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Analysis  of  Linear Interpolation Schemes for Bi-Level Image 
Applications 

In the  ofice.  it  is  often necessary to  scan a picture  at a  certain resolution and then reproduce it  at a  different (usually higher) 
resolution. This conversion can be achieved by interpolating the scanned signal between the  sample intervals. This  paper 
discusses  a  class of linear interpolating  methods based on resampling  polynomial  functions. In  addition, we introduce new 
methods  to  compare  the  performance  of  these interpolating schemes.  The signal models used are  one-dimensional step and 
pulse  functions.  These bi-level models are suficient  to describe many  blacklwhite  documents.  The  performance  of  the linear 
interpolators  is determined  by evaluating  their accuracy in reconstructing the original bi-level signal. The  analysis considers 
the  effects  of  the coarse scan and fine  print  intervals  as well as  the  quantization effects. Experiments using the  IEEE  facsimile 
chart as  input  verifv  the  analytical  findings.  The  results show the advantage of using  odd-order polynomials,  such  as  the  first 
order  and T R  W cubic. Also, we discuss  the relationship between the interpolating ratio and the  number  of  quantization levels 
needed to  represent the scanned signal. 

Introduction 
Word processing is becoming widely used to create typed text 
documents. For more sophisticated documents,  such  as  man- 
uals, diagrams  and  images  are  often needed. These images, 
after being scanned  into  the  system,  can go through different 
phases of editing  and  formatting by the user. Images  may be 
displayed and  printed with devices having  different resolu- 
tions. In designing  a scanning system  for this  type of applica- 
tion, one must  choose the proper  resolution for  the  scanning 
device. It is most economical to  scan  the  image  at  the lowest 
“useful”  resolution and  then  interpolate  the  image  to a 
higher  resolution as needed, provided one does  not reduce  the 
apparent  image  quality when compared with  high-resolution 
scanning. This  approach  permits  the use of a cheaper, 
low-resolution scanning device with  a  lower-quality lens 
system, lower-power light  source, fewer electronic buffers, 
and a lower analog  to  digital conversion rate.  This  paper 
analyzes some performance questions related  to two alterna- 
tive methods of scanning  and  printing  black  and white 
images. The first approach is high-resolution scanning  and 
high-resolution printing (called fine scan/fine  print).  The 
other  approach is low-resolution scanning of the  image, 
followed by interpolation of the  sampled  signals  to  higher- 
resolution printing (called coarse  scan/fine  print). 

The concept of coarse  scan/fine  print for  black and white 
images has been investigated by Wong and  Schatz [ l ] ,  who 
used a  nonlinear dot biasing  interpolation  method. Their 
approach is simple to  implement using an integer coarse 
scan/fine  print  ratio, e.g., 2, 3, 4, etc. However,  this  method 
is fairly difficult to  use for  non-integer  ratios. Many  scanners 
and  printers  do not have an integer ratio of resolutions. For 
document composition, an  image is often enlarged or reduced 
by fractions  to fit a fixed space. 

Figure 1 represents the  scanning  and  printing system that 
we analyze here. We  assume  that  the  input  image is bi-level, 
e.g., typed characters,  line drawings,  etc. In  the fine scan/ 
fine print (FS/FP) system,  the  input  image is scanned at  the 
high  resolution R,  (spatial interval T I  = l / R l ) ,  and  the 
scanned  signal is then  quantized  into  an  appropriate  number 
of levels. If the  output device has on-off printing  capability 
only, the stored  digitized  signal has  to  be thresholded to 
either “1” or “0” before printing.  The  other  alternative for 
reproducing the  image is the  coarse  scanlfine  print (CS/FP) 
system, where  the  input  image is scanned at  a lower resolu- 
tion R, (or spatial  interval T2 = l /R , ) .  The  scanned signal is 
quantized  into some appropriate  number of levels, and  the 
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Figure 1 Two configurations of scanning  and  printing: (a) fine scan/fine  print; (b) coarse  scan/fine print. 
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Figure 2 Samples of input  signals. 

fine-scanned signal is generated by interpolation.  The  inter- 
polated  signal is then thresholded to a  two-level  signal  for the 
output  printer.  We  are  interested in analyzing  and  compar- 
ing the  performance of these two methods of reproducing 
black and  white  documents.  Note  that  there  are two non- 
linear  elements in both  systems, the  quantization  and  the 
thresholding  steps. These nonlinear effects greatly influence 
the  performance of the  system. 

