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Reduced Data Re-Order Complexity Properties of
Polynomial Transform 2D Convolution and Fourier
Transform Methods

This paper presents new results concerning the matrix data re-order requirements of polynomial-transform-based 2D
convolution and 2D Fourier Transform methods which can be employed in digital processing of images and other 2D problems.
The results indicate that several power-of-2 length-modified ring polynomial transform methods developed by Nussbaumer
allow the total avoidance of the row-column matrix transpose commonly encountered in other algorithmic approaches, while
also providing a number of other computational advantages. It is demonstrated that this property can be the source of
significantly improved throughput on a number of existing data processing structures. An execution time comparison with an
efficient Fast Fourier Transform algorithm base is made assuming the use of general register architecture and array processor
units. It is also assumed that one makes use of recently developed efficient matrix transpose methods by Eklundh and Ari to
support 2D FFT data re-order requirements. These comparisons demonstrate a two to four times throughput improvement for
the use of the polynomial transform method in place of the 2D FFT approach to circularly convolve or generate 2D Fourier

transforms for large 2D fields in the range 1024 x 1024 to 8192 x 8192.

Introduction

A number of multiply-free polynomial transform methods
[1-3] have recently been devised to support efficient execu-
tion of convolution and 2D Fourier Transform (DFT) signal
processing procedures. Analysis of this approach indicates
that it can provide a significant number of attractive
features: (1) reduced computational complexity, (2) Fast
Fourier Transform (FFT)-like transform computation struc-
tures, (3) reduced computation noise, {4) minimum-multiply
convolution algorithms, (5) real arithmetic instead of com-
plex, (6) trigonometric coefficient table independence, and
(7) efficient support for both real and complex data processes
[3]. The results given in this paper indicate that another item
should be added to this list which is of great importance in
the execution of large field 2D convolution and 2D DFT
processes, that of significantly reduced data re-order com-
plexity. (A portion of these results were presented at the
1981 IEEE Conference on Acoustics, Speech and Signal
Processing, Atlanta, GA, March 30—April 1, 1981.)

The data re-order complexity of 2D convolution and DFT
processes can be characterized generally, in a practical sense,

as the throughput impact of having to re-order matrix-
organized data from one vector (or subvector) form to
another, usually row to column and vice versa. Such data
re-ordering complexities are commonly dominated by a
requirement for transposition of the 2D data field when using
non-polynomial transform-based 2D FFT and multi-dimen-
sional CRT-mapped Fourier Transform methods. The
impact of this transposition is obviously negligible if the
existence of a random store is assumed which is large enough
to contain the entire data field, so that any subvector can be
conveniently addressed. For large field problems, however,
where the data are stored with a particular vector orientation
on a disk storage device (or tape), the impact can be severe.
This has led to the development of a number of sophisticated
methods to support efficient transpose of disk-stored matrix
data in the execution of 2D DFT procedures [4-9]. These
methods can be used to significantly reduce the impact of
data re-order complexity compared to that of direct matrix-
transpose methods for row-column re-ordering of disk-stored
matrix data. It is shown, however, that the use of an
appropriate polynomial transform method can totally
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Table 1 Polynomial transform candidates.

Polynomial ring Transform G(2Z) Convolution Generalized Data
candidates length* root dimension products re-order
M(Z) (N x N)
Z'-j(Z-1) q z gxgq gmul M(Z) None
1 conv g
(Z°-1DNH(Z-1) 2q ~-Z 29%xq 2g mul M(Z) None
1 conv 2q
¥ -1/’ -1 2q -z 29 x 2q 2q mul M(Z) 2x2q
1conv2 x 2q
@ - 1@ - 1) 9 z* gxq’ qmul M(Z) gxq
gmul (Z° ~ 1)/(Z - 1)
1 conv g
@ - D)z -1 7 z 7 xq’ q(q + 1) mul M(Z) gxq’
gmul (ZY-1)/(Z-1) axq
1 conv g
Z" _HHZ*?-1) q, z% 9, X 4,9, g, mul M(Z) None
1convg, g,
@'+ 1) 2 z 2'x 2’ 3 x 2'"' mul M(Z) 2" x 2"
lconv2'™' x 2'°! n=t-.-,2
@¥+ 1) 2! z? 2 x 2* 2' mul M(2) None
2" scalar products
*g = odd prime,

1 = positive integer.

eliminate the need for row-column re-ordering of disk-stored
matrix data in large field 2D convolution and DFT problems,
while providing many of the other attractive features cited
above.

