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Reduced Data Re-Order  Complexity  Properties of 
Polynomial  Transform 2D Convolution  and  Fourier 
Transform  Methods 

This  paper  presents new results concerning the  matrix  data re-order requirements  of  polynomial-transform-based 2D 
convolution and 2 0  Fourier Transform  methods which  can  be employed  in  digital processing of  images and other  2Dproblems. 
The  results  indicate  that several  power-of-2 length-modified ring polynomial  transform  methods developed by  Nussbaumer 
allow  the  total avoidance of  the  row-column  matrix  transpose  commonly encountered in  other  algorithmic  approaches,  while 
also  providing  a  number  of  other  computational  advantages.  It  is  demonstrated  that  this  property can be the source of 
significantly improved  throughput on a  number  of  existing  data processing structures. An execution  time  comparison  with  an 
eficient Fast Fourier Transform  algorithm base is  made  assuming  the  use  of general register architecture and  array  processor 
units.  It is also  assumed  that one makes  use  of recently  developed eficient  matrix  transpose  methods  by  Eklundh and Ari  to 
support 2 0  FFT  data re-order requirements.  These  comparisons  demonstrate  a  two  to four  times  throughput  improvement  for 
the use of  the  polynomial  transform  method  in  place  of  the 2D FFT  approach  to  circularly convolve  or  generate 2D Fourier 
transforms f o r  large 2Dfields  in  the range  1024 x I024  to 81 92 x 81 92. 

Introduction 
A number of multiply-free  polynomial transform  methods 
[ 1-31 have  recently been devised to  support efficient execu- 
tion of convolution and 2D Fourier  Transform  (DFT) signal 
processing procedures.  Analysis of this  approach indicates 
that it can provide a  significant number of attractive 
features: (1) reduced computational complexity, (2)  Fast 
Fourier  Transform  (FFT)-like  transform  computation  struc- 
tures,  (3) reduced computation noise, (4) minimum-multiply 
convolution algorithms, (5) real arithmetic instead of com- 
plex, (6) trigonometric coefficient table independence, and 
(7)  efficient support for both  real and complex data processes 
[3].  The results given in  this  paper indicate  that  another item 
should be added  to  this list which is  of great  importance in 
the execution of large field 2D convolution and 2D DFT 
processes, that of significantly  reduced data re-order  com- 
plexity. (A portion of these  results  were  presented at  the 
1981 IEEE Conference on  Acoustics, Speech  and  Signal 
Processing, Atlanta,  GA,  March  30-April 1, 198 1 .) 

The  data re-order  complexity of 2D convolution and DFT 
processes can be characterized  generally, in a practical sense, 

as  the  throughput  impact of having to re-order matrix- 
organized data  from one vector (or subvector) form  to 
another, usually row to column and vice versa. Such  data 
re-ordering  complexities are commonly dominated by a 
requirement for  transposition of the  2D  data field when using 
non-polynomial transform-based 2D FFT  and  multi-dimen- 
sional CRT-mapped  Fourier  Transform  methods.  The 
impact of this  transposition is obviously negligible if the 
existence of a random  store is assumed which is large enough 
to  contain  the  entire  data field, so that  any subvector can be 
conveniently addressed. For large field problems, however, 
where the  data  are stored  with  a particular vector orientation 
on a  disk storage device (or tape),  the  impact  can  be severe. 
This has led to  the development of a number of sophisticated 
methods to  support efficient transpose of disk-stored matrix 
data in the execution of 2D  DFT procedures [4-91. These 
methods  can be used to significantly reduce  the  impact of 
data re-order  complexity compared  to  that of direct  matrix- 
transpose methods  for row-column re-ordering of disk-stored 
matrix  data.  It is shown, however, that  the use of an 
appropriate polynomial transform  method  can  totally 
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Table 1 Polynomial  transform  candidates. 

