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Analysis of Linear Interpolation Schemes for Bi-Level Image
Applications

In the office, it is often necessary to scan a picture at a certain resolution and then reproduce it at a different (usually higher)
resolution. This conversion can be achieved by interpolating the scanned signal between the sample intervals. This paper
discusses a class of linear interpolating methods based on resampling polynomial functions. In addition, we introduce new
methods to compare the performance of these interpolating schemes. The signal models used are one-dimensional step and
pulse functions. These bi-level models are sufficient to describe many black/white documents. The performance of the linear
interpolators is determined by evaluating their accuracy in reconstructing the original bi-level signal. The analysis considers
the effects of the coarse scan and fine print intervals as well as the quantization effects. Experiments using the IEEE facsimile
chart as input verify the analytical findings. The results show the advantage of using odd-order polynomials, such as the first
order and TRW cubic. Also, we discuss the relationship between the interpolating ratio and the number of quantization levels

needed to represent the scanned signal.

Introduction

Word processing is becoming widely used to create typed text
documents. For more sophisticated documents, such as man-
uals, diagrams and images are often needed. These images,
after being scanned into the system, can go through different
phases of editing and formatting by the user. Images may be
displayed and printed with devices having different resolu-
tions. In designing a scanning system for this type of applica-
tion, one must choose the proper resolution for the scanning
device. It is most economical to scan the image at the lowest
“useful” resolution and then interpolate the image to a
higher resolution as needed, provided one does not reduce the
apparent image quality when compared with high-resolution
scanning. This approach permits the use of a cheaper,
low-resolution scanning device with a lower-quality lens
system, lower-power light source, fewer electronic buffers,
and a lower analog to digital conversion rate. This paper
analyzes some performance questions related to two alterna-
tive methods of scanning and printing black and white
images. The first approach is high-resolution scanning and
high-resolution printing (called fine scan/fine print). The
other approach is low-resolution scanning of the image,
followed by interpolation of the sampled signals to higher-
resolution printing (called coarse scan/fine print).

The concept of coarse scan/fine print for black and white
images has been investigated by Wong and Schatz [1], who
used a nonlinear dot biasing interpolation method. Their
approach is simple to implement using an integer coarse
scan/fine print ratio, e.g., 2, 3, 4, etc. However, this method
is fairly difficult to use for non-integer ratios. Many scanners
and printers do not have an integer ratio of resolutions. For
document composition, an image is often enlarged or reduced
by fractions to fit a fixed space.

Figure 1 represents the scanning and printing system that
we analyze here. We assume that the input image is bi-level,
e.g., typed characters, line drawings, etc. In the fine scan/
fine print (FS/FP) system, the input image is scanned at the
high resolution R, (spatial interval T, = 1/R)), and the
scanned signal is then quantized into an appropriate number
of levels. If the output device has on-off printing capability
only, the stored digitized signal has to be thresholded to
either “1” or “0” before printing. The other alternative for
reproducing the image is the coarse scan/fine print (CS/FP)
system, where the input image is scanned at a lower resolu-
tion R, (or spatial interval T, = 1/R,). The scanned signal is
quantized into some appropriate number of levels, and the
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Figure 1 Two configurations of scanning and printing: (a) fine scan/fine print; (b) coarse scan/fine print.
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Figure 2 Samples of input signals.

fine-scanned signal is generated by interpolation. The inter-
polated signal is then thresholded to a two-level signal for the
output printer. We are interested in analyzing and compar-
ing the performance of these two methods of reproducing
black and white documents. Note that there are two non-
linear elements in both systems, the quantization and the
thresholding steps. These nonlinear effects greatly influence
the performance of the system.

In the following analysis, we review some linear interpolat-
ing schemes and analytical methods that can be used to
evaluate the performance of the interpolators. A new
performance model is introduced to permit the analysis in the
spatial domain. Two input models are used, a step and a pulse
input. Detailed analysis is then given for the step input for
different system model parameters, e.g., number of quantiza-
tion levels and coarse scan and fine scan ratios. The analysis
is then repeated for the pulse input. Experimental results
representing different resolutions of scanning and printing
are presented to verify the analysis. Although in this paper
we only discuss a one-dimensional signal model, the same
analysis can be extended to a two-dimensional model.

