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An Improved Segmentation and Coding Algorithm for Binary
and Nonbinary Images

This paper presents a new segmentation and coding algorithm for nonbinary images. The algorithm performs contour coding of
regions of equally valued and connected pixels. It consists of two distinct phases: raster scanning and border following. In this
sense it is similar to algorithms presented by Kruse. However, the algorithm of this paper is considerably improved since it
correctly segments truly nonbinary images. The basic idea of the algorithm is to “coat” (color, label) the borders (the cracks)
between the regions from both sides in two separate border-following procedures called island following and object following.
Thus, all adjacencies between the objects are systematically explored and noted. Furthermore, the raster scanner, which
exhaustively searches the image for new regions, can easily determine from existing/nonexisting coating which boundaries have

been traced out and which have not. The algorithm can be considerably simplified for the binary image case.

1. Introduction

In this paper, segmentation means separation of objects or
regions of a digitized image. An object is a set of connected
pixels having the same value, and we assume that the pixels
are embedded in the usual Cartesian grid. The algorithm to
be presented has the image pixels as input data and delivers a
coded version of the image as output, where each object is
defined by its chain-coded contour. In addition to this, the
output data also contain the topological graph of the original
image where the objects are the nodes of the graph and
adjacencies between two objects are the branches.

A segmentation procedure like this is a valuable ingredient
in many image processing and pattern recognition problems.
It follows naturally after such preprocessing steps as noise
suppression, filtering, and thresholding or after more sophis-
ticated relaxation procedures where pixels, or rather clusters
or regions of pixels, have been assigned a label from the set
{0, 1} (the binary case) or from a larger set {0, 1,2, - - -, n}
(the nonbinary case).

Several authors have been dealing with the segmentation
problem. Morrin [1] segments a binary image by a combina-
tion of raster scanning and boundary following. As soon as
the raster scan encounters a boundary, the algorithm due to
Morrin starts to follow the boundary, peeling off one layer of

pixels after another until the object is exhausted. Raster
scanning is then resumed. Only the first boundary trace is
stored as a contour.

The advantage of Morrin’s method is that it only requires
a binary memory for the image. Its disadvantage is that the
rather time-consuming boundary-following operation has to
be carried out not only for the boundary of the objects but for
the interior pixel layers as well.

Cederberg [2, 3] and Danielsson [4] avoid the random-
addressing, border-following mode completely. Instead, the
contours are kept track of as they appear, grow, and disap-
pear from one line to the next. This requires a substantial
amount of bookkeeping. The great advantage of these meth-
ods is that no image memory at all is required. As a
consequence, the coding of the image can be done directly
during the raster scan input.

In two recent papers Kruse [5, 6] has presented segmenta-
tion algorithms for both binary and nonbinary images. Like
Morrin [1] Kruse uses both raster scanning and border
following. But to avoid the time-consuming layer by layer
peel-off, a multistate memory is utilized. See Fig. 1(a). The
original pixels of the binary image are labeled from the set
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{0, 1} while the segmented image is labeled from the set
{4, B, C, - - -]. As soon as a new boundary is encountered,
raster scanning is interrupted. An unused label is drawn from
the set {A, B, C, - - -}, and during a border-following proce-
dure this label is written into the boundary pixels inside the
newly encountered object, as shown by Fig. 1(b).

Also, during border following, pixels immediately inside
and simultaneously west of the border are tagged, which in
Fig. 1(b) is symbolized by a circle around the pixel values.
The tag occupies one extra bit-plane in the multistate
memory. In Fig. 1(b) the background object is labeled A;
object B has been border-followed; the raster scan has been
resumed and has been continued to the fourth line from the
top. By using the knowledge that B = 1, when mapped to the
original of Fig. 1(a) the raster scanner can label all pixels
inside the B-object for each run. Furthermore, the tag
enables the raster scanner to distinguish between a case in
which it is leaving the B-object and entering the A4-object
from a case in which it is leaving the B-object and entering a
new object (2 hole inside B). In the former case the A-label is
fetched from a stack. In the latter case a new border-
following procedure takes place.