Polynomial  ring  Transform G(Z) Convolution  Generalized  Data 
candidates 

M(Z) 
length * root dimension products re-order 

(N x N) 

(Z' - 1)/(Z - 1)  

(Z' - 1)/(Z - 1) 

(Z2' - 1)/(Z2 - 1) 

( P 2  - 1) (2' - 1) 

(Z9* - 1)/(Z9 - 1) 

(Z"'2 - 1)/(Z" - 1 )  

(Z2'" + 1)  

(Z2' + 1) 

Z 

-Z  

- Z'+l 

ZP 

Z" 2 

Z 

Z' 

None 

None 

2 x 2 9  

q x q  

q x q 2  
q x q  

None 

2" x 2"" 
n = t , .  . , 2  

None 

*q = odd prime, 
f - positive integer. 

eliminate the need  for  row-column re-ordering of disk-stored 
matrix data in large field 2D convolution and DFT problems, 
while  providing many of the other attractive features cited 
above. 

The paper is organized as follows to make this point: First, 
the data re-order properties of various polynomial transforms 
are reviewed. Next, a particular transform procedure is 
selected from this set as a preferred approach to reduce both 
computational and data re-order complexity  in the execution 
of a large 2D circular convolution  process. Finally, results 
are given  for an execution time comparison of the selected 
polynomial transform method  with 2D Fourier Transform 
methods in  which it is assumed that sophisticated matrix 
transpose procedures [3-91 are used to convolve (or generate 
a 2D  DFT) for 2D real, large fields in the range 1024 x 1024 
to 8192 x 8192. 

Theoretical  background 
The general definition of a polynomial transform which 
supports 2D convolution can be specified as [3] 

N -  I 

A k ( Z )  = x 'm( ' )  [c(z)l"k mod M(z) 
m-0 

k = 0, 1, * * *, N, (1) 

where 
N- I 

P J Z )  = E %."T' 
n-0 
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C N ( Z )  = 1 mod M ( Z ) ,  

N" mod M ( Z )  and C"(Z) mod M ( Z )  exist, and 

S = x G(Z)'k mod M ( Z )  

= Oforq f OmodN 

= Nforq  = OmodN. 

N 

k - 0  

The inverse transform has a similar form: 

Pm(Z) = x Ak(Z)[G(Z)]"" mod M ( Z ) .  (2) 

The coefficients of P J Z )  in these expressions are  the sam- 
pled values of the  mth row (or column) in a 2D space, and the 
polynomial M ( Z )  and root G ( 2 )  must be selected to satisfy 
the conditions given  above. Some particularly useful  choices 
of M(Z) and G ( Z )  which  have  been  found to satisfy these 
conditions are listed in Table 1 [2, 31. As indicated in this 
table, the selection of M ( Z )  and C ( Z )  is  closely  coupled to 
the size of the 2D convolution  field, and typically involves the 
partition of a convolution into one or more  polynomial 
transform pairs for complete implementation. 

1 N - l  

k-0 

The  data transpose requirements which can be used as a 
basis to define the data re-order complexity of particular 
polynomial  ring candidates are also listed  in the rightmost 
column of Table 1. The nature of the requirements for data 
re-order depends upon the algorithmic form of the computa- 709 
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root Z 
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c 
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yu. I 

Figure 1 (2' x 2') convolution via PT(2', 2'). 

3 

A,(z) = 2 P , , ( Z ) Z * ~ ~  mod (z4 + I )  
M = O  

Figure 2 Four-pint PT(2', 2') decimation in time  example. 

tion structure used to  implement  the  transforms in (1,2)  and 
the way that  the  spectral convolution process, when parti- 
tioned, is mapped  to a set of transforms yielding partial 
results which can be constructed  together via a C R T  proce- 
dure  to  obtain  the desired  convolution  result. The  data 

:RIZ 

re-order requirements in Table 1 presume  the  use of the 
particular convolution process partitions which have  been 
defined by Nussbaumer in the development of the  transform 
methods [ 31. 

