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An Improved  Segmentation  and  Coding  Algorithm  for  Binary 
and  Nonbinary  Images 

This  paper  presents a new segmentation and  coding algorithm for nonbinary images.  The  algorithm  performs contour  coding of 
regions of equally  valued and connected pixels. It consists of  two distinct phases:  raster scanning and border  following. I n  this 
sense it  is  similar  to  algorithms  presented  by  Kruse.  However, the algorithm  of this paper  is  considerably improved since it 
correctly segments truly nonbinary images. The basic  idea of the  algorithm  is to “coat” (color,  label) the  borders (the  cracks) 
between  the  regions from both sides in two  separate border-following procedures called island following and object following. 
Thus,  all adjacencies  between  the objects are systematically  explored and noted. Furthermore,  the raster scanner, which 
exhaustively searches  the image for  new regions, can easily  determine from existinglnonexisting  coating  which  boundaries have 
been traced out and which have not.  The  algorithm can be considerably simpliJed for the  binary image  case. 

1. Introduction 
In  this  paper,  segmentation means separation of objects or 
regions of a  digitized  image. An object is a  set of connected 
pixels having the  same value, and we assume  that  the pixels 
are  embedded in the usual Cartesian grid. The  algorithm  to 
be presented has  the  image pixels as  input  data  and delivers  a 
coded version of the  image  as  output, where each object is 
defined by its chain-coded contour. I n  addition  to this, the 
output  data also contain  the topological graph of the original 
image where the objects are  the nodes of the  graph  and 
adjacencies between two objects are  the branches. 

A segmentation  procedure like this is a valuable  ingredient 
in many  image processing and  pattern recognition  problems. 
It follows naturally  after such  preprocessing steps  as noise 
suppression,  filtering, and thresholding or after  more sophis- 
ticated relaxation  procedures where pixels, or rather  clusters 
or regions of pixels, have been assigned  a  label from  the  set 
{O, I }  (the  binary  case) or from a larger set (0, 1, 2, - e -, n )  
(the nonbinary case). 

Several authors have been dealing with the  segmentation 
problem. Morrin [ 11 segments a binary  image by a combina- 
tion of raster  scanning  and  boundary following. As soon as 
the  raster scan encounters a boundary,  the  algorithm  due  to 
Morrin  starts  to follow the  boundary, peeling off one  layer of 

pixels after  another until the object is exhausted.  Raster 
scanning is then  resumed. Only the first boundary  trace is 
stored as a contour. 

The  advantage of Morrin’s  method is that  it only requires 
a binary memory for the  image.  Its  disadvantage is that  the 
rather time-consuming  boundary-following  operation has  to 
be  carried  out not only for the  boundary of the objects  but  for 
the interior pixel layers as well. 

Cederberg [2, 31 and Danielsson [4] avoid the  random- 
addressing, border-following  mode  completely. Instead,  the 
contours  are kept track of as  they  appear, grow, and  disap- 
pear from  one line to  the next. This  requires a substantial 
amount of bookkeeping. The  great  advantage of these meth- 
ods is that no image memory at  all is required. As a 
consequence, the coding of the  image  can be done directly 
during  the  raster  scan  input. 

In two recent  papers  Kruse [ 5 , 6 ]  has presented segmenta- 
tion algorithms for both binary  and nonbinary  images.  Like 
Morrin [ l]  Kruse uses  both raster  scanning  and  border 
following. But to avoid the time-consuming  layer by layer 
peel-off, a multistate memory is utilized. See Fig. l(a).  The 
original pixels of the  binary  image  are labeled from  the set 
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{0, 11 while the segmented image is labeled from  the set 
{A, B, C, . . I .  As soon as a new boundary is encountered, 
raster  scanning is interrupted. An unused  label is drawn  from 
the set [A, B, C, . and  during a  border-following proce- 
dure  this label is written into the  boundary pixels inside the 
newly encountered  object,  as shown by Fig. 1 (b). 

