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Importance of Higher-Order Components to Multispectral
Classification

A Landsat multispectral image was combined with the corresponding digital terrain elevation data to study several
information extraction procedures. Principal component and limited multispectral classification procedures were conducted on
1024 x 1024 four-band Landsat and five-band (Landsat plus terrain data) images, and color composites as well as quantitative
information were generated. Selected results of this preliminary investigation confirm the usefulness of the principal
component analysis in a qualitative presentation of the multi-band data and its association with a significant reduction in
dimensionality. However, unlike some other investigators, we found that the full dimensionality must be retained when the

information content of the data has to be preserved quantitatively.

Introduction

A single-band digital image generally consists of a 6-
to-8-bit representation of the values of the pixels in the
image. However, display, storage, retrieval, analysis, and
distribution of multi-layer (or multi-band) digital data pose
formidable problems, especially when the images consist of
more than three data layers and contain more than a couple
of hundred thousand pixels in each layer. Displaying such
multi-layer data can be difficult because there are only
three primary colors (or attributes), and each one of these
colors can be displayed in at most sixteen different recog-
nizable levels. Thus, reduction in the dimensionality of such
data becomes an important aspect of digital image process-
ing and presentation. Such multi-layer image data often
exhibit high correlation among the layers, and hence the
classical principal component analysis procedure (also
known as the Karhunen-Loéve transform) may provide a
new and smaller set of layers or image components that are
generally uncorrelated with each other [1, 2]. These new
layers (or principal components) can be ranked such that
each new one has less variance than the preceding one. This
ranking is carried out with the help of the eigenvalues of a
dispersion matrix the elements of which are formed from
the variance in each band and from the covariance among
the bands.

As the variance of a principal component decreases with
an increase of its order, the “information content” of the
component generally decreases in a statistical sense. (Note
that the phrase “information content” remains loosely
defined.) Some investigators (e.g., [3]) have considered it
prudent to keep all components for further analysis. Others,
however, especially those primarily involved in the false color
presentation of data [4—6] have implied that the higher-
order components contain primarily noise and are therefore
of no practical value. They then recommend the usefulness of
the principal component analysis in reducing the dimen-
sionality of multi-layer image data.

Considering the basic principles of principal component
analysis, this position is understandable provided the image
consists of a few major classes. In practice, however, an
image can consist of several hundred thousand pixels with
10-20 different classes, some major and some minor. Under
these circumstances, the belief that the higher-order compo-
nents are insignificant may or may not be justified. For a
false color presentation of multi-layer data, one can only
work with three color attributes. In this case, the principal
component transformation is a powerful tool, but its limita-
tions must be recognized.

© Copyright 1982 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. e VOL. 26 @ NO. 6 ¢« NOVEMBER 1982

715

JITENDRA V. DAVE ET AL.




716

Figure 1 Land use and land cover map of San Jose and vieinity.

Some of these statements [4—6] about principal compo-
nents may result partly from limited experimentation on
small images. That is, they were based on the number of
pixels that can be handled on most stand-alone image
processing systems or on those with image display hardware
interfaced with a large computer in a “virtual-machine”
environment. In contrast, we have used the recently
announced IBM 7350, a 1024 x 1024-resolution, intelligent
color display system with a local storage of about eight
million bytes and an arithmetic logic unit for performing
operations on the locally stored data. This device first
became available within IBM in mid-1981 [7]. Devices for
displaying still larger images have also been reported [8],
and image processing devices capable of very-high-speed
processing of such images can be expected to follow [9]. It
therefore seems appropriate now to re-examine the informa-
tion content aspect of principal component analysis.

The image processing and display device used for our
investigations is attached to an IBM System/370 Model 158
computer running in the VM/CMS (Virtual Machine, Con-
versational Monitoring System) environment. This configu-
ration provides easy access to large (about 100 megabytes)
data files, and the capability of performing complex mathe-
matical operations in the host computer if necessary.
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A special feature (the random addresser for the refresh
buffer) of the IBM 7350 enables the user to obtain a quick
evaluation of a matrix whose f;, element represents the
number of pixels with the ith and jth radiance levels for the
data stored in the nth and mth buffers, respectively. This
matrix forms the basis for the generation of a three-
dimensional histogram (bi-scatter plot) representing correla-
tion between data in any two bands. It also assists in an
efficient evaluation of the off-diagonal elements of the
dispersion matrix representing the covariance of multi-band
data; see Egs. (1) and (2). We found the IBM 7350 to be
especially convenient for this work because all hardware
capabilities are made available to any application program
written in a high-level language (e.g., FORTRAN).