Review of linear interpolation functions

The interpolation problem can be stated as follows: Given the
values of an unknown function f (x) at a set of equally spaced
points x,, x,, X,, **+, X, it is required to find an estimate of
the function f (x*) at a point x*, where x, = x* < x, (as
shown in Fig. 2).

One way to solve this problem is to pass an nth-order
polynomial
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P(x) = ay + ax, + ax; + -+ + ax’ = f(x,)
i=0,1,.-+,n 2)
Rather than solving a system of linear equations in (2), we

may use the Lagrange interpolation polynomial to represent
Eq. (1), ie.,

P(x) = 3 £ (x)L(x), 3)

i=0

where

L = Il - x)/x, - x)

J=0,j#i

O<i=<n 4)

Equation (3) can be formulated as a convolution of an
impulse function with the sampled input f (x,) (see [2]).

As the degree increases, the interpolating polynomial P(x)
may not converge to the function f(x) (see [3]). This
problem can be solved by using a low-order polynomial to
interpolate f (x) on repeated subintervals [3]. Therefore, we
consider the interpolating polynomial functions of degrees 0,
1,2, and 3 only.

® Zero order (nearest neighbor)

Assume that the input signal is the discrete function shown in
Fig. 2. A zero-order polynomial is passed through each
sampling point. Thus, over the interval ((x |, + x,)/2,
(x, + x,)/2), the interpolating polynomial P(x) is deter-
mined by solving the equation

(x_, + xp) <xs(x° + xl).
2 2

P(x) = f(xo) (5)

The corresponding impulse-convolving function is a one-
pixel-width rectangle, as shown in Fig. 3(a).
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® First order

In this case we pass a straight line through every two
consecutive points of the input signal. Thus, over the interval
(xp x,), the interpolating polynomial is determined by
solving the two equations

P(x)=a,+ax,=f(x) i=0,1 (6)

The corresponding impulse function is a triangle, as shown in
Fig. 3(b).

® Second order

In this case a second-order polynomial is passed through
three points. Thus, for the interval (x,, x,), the coefficients of
the second-order polynomial are determined by the equa-
tions

P(x) =a,+ ax, + ax! = f(x)
i=0,1and2. (7)

It was shown in [2] that the corresponding impulse-convolv-
ing function is space-variant with the two repeating impulse
responses. In addition to the space-varying property, the
second-order interpolator—as all the even-order interpola-
tors—has phase distortion. We discuss other disadvantages
of second-order interpolation in later sections.

® Third order

There are many ways of choosing a third-order interpolating
polynomial. The “classical polynomial” is chosen so as to
pass four points of input signal. Thus, for the interval
(x X,), we have

P(x) =a,+ax, + azxf + a3x,.3 =f(x)
i=0,1,2,and 3. (8)
The corresponding impulse response is a space-variant func-

tion with three alternating forms. The impulse response has
no phase distortion in the central region only (see [2]).

In a “modified classical” approach, we use only the central
region of the interpolating function. Thus, there are always
two points to the left and two points to the right of the
interpolating region. The corresponding impulse response is
space-invariant and is described by the equation

0=x<l,

X x2
H(x) = (1 - x)(l +3- 7)

=(1—x>(2—x)(%—§) l=x<2,
=0 2 = x,
H(—x) = H(x). 9

The impulse response is shown in Fig. 3(c). Derivation of Eq.
(9) is given in the Appendix. The advantages of the modified
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Figure 3 Impulse responses of different interpolators: (a) zero-
order interpolation; (b) first-order interpolation; (c) modified third-
order interpolation; and (d) TRW cubic interpolation.

cubic polynomial are the space-invariant property, which
makes it easier to implement as a linear filter, and the
absence of phase distortion in the frequency response (see
(2,4]).