0 0 0 0 0 0 0 0 0 0   A A A A A A A A A A  
0 0 0 1   I 1 0 0 0 0  A 
0 1 1 1 1 1 0 0 1 0  A 
0 1 1 0 0 1 1 1 1 0 - A  
0 1 l I I I l 1 1 0  0 
0 0 0  1 I 1  I 1  I 0  0 
0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0  

(a) (bJ 

Also, during border following, pixels immediately inside 
and simultaneously west of the border are  tagged, which in 
Fig. l(b) is symbolized by a circle  around  the pixel values. 
The  tag occupies one  extra  bit-plane in the  multistate 
memory. In  Fig. l(b)  the  background object is labeled  A; 
object B has been border-followed; the  raster  scan  has been 
resumed and  has been continued to  the  fourth line from  the 
top. By using the knowledge that B = 1, when mapped to  the 
original of Fig. l(a)  the  raster  scanner  can label all pixels 
inside the B-object for each run. Furthermore,  the  tag 
enables  the  raster  scanner  to distinguish  between  a case in 
which it is leaving the B-object and  entering  the A-object 
from  a case in which it is leaving the B-object and  entering a 
new object (a hole inside B). In the  former  case  the  A-label is 
fetched  from a stack. In the  latter  case a new border- 
following procedure  takes place. 

The  stack is an  important  ingredient in Kruse’s algo- 
rithms.  It is pushed during  raster  scanning when a new label 
from  the set {A, B, C, . 1 is encountered  and popped when 
a  tagged pixel is hit.  Obviously, the  stack  contains  informa- 
tion about  the nesting levels of the different  objects.  For the 
simple case of Fig. ](a)  the nesting tree is depicted in Fig. 
1(d). 

The label map  that  transforms  Fig.  l(b)  into Fig. ](a) is 
shown by Fig. 1 (c). 

In  [6] Kruse extended the above  method to  the nonbinary 
case. It is shown that  the  algorithm works quite well on 
nonbinary  images of the  type shown by Fig. 2(a), which is 
transformed  to  the  appearance of Fig.  2(b)  and delivers the 
label map of Fig. 2(c)  and  the nesting tree of Fig. 2(d). 

Unfortunately,  the  algorithm [4] does  not work very well 
on the more general kind of nonbinary  images where an 
“island” contains several separate regions, as shown by 
Fig. 3. The ‘‘lake’’  of 0’s inside the  larger island will pass 
undetected as a separate object when in the fifth  line from 
the  top  the  raster  scanner pops the  stack, giving top-of- 
stack = A. Now, since according  to  the  map A = 0 and since 
the next pixel has  the original  label 0, the  raster  scanner 
assumes it has  returned  to  the  surrounding A-region. 

Another deficiency is that  the  outer  contour of the island is 
not  retrieved. Thus, full geometric  information  about  the 
A-object is not available in the encoded data. Finally, as  can 

Map Nesting tree 

A=O 
B = l  
C=0 

Figure 1 Kruse’s algorithm  operating on a  binary  image 

0 0 0 0 0 0 0 0 0 0 0  A A A A A A A A A A A  
0 1 1 1 1 1 0 0 0 0 0  A 
0 1 1 1 1 1 0 0 2 2 0  A 
0 1 0 0 1 1 0 0 2 2 0  A 
0 1 1 1 1 1 0 0 0 0 0  A 
0 1 2 2 1 1 0 0 0 0 0  A 
0 1 2 2 1 1 0 0 0 0 0  A B M B  A A A A A  
0 1  I 1  I 1 0 0 0 0 0  A I B H A A a A A A A A  
0 0 0 0 0 0 0 0 0 0 0  A A A A A A A A A A A  

(a) (b) 

Map Ncsting tree & D E  

Figure 2 Kruse’s algorithm  operating on a  pseudo-binary  image. 