The stack is an important ingredient in Kruse’s algo-
rithms. It is pushed during raster scanning when a new label
from the set {4, B, C, - - -} is encountered and popped when
a tagged pixel is hit. Obviously, the stack contains informa-
tion about the nesting levels of the different objects. For the
simple case of Fig. 1(a) the nesting tree is depicted in Fig.
1(d).

The label map that transforms Fig. 1(b) into Fig. 1(a) is
shown by Fig. 1(c).

In [6] Kruse extended the above method to the nonbinary
case. It is shown that the algorithm works quite well on
nonbinary images of the type shown by Fig. 2(a), which is
transformed to the appearance of Fig. 2(b) and delivers the
label map of Fig. 2(c) and the nesting tree of Fig. 2(d).

Unfortunately, the algorithm [4] does not work very well
on the more general kind of nonbinary images where an
“island” contains several separate regions, as shown by
Fig. 3. The “lake” of 0’s inside the larger island will pass
undetected as a separate object when in the fifth line from
the top the raster scanner pops the stack, giving top-of-
stack = A. Now, since according to the map 4 = 0 and since
the next pixel has the original label 0, the raster scanner
assumes it has returned to the surrounding A-region.

Another deficiency is that the outer contour of the island is

not retrieved. Thus, full geometric information about the
A-object is not available in the encoded data. Finally, as can
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Figure 1 Kruse’s algorithm operating on a binary image.
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Figure 2 Kruse’s algorithm operating on a pseudo-binary image.
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Figure 3 Kruse’s algorithm operating on a truly nonbinary image.
Labeling is incorrect and topology detection incomplete.
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Figure 4 The two first steps of the new algorithm.

be seen from the nesting tree of Fig. 3(d), all four objects B,
C, D, and E will be registered as being inside 4 without
revealing the full topological adjacency conditions of the
original image.

It should be noted, however, that the algorithm does
deliver a contour code which is sufficient for reconstructing
the original image.

2. The improved algorithm

We start describing the improved algorithm for the more
complicated nonbinary case. For the binary case a simplified
version can be used, as explained in Section 6. As in Kruse’s
algorithm, raster scanning is the background mode of the
improved algorithm. As soon as the raster scanner hits a pixel
with a value from the original set {0, 1, 2, - - .} that is
different from its current map entry, the algorithm switches
to border following. (Precise rules for this algorithm are in
the flowcharts of Figs. 6-8.)

® [sland following

For the image of Fig. 3(a) the first hit happens in the second
line where the raster scanner is currently reading 0’s knowing
that 4 = 0 according to the existing map entry. The
appearance of a 1 in the second pixel of this line interrupts
raster scanning. We have obviously encountered an island
inside the A-object, and this island is now traced out by
following its outermost border. During this operation we
collect the chain code of the border, preferably as the chain
of two-bit links that exactly follows the crack between the
background object 4 and the island.

During border following we insert new labels 4 in all
pixels immediately outside the crack [Fig. 4(a)]. The A-
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labels to the east of the crack are to be used subsequently by
the raster scanner to avoid following this crack again as a
new island. The A-labels to the south, west, and north of the
crack will enable the subsequent border-following proce-
dures to establish adjacency conditions. Also, during the
border following we tag pixels which are immediately inside
and simultaneously east of the crack as an indication that the
border has been followed on its western side. This will help us
to avoid unnecessary island following when the raster scan-
ner encounters the crack in subsequent lines. To the west of a
tagged pixel there is consequently always a label from the
new set, and one may suspect that this label alone could serve
as an indicator for “island following done.” However, for
one-pixel-wide objects there is a label from the new set to the
west of the crack before any border following has been done
as a result of the neighboring crack.

® Object following

So far the original image of Fig. 3(a) has been converted to
the shape of Fig. 4(a). We have completed the island
following and are back at the point where we first found the
new island. We now start the object following of the object
labeled 1 in the original image. This time we trace the inside
of the encountered crack. We have drawn a new label B
which is now to be written into all pixels next to the crack and
inside the object. Incidentally, with the small objects we have
in our running example this writing almost fills the whole
interior. For larger objects there will be large areas with the
original labels left.