The paper is organized as follows to make this point: First,
the data re-order properties of various polynomial transforms
are reviewed. Next, a particular transform procedure is
selected from this set as a preferred approach to reduce both
computational and data re-order complexity in the execution
of a large 2D circular convolution process. Finally, results
are given for an execution time comparison of the selected
polynomial transform method with 2D Fourier Transform
methods in which it is assumed that sophisticated matrix
transpose procedures [3—9] are used to convolve (or generate
a 2D DFT) for 2D real, large fields in the range 1024 x 1024
to 8192 x 8192.

Theoretical background
The general definition of a polynomial transform which
supports 2D convolution can be specified as [3]

A(Z) = Y P(Z) [G@D)]™ mod M(2)

m=0

k=0,la°'°’Na (1)

where

P(Z) = NZ_S a,,Z",

n=0
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G"(Z) = 1 mod M(2),
N~" mod M(Z) and G~'(Z) mod M(Z) exist, and

S = i G(Z)* mod M(Z)

k=0

= (O forq % 0 mod N
= Nforg = 0 mod N.

The inverse transform has a similar form:

N-1
P(2) = = 3 ADIG@)] ™ mod M(2). 2)

k=0
The coefficients of P,(Z) in these expressions are the sam-
pled values of the mth row (or column) in a 2D space, and the
polynomial M(Z) and root G(Z) must be selected to satisfy
the conditions given above. Some particularly useful choices
of M(Z) and G(Z) which have been found to satisfy these
conditions are listed in Table 1 [2, 3]. As indicated in this
table, the selection of M(Z) and G(Z) is closely coupled to
the size of the 2D convolution field, and typically involves the
partition of a convolution into one or more polynomial
transform pairs for complete implementation.

The data transpose requirements which can be used as a
basis to define the data re-order complexity of particular
polynomial ring candidates are also listed in the rightmost
column of Table 1. The nature of the requirements for data
re-order depends upon the algorithmic form of the computa-
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Figure 2 Four-point PT(2', 2°) decimation in time example.

tion structure used to implement the transforms in (1, 2) and
the way that the spectral convolution process, when parti-
tioned, is mapped to a set of transforms yielding partial
results which can be constructed together via a CRT proce-
dure to obtain the desired convolution result. The data
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re-order requirements in Table 1 presume the use of the
particular convolution process partitions which have been
defined by Nussbaumer in the development of the transform
methods [3].

The polynomial coefficient matrix data re-ordering re-
quirements in Table 1 are based upon the following assump-
tions. The first six transforms are computed by accessing the
coefficients of P_(Z) from disk storage in natural order with
k=0,1, ..., N, without re-ordering of the polynomial
coefficient set P, (Z). It is important here to note that the
apparent requirement for rotation of the coefficients modulo
M(Z) does not require an actual rotation, but can be
accomplished with the aid of an index pointer. It is evident,
then, that all the data re-order requirements for these first
six transforms must stem from the nature of the partitioning
procedure which has been assumed. The form of this parti-
tion can be inferred from the form of the generalized product
data for each transform in Table 1. Since the assumed
transform algorithm must make repeated use of the same
polynomial coefficient input data stream, it can be seen that
one must use a separate storage region to collect the trans-
form result. Thus, the reduced level (<<N x N) of the data
transpose requirements for the first six transforms in com-
parison to that of a 2D DFT method appears to be gained at
the expense of requiring twice the storage space, not to
mention an o(/V') arithmetic operation requirement.

Although some of the first six transforms in Table 1
require no transpose operation, from an arithmetic point of
view for very large values of /V none of these are competitive
with the o(NV log N) arithmetic operation level offered by
some 2D DFT methods. Such is not the case, however, for the
lower two transforms defined in the table, which permit the
use of FFT-like computation structures to achieve an arith-
metic load significantly below that of FFT-organized DFT
methods. Of these two transforms, the lower one, based upon
the use of a modified ring, exhibits both superior arithmetic
and data re-order complexity properties and is, therefore,
preferred for large field 2D convolutions. This transform,
which is designated PT (2, Z%), based upon length and root
attributes, is now examined in more detail.