In this paper, we discuss the results of our investigation on
a 1024 x 1024 four-band (Landsat: MSS4 to MSS7), and on
a 1024 x 1024 five-band (Landsat plus digital terrain
elevation data) image of the Santa Clara Valley/Mt. Hamil-
ton region of northern California. Selected original data and
the corresponding principal component values are presented
in the false color composites. Results of the multispectral
classification on a few easily recognizable minor classes in
the image are also presented in tabular form.

image description

The region we selected for our investigation has diverse
characteristics and features, including urban, suburban,
recreational, forest, mountain, agricultural, and hydrological
categories. A land use and land cover map of this general
region (1974-1976 USGS map, open file 76-640-1) is shown
in Fig. 1. Residential and commercial categories are shown
in light yellow, while the urban land is shown in orange.
Range and forest lands are shown in light and medium (or
dark) green, respectively. Agricultural regions are shown in
different shades of red, and water bodies are shown in black.

& Landsat data

The Multi-Spectral Scanner (MSS) of the current Landsat
series satellites scans the earth’s surface in four spectral
bands with a ground level resolution of about 80 m. These
MSS data are now geometrically and radiometrically cor-
rected and are transformed to one of several conventional
map projections [10]. These partially processed MSS data
are grouped into the so-called Landsat scenes of about 185
km (cross-track) by about 170 km (along-track). A scene
consists of four bands with 2983 scan lines in each and with
3548 pixels per scan line. The spectral radiance of a pixel is
represented in relative units by a 7-bit number (range:
0-127), which is stored in an 8-bit word.

The Landsat multispectral image used in our study was
selected from the Landsat 3 scene containing the San Fran-
cisco Bay area (NASA scene ID: E-21529-17562-0; centered
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at 37°21' N, 121°47" W; imaged on March 31, 1979). The
selected image consists of 1024 lines, starting from the
1200th scan line in this scene, and 1024 pixels starting from
pixel number 1350 from each selected scan line. Thus, there
are 1 048 576 pixels in the image. The geographical coordi-
nates for the corners of this image are (37.54° N, 122.03°
W), (37.44° N, 121.38° W), (36.93° N, 121.51° W), and
(37.03° N, 122.16° W) starting from the left top corner and
proceeding in the clockwise direction.

® Digital terrain elevation data

Digital terrain data [11] generated from the 1:250 000-scale
maps were used. Values of terrain elevation (in feet) are
given on a 0.254-mm (0.01-in.) grid for 1°latitude, 1°-
longitude quadrangles. This resolution corresponds to about
61 m on the ground and compares well with that of the
Landsat measurements. The positions of the digital data
(i.e., grid points) are given in terms of the x, y map
coordinates, and not in terms of latitude and longitude. The
x, y coordinates of the four corners of the quadrangles were
used to estimate the geographical location of a grid point. It
may be noted that the latitude, longitude scales are slightly
nonlinear.

In order to register the digital terrain elevation data on the
Landsat scene, latitude and longitude of several ground
control points easily identifiable on the Landsat scene and on
the 1:250 000-scale maps were determined from the maps.
The line and pixel numbers of these ground control points
were then obtained [12]. Coefficients of a pair of equations
relating the line-pixel parameters to the latitude-longitude
parameters were calculated using the first two terms of the
Taylor series for two variables. This mapping function was
used to determine the latitudes and longitudes of all pixels in
the Landsat scene. The terrain elevation for a Landsat pixel
was determined by converting its latitude-longitude parame-
ter into the x, y coordinates using all of the information
provided for the corners of the corresponding quadrangle and
by using the nearest-neighbor procedure.