During object following we delete internal tags but tag
pixels outside and immediately east of the crack in those
instances where the pixel east of the crack still has an original
label, i.e., a number instead of a letter. This will help us
subsequently to avoid island following when the raster scan-
ner encounters the objects originally labeled 0 and 2.

We have now reached the state shown by Fig. 4(b). Note
that the tags of Fig. 4 serve a completely different purpose
from those in Kruse’s algorithm. Also, we have started to
build up our label map and the adjacency graph during this
first border following, as shown by Figs. 4(c) and (d),
respectively.

® Further iterations

Raster scanning is now resumed, and using the available map
information it goes on uninterrupted until it hits the first
pixel labeled 2 in the fourth line. Since this pixel, which is to
the east of the crack, is untagged, first island following and
then object following take place.

Next the raster scanner halts in the fifth line when the first
pixel labeled O is hit. Because of the tag of this label, the

algorithm immediately switches to object following with a
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new map entry, D = 0, i.e., bypassing island following. After
a short raster scan trip, a new object-following procedure
takes place with £ = 3. After this step the image has the
appearance of Fig. 5(a).

In Figs. 4 and 5 we have deliberately avoided filling in the
objects with new labels during raster scanning. This saves
some writing time but is otherwise of no significance to the
algorithm.

During all object-following procedures, adjacencies
between the followed object and objects on the other side of
the crack are noted in the adjacency graph, which is the
necessary generalization of the nesting tree of Fig. 3. Natu-
rally the border follower should economize on this notation
work and only augment the graph when the sequence of
labels outside the crack changes. For instance, when the
object E = 3 is followed, the first adjacency is to the object
D. With clockwise movement the next adjacency is B.
Remembering this last adjacency condition we do not have to
note B again when we find the second pixel = B outside the
crack. Next we note that the object A4 is adjacent to our
object E, after which we follow the crack a long time without
any notations at all in the graph since the pixels outside the
crack are A’s consistently. When we encounter B again, this
is a change outside the crack so we note that E is adjacent to
B without knowing that this has been noted already. Then,
the labels 2 are neglected since only labels from the set {4, B,
C, . - -}canexist in the graph. Another instance of B outside
the crack is then found and noted for the third time, and
finally a second instance of D-adjacency is noted.

If the graph is updated with a procedure like this, it
should, of course, be immediately followed by a cleaning
routine that reduces the branches of the object E to a proper
set.

After the object-following results in Fig. 5(a), raster
scanning is resumed. It is halted for the last time at the
eighth line where the object F = 2 is traced out. The final
result is shown by Fig. 5(b), with the complete map and
graph in Figs. 5(c) and (d), respectively.

3. Flowchart description

A rather complete description of the algorithm is given by
the flowcharts in Figs. 6, 7, and 8. The reader should have no
difficulties in interpreting the different steps therein and
identifying them with the verbal description given in the
preceding section. However, a few comments may be appro-
priate.

Around the border of the full image we adopt the conven-

tion that there is a frame with the imaginary label “frame,”
which is included in the new set NS = {4, B, C, - - -,
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Figure 5 The final result of the new algorithm.
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Figure 7 The island-following part of the algorithm.

“frame”}. The variable m which is continuously updated to
the present object label during raster scanning, box 8, is
consequently set to “frame™ at the beginning of each line in
box 2. Also, “frame” is always the root (not shown) of our
adjacency graph in the previous Fig. 5(d). The frame concept
was net used in the previous section since at that time we did
not bother at all with picture boundary problems.

The first pixel encountered by the raster scanner at x = 1,
y = 1 will always trigger object following. If this object A is
the only one that touches the frame (implying that all other
objects are directly or indirectly inside 4), the whole image
boundary will be labeled with one layer of A’s during this
first object following.

Box 13 in Fig. 7 computes and stores the crack links for the
island outline. If the island consists of only one object, the
same crack is shortly thereafter traced out in box 23 of Fig. 8.
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Figure 8 The object-following part of the algorithm.

