  sum of the  number of these classes. 
For example, if a pixel is judged  to belong to class 2 and class 
4, it is assigned to  class 6. 

False color presentation of the four-band data 
The  data for MSS bands 4, 5 ,  and 7 are color coded into 16 
different shades of blue, green,  and  red, respectively, and  the 
resultant  false color image is  shown in Fig. 2. This is the 
conventional form of presenting Landsat  data.  Many  fea- 
tures  such  as  the  bay, lakes, mountains,  and  residential  areas 
can  be easily  identified.  A  comparison of Figs. 1 and 2 shows 
the usefulness of the  Landsat series satellites in obtaining 
information  about  land cover and  land use. The predomi- 
nantly  red color of the hilly regions  is due  to  the presence of 
healthy vegetation with high reflectance in the  near 
infrared. 

In Fig. 3, results of the principal  component analysis of the 
four-band  data  are presented  with P,,  P,, and P, values color 
coded in  red, green,  and blue,  respectively. There is no 
standard convention for  selecting  colors for  the principal 
component presentation, but it seems appropriate  to  use blue 
for the  band with the least amount of information  [2];  the 
human  eye is less sensitive to blue. Almost all  features of Fig. 
2 are  also present  in  Fig. 3 but in  different  colors. 

The normalized  eigenvalue  corresponding to P, is 0.010 
[see discussion for Eq. (3)], and  hence  its  information 
content is about 1%. Furthermore,  it  represents  primarily 
bands 6 and 7, which are  already represented in an  alternate 
manner by P,. However, if the P, data  are  deleted  from Fig. 
3, the visual separation between the  rangeland  (purple)  and 
the forest  land (brown  and  red)  east  and  southeast of the  San 
Jose  area becomes less clear. Besides, there  appears  to be 
better  separation of the  agricultural  and  non-agricultural 
features with the  additional  component. 

Figure 3 False color display of the principal components of the 
four-band data for the Santa Clara Valley/Mt. Hamilton region. 

a Multispectral classification of the selected four-band 
data 
The main  purpose of this exercise is to  examine  the “infor- 
mation  content”  aspect of the  higher-numbered principal 
components. It would be ideal to work  with the  image over a 
large  area for which the “ground truth”  at  the  time of 
measurement is known in great  detail. Obviously, this 
becomes a major  undertaking.  Furthermore,  the principal 
component transformation  matrix  can  be expected to  be 
dominated by the  major classes of the  image.  Hence,  one 
alternative  to a  large-scale experiment is to look at  the 
importance of the  higher-order  components  to  the  estimation 
of the  number of pixels for  minor classes. 

The minor  class which can  be unambiguously  identified in 
our  image is water.  It shows up in many  parts of the  image, a t  
various  elevations, in different depths,  and with  different 
amounts of impurities. It  can  also be verified, to some extent, 
from  the  land  use  map. For our  multispectral classification 
exercise, we have  selected three different training sites, all 
containing  water.  The  Class 1 site is located in the  southeast- 
ern  part of the  San  Francisco Bay, which can  be seen in the 
left  top  corner of Fig.  2 or 3. The  Class 2 site is located in 
Calaveras Reservoir east of the bay. The  Class 4 site is in 
Coyote  Lake, which is situated on the  extreme  right in the 
lower part of the  image.  About 220 pixels were  selected at  
each  site,  and  the  statistical  characteristics of these  limited 
data were obtained for all five bands.  Values of the  count 
range  containing 90% of all pixels for each  band of these 719 
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Figure 4 False color image of Fig. 2 with  terrain-elevation  con- 
tours. 

Table 2 The 90%  criterion  count  range  for  the  original five-band 
data for three  different  training  sites or classes: Class 1 -Southeast- 
ern San  Francisco Bay (225  pixels);  Class 2"Calaveras Reservoir 
(225 pixels); and  Class 4-Coyote Lake  (213 pixels). 

Band 90% criterion count range for 

Class I Class 2 Class 4 

4  16-20  11-13  12-14 
5 
6 

11-15  8-10 
14-21 

10-1 1 
4-6 5-8 

7  1-6 0- 1 0-2 
8 8-8 29-29 28-29 

Table 3 The 90%  criterion  count  range for the  four-band  princi- 
pal-component  analysis  case for three  different  training  sites or 
classes: Class  I--Southeastern San Francisco Bay (225  pixels); 
Class 2"Calaveras Reservoir  (225  pixels);  and  Class 4-Coyote 
Lake  (2  13 pixels). 

Component 90% criterion count range for 

Class I Class 2 Class 4 

I 
2 
3 
4 

~ - -  

15-23  6-8 8-1 1 
35-40  30-32  32-34 
54-58  50-52  50-52 
21-24 21 -23  20-22 

classes are shown in Table 2  for the original data  and in 
Table 3  for the  four-band principal  component data.  The 
count ranges  for  Classes  2 and 4  overlap to  some  extent in 720 
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Table 4 Total  number of pixels classified in each  class  with  the 
original  four-band  data  and  with  all  four,  the first three,  the first 
two, and only the first principal  component  values for the  Santa 
Clara  Valley/Mt.  Hamilton  image. 

Class  Total number of pixels classified with 
number ~ 

four-band  data P ,  to P, PI to P3  P, to P2  P, only 

1 4363  4408  5051  6919  13647 
2  935  651  890  1239  1353 
4  709 
6 

873  909  1133  1522 
178 58  119  134  667 

some  cases and  thus provide conditions  for the  generation of 
a mixed class.  For the results obtained with different  princi- 
pal component combinations,  the  number of pixels of a mixed 
class  could change at  the expense of those  for the correspond- 
ing unique classes. One  might  then be able  to supply  some 
rationale for such a trend. However,  results  presented in this 
paper  do not show such  a trend. 