0 0 0 0 0 0 0 0 0 0 0  
0 1  I I I 1 0 0 0 0 0  
0 1  I I I 1 0 0 0 0 0  

0 1 0 0 3 3 0 0 2 2 0 -  
0 1 0 0 3 3 0 0 0 0 0  
0 1  1 3 3 3 0 0 0 0 0  
0 1 2 2 3 3 0 0 0 0 0  
0 3 2 2 3 3 0 0 0 0 0  
0 3 3 3 3 3 0 0 0 0 0  

0 1 1 1   1 1 0 0 2 2 0  

o o n o o o o o o o o  

A A A A A A A  

A A A A A A A  

A A A A  
A A A A  
A A A A  

Eg; 
A A A A  
A A A A  
A A A A  
A A A A  
A A A A  
A A A A  

Map Nesting tree 

A =0  
B =  I 
c=2 
D=3 

( c )  

Figure 3 Kruse’s algorithm  operating on a  truly  nonbinary  image. 
Labeling is incorrect  and topology detection  incomplete. 
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Figure 4 The two first steps of the new algorithm. 

be seen  from the nesting tree of Fig. 3(d),  all  four objects B, 
C, D ,  and E will be registered as being  inside A without 
revealing the full topological adjacency conditions of the 
original  image. 

It should be noted, however, that  the  algorithm does 
deliver  a contour code which is sufficient for reconstructing 
the original  image. 

2. The improved algorithm 
We  start  describing  the improved algorithm for the more 
complicated nonbinary case. For the  binary  case a simplified 
version can be used, as explained in Section 6. As in Kruse’s 
algorithm,  raster  scanning is the background  mode of the 
improved algorithm. As soon as  the  raster  scanner  hits a pixel 
with a  value from  the original  set {O, 1, 2, . .} that is 
different from  its  current  map  entry,  the  algorithm switches 
to border following. (Precise  rules for this  algorithm  are in 
the flowcharts of Figs. 6-8.) 

Island following 
For the  image of Fig.  3(a)  the first hit  happens in the second 
line where the  raster  scanner is currently  reading 0’s knowing 
that A = 0 according  to  the existing map  entry.  The 
appearance of a 1 in the second pixel of this line interrupts 
raster  scanning.  We have obviously encountered  an island 
inside the  A-object,  and  this island is now traced  out by 
following its outermost  border.  During  this operation we 
collect the  chain code of the  border,  preferably  as  the  chain 
of two-bit links that  exactly follows the  crack between the 
background  object  A and  the island. 

During border following we insert new labels  A in all 
pixels immediately  outside  the  crack [Fig. 4(a)].  The  A- 

labels to  the  east of the  crack  are  to  be used  subsequently by 
the  raster  scanner  to avoid following this  crack  again  as a 
new island. The A-labels to  the  south, west, and  north of the 
crack will enable  the  subsequent border-following proce- 
dures  to establish adjacency conditions. Also, during  the 
border following we tag pixels which are immediately  inside 
and simultaneously east of the  crack  as  an indication that  the 
border has been followed on its western side. This will help us 
to avoid unnecessary  island following when the  raster  scan- 
ner  encounters  the  crack in subsequent lines. To the west of a 
tagged pixel there is consequently  always  a  label from  the 
new set,  and  one  may suspect that  this label  alone  could  serve 
as  an  indicator for “island following done.”  However, for 
one-pixel-wide objects there is a  label from  the new set to  the 
west of the  crack before any border following has been done 
as a  result of the neighboring crack. 

Object following 
So far  the original image of Fig. 3(a)  has been converted to 
the  shape of Fig. 4(a).  We have completed the island 
following and  are back at  the point where we first found the 
new island. We now start  the object following of the object 
labeled 1 in the original image.  This  time we trace  the inside 
of the encountered crack.  We have drawn a new label B 
which is  now to be written  into all pixels next to  the  crack  and 
inside the  object.  Incidentally, with the  small objects we have 
in our running  example  this writing almost fills the whole 
interior. For larger objects there will be  large  areas with the 
original  labels  left. 

During object following we delete  internal  tags  but  tag 
pixels outside  and  immediately  east of the  crack in those 
instances  where the pixel east of the  crack still  has an original 
label, i x . ,  a number instead of a letter.  This will help  us 
subsequently  to avoid island following when the  raster  scan- 
ner encounters  the  objects originally  labeled 0 and 2. 

We have now reached  the  state shown by Fig. 4(b).  Note 
that  the  tags of Fig.  4  serve  a  completely  different  purpose 
from those  in Kruse’s algorithm. Also, we have started  to 
build up our label map  and  the  adjacency  graph  during  this 
first  border following, as shown by Figs. 4(c)  and  (d), 
respectively. 