The aforementioned re-sampling procedure is expected to
provide registration of the terrain elevation data on the
Landsat scene to within 2—3 pixels. Better registration is not
practical because of the nonlinear relationship between the x,
y coordinates and the latitude-longitude variables mentioned
earlier and because of the discontinuities of the grid points at
the boundaries of the quadrangie. However, this small degree
of misregistration cannot invalidate any finding of this
study.

The digital terrain elevation data cannot be contained in
8-bit numbers without scaling, since these values can, in
general, range from 0 to 10000 m. A full Landsat scene
requires terrain data from several quadrangles of the
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Table 1 Values of mean brightness (x) and standard deviation ()
for bands 4 to 8 of the image used in this investigation.

Band Mean brightness Standard deviation
4 16.54 5.11
5 17.55 7.02
6 36.57 10.14
7 36.17 11.60
8 40.93 26.41

1:250 000-scale maps. Therefore, we generated a terrain
elevation data file in registration with the Landsat scene and
containing 16-bit (half-word integer) numbers for each pixel.
The elevation values in this file were found to vary between 0
and 1282 m. For merging the terrain data with the Landsat
data, it was necessary to scale the data into 7-bit numbers. A
second terrain elevation file was produced from the first one
using a vertical scale factor of about 11 m. This second
terrain elevation file is referred to as the “band 8 data”
throughout this paper. Its count range varies from 8 to 127,
with each count representing approximately 11 m in eleva-
tion.

Several shaded relief images of a part of the image used in
this investigation can be found elsewhere [13].

Principal component transformation

The statistical parameters of mean brightness (x) and stan-
dard deviation (o) for all five bands of the image described in
the preceding section are given in Table 1. The procedure for
computing the principal component transformation matrix
can be found in many textbooks on image processing (e.g.,
[1-4]) and hence is not described here in detail. It basically
starts with a symmetric dispersion matrix whose main diag-
onal elements are given by o". The off-diagonal element Cim
representing the covariance of the data in the kth and mth
band is defined by

N

1
Cim = N Z (R — m)(R,,, — M) (1
n=1
where R, (R, ) is the radiance of the nth pixel in the kth
(mth) band. The upper limit NV represents the total number
of pixels in the image.

In order to perform the bulk of the computations in the
IBM 7350 where the data reside, Eq. (1) was modified as
follows for the 7-bit case:

1 127 127
Cem = 7\'2 g (- w)U—n)fy )

where the quantity f;  is as defined earlier near the end of the
Introduction. After evaluation of all of the elements of the f,

717

JITENDRA V. DAVE ET AL.




718

Figure 2 False color display of the original image data for the
Santa Clara Valley/Mt. Hamilton region. Data for bands 4, 5, and 7
are shown in 16 different shades of blue, green, and red, respec-
tively.

matrix in the IBM 7350, the quantity C, ,, can be computed
in the host (System/370) after reading the contents of the
refresh buffer [12].

After all elements of the dispersion matrix have been
computed, its eigenvalues and eigenvectors can be computed
using the standard procedure. These eigenvectors provide
elements for the principal component transformation of the
original image data. The normalized eigenvalues of the
dispersion matrix are frequently used to characterize the
“information content” of the principal components.

The normalized eigenvalues of the four-band (bands 4 to
7) image are as follows: 0.754, 0.232, 0.010, and 0.005. The
components P, P,, P,, and P, of any pixel can be computed
from the following equation:

P, 0.1320 0.1586 0.6535 0.7283 R, 1
P, 0.5379 0.7667 0.0845 —0.3402 R 18
P, - 0.0668 -0.3815 0.7203 —0.5754 R, ! 50 ' (3)
P, 0.8299 —0.4914 -0.2167 0.1510 R, 17

where R,, R, R, and R, are the radiances of the pixel in the
four MSS bands.