The  total  number of pixels classified in each class over the 
entire  image with the original four-band  data  and with the 
corresponding four principal  components are shown in 
Columns 2 and 3 of Table 4, respectively. In both  cases, the 
classified pixels show up in the expected geographic locations 
on the classification map.  There  are significant  differences in 
the  number of pixels identified by the original and  the 
component data for a given class.  However, there is no a 
priori reason to  prefer  one set of results over the  other 
without some  ground-truth  information.  The  number of 
pixels in each class  with only the first three, only the first 
two, and only the first  component  values are shown in the  last 
three columns of this  table.  The  number of pixels identified 
as belonging to a given class increase significantly even when 
the P, component  with an eigenvalue of only 0.005 is 
suppressed. Furthermore, some of these newly identified 
pixels show up in areas with no water.  Thus, it is clear  that 
for this limited experiment, it is necessary to  maintain  all 
four components. In other words, no reduction in dimen- 
sionality is appropriate. 

False  color  presentation of the five-band data  
Even though  the  terrain elevation information is contained in 
a  single band, it is more predominant  than  the  Landsat 
information.  The validity of this  statement  can be visualized, 
to  some  extent,  from  the  transformation  matrix  appearing in 
Eq.  (4).  The  16-bit  terrain  data  can be presented in the 
overlay plane of the IBM 7350 color monitor in the  form of 
elevation contours for the  image in the  image planes under  it. 
Typical results are presented in Fig. 4 for the  image of Fig. 2 
with contours a t  183-m (600-ft)  intervals in the  range 
61-1281 m (200-4200  ft).  Such a presentation  can provide 
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great  help  to  an  interpreter involved in an  interactive analysis 
of the  data. However,  it  has very restricted use  in hard copy 
production. A considerable amount of Landsat information 
is suppressed by about  one-third of the  terrain elevation 
data. 

A false color composite  with data for bands 5 ,  7, and 8, 
color coded into 16 different shades of green,  red,  and blue, 
respectively, is shown in Fig. 5. Because of the  predominance 
of the  terrain  data,  the  Landsat  information is considerably 
suppressed at  higher elevation. 

In Fig. 6, results of the principal  component  analysis of the 
five-band data  are presented with T,, a2, and T) values color 
coded in red,  green,  and blue,  respectively. A comparison of 
the results  presented in Figs. 2 and 6 brings out  the  degree of 
enhancement  that  can  be achieved by combining data  from 
two different  sources. The normalized  eigenvalue corre- 
sponding to T) is only 0.060. But the  herbaceous  rangeland 
(light  green)  southeast of San Jose is separated  from  the 
urbanized  area  (medium blue) of San  Jose in the three- 
component  presentation (Fig. 6), while the two-component 
(T, and r2) presentation results in a merging of these 
categories  into a  single  (green  color) combination. In addi- 
tion, the rTj component has introduced additional  information 
and definition into  the  mountain regions. However, there 
appears  to be some loss of road  network information in the 
city area. 

Multispectral  classijication of the  selected  jive-band 
data 
Results  similar  to those given in Tables 3 and 4, but obtained 
with the five-band data,  are presented in Tables 5 and 6,  
respectively. The discussion of the corresponding four-band 
case applies  also to these  results. 

Concluding remarks 
Principal component  analysis has been shown to  be a power- 
ful tool for reducing  the dimensionality of four-band  and 
five-band data  to  three components.  For our image,  the  third 
component for the  four-band  case  carrying  about 1% of the 
total  information is found to  be helpful in enhancing  the 
value of the false color principal  component presentation. 

A modified “box-car’’  classification analysis was also 
performed for the unambiguously  identifiable three different 
water classes in these images. These  are  the minor  classes 
with the  total  number of pixels for  a  class measurable in 
hundreds. For such  cases, our investigation  brings out  the 
need of working with all components in a quantitative 
extraction of information. 

Reduction in the dimensionality of the  multi-layer  large 
images is a  necessity, and  the principal  component  analysis 
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Figure 5 False  color  display of the original  image  and  the  terrain 
elevation data. 

Figure 6 False color display of the  principal  components of the 
five-band data for the  Santa  Clara  Valley/Mt.  Hamilton region. 

can assist in this  task  to  some  extent. Our study suggests that 
the  extent  depends upon several factors,  such  as  the size of 
the  image,  number of classes in the  image, their  relative 
importance,  number of bands or data  layers, classes for 
which information is to  be preserved by the components, and 
the  nature of information to  be  extracted.  Further investiga- 
tion in this  general direction is indicated. 



Table 5 The 90% criterion  count  range  for  the five-band principal- 
component  analysis  case  for  three  different  training  sites or classes: 
Class  1-Southeastern San  Francisco Bay (225 pixels);  Class 
2“Calaveras reservoir (225 pixels);  and  Class 4-Coyote Lake 
(213 pixels). 

Component 90% criterion count range for 

Class I Class  2  Class  4 

1 
2 
3 
4 
5 

44-46 68-69 67-68 

22-27 19-21 21-24 
14-22  9-1 1 11-14 

55-60 51-53 51 -53 
20-23 20-22 19-21 

Table 6 Total  number of pixels classified in  each  class  with  the 
original five-band data  and  with  all five, the first four,  the first three, 
and  the first two  principal  component  values  for  the Santa  Clara 
Valley/Mt.  Hamilton  image. 

Class  Total number of pixels classijied with 
~ ~~~ 

number 
jive-band  data T ,  to rs T ,  to r4 rI to r3 ?rl to T~ 

1 4358  5199  5546  6444  7814 
2  603  523 701 975  910 
4 321 
6 

290 295 343 376 
67 37 62 65 232 
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