One of several 2D-convolution implementations developed
by Nussbaumer [3] which uses PT(2', Z?) is illustrated in
Fig. 1. The use of scaling by W in the process modifies the
natural negative wrap property of PT(2, Z%) modulo (ZV +
1) to support a circular convolution with positive wrap. The
use of this scaling procedure is analogous to that which is
well known in Fourier Transform theory for modification of a
circular wrap property. As indicated in Fig. 1, no process
partition is employed which would require data transposi-
tion.
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Figure 3 2D convolution via PT(2', Z %) with form similar to that via 2D DFT.

A remaining point which must now be demonstrated,
however, is that there is an efficient algorithmic form of
implementation of PT(2', Z%) which avoids the need to
transpose the matrix data. This is achieved by rewriting (1)
as

Nj2-1
Af2) = t P (DZ"™

m=0

Nj2—1
+z* t Py DZ"™ mod(Z"+1)  (3)

me=0

and

@ ! Amk
Ak+N/2 = 5: PZM(Z)Z "

m=0

N/2-1
—z* t P, (Z2)Z*™ mod (Z" + 1)

m=0

k=0,1,-..,N/2 -1, 4)

with G(Z) = Z* and M(Z) = (Z" + 1). The form of (3),
(4) indicates that PT(2', Zz) can take an algorithmic form
which is exactly analogous to that of an FFT by replacing
each complex element of the FFT with a vector of polynomial
coefficients and the complex rotational operator W with a
vector rotational operator Z 2 This point is illustrated graphi-
cally in Fig. 2 for N = 4. Because of this exact analogy, use
of well-known FFT computation schemes [10] can be made
to facilitate efficient execution of the computation of PT(2',
Z*) and to avoid transpose of the data. FFT-like butterfly
computation structures can also be used which operate on as
few data items as a vector pair or a section of a vector pair at
a time. Typically, in executing a program for PT(2', Z*) on
disk-stored data, at each of the log N computation stages the
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computation stream can be organized to execute interlaced
(first half/last half alternate) access of the previously gener-
ated disk data stream to support (odd/even-element-
ordered) generation of the data stream used in the next stage.
This interlaced access of input data implies that additional
disk storage is required to store generated results (assuming
ordinary disk read/write capabilities). Usually four disk or
tape units would be used to efficiently implement this scheme
[10]. Thus, the avoidance of a data transpose appears to be
gained at the expense of increased storage requirements. It is
emphasized, once again, that explicit shifting to accomplish
rotation of polynomial coefficients is unnecessary, since in
practice the use of index register pointers in accessing and
storing elements of a stationary vector can be employed to
accomplish the same result.

The convolution results just presented can be extended to
cover 2D DFT methods generated via the expressions (1),
(2). As indicated in Fig. 3, if the use of a vector DFT
procedure is assumed to implement the polynomial ring
“spectrum multiply” process for the convolution shown in
Fig. 1, the computation structure can be made to take a form
which is quite similar to that of a standard row-column-
partitioned DFT approach. Unfortunately, this approach
does not provide a 2D DFT as an intermediate result, but is
close in form to one which does. The algorithmic form of such
a polynomial-transform-generated 2D DFT [3] which makes
use of PT(2', Z*) is shown in Fig. 4. A comparison of the data
re-order properties of this algorithm with other polynomial
transform choices leads to a result which is similar to that
given previously, and for 2D DFT processes provides the
same advantages as those already cited for 2D convolution
processes.
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Figure 4 N x N 2D DFT via PT(2, Z*) where N = 2.

Performance comparison results

This section gives results which demonstrate the reduced
complexity impact of PT(2', Z*) in terms of expected execu-
tion performance. Comparison is made with FFT-based 2D
DFT methods assuming the use of efficient matrix transpose
techniques.

The particular machines selected for this exercise are a
general register (GR) architecture machine and an array
processor. The performance assumptions for these machines
are based upon actual execution time experience with FFT-
like computation structures in real machines. The GR
machine is assumed to possess a 1024K-word random access
store and average throughput capability for such structures
to exccute 4 x 10° SRS floating point ADD/SUBTRACT
operations per second (or 2 x 10° MULTIPLY operations).
The array processor is assumed to possess a 256K-word bulk
store and a maximum arithmetic execution capability of both
20 x 10° floating point ADD/SUBTRACT operations and
10 x 10° floating point MULTIPLY operations per second.
Disk track size is taken as 4K words with a one-megaword-
per-second transfer rate. Disk access time is presumed to be
20 ms average per segment for transpositions and 4 ms track
to track for support of FFT-like processes.