If we are going to use the interpolating function over the
central region only, namely (x,, x,), there is no need to pass
the interpolating function through the sample points at x,, x;,.
Instead, these additional degrees of freedom can be used to
achieve some other constraints on the interpolating function.
A special choice of the cubic polynomial is to approximate
the function sin x/x over the interval (—2, 2) (see [5]). This
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Figure 4 Interpolation of a step function: (2) input step with phase
shift 67,; (b) scan at 7, intervals; (c) first-order interpolation and
threshold; and (d) reconstructed step function.

is generally known as the TRW cubic convolution polyno-
mial, and its impulse response is described by

Hx)=Q-x1+x-x) O=x<l,
=(1-x)2-x) l=x<2,
=0 2=<x,
H(—x) = H(x). (10)

The shape of the impulse response is given in Fig. 3(d). It is
shown in the Appendix that the TRW cubic polynomial has
the property that the slope of the interpolating function at
any sampling point is twice the slope of the line connecting
two adjacent points.

Performance evaluation of the interpolating
schemes

In the previous section we reviewed some of the polynomial
interpolating schemes. We are now going to discuss analyti-
cal methods that can be used to evaluate the interpolator’s
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performance. This evaluation can be done in either the
frequency domain or spatial domain.

Examples of the frequency-domain analysis are given in
[2, 6]. In [2], Schafer and Rabiner model the interpolating
schemes as a digital filter. They assume that the input is
made up of ideal impulse samples of a band-limited signal.
For this model, ideal interpolation can be achieved using
either a low-pass filter or a band stop filter. They calculate
the frequency responses of some low-order polynomial inter-
polations and compare them to the ideal filters. Pratt
discusses the problem of reconstructing a continuous signal
from the input samples [6] and defines two kinds of recon-
struction errors: the resolution error, which describes distor-
tion from attenuation of the central spectra mode; and the
interpolation error, which describes the distortion from spu-
rious high-frequency components. These two errors are cal-
culated for a certain band-limited signal model.

Most of the performance evaluation techniques in the
spatial domain depend on experimental measurements, such
as comparing a reference image sampled at high resolution
with the same image interpolated from a coarse-sampled
grid. Some interesting measurements are the error histo-
gram, which plots the number of pixels having a given error
vs the error magnitude [5] and some functions of this error,
such as the mean square error {4].

We previously mentioned that the signals of interest in this
paper are binary and that we are interested in analyzing the
nonlinear effects of quantization and thresholding. Since
binary signals are not band-limited and the nonlinear effects
are difficult to analyze in the frequency domain, we do the
analysis in the spatial domain. In this approach, the signal
models are chosen so that they have practical significance,
while being simple enough for the analytical manipulation.
Thus, we consider the step and the pulse functions, which can
describe almost all binary images of interest. Although we
only discuss the one-dimensional signal model, the same
analysis can be extended to the two-dimensional model. We
now start with the step input model.

o Step input model

Figure 4(a) shows a step input function at a relative position
6T, from the origin. This input is scanned at intervals T,
using an averaging window of T, width. The result is shown
in Fig. 4(b). The samples are interpolated, in this case using
a first-order interpolation for illustrative purposes, and the
continuous output signal is shown in Fig. 4(c). To reproduce
a binary output, the interpolated signal is thresholded at 0.5
of the intensity, resulting in the output step function shown in
Fig. 4(d). The distance between the original and the recon-
structed step locations can be used to evaluate the perform-
ance of the interpolating function.
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In the previous discussion, we neglected two factors, the
first being the effect of using a finite number of quantization
levels K in representing the scanned signal, and the second
being the effect of the fine print sampling interval T,. We
start with a simplified model and then increase the degree of
complexity one step at a time. Thus, we have the following
four cases:

1. Neglect the effects of the fine print interval and the
quantization error (7, = 0 and K = ).

2. Consider the quantization effect (X finite).

. Consider the effect of the fine print interval (7', # 0).

4. Consider the effects of both the fine print interval and the
quantization errors (7, # 0 and X finite).

w

We start with the first case.