The normalized eigenvalues of the five-band (bands 4 to 8)
image are as follows: 0.715, 0.221, 0.060, 0.003, 0.001. The
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components m, to «, of any pixel can be computed from the
following equation:

, ~0.1016 —0.1118 —0.1250 —0.0724 09779 || R, 43
™ 00772 00955 0.6325 0.7488 0.1552 || R, 1
= |=| o0s195 07872 o0.1150 —02796 0.1380 || R, [+] 3 “4)
n ~0.0100 —03141 07436 —0.5900 0.0144 || &, 51
x 0.8448 —0.5099 ~0.1347 0.0879 0.0188 || R, 15

The second term in Eqgs. (3) and (4) is for avoiding
negative principal component values. The values of the
clements of the P and =« vectors are also treated as 7-bit data;
if any element of any pixel exceeds the upper limit, it is
forced to 127. It may be noted that because of this forcing
and addition of the second term, these equations are not
invertible explicitly.

From Egs. (3) and (4), it is clear that the radiances of all
bands contribute somewhat to the magnitude of a given
component. However, generally two bands are prime contrib-
utors in each case. For discussion purposes, we can then
make the following statements as a first approximation:

Vectors P, and P, are the weighted sums of R, and R, and
of R, and R;, respectively. Similarly, P, and P, are the
weighted differences of R, and R, and of R, and R,,
respectively.

Vector , essentially represents the band 8 data, i.e., the
terrain elevation information. Vectors #, and 7, are the
weighted sums of R, and R, and of R, and R;, respectively,
while 7, and = are the weighted differences of the same two
combinations.

Thus, in a qualitative manner, one can expect most
information of the four-band image to be contained in the
first two components and that of the five-band image in the
first three components. The corresponding ordered eigen-
value sets also support this qualitative statement. However,
this does not rule out the possibility of the last two compo-
nents having some information.

Discussion of results

Results of our investigation are presented from two different
viewpoints, viz., false color images and quantitative informa-
tion related to and derived from the multispectral classifica-
tion. For a false color presentation of multi-layer data, a
histogram on a semi-logarithmic scale [14] was generated
for each band. The histogram was then used to determine the
count range containing about 99% of all of the pixels. A
linear scale was then used to intensity-code pixels in this
count range in 16 different shades of the appropriate primary
color. Pixels to the left and pixels to the right of the count
range were assigned the darkest and the brightest shade of
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that color, respectively. For components P,, P,, r,, =,, and
m,, using a count range with about 99% of all pixels resulted
in an image strongly dominated by the color assigned to that
component. It was therefore necessary to cut down the lower
end of the range to obtain appropriate color balance.

A modified form of the “box-car” classification procedure
(see, e.g., [12]) was used in our analysis. With this, the
results are independent of the order in which the classes are
specified. In this case, classes were numbered in the powers
of 2, ie, 1, 2, 4, 8, and so on. For training sites, areas
consisting of about 220 pixels were used, and the count range
containing 90% of all pixels was determined for each band of
each class from the corresponding statistical information. If
the values of a pixel in all bands lie in the corresponding
count ranges of a given class, it is said to belong to that class.
With the aforementioned numbering procedure, a mixed (or
doubtful) pixel belonging to more than one class is assigned
the number given by the sum of the number of these classes.
For example, if a pixel is judged to belong to class 2 and class
4, it is assigned to class 6.

& False color presentation of the four-band data

The data for MSS bands 4, 5, and 7 are color coded into 16
different shades of blue, green, and red, respectively, and the
resultant false color image is shown in Fig. 2. This is the
conventional form of presenting Landsat data. Many fea-
tures such as the bay, lakes, mountains, and residential areas
can be easily identified. A comparison of Figs. 1 and 2 shows
the usefulness of the Landsat series satellites in obtaining
information about land cover and land use. The predomi-
nantly red color of the hilly regions is due to the presence of
healthy vegetation with high reflectance in the near
infrared.

In Fig. 3, results of the principal component analysis of the
four-band data are presented with P,, P,, and P, values color
coded in red, green, and blue, respectively. There is no
standard convention for selecting colors for the principal
component presentation, but it seems appropriate to use blue
for the band with the least amount of information [2]; the
human eye is less sensitive to blue. Almost all features of Fig.
2 are also present in Fig. 3 but in different colors.