The polynomial coefficient matrix  data re-ordering  re- 
quirements in Table 1 are based  upon the following assump- 
tions. The first  six transforms  are  computed by accessing the 
coefficients of P,,,(Z) from disk storage in natural  order  with 
k = 0, 1, - . ., N ,  without re-ordering of the polynomial 
coefficient set P,,,(Z). It is important  here  to  note  that  the 
apparent  requirement for rotation of the coefficients modulo 
M ( 2 )  does  not require  an  actual  rotation,  but  can  be 
accomplished  with the  aid of an index  pointer. It is evident, 
then,  that  all  the  data re-order requirements for these first 
six transforms  must  stem  from  the  nature of the  partitioning 
procedure which has been assumed. The  form of this  parti- 
tion can  be  inferred  from  the  form of the generalized product 
data for each  transform in Table 1. Since  the  assumed 
transform  algorithm  must  make  repeated use of the  same 
polynomial coefficient input  data  stream,  it  can  be seen that 
one  must  use a separate  storage region to collect the  trans- 
form  result.  Thus,  the reduced level (ctN x N )  of the  data 
transpose  requirements for the first  six transforms in com- 
parison to  that of a 2D  DFT  method  appears  to  be  gained  at 
the expense of requiring twice the  storage space,  not to 
mention an o(N' ) arithmetic  operation  requirement. 

Although  some of the first six transforms in Table 1 
require no  transpose operation,  from an  arithmetic point of 
view for very large values of N none of these  are competitive 
with  the o(N log N )  arithmetic  operation level offered by 
some 2D  DFT methods. Such is not the  case, however, for  the 
lower two  transforms defined  in the  table, which permit  the 
use of FFT-like  computation  structures  to achieve an  arith- 
metic load  significantly below that of FFT-organized  DFT 
methods. Of these  two transforms,  the lower one,  based  upon 
the use of a modified ring,  exhibits both superior  arithmetic 
and  data re-order  complexity  properties and is, therefore, 
preferred  for  large field 2D convolutions. This  transform, 
which is designated  PT(2', Z'), based upon length  and root 
attributes, is now examined in more  detail. 

One of several 2D-convolution implementations developed 
by Nussbaumer [3] which  uses PT(2', Z') is illustrated in 
Fig. 1. The use of scaling by W in the process modifies the 
natural negative wrap  property of PT(2', 2') modulo ( Z N  + 
1)  to  support a circular convolution  with positive wrap. The 
use of this  scaling  procedure is analogous  to  that which is 
well known in Fourier  Transform  theory for modification of a 
circular  wrap  property. As indicated in  Fig. 1, no process 
partition is employed which would require  data transposi- 
tion. 
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Figure 3 2D convolution via PT(2'. 2') with form  similar  to  that via 2D DFT. 

A remaining point  which must now  be demonstrated, 
however,  is that there is  an  efficient algorithmic form of 
implementation of PT(2', Z 2 )  which  avoids the need  to 
transpose the matrix data. This is achieved by rewriting (1) 
as 

m-0 

m-0 

and 

m-0 

m-0 

k 0, 1 ,  * * *, N/2 - 1, (4) 

with C(2) = Z 2  and M ( 2 )  = (Z" + 1). The form of (3), 
(4) indicates that PT(2', Z2) can take an algorithmic form 
which  is exactly analogous to that of an FFT by replacing 
each complex element of the FFT with a vector of polynomial 
coefficients and the complex rotational operator W with a 
vector rotational operator Z 2 .  This point is illustrated graphi- 
cally in Fig. 2 for N = 4. Because of this exact analogy, use 
of  well-known FFT computation schemes [ 101 can be made 
to facilitate efficient execution of the computation of PT(2', 
Z 2 )  and to avoid transpose of the  data. FFT-like butterfly 
computation structures can also be  used  which operate on as 
few data items as  a vector  pair or a section of a vector pair at 
a time. Typically, in executing a program for PT(2', 2') on 