Case 1. Neglecting the effects of fine print interval and
quantization error (T, = 0, K = =)

The signal model used in this case is illustrated in Fig. 4. We
consider some examples for calculating the location error. To
simplify the analysis, we normalize the distance measure-
ments by assuming 7, = 1. In the case of first-order
interpolation, the reconstructed step location « is at the 0.5
crossing shown in Fig. 5(a). From the triangular ratio we
have

a=26/(6+0.5) (11)
and the normalized error = a — 6. (12)
In the modified cubic convolution, the coefficients of the

interpolating polynomial are determined by substituting the

values of f(x_)), f(xy), f(x)), f(x,) in Eq. (8). From Fig.
5(b), we hgvc

f(-10)=0=0y,—a, +a, — ay,
f(0.0)=05-06=q,

SAO) =10=a;+a, +a, + o,

f(2.0) = 1.0 = a + 20, + 4, + 8. (13)

Solving these equations for «, - -
P(x), we have

-, a; and substituting in

1 1 3 ) 7 1 1
Px)=|-——-=9 — + = - — 0.
(x) ( 273 )x + 6x +(12+26)x+2

(14)
The reconstructed step location will be at
P(x) = 0.5. (15)

Equation (15) is a cubic polynomial of x and can be solved
using Cardan’s formula [7] or any simple iterative proce-
dure. It is important to notice that, if we were using the
classical cubic interpolation, we would have three forms of
f(x), depending on the interval used for interpolation, name-
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Figure 5 (a) First-order interpolation of a step input; (b) third-
order interpolation of a step input.

ly, (x_,, x,), (x_, x,), or (x,, X;), with three different values
of the location error. Because of this uncertainty, we always
use the modified classical form, which we call the “ordinary”
cubic polynomial.

The location error as a function of the input step position
has been calculated for the zero order, first order, second
order, ordinary cubic, and TRW cubic. The results are shown
in Fig. 6. From this graph we notice the following:

1. The nearest-neighbor interpolator results in a large loca-
tion error. The maximum location error is 0.5 of the
sampling period, T,.

2. The first-order interpolator represents a measurable
improvement over the nearest neighbor, the maximum
location error being 0.086 of the sampling period, 7.

3. For the odd-order polynomials, the error decreases as the
polynomial order increases.

4. The TRW cubic has better performance than the ordi-
nary cubic.

5. The even-order polynomials have larger errors than the
odd-order polynomials. This results from the lack of
symmetry of the even-order polynomials. For a given
interpolating point x*, the number of sampling points to
the left and to the right always differ by a factor of one.
For this reason we do not consider the even-order poly-
nomials in the rest of this paper.

We now consider the effect of quantization error on the
interpolating schemes.
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Figure 6 Interpolation errors with step input.
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Figure 7 Correspondence between scanned intervals and quan-
tized output for K quantization levels.

Case 2: Considering the effect of quantization error (T, = 0,
K finite)

In this case, the scanned signals are digital with a finite
number of quantization levels. Thus, if we have Q bits of
quantization with a corresponding K = 2%levels, the scanned
signal shown on the left of Fig. 7 will be assigned one of these
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K levels on the right. In this quantization scheme, we assign
levels at 0 and 1 and distribute the other levels uniformly.
This scheme minimizes the maximum absolute quantization
error. To illustrate the quantization effect, consider the
example shown in Fig. 8. We assume two bits of quantization
so that we have four possible quantization levels. If the input
step is at location §, such that 0 = § =< 1/3, the scanned signal
will correspond to a quantized location 6, = 1/3. Using
first-order interpolation, the reconstructed step location will
be at

05 -6
o =—7"1, (16)
1-9
q
and the location error is
1
oa—6=025-6 forOsésg. a7

This error is a linear function of 8. A plot of the location error
as a function of the step input position is shown in Fig. 9. An
important measurement of this graph is the maximum
absolute location error over the input step position. We
calculate this as a function of the number of bits of quantiza-
tion for an input step interpolated using the first-order,
ordinary cubic, and TRW cubic schemes. The results are
plotted in Fig. 10. From this figure, we notice that using one
bit of quantization, we have a maximum error of 0.5 the
sampling interval. The error decreases monotonically as the
number of quantization bits increases, with no significant
improvement for ¢ = 5 bits. Note that TRW cubic convolu-
tion has a slightly lower error for the same number of bits of
quantization.