The normalized eigenvalue corresponding to P, is 0.010
[see discussion for Eq. (3)}, and hence its information
content is about 1%. Furthermore, it represents primarily
bands 6 and 7, which are already represented in an alternate
manner by P,. However, if the P, data are deleted from Fig.
3, the visual separation between the rangeland (purple) and
the forest land (brown and red) east and southeast of the San
Jose area becomes less clear. Besides, there appears to be
better separation of the agricultural and non-agricultural
features with the additional component.
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Figure 3 False color display of the principal components of the
four-band data for the Santa Clara Valley/Mt. Hamilton region.

® Multispectral classification of the selected four-band
data

The main purpose of this exercise is to examine the “infor-
mation content” aspect of the higher-numbered principal
components. It would be ideal to work with the image over a
large area for which the “ground truth” at the time of
measurement is known in great detail. Obviously, this
becomes a major undertaking. Furthermore, the principal
component transformation matrix can be expected to be
dominated by the major classes of the image. Hence, one
alternative to a large-scale experiment is to look at the
importance of the higher-order components to the estimation
of the number of pixels for minor classes.

The minor class which can be unambiguously identified in
our image is water. It shows up in many parts of the image, at
various elevations, in different depths, and with different
amounts of impurities. It can also be verified, to some extent,
from the land use map. For our multispectral classification
exercise, we have selected three different training sites, all
containing water. The Class 1 site is located in the southeast-
ern part of the San Francisco Bay, which can be seen in the
left top corner of Fig. 2 or 3. The Class 2 site is located in
Calaveras Reservoir east of the bay. The Class 4 site is in
Coyote Lake, which is situated on the extreme right in the
lower part of the image. About 220 pixels were selected at
each site, and the statistical characteristics of these limited
data were obtained for all five bands. Values of the count
range containing 90% of all pixels for each band of these
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Figure 4 False color image of Fig. 2 with terrain-elevation con-
tours.

Table 2 The 90% criterion count range for the original five-band
data for three different training sites or classes: Class 1 —Southeast-
ern San Francisco Bay (225 pixels); Class 2— Calaveras Reservoir
(225 pixels); and Class 4—Coyote Lake (213 pixels).

Band 90% criterion count range for
Class 1 Class 2 Class 4
4 16-20 11-13 12-14
5 11-15 8-10 10-11
6 14-21 4-6 5-8
7 1-6 0-1 0-2
8 8-8 29-29 28-29

Table 3 The 90% criterion count range for the four-band princi-
pal-component analysis case for three different training sites or
classes: Class 1-—Southeastern San Francisco Bay (225 pixels);
Class 2—Calaveras Reservoir (225 pixels); and Class 4—Coyote
Lake (213 pixels).

Component 90% criterion count range for
Class 1 Class 2 Class 4
1 15-23 6-8 811
2 35-40 30-32 32-34
3 54-58 50-52 50-52
4 21-24 21-23 20-22

classes are shown in Table 2 for the original data and in
Table 3 for the four-band principal component data. The
count ranges for Classes 2 and 4 overlap to some extent in
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Table 4 Total number of pixels classified in each class with the
original four-band data and with all four, the first three, the first
two, and only the first principal component values for the Santa
Clara Valley/Mt. Hamilton image.

Class Total number of pixels classified with
number

four-band data P toP, P,toP, P,toP, P, only

1 4363 4408 5051 6919 13647
2 935 651 890 1239 1353
4 709 873 909 1133 1522
6 178 58 119 134 667

some cases and thus provide conditions for the generation of
a mixed class. For the results obtained with different princi-
pal component combinations, the number of pixels of a mixed
class could change at the expense of those for the correspond-
ing unique classes. One might then be able to supply some
rationale for such a trend. However, results presented in this
paper do not show such a trend.

The total number of pixels classified in each class over the
entire image with the original four-band data and with the
corresponding four principal components are shown in
Columns 2 and 3 of Table 4, respectively. In both cases, the
classified pixels show up in the expected geographic locations
on the classification map. There are significant differences in
the number of pixels identified by the original and the
component data for a given class. However, there is no a
priori reason to prefer one set of results over the other
without some ground-truth information. The number of
pixels in each class with only the first three, only the first
two, and only the first component values are shown in the last
three columns of this table. The number of pixels identified
as belonging to a given class increase significantly even when
the P, component with an eigenvalue of only 0.005 is
suppressed. Furthermore, some of these newly identified
pixels show up in areas with no water. Thus, it is clear that
for this limited experiment, it is necessary to maintain all
four components. In other words, no reduction in dimen-
sionality is appropriate.