In the following analysis, we review some linear  interpolat- 
ing  schemes and  analytical  methods  that  can be used to 
evaluate  the  performance of the  interpolators. A new 
performance model is introduced to  permit  the analysis in the 
spatial  domain. Two input models are used,  a step  and a  pulse 
input. Detailed  analysis is then given for the  step  input for 
different  system model parameters, e.g., number of quantiza- 
tion levels and  coarse  scan  and fine scan ratios. The analysis 
is then  repeated for the pulse input.  Experimental results 
representing different  resolutions of scanning  and  printing 
are presented to verify the analysis. Although in this  paper 
we only discuss  a  one-dimensional  signal  model, the  same 
analysis can  be  extended to a  two-dimensional  model. 

Review  of linear interpolation functions 
The interpolation  problem can  be  stated  as follows: Given the 
values of an unknown functionf(x)  at a set of equally spaced 
points x,, x,, x2, . - -, x,, it is required  to find an  estimate of 
the  functionf(x*)  at a  point x*,  where x, 5 x *  5 x, (as 
shown in Fig. 2). 

One way to solve this  problem is to pass an  nth-order 
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P(x) = a,  + a , x  + a2x2 + * .  . + anx" (1) 

through  the points (x,, f(x,)), e . . , (xn,  f(xn))  and  to use 
P(x)  as  an  estimate  off(x).  The coefficients a,, a , ,  . - -, an 
can be derived by solving the set of linear  simultaneous 
equations 

P(x,) = a,  + a ,x i  + a,.; + . * + a"x: = f(Xi) 

i = 0, 1, . -, n. (2) 

Rather  than solving a  system of linear equations in (2), we 
may  use the  Lagrange interpolation  polynomial to represent 
Eq. ( l ) ,  Le., 

n 

Li(X) = n (x - X,)/(Xi - XI) 0 i i 5 n. (4) 
I = , ,  j t i  

Equation  (3)  can be formulated  as a convolution of an 
impulse  function with the  sampled  inputf(xi) (see [2]). 

As the  degree increases, the  interpolating polynomial P(x) 
may not converge to  the function f ( x )  (see [3]).  This 
problem can be solved by using a  low-order  polynomial to 
interpolatef  (x) on repeated  subintervals  [3].  Therefore, we 
consider the  interpolating polynomial functions of degrees 0, 
1,2,  and 3 only. 

Zero  order  (nearest neighbor) 
Assume that  the  input signal is the  discrete function shown in 
Fig. 2. A  zero-order  polynomial is passed through  each 
sampling point. Thus, over the interval ((x-, + x0)/2, 
(x, + x,)/2),  the  interpolating polynomial P(x)  is deter- 
mined by solving the  equation 

The corresponding impulse-convolving function  is  a  one- 
pixel-width rectangle,  as shown in Fig. 3(a). 
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First order 
In this  case we pass  a straight line through every two 
consecutive  points of the  input signal. Thus, over the interval 
(x,,, xl), the  interpolating polynomial is determined by 
solving the two equations 

P(x , )  = a, + a l x i  = f ( x i )  i = 0, 1 .  ( 6 )  

The corresponding  impulse  function is a triangle,  as shown in 
Fig. 3(b). 

0 Second order 
In this  case a  second-order  polynomial is passed through 
three points. Thus, for the interval (x,, x2), the coefficients of 
the second-order polynomial are  determined by the  equa- 
tions 

P(x,)  = a, + a , x i  + a,.; = f ( x J  

i = 0, 1 and 2. (7)  

It was shown in [2] that  the corresponding impulse-convolv- 
ing function is space-variant with the two repeating impulse 
responses. In addition  to  the space-varying property,  the 
second-order  interpolator-as all  the even-order interpola- 
tors-has phase distortion.  We discuss other  disadvantages 
of second-order  interpolation in later sections. 