/ disk-stored data,  at each of the log N computation stages the 

computation stream can be organized to execute interlaced 
(first half/last half alternate) access of the previously gener- 
ated disk data stream to support (odd/even-element- 
ordered) generation of the data stream used  in the next stage. 
This interlaced access of input data implies that additional 
disk storage is required to store generated results (assuming 
ordinary disk read/write capabilities). Usually four disk or 
tape units would  be used to efficiently implement this scheme 
[ 101. Thus, the avoidance of a  data transpose appears to be 
gained at the expense of increased storage requirements. It is 
emphasized, once again, that explicit shifting to accomplish 
rotation of polynomial  coefficients is unnecessary, since in 
practice the use of index register pointers in  accessing and 
storing elements of a stationary vector can be  employed to 
accomplish the same result. 

The convolution results just presented can be extended to 
cover  2D DFT methods generated via the expressions (1). 
(2). As indicated in Fig. 3, if the use of a vector DFT 
procedure is assumed to implement the polynomial ring 
"spectrum multiply"  process for the convolution  shown  in 
Fig. 1, the computation structure can be made to take a form 
which  is quite similar to that of a  standard row-column- 
partitioned DFT approach. Unfortunately, this approach 
does  not  provide a 2D DFT  as an intermediate result, but is 
close  in  form to one  which  does. The algorithmic form of such 
a polynomial-transform-generated 2D DFT [3] which makes 
use  of PT(2', 2') is  shown  in  Fig. 4. A comparison of the data 
re-order properties of this algorithm with other polynomial 
transform choices leads to a result which  is similar to that 
given  previously, and for  2D DFT processes  provides the 
same advantages as those already cited for  2D  convolution 
processes. 71 1 
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Figure 4 N x N 2D DFT via PT(2', Z z )  where N = 2'. 

Performance comparison results 
This section gives results which demonstrate  the reduced 
complexity impact of PT(2', Z') in terms of expected  execu- 
tion performance.  Comparison is made with FFT-based  2D 
DFT  methods  assuming  the use of efficient matrix  transpose 
techniques. 

The  particular  machines selected for  this exercise are a 
general  register  (GR)  architecture  machine  and  an  array 
processor. The  performance  assumptions for these  machines 
are based upon actual execution time  experience with FFT- 
like computation  structures in  real  machines. The  GR 
machine is assumed  to possess a  1024K-word random access 
store  and  average  throughput  capability for such  structures 

operations per  second (or 2 x lo6 MULTIPLY  operations). 
The  array processor  is assumed  to possess a  256K-word bulk 
store  and a maximum  arithmetic execution capability of both 
20 x IO6 floating  point ADD/SUBTRACT  operations  and 
10 x lo6 floating  point MULTIPLY  operations per second. 
Disk track  size is taken  as  4K words with a  one-megaword- 
per-second transfer  rate. Disk  access time is presumed  to  be 
20  ms  average per segment for  transpositions and 4  ms track 
to  track for support of FFT-like processes. 

to  execute 4 X lo6 SRS floating  point A D D ~ U B T R A C T  

The  matrix  transpose execution time  for both machines is 
712 given in Table 2 for a variety of transpose  methods, including 
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Table 2 Matrix  transpose  execution  time  (seconds). 

N x N  GR GR GR Array 
real field machine machine machine processor 

(1024K (1024K (1024K (256K 
word) word) word) word) 

(direct) (Eklundh) (Ari) (Eklundh) 

1024 x 1024 5 - - 4 
2048 x 2048 168 27  32  26 
4096 x 4096 1312 111 127  242 
8192 x 8192 10495 584  608 795 

Table 3 2D-convolution  DFT  and  spectrum multiply execution 
time  (seconds)  excluding  matrix  transpose. 