The first contour is stored as one of possibly several islands in
the surrounding object, while the second identical contour is
stored as the outline of a new object within the new island.

All adjacency conditions are registered by box 30. How-
ever, to be able to relate one island in a surrounding object to
the proper set of objects constituting this island, there is also
a “first adjacency notation” in box 19. Here, a link is created
from the surrounding object to one of the objects in the
corresponding island. With the link and the full adjacency
graph produced in box 30, all the objects of the island can be
retrieved. This and similar problems are elaborated on in the
following section.

4. Output data structure

During algorithm execution the encoded data have to be
collected and inserted into a dynamic data structure. Setting
aside for the moment the dynamic growth of these data, the
final result of our previous example could be stored in a
tabular fashion, as shown by Fig. 9.

The leading entry of the table of Fig. 9 contains the objects
of the new set, which according to previous discussion should
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contain “frame” as its first member. The outer border of this
imaginary object is, of course, not known, which explains
why most of the foilowing entries are left blank. The column
“Adjacent to” carries the adjacency graph information. In
our running example, only the object A is adjacent to
“frame.” The following columns of the graph are reserved for
islands completely circumscribed by the object.

For the object “frame” only one island always exists,
namely, the total image itself. The first column of the island
entries is called “link,” and this is where notations from box
19 in Fig. 7 are inserted. In our case, the first (and only)
object in the image to be encountered from “frame” is object
A. The next column “x, y” is the starting point of the chain
that is stored in the following column. However, since the
island inside “frame” is the image itself, this information is
already known and can be left blank. The special case of the
object “frame” is also reflected in the flowchart in Fig. 6,
boxes 10 and 10a.

Let us now look at the second row of the table. The object
A is first defined by its outer border, which we assume is
what we see in Fig. 5(b) resulting in chain0. (Actually, this
chain of A’s is not shown in Figs. 4 and 5 since it would have
obscured the explanatory discussion at that time.) In the
“Adjacent to” column the information “frame” is inserted by
box 30, together with the information A4 in the above line of
the table. The object 4 has two islands the chains of which
are generated by box 13, and the first objects to be encoun-
tered after island following are B and C, respectively.

The rest of Fig. 9 should be self-explanatory. Now, during
execution, the table of Fig. 9 grows vertically as new objects
are found, and the table must therefore be allowed to expand
dynamically. Several of the entries, especially the chain-
coded borders, have vastly varying lengths. These are prefer-
ably stored in an augmentable list structure using conven-
tional techniques.

The adjacency graph, stored in the column *“Adjacent to,”
can, directly or indirectly, give answers to questions about
the image topology. It directly answers the question: Which
objects are adjacent to object 4? But it could also be used for
questions like: Which objects are enclosed by object 4? The
answer to this question can be retrieved by using the island
information. The first island enclosed by A consists of object
B and all objects directly or indirectly adjacent to B such that
the indirect adjacency path does not pass through A4 itself.
The second island enclosed by A is object C, which happens
to have no adjacencies other than A itself.

If the questions about islands and their object consistency
are expected to be frequent, the columns “link” in Fig. 9
could be augmented to “object set,” as shown in Fig. 10.
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Figure 10 Island consistency extracted from adjacency informa-
tion in Fig. 9.
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Figure 11 A nonbinary image and its three possible connectivity
interpretations.

5. The 4/8-connectivity problem

The well-known problem of 4- versus §-connectivity prevails
in all cases where a Cartesian grid is used for digitization. In
our case we can illuminate the problem with Fig. 11(a).
Three equally valid topological interpretations are possible
for this image:

1. The image consists of three islands, each one consisting of
one single object. According to this interpretation the
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Figure 12 Another nonbinary image with connectivity interpreta-
tions as in Figs. 11(b) and (c), respectively.
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Figure 13 The new algorithm applied to a binary image.

segmentation algorithm should assign new labels, as
shown by Fig. 11(b). The surrounding object is considered
to be 8-connected during island following; the objects are
considered to be 4-connected during object following.