Third order 
There  are  many ways of choosing a third-order  interpolating 
polynomial. The “classical  polynomial” is chosen so as  to 
pass four points of input signal. Thus, for the interval 
(x,, xJ. we have 

P(x , )  = a, + a l x i  + a,.; + a,.; = f ( X J  

i = 0, 1, 2, and 3. (8) 

The corresponding  impulse  response is a space-variant func- 
tion with three  alternating forms. The impulse  response  has 
no phase distortion in the  central region only (see [2]). 

In a “modified classical” approach, we use only the  central 
region of the  interpolating function. Thus,  there  are always 
two points to  the left and two  points to  the  right of the 
interpolating region. The corresponding  impulse  response is 
space-invariant  and is described by the  equation 

= o  2 5 x, 

H ( - x )  = H ( x ) .  (9) 

The impulse  response is shown in  Fig. 3(c). Derivation of Eq. 
(9) is given in the Appendix. The  advantages of the modified 
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Impulse response 

Figure 3 Impulse responses of different  interpolators:  (a) zero- 
order  interpolation; (b) first-order  interpolation; (c) modified third- 
order  interpolation;  and  (d) TRW cubic interpolation. 

cubic polynomial are  the space-invariant  property, which 
makes  it  easier to implement as a linear filter, and  the 
absence of phase distortion in the frequency  response  (see 
~ 4 1 ) .  

If we are going to use the  interpolating function over the 
central region only,  namely (xl, x2), there is no need to pass 
the  interpolating function through  the  sample points a t  x,, x3. 
Instead,  these  additional  degrees of freedom can be used to 
achieve  some other  constraints on the  interpolating function. 
A special  choice of the  cubic polynomial is to  approximate 
the function  sin x/x over the interval (-2, 2) (see [ 5 ] ) .  This 669 
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Figure 4 Interpolation of a step function: (a) input step with phase 
shift 6T,; (b) scan at T2 intervals; (c) first-order  interpolation  and 
threshold; and (d) reconstructed step function. 

is generally known as  the  TRW  cubic convolution polyno- 
mial, and  its impulse  response is described by 

H ( x ) = ( l  - x ) ( l  +X”’) 0 5 X < l ,  

= ( 1  - x)(2 - x)’ 1 5 x < 2 ,  

= o  2 5 x, 

H ( - x )  = H ( x ) .  (10) 

The  shape of the impulse  response is given in Fig. 3(d).  It is 
shown in the Appendix that  the  TRW  cubic polynomial has 
the  property  that  the slope of the  interpolating function at  
any  sampling point is twice the slope of the  line connecting 
two adjacent points. 

Performance evaluation of the interpolating 
schemes 
In the previous section we reviewed some of the polynomial 
interpolating schemes. We  are now going to discuss analyti- 

670 cal  methods  that  can  be used to  evaluate  the interpolator’s 
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performance.  This evaluation can be done in either  the 
frequency domain  or  spatial  domain. 

Examples of the frequency-domain  analysis are given in 
[2, 61. In [2],  Schafer  and  Rabiner model the  interpolating 
schemes as a digital filter. They  assume  that  the  input is 
made  up of ideal  impulse samples of a  band-limited  signal. 
For this model, ideal  interpolation can be achieved  using 
either a low-pass filter or a band  stop filter. They  calculate 
the frequency responses of some  low-order polynomial inter- 
polations and  compare  them  to  the ideal filters. Pratt 
discusses the problem of reconstructing a  continuous  signal 
from  the  input samples [6] and defines two  kinds of recon- 
struction  errors:  the resolution error, which describes  distor- 
tion from  attenuation of the  central  spectra mode; and  the 
interpolation error, which describes the distortion from  spu- 
rious  high-frequency  components. These two errors  are  cal- 
culated for  a certain band-limited  signal model. 