Case 3. Considering the effect of fine print interval (T, # 0,
and Q = «)

As an example, assume that the fine print interval T, is 1/5
of the coarse scan interval T,, and the input step function is
at a position 67, from the origin, such that

T <oT, < 2T, . (18)
1 2 1

If the input signal is scanned at the fine rate T, the
scanned value will be O for x = T, and 1 for x = 27,. The
continuous output signal is reconstructed using a rectangular
window of width T, centered around the sampling point.
Thus, the output step will be located at x = (3/2)T, as
shown in Fig. 11(b). The location error is a linear function of
the actual step position.

If the input signal is scanned using the coarse interval T,
interpolated to the fine interval T, the output step position is
determined by finding the fine print interval at which the
interpolating curve crosses the 0.5 threshold and then recon-
structing the step function at the center of this interval.
Figures 11(c) and (d) show an example for a CS/FP
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Figure 8 Interpolation of a step function taking into consideration the quantization effect: (a) input step with phase shift 0 < 6 < 1/3; (b) scan
at unit intervals; and (c) interpolation of quantized signal and threshold in output step.

resolution ratio 1:5 with first-order interpolation. Similar
analyses can be applied to the other interpolation schemes. In
Fig. 12, we plot the normalized location error as a function of
the input step position, for the first order, the ordinary cubic,
and the TRW cubic for the CS/FP resolution ratios 1:2, 1:3,
1:4, and 1:5. Notice that the measurements are now normal-
ized with respect to the coarse scan interval 7,. For compari-
son, we also plot the results of the FS/FP scheme. These
results show that the coarse scan/fine print with different
linear interpolation methods and fine scan/fine print have
essentially the same form of error curve, which is sawtooth in
shape. Furthermore, for most of the input phase shift, all
error curves lie on top of each other, with exceptions at few
locations. The CS/FP error cannot be reduced below the
FS/FP error. It is interesting to note that with a CS/FP ratio
of 1:2, the location error is the same whether FS/FP or
CS/FP is used with any odd-order interpolator. Some impor-
tant measurements from the case of a CS/FP ratio of 1:5 are
summarized in Table 1.

The above analysis explains why binary images repro-
duced by using a CS/FP method appear similar to those
obtained by a FS/FP method.

Case 4: Considering the effects of fine print interval and
quantization error simultaneously

In the analyses of cases 2 and 3, we considered the effects of
the quantization error and the fine print resolution separate-
ly. We now consider their interaction. We consider the case
in which the input scanned signals are represented using 1, 2,
3, and 4 bits of quantization. In this analysis, the scanned
signal is quantized to a finite number of levels as in case 2.
After interpolation, the step location is determined as in case
3, assuming a CS/FP resolution ratio 1:5. In Fig. 13, we plot
the location error as a function of the input step position in
the case of first-order interpolation. The results confirm the
previous conclusion about the required number of quantiza-
tion bits. In fact, with Q = 4 we have a maximum error less
than that for Q = . This required number of bits applies to
all CS/FP ratios = 1:5.
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Figure 11 Interpolation of a step function taking into consider-
ation the effect of the fine print interval: (a) input step with phase
shift 87,; (b) fine scan at T, intervals; (c) interpolation of coarse-
scanned signal; and (d) fine print at 7 intervals.

Table 1 Interpolation errors with step input.

Scheme used Percentage of region Maximum
for which the performance error
of the CS/FP and the FS/FP

are the same

FS/FP 100% 0.17,
First order 71.4% 0.175 T,
Ordinary cubic 75% 0.165 T,
TRW cubic 89% 0137,

® Pulse signal model

We now discuss the case of an input pulse signal. An example
of an input pulse of width W is shown in Fig. 14(a). After
scanning, interpolating, and thresholding, the reconstructed
pulse signal is as shown in Fig. 14(d). The error measure-
ments of interest for this model are

the positive-going-edge _ e T
location error IR
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Figure 12 Interpolation errors with step input for different CS/FP
ratios.

the negative-going-edge _ _
location error 2tz

the error in locating

the pulse center =&T, = (&, +&)Ty/2,

the error in estimating

the puise width =W-w

= (g, —e)T,.

These error measurements can be derived from the step
function analysis if the pulse function has a width

W > 2T, when we are using a first-order interpolator,
W > 3T, when we are using a third-order interpolator.