Further iterations 
Raster  scanning is now resumed,  and using the available map 
information  it goes on uninterrupted  until  it hits the first 
pixel labeled 2 in the  fourth line. Since  this pixel, which is to 
the  east of the  crack, is untagged, first island following and 
then object following take place. 

Next  the  raster  scanner  halts in the fifth  line when the first 
pixel labeled 0 is hit. Because of the  tag of this  label, the 
algorithm  immediately switches to  object following with  a 
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new map  entry, D = 0, Le., bypassing  island following. After 
a short  raster  scan  trip, a new object-following procedure 
takes place with E = 3. After  this  step  the  image  has  the 
appearance of Fig. 5(a). 

In Figs. 4 and 5 we have deliberately avoided filling in the 
objects with new labels during  raster  scanning.  This saves 
some  writing time  but is otherwise of no significance to  the 
algorithm. 

During  all  object-following  procedures,  adjacencies 
between the followed object and objects on the  other side of 
the  crack  are noted in the  adjacency  graph, which is the 
necessary generalization of the nesting tree of Fig. 3. Natu- 
rally the border follower should  economize on this notation 
work and only augment  the  graph when the sequence of 
labels outside  the  crack  changes. For instance, when the 
object E = 3 is followed, the  first  adjacency is to  the object 
D. With clockwise movement the next adjacency is B. 
Remembering  this  last  adjacency condition we do not have to 
note B again when we find the second pixel = B outside  the 
crack.  Next we note  that  the object A is adjacent  to our 
object E,  after which we  follow the  crack a long time without 
any notations at  all in the  graph since the pixels outside  the 
crack  are A’s consistently.  When we encounter B again, this 
is a change  outside  the  crack so we note that E is adjacent  to 
B without knowing that this has been noted already.  Then, 
the labels 2 are neglected  since only labels from  the set {A, B,  
C, } can exist in the  graph.  Another  instance of B outside 
the  crack is then found and noted  for the  third  time,  and 
finally a second instance of D-adjacency is noted. 

If the  graph is updated with a procedure like this, it 
should, of course, be immediately followed by a  cleaning 
routine  that reduces the  branches of the object E to a  proper 
set. 

After  the object-following  results in Fig. 5(a),  raster 
scanning is resumed. It is halted for the  last  time at  the 
eighth line where the object F = 2 is traced  out.  The final 
result is shown by Fig. 5(b), with the  complete  map  and 
graph in Figs. 5(c)  and  (d), respectively. 

3. Flowchart description 
A rather complete  description of the  algorithm is given by 
the flowcharts in Figs. 6 , 7 ,  and 8. The  reader should  have no 
difficulties in  interpreting  the different steps  therein  and 
identifying them with the  verbal description given in the 
preceding  section.  However,  a few comments  may  be  appro- 
priate. 

Around  the border of the full image we adopt  the conven- 
tion that  there is a frame with the  imaginary label “frame,” 
which is included in the new set N S  = {A, B, C, , ., 
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Figure 5 The final result of the new algorithm. 
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m= “frame” 

p(x ,  y ) = p  = Pixel value 
m = Label from New Set 
OS = Original  Set 

NS = New Set 

island 
followin = { 0 ,  l , 2 ,  . . . }  

= { A ,  B ,  C ,  . . . ,  frame} 

Figure 6 The raster-scanning  part of the  algorithm. 70 1 
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crack link 
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p = Pixel inside crack 
q =Pixel outaide crack 

tn = New label outside crack 
n = New label inside crack 

following A 
To object 

Figure 7 The island-following  part of the  algorithm 

“frame”}.  The  variable m which is continuously updated  to 
the present  object  label during  raster  scanning, box 8, is 
consequently set  to  “frame” at  the beginning of each line in 
box  2. Also, “frame” is always the root (not shown) of our 
adjacency  graph in the previous Fig. 5(d).  The  frame concept 
was not used in the previous section  since at  that  time we did 
not bother a t  all with picture  boundary problems. 

The first pixel encountered by the  raster  scanner a t  x = 1 ,  
y = 1 will always  trigger object following. I f  this object A is 
the only one  that touches the  frame (implying that all other 
objects are  directly or indirectly  inside A ) ,  the whole image 
boundary will be labeled  with one layer of A’s during  this 
first object following. 