2. The image consists of one island having two objects.
According to this interpretation the algorithm should
assign labels as shown by Fig. 11(c). This implies 4-
connected island following and 8-connected object follow-
ing.

3. The image consists of one island having three objects.
According to this interpretation the algorithm should
assign labels as shown by Fig. 11(d). This implies 4-
connected island following and 4-connected object follow-

ing.
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In many ways the third alternative is very appealing, since
it guarantees that the outer border of an object traced out
during object following and the borders of possible islands
inside the object traced out during island following have the
same characteristics. All pixels of the object will be 4-
connected. In the other two alternatives, there will be ambi-
guities, as illustrated by Fig. 12. The image of Fig. 12(a) will
be translated by alternative 1 into Fig. 12(b) and translated
by alternative 2 into Fig. 12(c). In both cases the object 1
with its two 8-connected pixels will be transformed into two
objects and not into one (as if it were 8-connected) or into
three (as if it were 4-connected). Obviously, alternative 3
would translate object 1 of Fig. 12(a) into three 4-connected
objects (not shown in Fig. 12).

If we choose to use alternative 3 above, we have to make
sure that another ambiguity does not arise. In Fig. 11
alternative 3 will produce only one island. The three objects
must consequently be considered to be inside this island and
adjacent to each other. If they are not noted as being
adjacent by the algorithm, only the first object B will be
retrieved as belonging to the island. This adjacency between,
say, B and C must be noted during object following when this
procedure has reached the upper right corner of object C,
where it touches the lower left corner of object B. Here the
crack link computation in box 23 (see Fig. 8) should make a
clockwise sweep over the neighboring pixels. It will then find
that the crack of the 4-connected object C makes a 90-degree
downward turn. But it should also note that a new label
g = B is found, and the adjacency (B, C) should be inserted
in the output data. This is something which is not included in
the above flowchart description where all adjacency nota-
tions are made in box 30.

In summary, alternative 3 produces objects that consist of
4-connected pixels, but the objects themselves are considered
8-adjacent. Obviously, the different border-following proce-
dures for the different alternatives could be given a more
explicit and detailed description. They are omitted here for
the sake of brevity.

6. A simplified version for binary images

Since a binary image is a special case of nonbinary images, it
is possible to use the above algorithm as it is for segmentation
of binary images. However, there is an inherent constraint in
binary images that makes considerable simplification possi-
ble. The adjacency graph of a binary image takes the form of
a tree, since an island in a binary image always consists of
one object only (possibly with holes inside). Consequently,
the tracing of the island and the tracing of the object contour
no longer have to be two separate procedures, as in the
nonbinary case. Furthermore, as soon as the raster scanner
hits a boundary, there is only one adjacency notation to be
made, namely, between the surrounding and the surrounded
object, the island.
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Figure 14 Raster scanning of binary images.

The simplified algorithm for the binary case is illustrated
by the example in Fig. 13. Note that we only have to write
new labels to the east of the cracks. This is enough to make
the raster scanner aware of which boundaries have already
been followed.

The flowcharts for raster scanning and border following
are shown by Figs. 14 and 15, respectively, and should be
rather self-explanatory. The 4/8-connectivity problem is
solved by adopting different rules for 0-objects and 1-objects,
as can be seen in Fig. 13. Here we have chosen to let the
0-objects consist of 4-connected pixels while the 1-objects are
defined as sets of 8-connected pixels. This choice determines
the details of the crack link computation in box 64 in Fig.
15.

The output data for the example of Fig. 13 are shown by
Fig. 16. We assume that the imaginary frame around the
original image of Fig. 13(a) consists of 0’s. This frame and its
background extension in the image itself is the object 4. The
adjacency information for each object consists of one upward
link towards the root of the tree and one downward link to
surrounded objects. The area of an object is defined by its
outer contour and by the contour of its surrounded objects.

The generalization of the above binary algorithm so that it
can handle “pseudo-binary” images exemplified by Fig. 2 is
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To
raster scanning

Store (x, ¥)

Store

adjacency
(m, n)

L

y

Compute

and store
new link

Vertical
link

q:=m

Figure 15 Border following of binary images.