Otherwise, there will be interaction between the positive- and
the negative-going edges. In this case, we have to solve the
pulse function problem independently. Also, notice that if
W < T,, there is a possibility of not detecting the pulse signal
at all after thresholding. For the previous reasons, we only
consider the case of T, = W < 2T,. In the following analysis,
we consider the simple case where the effects of the quantiza-
tion error and the finite print resolution are neglected. Later
we consider the general case.

Case 1: Neglecting the effects of fine print interval and
quantization error (T; = 0, K = )

The signal model used is shown in Fig. 14. In this model, we
have two important parameters—pulse width and pulse
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location. For the analysis, we consider input pulses of three
widths, W = 1.2T,, 1.5T,, and 1.87,. In each case, the
scanned signal is interpolated using the first-order, the
ordinary cubic, and the TRW cubic methods. Details of the
result are described in [8].

For a given input pulse width, the output pulse width is a
function of the input pulse position with respect to the
sampling intervals. A plot of the maximum and minimum
pulse widths for different interpolation methods as functions
of the input pulse width is shown in Fig. 15. Notice that the
TRW cubic has the smallest error variation, in addition to
the fact that most of the TRW error is positive, thus making
the pulses appear thicker. This positive error is better than
the negative error that may reduce the visibility of some of
the thin pulses. Also, we discover that for all the interpolation
schemes, the pulse width error increases sharply for W <
1.27,.

Case 2: Considering the effect of quantization error

We consider the case of an input pulse of width W = 1.57,.
The scanned signal is quantized using 1, 2, and 3 bits of
quantization. In each case, the quantized signal is interpo-
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Figure 14 Interpolation of pulse input: (a) input pulse of width W
and at position §7T,; (b) scan at T, intervals; (c) first-order interpola-
tion and threshold; and (d) reconstructed pulse function.

lated using first-order interpolation, and then thresholded.
We evaluate the estimated pulse width W as the input pulse
position varies over the interval —0.5 = 6 =< 0.5. Plots of the
results are shown in Fig. 16. In the same figure, we plot the
pulse error when the quantization error is neglected, namely,
Q = «. From this figure, we notice the large error in the case
of @ = 1. This error drops sharply for @ = 2, and then
decreases slowly with the further increase of Q.

Case 3: Considering the effect of fine print interval

As in the previous case, we use as an input a pulse of width
1.5T,. We measure the pulse width error when the signal is
scanned and printed at a fine interval 7, = 1/57,. Also, we
measure the pulse width error when the signal is scanned at
an interval T, and printed at interval T, using a first-order
interpolation. Plots of the error as a function of the input
pulse position are shown in Fig. 17, from which we observe
that for most of the input pulse positions, the absolute errors
for both the CS/FP and FS/FP schemes are the same.
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Figure 15 Maximum and minimum pulse width variations.

Experimental results

In the previous sections we discussed different analytical
measurements that can be used to evaluate the polynomial
interpolating schemes. To verify the analytical findings, we
conduct the following two experiments using the IEEE
facsimile test chart. In the first experiment we scan the parts
corresponding to the “text,” “scale,” and “ray,” at a rate of
1248 pixels/inch, as shown in Fig. 18. The scanned pictures
are reduced by a factor of five using a simple averaging
procedure. The results are then interpolated five times using
the nearest neighbor, the first order, the ordinary cubic, and
the TRW cubic. For each test picture, we compare the
interpolated output with the original picture. As an error
measurement, we count the number of originally white pixels
that have been changed to black and the number of black
pixels that have been changed to white. The percentage
errors are also calculated. The results are given in Tables 2,
3, and 4. In each case, the number of originally white pixels
(sumw) and the number of originally black pixels (sumb) are
given in the table.
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Figure 16 Quantization effects on pulse width variations using
first-order interpolation (pulse width W = 1.5).

Note that the nearest neighbor results in errors that are at
least double those of the other interpolating schemes. The
differences between the other schemes are small, with the
TRW cubic resulting in the best performance, followed by
the ordinary cubic and the first order. These results agree
very well with the previous analysis.