Box 13 in Fig. 7 computes  and  stores  the  crack links  for the 
island  outline.  If the island  consists of only one  object,  the 
same  crack is shortly  thereafter  traced  out in box 23 of Fig. 8. 702 

PER-ERIK DANIELSSON 

from NS 
label n 

map entry 

Figure 8 The object-following part of the  algorithm. 

The first contour is stored as one of possibly several  islands in 
the  surrounding object, while the second identical  contour is 
stored as  the  outline of a new object  within the new island. 

All  adjacency conditions are registered by box 30. How- 
ever, to be able  to  relate  one island in a surrounding object to 
the proper set of objects constituting this  island, there is also 
a  “first adjacency  notation” in box 19. Here, a link is created 
from the  surrounding object to  one of the objects in the 
corresponding  island. With  the link and  the full adjacency 
graph produced in box 30, all  the objects of the island can be 
retrieved. This  and  similar problems are  elaborated on in the 
following section. 

4. Output data structure 
During algorithm execution the encoded data have to be 
collected and inserted into a dynamic  data  structure.  Setting 
aside for the moment the  dynamic growth of these data,  the 
final result of our previous example could be stored in a 
tabular fashion, as shown by Fig. 9. 

The leading entry of the  table of Fig. 9 contains  the objects 
of the new set, which according  to previous discussion should 
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contain  “frame”  as its  first member.  The  outer border of this 
imaginary object is, of course,  not known, which explains 
why most of the following entries  are  left  blank.  The column 
“Adjacent to” carries  the  adjacency  graph  information. In 
our running  example, only the object A is adjacent  to 
“frame.”  The following columns of the  graph  are reserved for 
islands  completely circumscribed by the object. 

For the object “frame” only one island always  exists, 
namely, the  total  image itself. The first column of the island 
entries is called  “link,” and  this is where  notations  from box 
19 in Fig. 7 are  inserted. In our case,  the first (and only) 
object in the  image  to be encountered from  “frame” is object 
A. The next column “x, y” is the  starting point of the  chain 
that is stored in the following column.  However,  since the 
island  inside “frame” is the  image itself, this information is 
already known and  can  be left blank.  The special case of the 
object “frame” is also reflected in the flowchart in Fig. 6, 
boxes 10 and  loa. 

Let us now  look at  the second row of the  table.  The object 
A is first defined by its outer border, which we assume is 
what we see in Fig. 5(b) resulting in chain0.  (Actually, this 
chain of A’s is not shown in Figs. 4 and 5 since  it would have 
obscured the  explanatory discussion at  that  time.) In  the 
“Adjacent to” column  the information “frame” is inserted by 
box 30, together with the  information A in the above  line of 
the  table.  The  object A has two islands the  chains of which 
are  generated by box 13, and  the first objects to  be encoun- 
tered after island following are B and C, respectively. 

The rest of Fig. 9 should be self-explanatory.  Now,  during 
execution, the  table of Fig. 9 grows vertically as new objects 
are found, and  the  table  must  therefore be allowed to  expand 
dynamically.  Several of the  entries, especially the  chain- 
coded  borders,  have  vastly  varying  lengths. These  are prefer- 
ably  stored in an  augmentable list structure using conven- 
tional  techniques. 

The  adjacency  graph, stored in the column “Adjacent to,” 
can, directly or indirectly, give answers to questions about 
the  image topology. It directly answers  the question:  Which 
objects are  adjacent  to object A? But it could also be used for 
questions like: Which objects are enclosed by object A? The 
answer  to this  question can be retrieved by using the island 

NS Adjacent to coded x, y OS 
Chain- 

border x. y link border- x ,  J link border 

Second island First island 

frame A - - - 
A 

B .  E chain7 2, 7 2 F 
A ,  B ,  D ,  F chain6 4, 4  3 E 
B.  E chain5 2, 4 0 D 
A chain4 8, 3 2 C 
A ,  D ,  E ,  F chain2 I ,  I I B 

chain3 8, 3 C chainl I ,  I B “frame:’ B ,  C ,  E cham0 0, 0 0 
A . .  . . .  