& False color presentation of the five-band data

Even though the terrain elevation information is contained in
a single band, it is more predominant than the Landsat
information. The validity of this statement can be visualized,
to some extent, from the transformation matrix appearing in
Eq. (4). The 16-bit terrain data can be presented in the
overlay plane of the IBM 7350 color monitor in the form of
elevation contours for the image in the image planes under it.
Typical results are presented in Fig. 4 for the image of Fig. 2
with contours at 183-m (600-ft) intervals in the range
61-1281 m (200-4200 ft). Such a presentation can provide
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great help to an interpreter involved in an interactive analysis
of the data. However, it has very restricted use in hard copy
production. A considerable amount of Landsat information
is suppressed by about one-third of the terrain elevation
data.

A false color composite with data for bands 5, 7, and 8,
color coded into 16 different shades of green, red, and blue,
respectively, is shown in Fig. 5. Because of the predominance
of the terrain data, the Landsat information is considerably
suppressed at higher elevation.

In Fig. 6, results of the principal component analysis of the
five-band data are presented with =, 7,, and ; values color
coded in red, green, and blue, respectively. A comparison of
the results presented in Figs. 2 and 6 brings out the degree of
enhancement that can be achieved by combining data from
two different sources. The normalized eigenvalue corre-
sponding to =, is only 0.060. But the herbaceous rangeland
(light green) southeast of San Jose is separated from the
urbanized area (medium blue) of San Jose in the three-
component presentation (Fig. 6), while the two-component
(v, and m,) presentation results in a merging of these
categories into a single (green color) combination. In addi-
tion, the =, component has introduced additional information
and definition into the mountain regions. However, there
appears to be some loss of road network information in the
city area.

® Multispectral classification of the selected five-band
data

Results similar to those given in Tables 3 and 4, but obtained
with the five-band data, are presented in Tables 5 and 6,
respectively. The discussion of the corresponding four-band
case applies also to these results.

Concluding remarks

Principal component analysis has been shown to be a power-
ful tool for reducing the dimensionality of four-band and
five-band data to three components. For our image, the third
component for the four-band case carrying about 1% of the
total information is found to be helpful in enhancing the
value of the false color principal component presentation.

A modified “box-car” classification analysis was also
performed for the unambiguously identifiable three different
water classes in these images. These are the minor classes
with the total number of pixels for a class measurable in
hundreds. For such cases, our investigation brings out the
need of working with all components in a quantitative
extraction of information.

Reduction in the dimensionality of the multi-layer large
images is a necessity, and the principal component analysis
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Figure 5 False color display of the original image and the terrain
elevation data.

Figure 6 False color display of the principal components of the
five-band data for the Santa Clara Valley/Mt. Hamilton region.

can assist in this task to some extent. Our study suggests that
the extent depends upon several factors, such as the size of
the image, number of classes in the image, their relative
importance, number of bands or data layers, classes for
which information is to be preserved by the components, and
the nature of information to be extracted. Further investiga-
tion in this general direction is indicated.
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Table 5 The 90% criterion count range for the five-band principal-
component analysis case for three different training sites or classes:
Class 1—Southeastern San Francisco Bay (225 pixels); Class
2—Calaveras reservoir (225 pixels); and Class 4—Coyote Lake
(213 pixels).

Component 90% criterion count range for
Class 1 Class 2 Class 4
1 44-46 68—-69 67-68
2 14-22 9-11 11-14
3 22-27 19-21 21-24
4 55-60 51-53 51-53
5 20-23 20-22 19-21

Table 6 Total number of pixels classified in each class with the
original five-band data and with all five, the first four, the first three,
and the first two principal component values for the Santa Clara
Valley/Mt. Hamilton image.

Class Total number of pixels classified with
number

five-band data =, tow; =, tow, w tow, w lom,

1 4358 5199 5546 6444 7814
2 603 523 701 975 910
4 321 290 295 343 376
6 67 37 62 65 232
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