N x N  GR machine Array processor 
real field (1024K word) * (256K word)** 

1024 x 1024 62 
2048 x 2048  272 
4096 x 4096 1184 
8192 x 8192 5312 

9 
36 

144 
576 

Execution constraint: 
'arithmetic rate, 
"data transfer rate. 

that which is currently believed to  be  optimum [8,9]. As  can 
be  seen,  the relatively large  store  and rapid data  item 
exchange  capability of both machines  supports  rapid re- 
order of the disk-stored matrix  data.  These execution times, 
which presume a I-ps data  item  exchange execution time in 
the  GR machine  and a 0.2-ps exchange  time in the  array 
processor,  were computed using  execution time  formulas 
given in the cited  references  [4, 8, 9, 111. The  dominant 
execution constraint for the  matrix  transpose process is the 
20-ms-per-segment  disk data access time. 

Execution times  for  DFT  and  spectrum multiply processes 
are  tabulated in Table 3 assuming various-size real  2D fields. 
The  arithmetic execution rates  quoted above would lead one 
to expect  a factor of 10 difference  in the  throughput  rate of 
the two  machines. For  smaller  2D fields, this objective is not 
met because of the  data  transfer  rate  limitation which has 
been specified for the  array processor. It is presumed in 
Table 3 and those  which follow that a  reference transform 
has been  pre-computed. 

Estimated G R  machine  2D  circular convolution execution 
times  are given in Table 4 for  the  methods identified. It  may 
be seen from  the  results in this  table  and  the previous two 
tables  that  the  arithmetic execution  load is extremely  domi- 
nant in G R  machine execution of the  2D convolution prob- 
lem under consideration.  Also demonstrated is the  fact  that 
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the polynomial transform method offers a performance gain 
of almost 2 over the  DFT-based  method. 

Table 5 lists estimated execution times for the  2D  circular 
convolution problem assuming use of the  array processor, 
alone  and in combination with the GR machine.  The results 
show that  the  impact of data  re-order complexity is quite 
dominant in the  DFT-executed  methods on the  array proces- 
sor and increases  significantly as  one proceeds from the 
smallest to  the  largest  2D field for  a stand-alone  array. Use 
of PT(2‘, Z’) ,  therefore, significantly  reduces the execution 
time, especially as we proceed from  smallest  to  largest  2D 
field, but  the result  indicates that  total  array processor 
stand-alone execution time using PT(2‘, Z’)  is essentially 
equivalent to  that of the  DFT method arithmetic execution 
time (ignoring the  transpose) given in the  rightmost column 
of Table 3. Thus, very little benefit is realized for  the  impact 
of the reduced computation load provided by PT(2‘, Z’) .  
This  occurs because  those  portions of the polynominal trans- 
form which cannot be overlapped  with  generalized  product 
execution in the  array processor are  extremely 1/0 transfer 
rate bound. This problem can be alleviated as  illustrated in 
the  rightmost  column of Table 5 by executing a  portion of the 
PT(2’, Z’)  transform load in a GR machine host and  the 
remaining  part plus polynomial products in the  array proces- 
sor. It  can  be seen from  the results in Table 5 that  the use of 
PT (2‘, Z’) provides a performance boost of 2 to 4 over the 
best DFT  method.  The principal source of this improved 
throughput is from a  reduction in data re-order  complexity. 

As a final item,  it should be noted that  performance results 
for use of PT(2‘, Z ’ )  to  implement a 2D  DFT process on the 
same GR and  array processor machines is about half that of 
the execution time given for the PT(2‘,  2’)-based convolu- 
tion with a  slight additional  amount  to  accommodate bit- 
reversal re-ordering of the  generated result. This result 
follows from the form of the  algorithm given in Fig. 4 for 2D 
DFT  generation in comparison to  that for the  2D convolution 
shown in Fig. 3. 

It should also be  emphasized  that  the  performance results 
presented in this paper have been based upon a particular set 
of assumed  machine  characteristics  and  the use of a popu- 
larly employed DFT method  as  a  comparison  basis. A change 
in these assumptions could potentially  lead  one to a  different 
set of conclusions. 
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