Most of the  performance evaluation  techniques in the 
spatial  domain depend on experimental  measurements, such 
as  comparing a  reference image  sampled at  high  resolution 
with the  same  image  interpolated  from a  coarse-sampled 
grid.  Some  interesting  measurements  are  the  error histo- 
gram, which plots the  number of pixels having  a given error 
vs the  error  magnitude  [5]  and  some functions of this  error, 
such as  the mean square  error  [4]. 

We previously mentioned that  the signals of interest in this 
paper  are  binary  and  that we are  interested in analyzing  the 
nonlinear effects of quantization  and thresholding. Since 
binary  signals are not band-limited  and  the nonlinear effects 
are difficult to  analyze in the frequency domain, we do  the 
analysis in the  spatial  domain. In this  approach,  the signal 
models are chosen so that  they have practical significance, 
while being  simple  enough for the  analytical  manipulation. 
Thus, we consider the  step  and  the pulse functions, which can 
describe  almost all  binary images of interest.  Although we 
only discuss the one-dimensional  signal model, the  same 
analysis can be extended  to  the two-dimensional  model. We 
now start with the  step  input model. 

Step input model 
Figure  4(a) shows a step  input function at  a  relative position 
6T, from  the origin. This  input is scanned at  intervals T2, 
using an  averaging window of T2 width. The result is shown 
in Fig. 4(b).  The samples are  interpolated, in this  case using 
a  first-order  interpolation  for illustrative purposes, and  the 
continuous output signal is shown  in  Fig. 4(c).  To  reproduce 
a binary  output,  the  interpolated signal is thresholded at  0.5 
of the  intensity,  resulting in the  output  step function  shown in 
Fig. 4(d).  The  distance between the original and  the recon- 
structed  step locations can be used to  evaluate  the perform- 
ance of the  interpolating  function. 
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In the previous discussion, we neglected  two factors,  the 
first being the effect of using  a  finite number of quantization 
levels K in representing  the  scanned signal, and  the second 
being the effect of the fine print  sampling interval T I .  We 
start with  a simplified model and  then increase the  degree of 
complexity  one step  at a time.  Thus, we have the following 
four cases: 

1. Neglect  the effects of the fine print  interval  and  the 
quantization  error ( T I  = 0 and K = m). 

2. Consider the  quantization effect ( K  finite). 
3. Consider  the effect of the fine print interval ( T I  # 0) .  
4. Consider  the effects of both the fine print  interval  and  the 

quantization  errors ( T ,  # 0 and K finite). 

We  start with the first case. 

Case I :  Neglecting the eJSects of fine  print  interval and 
quantization error (TI  = 0, K = m) 

The signal model used in this  case is illustrated in Fig. 4. We 
consider some examples for calculating  the location error. To 
simplify the analysis, we normalize  the  distance  measure- 
ments by assuming T2 = 1 .  In  the  case of first-order 
interpolation,  the  reconstructed  step location a is at  the 0.5 
crossing shown in Fig. 5(a).  From  the  triangular  ratio we 
have 

a = 6 / ( 6  + 0.5) (11) 

and  the normalized error = a - 6 .  (12) 

In the modified cubic convolution, the coefficients of the 
interpolating polynomial are  determined by substituting  the 
values off(x-,),f(x,),f(x,),f(x,) in Eq. (8) .  From Fig. 
5(b), we have 

f(-1.0) = 0 = a. - a,  + a2 - a 3 ,  

f(O.0) = 0.5 - 6 = ao, 

f(l .0) = 1.0 = a. + a1 + a, + a 3 ,  

f ( 2 . 0 )  = 1.0 = a. + 2a, + 4a2 + 8a3 .  (13) 

Solving  these equations for ao, . . ., a3 and  substituting in 
P ( x ) ,  we have 

( 1 :  i ) 3  (L i )  1 
P ( x ) =  ""6 x + 6 x  + - + - 6  X + " 6 .  