Map Adjacency QOuter contour
NS s Up |Down| x,y Chain
A 0 - B E| - -
B 1 A C,D| 3,1 000030103233333222221211110
C 0 B - 3,2 | 0321
D 0 B F 4,3 | 00033322212101
E 1 A - 0,4 | 033211
F 1 D 5,4 | 0321

Figure 16 Output data for the binary image of Fig. 13.

a trivial matter. Such nonbinary images have the same
topological constraints as binary images where islands
always consist of one object only. Consequently, the adja- 705
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Figure 17 First step in the decoding procedure: border coating.

nd o Y
END

k=Label from OS

Figure 18 Flowchart for area filling.

cency graphs for pseudo-binary images are trees just as for
binary images, and there is no need for separate island and
object following. The 4/8-connectivity problem is most con-
veniently solved by mimicking the binary case and using
4-connectivity and 8-connectivity interchangeably for every
second object level in the adjacency tree.

Finally, a comparison can be made with Kruse’s algorithm
[3]. The algorithm of Figs. 14 and 15 in this paper seems to
be somewhat simpler and cleaner, since it requires no
tagging. One bit per pixel is saved in the image memory. The
stack principle of [5, 6] is not employed. The binary image
algorithm of this paper has been explained briefly in [7].

7. Decoding
The output data from the above algorithms may eventually
be used in several ways that fall outside the scope of this
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paper. But since the output data permit full reconstruction of
the input data, something ought to be said about their use for
decoding.

In decoding and reconstruction of the input image we do
not use the adjacency information in Fig. 9, which makes
things very simple. Initially, the image plane is filled by
blanks (.) which take up one state of the available pixel
states. Then, we do the reverse of border following, which is
to use the available chains in the output data for laying out
the contours. For the object border chains the pixel values
from the old set {0, 1, 2, 3} are inserted in the image plane
inside and to the east of each crack. Insertion of pixel values
to the north, west, and south is not necessary.

For the island border chains the pixel values from the old
set are inserted outside and to the east of the crack. When all
borders are “coated” in this way on their eastern side, the
data of Fig. 9 result in the image shown by Fig. 17(a). It is
now a trivial matter for the raster scanner to do its area
filling job, which results in Fig. 17(b). The flowchart for the
area filling is given in Fig. 18.

8. Conclusions

The algorithm presented in this paper delivers a contour-
coded version of a nonbinary image combined with a topolog-
ical description of adjacency conditions. It also provides data
that determine how islands of objects are completely sur-
rounded by another object. To be able to do this, all border
elements are traced out twice. The first time the contour of
the object on the outside of the border is followed in a closed
path. The second time the contour of the object on the inside
of the border is followed in a closed path.

In the binary image case these two paths are identical and
can be combined into one procedure. In the nonbinary image
case they are only piecewise identical and these operations
have to be done as two separate procedures.

During border following the labels closest to the border are
given new labels. These new labels serve two purposes. They
enable the algorithm to establish the wanted adjacency
conditions, and they serve as indicators to the raster-
scanning part of the algorithm, telling this procedure that
this border is already done.

In the nonbinary case tagging is used to distinguish
between a case in which a border is followed on one side and a
case in which it is not followed at all. Actually, tagging could
be avoided completely if all objects were known to have a
width of two pixels or more.

Throughout the paper we have used 4-directional links to
encode the contours. Such 2-bit links are sufficient to follow
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a crack, the actual exact borderline between two regions. We
feel that crack-coding is both a simpler and a more natural
way to encode contours than the more prevailing method of
establishing a chain that forms a path between pixels on one
side or the other of the contour. However, the latter method
of contour encoding can also be used in the presented
algorithm.

The 4/8-connectivity problem for objects in a Cartesian
grid can be resolved in at least three ways for the nonbinary
case. The most consistent way seems to be to define all
objects as internally 4-connected (between pixels) but exter-
nally 8-adjacent to each other.

For binary images the algorithm lends itself to consider-
able simplification.

Finally, reconstruction of the original image from the
algorithm output data has been demonstrated to be simple
and straightforward.
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