In the second experiment, we scan parts of the IEEE chart
at a coarse scanning rate of 249 pixels/inch. The scanned
signal is then interpolated five times and compared with the
fine-scanned signal. Examples of the results are shown in
Figs. 19 and 20. In Fig. 19, we show the two-point and
six-point letters of the IEEE chart in the cases of FS/FP and
CS/FP using the nearest neighbor, the first order, the
ordinary cubic, and the TRW cubic. These results show that
the nearest neighbor is inferior to the other interpolating
schemes. We also observe that there is a limit on the coarse
scan rate beyond which it is impossible to regain the original
signal. This is clearly shown in the case of the two-point
letters, where the stroke width is 0.6 of the coarse scan
interval. In this case, none of the interpolated outputs is
legible while the FS/FP output is still sharp and clear. Also
of interest is the effect of changing the number of quantiza-
tion levels of the scanned signal on the interpolated output. In
this experiment, we scan parts of the IEEE chart at 249
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Figure 17 Effect of CS/FP ratio on pulse width error using

first-order interpolation.

Table 2 Picture “text”: sumw = 3 730 625; sumb = 453 439.

Operator Error Percentage error
White Black Total White Black Total
NN 52154 33578 85732 1.40 7.41 2.05
B1 25981 4450 30431 0.70 0.98 0.73
ORD 25349 2577 27926 0.68 0.57 0.67 . L
TRW 24616 1573 26189 0.66 0.35 0.63 Figure 18 Selected portions of the IEEE Facsimile Test Chart: (a)

picture “text,” (b) picture “scale,” (c) picture “ray.”

pixels/inch, while the output is represented using 1, 2, 4, 6, Table 3 Picture “‘scale™: sumw = 3 452,401; sumb = 731 663.

and 8 bits of quantization. These outputs are then interpo-

lated five times and compared with the FS/FP at 1248 Operator Error Percentage error
pixels/inch. Resulits for the six-point text are shown in Fig. White Black Total White Black Total
20. There is no noticeable difference between the 8-bit, the

6-bit, and the 4-bit pictures. There are some differences TSIN Zg 2‘2‘2 4; g;(’; 1;2 (1)?2 %(3)2 ?g} %;z
between. the 4‘—bll ar.1d thft 2-bit pictures, while the 1-bit ORD 42474 7529 50003 1:23 1.03 1.20
picture is obviously inferior to all the other cases. These TRW 40182 6404 46586 1.16 088  1.11

observations agree with the analytical results obtained in
previous sections.

Conclusions

This paper has presented both analytical and experimental
results in evaluating the performance of different linear
interpolation schemes for bi-level images. Although we only

Table 4 Picture “ray”: sumw = 2 224 873; sumb = 1 959 191.

use a one-dimensional step and pulse input model for our Operator Error Percentage error
aflalysw., we behcv? that our results are dl.rectlly applicable to White Black Total White Black Total
binary images, which consist of a combination of step and
pulse inputs. NN 197 884 116 731 314615 8.89 595 7.52
Bl 129282 7575 136857 5.81 0.39 3.27
. ORD 119119 7126 126245 5.35 0.36 3.02
The odd-order interpolators have better performance than TRW 116770 8024 119701 502 041  2.86
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the even-order interpolators. The nearest-neighbor method
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Figure 19 (a) Reproduction of IEEE chart two-point letters; (b)
reproduction of chart six-point letters.

(zero order) is simple to implement, because it does not
involve arithmetic operations, but its performance is inferior
to other odd-order interpolators. Among the odd-order inter-
polators tested, the TRW cubic has the best performance,
followed by the ordinary cubic and then the first order. Since
the differences in performance of these three interpolators
are not significantly large, we recommend using the bi-linear
interpolation method for image resolution translation from
low to high resolution, because it requires a smaller number
678 of computation steps than the TRW cubic and the ordinary
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cubic interpolators. The bi-linear interpolator needs four
points in an image to calculate a new sampling point,
whereas the cubic interpolators need sixteen points.

In processing binary images for interpolation, we have
shown that quantization of 4 to 5 bits is necessary to preserve
very reasonable edge location accuracy.