(14) 

The  reconstructed  step location will be at  

P(x) = 0.5. (15) 

Equation ( 1  5 )  is a cubic polynomial of x and  can be solved 
using Cardan's  formula [7] or any simple iterative proce- 
dure.  It is important  to notice that, if we were  using the 
classical cubic  interpolation, we would have three forms of 
f ( x ) ,  depending on the  interval used for interpolation,  name- 

Threshold at 0.5 
0.5+6 

X 

X 

- T2 0 

(b) 

Figure 5 (a)  First-order  interpolation of a step  input; (b) third- 
order  interpolation of a step  input. 

ly, (x-2, x l ) ,  ( x - , ,   x , ) ,  or (xo, xJ, with three different  values 
of the location error. Because of this  uncertainty, we always 
use the modified classical form, which we call  the "ordinary" 
cubic polynomial. 

The location error  as a  function of the  input  step position 
has been calculated for the  zero  order, first order, second 
order,  ordinary  cubic,  and T R W  cubic. The results are shown 
in  Fig. 6. From this graph we notice the following: 

1. The nearest-neighbor interpolator results  in  a large loca- 
tion error.  The  maximum location error is 0.5 of the 
sampling  period, T2. 

2. The first-order interpolator represents  a measurable 
improvement over the  nearest neighbor, the  maximum 
location error being 0.086 of the  sampling period, T,. 

3. For the  odd-order polynomials, the  error decreases as  the 
polynomial order increases. 

4. The  TRW  cubic has better  performance  than  the ordi- 

5. The even-order polynomials have larger  errors  than  the 
odd-order polynomials. This results from  the lack of 
symmetry of the even-order polynomials. For a given 
interpolating point x*, the  number of sampling points to 
the left and  to  the  right always differ by a factor of one. 
For this reason we do not consider the even-order poly- 
nomials in the  rest of this  paper. 

nary  cubic. 

We now consider the effect of quantization  error on the 
interpolating schemes. 67 1 
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Figure 6 Interpolation  errors  with  step  input. 

Scanned Quantized 

2 K - 3  1 
2 ( K -  1) 

I " -e I 

.- "" 

e- K - 2  
K - l  

2 K - 5  
2 ( K -  1) 

I 

2P+ 1 
2( K -  1) 

2P- 1 
2 ( K -  1 I :  "" 

e 
"" 

I 
K - 1  

- 
2 ( K -  I )  I 

K -  1 
e-" 

1 

2 ( K -  I )  
- 

"" e o  

Figure 7 Correspondence  between  scanned  intervals  and  quan- 
tized  output for K quantization levels. 

Case 2: Considering the effect of quantization error (T, = 0, 
Kjinite) 
In  this  case,  the  scanned signals are  digital  with a  finite 
number of quantization levels. Thus, if  we have Q bits of 
quantization with  a  corresponding K = 2'1evels, the  scanned 

672 signal shown on the  left of Fig. 7 will be assigned one of these 

K levels on the right. In this quantization  scheme, we assign 
levels a t  0 and 1 and  distribute  the  other levels uniformly. 
This  scheme minimizes the  maximum  absolute  quantization 
error.  To  illustrate  the  quantization effect,  consider the 
example shown in Fig. 8. We  assume two bits of quantization 
so that we have  four possible quantization levels. If the  input 
step is a t  location 6, such  that 0 5 6 5 1/3,  the  scanned signal 
will correspond to a quantized location 6, = 1/3. Using 
first-order interpolation,  the  reconstructed  step location will 
be at  

0.5 - 6 
a =  

1 - 6 ,  ' 

and  the location error is 

1 
3 

a - 6 = 0 . 2 5 - 6   f o r O s 6 s - .  

This  error is a linear function of 6. A plot of the location error 
as a  function of the  step  input position is shown in Fig. 9. An 
important  measurement of this  graph is the  maximum 
absolute location error over the  input  step position. We 
calculate this as a  function of the  number of bits of quantiza- 
tion for an  input  step  interpolated using the first-order, 
ordinary  cubic,  and TRW cubic  schemes. The results are 
plotted  in  Fig.  10. From  this figure, we notice that using one 
bit of quantization, we have  a maximum  error of 0.5 the 
sampling  interval. The  error decreases  monotonically as  the 
number of quantization bits  increases,  with no significant 
improvement for q 2 5 bits. Note  that  TRW  cubic convolu- 
tion has a  slightly lower error for the  same  number of bits of 
quantization. 