The matrix transpose execution time for both machines is
given in Table 2 for a variety of transpose methods, including
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Table 2 Matrix transpose execution time (seconds).

NxN GR GR GR Array
real field machine  machine  machine  processor

(1024K (1024K (1024K (256K

word ) word ) word) word )

(direct) (Eklundh) (Ari) (Eklundh}
1024 x 1024 5 — — 4
2048 x 2048 168 27 32 26
4096 x 4096 1312 111 127 242
8192 x 8192 10495 584 608 795

Table 3 2D-convolution DFT and spectrum multiply execution
time (seconds) excluding matrix transpose.

NxN GR machine Array processor

real field (1024K word ) * (256K word } **
1024 x 1024 62 9
2048 x 2048 272 36
4096 x 4096 1184 144
8192 x 8192 5312 576

Execution constraint:
*arithmetic rate,
**data transfer rate.

that which is currently believed to be optimum [8, 9]. As can
be seen, the relatively large store and rapid data item
exchange capability of both machines supports rapid re-
order of the disk-stored matrix data. These execution times,
which presume a 1-us data item exchange execution time in
the GR machine and a 0.2-us exchange time in the array
processor, were computed using execution time formulas
given in the cited references [4, 8, 9, 11]. The dominant
execution constraint for the matrix transpose process is the
20-ms-per-segment disk data access time.

Execution times for DFT and spectrum multiply processes
are tabulated in Table 3 assuming various-size real 2D fields.
The arithmetic execution rates quoted above would lead one
to expect a factor of 10 difference in the throughput rate of
the two machines. For smaller 2D fields, this objective is not
met because of the data transfer rate limitation which has
been specified for the array processor. It is presumed in
Table 3 and those which follow that a reference transform
has been pre-computed.

Estimated GR machine 2D circular convolution execution
times are given in Table 4 for the methods identified. It may
be seen from the results in this table and the previous two
tables that the arithmetic execution load is extremely domi-
nant in GR machine execution of the 2D convolution prob-
lem under consideration. Also demonstrated is the fact that
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the polynomial transform method offers a performance gain
of almost 2 over the DFT-based method.

Table S lists estimated execution times for the 2D circular
convolution problem assuming use of the array processor,
alone and in combination with the GR machine. The results
show that the impact of data re-order complexity is quite
dominant in the DFT-executed methods on the array proces-
sor and increases significantly as one proceeds from the
smallest to the largest 2D field for a stand-alone array. Use
of PT(2', Z%), therefore, significantly reduces the execution
time, especially as we proceed from smallest to largest 2D
field, but the result indicates that total array processor
stand-alone execution time using PT(2', Z%) is essentially
equivalent to that of the DFT method arithmetic execution
time (ignoring the transpose) given in the rightmost column
of Table 3. Thus, very little benefit is realized for the impact
of the reduced computation load provided by PT(2’, ZY.
This occurs because those portions of the polynominal trans-
form which cannot be overlapped with generalized product
execution in the array processor are extremely I/O transfer
rate bound. This problem can be alleviated as illustrated in
the rightmost column of Table 5 by executing a portion of the
PT(2', Z*) transform load in a GR machine host and the
remaining part plus polynomial products in the array proces-
sor. It can be seen from the results in Table 5 that the use of
PT (2', Z°) provides a performance boost of 2 to 4 over the
best DFT method. The principal source of this improved
throughput is from a reduction in data re-order complexity.

As a final item, it should be noted that performance results
for use of PT(2', Z°) to implement a 2D DFT process on the
same GR and array processor machines is about half that of
the execution time given for the PT(2, Z ?)-based convolu-
tion with a slight additional amount to accommodate bit-
reversal re-ordering of the generated result. This result
follows from the form of the algorithm given in Fig. 4 for 2D
DFT generation in comparison to that for the 2D convolution
shown in Fig. 3.

It should also be emphasized that the performance results
presented in this paper have been based upon a particular set
of assumed machine characteristics and the use of a popu-
larly employed DFT method as a comparison basis. A change
in these assumptions could potentially lead one to a different
set of conclusions.
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