Appendix
In this appendix, we prove that the modified cubic and the
TRW cubic interpolators can be modeled as a convolution
with an impulse response of the form shown in Figs. 3(c) and
3(d), respectively. In general, this impulse response is

defined as
H(x) = h(x) O=x<1,
= h,(x) l=x<2,
=0 2=ux,
H(—x) = H(x), (19

where both h, and k, are third-order polynomials. If the input
samples are as shown in Fig. 21, the interpolated output over
the central region, (0, 1), is the sum of the inpulse responses
from f(—1), £(0), f(1), and f(2). Thus, the interpolating
polynomial is

P(x) = f(=Dh(x + 1) + f(0)h,(x)
+ (A = x) + f (D2 — X). (20)

Since the interpolating function has to pass through the
sampling points, &,(x) and A,(x) satisfy the following condi-
tions:

h(0) =1, (21)
h,(1) =0,
(1) =0,
h,(2) = 0. (22)

Thus, the polynomials &, and A, are of the form
h(x) = (1 — x)(1 + Ax + Bx'), (23)
hy(x) = (1 — x)(2 - x)(C + Dx). (24)

The parameters 4, B, C, and D are determined by the
interpolating scheme used. We now consider two special
cases.

In the modified cubic interpolator, the function P(x) and
its extensions over the regions (—1, 0) and (1, 2) is a
third-order polynomial of the form

P(x) = ay + ax + ozzx2 + a3x3 (25)

that should pass through all the sampling points. Thus,
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P(-1)=f(-1)=0a,— a, + o, — a5,
P(0) = f(0) = «,
P =fA)=a,+a, +a, + ay,

P(2) = f(2) = & + 2a, + 4o, + 8a5. (26)

Solving for «y, a,, a,, and a,, and substituting in Eq. (25), we
have

P(x) = £(0)
1 1 1
+ A(S)f(—l)*(i)f(O) +f(1)—(g)f(2)]x
" (% f(—l)—f(0)+(%)f(1)]x2
1 N LA PSS LA P
nE g)f(— )+(5)f( )—(z)f( )

+ (é) f(2)] x. 27

Rearranging the previous equation,
- 1 Ne (Y
e o] () ()2 ()]
o)1 : : (N e
rroft -5 )]
N, (1) ,
+f(1)x+(5)x f(i)x
AL 1 ,
o) 7(8)x+ (g)x ] o8
Comparing with Eq. (20), we have
h(x) = (1 e A
= (- ()
hy(x) = (1 2 1 N e 29
0 = (1 — x)( *X)((E)f(g)x) 29)

We consider now a generalized derivation of a group of
cubic interpolators that includes the TRW cubic as a special
case. We mentioned before that the TRW cubic results in an
interpolating function that has a continuous first derivative
at the sampling points. We show here that this first derivative
is a fixed ratio of the slope of the line joining the two adjacent

sampling points. If this generalized condition is satisfied at
any sampling point, it will be true for any other sampling
point. Therefore, we consider the first derivative at the
sampling point x,. This derivative should equal a fixed ratio
of the difference f (x,) — f(x_,). Thus,

dP(x)
dx

0=a(f(1)—f(\1)). (30)
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Figure 20 Effects of quantization using bi-linear interpolation.
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Figure 21 Illustration for cubic convolution.

By substituting the values of P(x), #,(x), and h,(x) from Egs.
(20), (23), and (24), Eq. (30) is reduced to

SEDAHCHD) +f(ONA-1D) +f () A4+ B+1)
+/((=C=2D) =a(f(1) = f(-1)). €)Y}

Since this is true for all values of f(x), the following
conditions should be satisfied: 679
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a=C+D,

0=4-1,

a=A4+B+1,

0=C+2D. (32)

Solving in 4, B, C, and D, we have

A=1,

B=a«a--2,

C = 2a,

D= —a. (33)

If we choose o« = 1, we then have the TRW cubic interpola-
tor. It is interesting to note that the slope of the interpolated
function at any sampling point is twice the slope of a line
connecting the two adjacent sampling points. Equality of the
two slopes can be achieved if we choose « = 1/2; this other
case was suggested in [9]. However, it appears that the TRW
cubic has better performance in the case of binary pictures.
A different derivative of the TRW interpolator is given in
[10].

Since all parameters in Eq. (31) are single-valued func-
tions of «, we can change the value of « to optimize the
performance for any given signal model. This idea needs
further study.
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