Case 3: Considering the effect ofjine print interval (T, # 0, 
and Q = -) 
As an  example,  assume  that  the fine print interval TI is 1 / 5  
of the  coarse scan interval T,, and  the  input  step function is 
a t  a position 6T2 from  the origin, such  that 

If the  input signal is scanned at  the fine rate  TI,  the 
scanned value will be 0 for x s TI and 1 for x 2 2T,.  The 
continuous  output signal is reconstructed using  a rectangular 
window of width TI centered  around  the sampling  point. 
Thus,  the  output  step will be located at  x = (3/2)T1,  as 
shown in Fig. 11 (b).  The location error is a linear function of 
the  actual  step position. 

If the  input signal is scanned  using the coarse interval T, 
interpolated  to  the fine interval T,,  the  output  step position is 
determined by finding the fine print interval a t  which the 
interpolating  curve crosses the 0.5 threshold and  then recon- 
structing  the  step  function  at  the  center of this  interval. 
Figures ll(c)  and  (d) show an  example for  a CS/FP 
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Figure 8 Interpolation of a step  function  taking  into  consideration  the  quantization effect: (a) input  step  with  phase  shift 0 5 6 c 1/3; (b)  scan 
at  unit  intervals;  and  (c)  interpolation of quantized  signal  and  threshold in output  step. 

resolution ratio 1 :5  with  first-order  interpolation. Similar 
analyses  can be applied to  the  other  interpolation schemes. In 
Fig. 12, we plot the normalized  location error  as a  function of 
the  input  step position, for the first order,  the  ordinary  cubic, 
and  the  TRW  cubic for the  CS/FP resolution ratios  1.2, 1.3, 
1.4, and  15.  Notice  that  the  measurements  are now normal- 
ized with  respect to  the  coarse  scan interval T,. For compari- 
son, we also plot the results of the FS/FP scheme.  These 
results show that  the  coarse  scan/fine  print with  different 
linear  interpolation methods and fine scan/fine  print have 
essentially the  same  form of error curve, which is sawtooth in 
shape.  Furthermore, for  most of the  input  phase  shift, all 
error curves  lie on top of each  other, with  exceptions at  few 
locations. The  CS/FP error cannot  be reduced below the 
FS/FP error. It is interesting  to  note  that with  a CS/FP ratio 
of 1:2, the location error is the  same  whether  FS/FP or 
CS/FP is used with any  odd-order  interpolator.  Some impor- 
tant  measurements  from  the  case of a CS/FP  ratio of 1.5 are 
summarized in Table 1. 

The above analysis explains why binary  images repro- 
duced by using a CS/FP method appear  similar  to those 
obtained by a FS/FP method. 

Case 4: Considering  the effects of fine  print interval and 
quantization  error  simultaneously 
In the  analyses of cases  2 and 3, we considered the effects of 
the  quantization  error  and  the fine print resolution separate- 
ly. We now consider their  interaction.  We consider the  case 
in which the  input  scanned signals are represented  using 1,2,  
3, and 4 bits of quantization. In this  analysis, the  scanned 
signal is quantized  to a  finite number of levels as in case 2. 
After  interpolation,  the  step location is determined  as in case 
3, assuming a CS/FP resolution ratio 1 5 .  In Fig. 13, we plot 
the location error  as a  function of the  input  step position in 
the  case of first-order interpolation.  The results confirm the 
previous conclusion about  the  required  number of quantiza- 
tion bits. In fact, with Q = 4 we have  a maximum  error less 
than  that for Q = m. This required number of bits  applies to 
all CS/FP ratios 5 1.5. 
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Figure 9 Interpolation  error  with  step  input:  number of quantiza- 
tion bits, Q = 2. 
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Figure 10 Maximum  location  error  with  step  input. 673 
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Figure 11 Interpolation of a  step  function  taking  into  consider- 
ation  the effect of the fine print  interval: (a)  input  step  with  phase 
shift 6T2; (b) fine scan at  TI intervals;  (c)  interpolation of coarse- 
scanned  signal;  and  (d) fine print a t  T,  intervals. 