. .  . . .  . 

. .  . . .  . 

. .  . . .  

. .  - . .  . 

. .  . . .  . 

chain0: 0OO0OO0oO003333333333322222222222lllllllllll 
chainl: 00000333333333222221111111II 
chain2:000003332222330323211111Il 1 
chain3: 0033221 I A 
chain4: 0033221 1 
chain5: 0033221 I 
chain6:003333333222221103001121011 
chain7:  003322 I I 

Figure 9 Output  data. 

3 

I First island I Second island I 
I 

object set object set chain-coded 
x, y x’ border 

chain-coded 

A 
B ,  D ,  E ,  F chain3 8, 3 chainl 1, I J 

Figure 10 Island  consistency  extracted  from  adjacency  informa- 
tion in Fig. 9. 

0 0 0 0 0 0 0 0  O O O A A O O O  

0 0 0  I I 0 0 0  
0 2 2 0 0 1  1 0  
0 2 2 0 0 1 1 0  
0 0 0 0 0 0 0 0  O A A O O A A O  

(a) lh) 

0 0 0 1  1 0 0 0  

I C )  Id) 

Figure 11 A nonbinary  image  and  its three possible connectivity 
interpretations. 

information. The first island enclosed by A consists of object 
Band  all objects directly or indirectly adjacent  to B such  that 
the  indirect  adjacency  path does not pass through A itself. 
The second  island enclosed by A is object C, which happens 
to have no adjacencies  other  than A itself. 

5. The 4/8-connectivity problem 
The well-known problem of 4- versus  8-connectivity  prevails 
in all cases  where  a Cartesian  grid is used for digitization. In 
our case we can  illuminate  the problem with  Fig. 1 l(a). 
Three equally valid topological interpretations  are possible 

If the questions about islands and  their object  consistency 
for  this image: 

are expected to be frequent,  the columns ‘‘link’’ in Fig. 9 1 .  The  image consists of three islands, each one  consisting of 
could be augmented  to “object set,”  as shown in Fig. 10. one  single  object.  According to this interpretation  the 
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0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0  
0 0 1 1 1 1 1 0  
0 0  1 I 2 2  I O  

0 0 1 2 2 2 1 0  
0 0 1  1 I 1  1 0  
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o ~ o o n n n n  

o n 1 2 1 2 1 0  

(a) (b) IC) 

Figure 12 Another  nonbinary  image  with  connectivity  interpreta- 
tions as in Figs. 1 1 (b)  and  (c). respectively. 
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I O B l O O O l A O  

0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0  
la) (b) 

0 
0 
0 

-0 
I 
I 
0 
n 

Map Adjacency graph 

A = 0 (Frame and 

B= I 

L ) = O  
c=0 
E= I 
F =  I 

background 

le) (0 

Figure 13 The new algorithm  applied  to  a  binary  image. 

segmentation  algorithm should  assign new labels, as 
shown by Fig. 11 (b).  The  surrounding  object is considered 
to be 8-connected during island following; the objects are 
considered to be 4-connected during object following. 

2. The  image consists of one island  having  two  objects. 
According to  this  interpretation  the  algorithm should 
assign  labels as shown by Fig. 1 1  (c).  This implies 4- 
connected  island following and 8-connected  object follow- 
ing. 

3. The  image consists of one island  having three objects. 
According to  this  interpretation  the  algorithm should 
assign  labels as shown by Fig. 1 1  (d).  This implies 4- 
connected  island following and 4-connected  object follow- 
ing. 
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In many ways the  third  alternative is very appealing, since 
it guarantees  that  the  outer border of an object traced  out 
during object following and  the  borders of possible islands 
inside the object traced  out  during island following have the 
same  characteristics. All pixels of the object will be 4- 
connected. In the  other two alternatives,  there will be ambi- 
guities, as  illustrated by Fig. 12. The  image of Fig. 12(a) will 
be translated by alternative 1 into Fig. 12(b)  and  translated 
by alternative 2 into Fig. 12(c). In both  cases the object  1 
with its two 8-connected pixels will be transformed  into two 
objects and not into  one  (as if it  were  8-connected) or into 
three  (as if it  were  4-connected).  Obviously, alternative 3 
would translate object  1 of Fig. 12(a)  into  three 4-connected 
objects (not shown in Fig.  12). 