Table 1 Interpolation  errors  with  step  input. 

Scheme used Percentage of region Maximum 
for which the  performance 
of the  CS/FP and the FS/FP 

error 

are the  same 

FS/ FP 100% 0.1 T2 
First  order 7 1.4% 0.175 T2 
Ordinary  cubic 75% 0.165 T2 
TRW cubic 89% 0.13 T2 
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Pulse signal model 
We now discuss the  case of an  input pulse signal.  An  example 
of an  input pulse of width W is shown  in  Fig. 14(a).  After 
scanning,  interpolating,  and  thresholding,  the  reconstructed 
pulse signal is as shown in Fig. 14(d).  The  error  measure- 
ments of interest for this model are 

the positive-going-edge = 
location error El T* ’ 

0 . 3 1  FSlFP & all odd-order interpolators 

‘I- \ n CSiFP ratio 1:2 

\ I Inout steD  Dhase shift 6 I 

-0.3L 

First order 

I Ordinary cubic 

Figure 12 Interpolation errors with  step  input for different CS/FP 
ratios. 

the negative-going-edge- 
location error - 

the  error in locating 
the pulse center 

the  error in estimating = % - 
the pulse width 

= E ~ T ~  = + e 2 ) T 2 / 2 ,  

= (E2 - E I ) T Z .  

These  error  measurements  can  be derived from  the  step 
function  analysis if the pulse  function has a  width 

W >  2T2 when we are using  a  first-order interpolator, 

W > 3 T2 when we are using  a third-order  interpolator. 

Otherwise,  there will be  interaction between the positive- and 
the negative-going  edges. In this case, we have to solve the 
pulse function  problem  independently. Also, notice that if 
W c  T2, there is a possibility of not detecting  the pulse  signal 
at all after thresholding.  For the previous reasons, we only 
consider the  case of T2 5 W 5 2T2. In the following analysis, 
we consider the simple case where the effects of the  quantiza- 
tion error  and  the finite print resolution are neglected. Later 
we consider the  general case. 

Case 1:  Neglecting the  effects of fine  print interval  and 
quantization error (T,  = 0, K = m) 

The signal model used is shown in Fig. 14. In this  model, we 
have two important parameters-pulse  width and pulse 
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Figure 13 
levels and 

First-order  interpolation  with  different  quantization 
1 5  CS/FP resolution  ratio. 

location.  For the analysis, we consider input pulses of three 
widths, W = 1.2T2,  1.5T2, and 1.8T2. In each  case,  the 
scanned signal is interpolated using the first-order, the 
ordinary  cubic,  and  the  TRW  cubic methods. Details of the 
result are described in [8]. 

For a given input pulse  width, the  output pulse  width is a 
function of the  input pulse position with respect to  the 
sampling intervals.  A plot of the  maximum  and  minimum 
pulse  widths for different  interpolation methods  as functions 
of the  input pulse width is shown in Fig. 15 .  Notice  that  the 
TRW cubic  has  the  smallest  error  variation, in addition  to 
the  fact  that most of the  TRW  error is positive, thus  making 
the pulses appear  thicker.  This positive error is better  than 
the negative error  that  may  reduce  the visibility of some of 
the  thin pulses. Also, we discover that for  all the interpolation 
schemes,  the pulse width  error increases sharply  for W < . " 

L L 

~ 2 t j m  p: , 
___) 

v 
Figure 14 Interpolation of pulse input: (a)  input  pulse of width W 
and at  position AT,; (b) scan at T2 intervals;  (c)  first-order  interpola- 
tion  and  threshold;  and  (d)  reconstructed  pulse  function. 

lated using first-order interpolation,  and  then thresholded. 
We  evaluate  the  estimated pulse  width W as  the  input pulse 
position varies over the interval -0.5 5 6 5 0.5. Plots of the 
results are shown in Fig. 16. In the  same figure, we plot the 
pulse error when the  quantization  error is neglected,  namely, 
Q = to. From this figure, we notice the  large  error in the  case 
of Q = 1 .  This  error  drops  sharply for Q = 2, and  then 
decreases slowly with the  further increase of Q. 