If we choose to use alternative 3 above, we have to  make 
sure  that  another  ambiguity does not arise. In Fig. 11 
alternative 3 will produce only one  island. The  three objects 
must  consequently be considered to be inside this island and 
adjacent  to  each  other. If they are not noted as being 
adjacent by the  algorithm, only the first object B will be 
retrieved as belonging to  the island. This  adjacency between, 
say,  Band C must be noted during object following when this 
procedure  has reached the  upper  right  corner of object C, 
where  it  touches the lower left corner of object B. Here  the 
crack link computation in box 23 (see  Fig. 8) should make a 
clockwise sweep over the neighboring pixels. It will then find 
that  the  crack of the 4-connected  object C makes  a  90-degree 
downward turn. But it  should  also  note that a new label 
q = B is found,  and  the  adjacency (B, C) should be inserted 
in the  output  data.  This is something which is not included in 
the above  flowchart  description  where all adjacency nota- 
tions are  made in box 30. 

In summary,  alternative 3  produces  objects that consist of 
4-connected pixels, but  the objects  themselves are considered 
8-adjacent. Obviously, the different  border-following proce- 
dures for the different alternatives could be given a more 
explicit and  detailed description. They  are  omitted  here for 
the  sake of brevity. 

6. A simplified version  for  binary images 
Since a binary  image is a  special case of nonbinary images,  it 
is possible to use the above algorithm  as it is for segmentation 
of binary images.  However, there is an  inherent  constraint in 
binary  images  that  makes considerable  simplification possi- 
ble. The  adjacency  graph of a  binary image  takes  the form of 
a tree, since an island in a binary  image always  consists of 
one object only (possibly with holes inside).  Consequently, 
the  tracing of the island and  the  tracing of the object  contour 
no longer  have to be two separate procedures, as in the 
nonbinary case. Furthermore,  as soon as  the  raster  scanner 
hits  a boundary,  there is only one  adjacency notation to be 
made, namely, between the  surrounding  and  the  surrounded 
object, the island. 
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Figure 14 Raster  scanning of binary  images. 

The simplified algorithm for the  binary  case is illustrated 
by the  example in Fig. 13. Note  that we only have to  write 
new labels to  the  east of the  cracks.  This is enough to  make 
the  raster  scanner  aware of which boundaries have already 
been followed. 

The flowcharts for raster  scanning  and border following 
are shown by Figs. 14 and 15, respectively, and should be 
rather self-explanatory. The  4/8-connectivity problem is 
solved by adopting different  rules for 0-objects and 1-objects, 
as  can be seen in Fig. 13. Here we have  chosen to let the 
0-objects  consist of 4-connected pixels while the 1-objects are 
defined as  sets of 8-connected pixels. This choice determines 
the  details of the  crack link computation in box 64 in Fig. 
15. 

The  output  data for the  example of Fig. 13  are shown by 
Fig. 16. We  assume  that  the  imaginary  frame  around  the 
original image of Fig. 13(a) consists of 0's. This  frame  and its 
background extension in the  image itself is the object A. The 
adjacency  information for each object  consists of one upward 
link towards  the root of the  tree  and  one downward link to 
surrounded objects. The  area of an object is defined by its 
outer  contour  and by the  contour of its surrounded objects. 

The  generalization of the above binary  algorithm so that it 
can  handle "pseudo-binary'' images exemplified by Fig. 2 is 

" 
Store 
adjacency 
f m ,  n) 

i h  

Compute IW I and store + new link 

(7 raster  scanning 

Vertical 
link 

Upwards p:=n 

Figure 15 Border  following of binary  images. 
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B I A C ,  D 3, I 000030103233333222221211110 

D 0 B F 4, 3 00033322212101 
C 0 B - 3, 2 0321 

E I A - 0, 4 03321 I 
F I D - 5, 4 0321 

Figure 16 Output  data for the  binary  image of Fig. 13. 

a  trivial matter.  Such  nonbinary  images have the  same 
topological constraints  as  binary images  where  islands 
always  consist of one object  only. Consequently,  the  adja- 705 
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Figure 17 First  step in the  decoding  procedure:  border  coating. 
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cency graphs for pseudo-binary images  are  trees  just as for 
binary images, and  there is no need for separate island and 
object following. The 4/8-connectivity  problem is most  con- 
veniently solved by mimicking the  binary  case  and using 
4-connectivity and 8-connectivity interchangeably for  every 
second  object level in the  adjacency  tree. 

Finally, a comparison can be made with Kruse’s algorithm 
[3]. The  algorithm of Figs. 14 and 15 in this  paper seems to 
be somewhat simpler and  cleaner, since it  requires no 
tagging.  One  bit per pixel is saved in the  image  memory.  The 
stack principle of [5, 61 is not  employed. The  binary  image 
algorithm of this  paper has been explained briefly in [7]. 

7 .  Decoding 
The  output  data  from  the above algorithms  may eventually 
be used in several ways that fall outside  the scope of this 706 
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paper. But  since the  output  data  permit full  reconstruction of 
the  input  data, something ought  to be said  about  their use  for 
decoding. 

In  decoding and reconstruction of the  input  image we do 
not use the  adjacency information in Fig. 9, which makes 
things very simple. Initially,  the  image plane is filled by 
blanks (.) which take  up one state of the available pixel 
states.  Then, we do the reverse of border following, which is 
to use the available chains in the  output  data for  laying out 
the contours. For the object  border chains  the pixel values 
from the old set (0, 1, 2, 3} are inserted in the  image plane 
inside and  to  the  east of each  crack. Insertion of pixel values 
to  the  north, west, and  south is not necessary. 

For the island border chains  the pixel values  from the old 
set are inserted  outside and  to  the  east of the  crack.  When  all 
borders are  “coated” in this way on their  eastern side, the 
data of Fig. 9 result in the  image shown by Fig. 17(a).  It is 
now a trivial matter for the  raster  scanner  to  do its area 
filling job, which results in Fig. 17(b).  The flowchart for the 
area filling is given in Fig. 18. 

8. Conclusions 
The  algorithm presented in this  paper delivers a contour- 
coded version of a nonbinary image combined with a topolog- 
ical  description of adjacency conditions. It also provides data 
that  determine how islands of objects are completely sur- 
rounded by another object. To be able  to  do this, all border 
elements  are  traced  out twice. The first time  the  contour of 
the object on the  outside of the border is followed in a closed 
path.  The second time  the contour of the object on the inside 
of the border is followed in a closed path. 

In the  binary  image  case these  two paths  are identical and 
can  be combined into  one procedure. In the nonbinary image 
case  they  are only piecewise identical and these operations 
have to be done as two separate procedures. 

During border following the labels closest to  the border are 
given new labels. These new labels  serve two purposes. They 
enable  the  algorithm  to establish the wanted adjacency 
conditions, and  they serve as indicators  to  the  raster- 
scanning  part of the  algorithm, telling this  procedure  that 
this  border is already done. 

In the nonbinary case  tagging is used to distinguish 
between a case in which a  border is followed on one side and a 
case in which it is not followed at  all.  Actually,  tagging could 
be avoided  completely if all objects  were known to have  a 
width of two pixels or more. 

Throughout  the  paper we have used 4-directional  links to 
encode the  contours.  Such 2-bit  links are sufficient to follow 
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a crack,  the  actual  exact borderline between two  regions. We 
feel that crack-coding is both  a simpler  and a more  natural 
way to encode contours  than  the more  prevailing  method of 
establishing  a chain  that forms  a path between pixels on one 
side or the  other of the  contour. However, the  latter method 
of contour encoding can  also be used in the presented 
algorithm. 

The 4/8-connectivity problem for objects  in  a Cartesian 
grid can be resolved in a t  least three ways for the nonbinary 
case. The most consistent  way  seems to be to define all 
objects as  internally 4-connected  (between pixels) but  exter- 
nally 8-adjacent  to  each  other. 

For binary  images  the  algorithm lends itself to consider- 
able simplification. 

Finally,  reconstruction of the original image from the 
algorithm  output  data has been demonstrated  to  be simple 
and  straightforward. 
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