Case 3: Considering the effect ofjine print interval 
As in the previous case, we use  as  an  input a  pulse of width 
1 ST,. We  measure  the pulse width error when the signal is 
scanned  and printed at a fine interval T ,  = 1/5T2.  Also, we 
measure  the pulse width error when the signal is scanned at  

1.L1,. an interval T2 and printed at  interval T ,  using  a  first-order 
Case 2: Considering the  eflect of quantization error interpolation. Plots of the  error  as a  function of the  input 
We consider the  case of an  input pulse of width W = 1.5T2. pulse position are shown in Fig. 17, from which we observe 
The  scanned  signal is quantized using 1, 2, and 3 bits of that for most of the  input pulse positions, the  absolute  errors 
quantization. In each  case,  the  quantized signal is interpo-  for  both the CS/FP and  FS/FP schemes are  the  same. 675 
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Figure 15 Maximum and minimum pulse width variations. 

Experimental  results 
In  the previous sections we discussed  different analytical 
measurements  that  can be used to  evaluate  the polynomial 
interpolating schemes. To verify the  analytical findings, we 
conduct  the following two experiments using the  IEEE 
facsimile test  chart. In the first experiment we scan the  parts 
corresponding to  the "text," "scale," and "ray," a t  a rate of 
1248 pixels/inch,  as shown in Fig. 18. The  scanned  pictures 
are reduced by a factor of  five using  a  simple averaging 
procedure. The results are  then  interpolated five times using 
the  nearest neighbor, the first order,  the  ordinary  cubic,  and 
the  TRW cubic.  For each  test  picture, we compare  the 
interpolated  output with the original picture.  As  an  error 
measurement, we count  the  number of originally  white pixels 
that have been changed  to  black  and  the  number of black 
pixels that have been changed  to white. The  percentage 
errors  are also calculated.  The results are given in Tables 2, 
3, and 4. In  each  case,  the  number of originally  white pixels 
(sumw) and  the  number of originally black pixels (sumb) are 

676 given in the  table. 

error W-W 
Percenlage pulse width 

W 
- 0.5 I" 2,=,- 

-- 0.4 

-0.2" 

- 0.4 -- I 
-0.5 

Figure 16 Quantization effects on pulse width variations using 
first-order interpolation (pulse width W = 1.5). 

Note  that  the  nearest neighbor results in errors  that  are  at 
least double those of the  other  interpolating schemes. The 
differences  between the  other schemes are small,  with the 
TRW cubic resulting in the best performance, followed by 
the  ordinary  cubic  and  the first order.  These results agree 
very well with the previous analysis. 

In  the second experiment, we scan  parts of the  IEEE  chart 
a t  a coarse  scanning  rate of 249 pixels/inch. The  scanned 
signal is then  interpolated five times  and  compared with the 
fine-scanned  signal. Examples of the results are shown in 
Figs. 19 and 20. In Fig. 19, we show the two-point and 
six-point letters of the  IEEE  chart in the cases of FS/FP  and 
CS/FP using the  nearest neighbor, the first order,  the 
ordinary  cubic,  and  the TRW cubic. These results show that 
the  nearest neighbor is inferior to  the  other  interpolating 
schemes. We also  observe that  there is a  limit on the  coarse 
scan  rate beyond which it is impossible to regain the original 
signal. This is clearly  shown in the  case of the two-point 
letters, where the  stroke width is 0.6 of the  coarse  scan 
interval. In  this  case, none of the  interpolated  outputs is 
legible while the  FS/FP  output is still sharp  and  clear. Also 
of interest is the effect of changing  the  number of quantiza- 
tion levels of the  scanned signal on the  interpolated  output. In 
this  experiment, we scan  parts of the  IEEE  chart  at 249 
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Figure 17 Effect of CS/FP ratio on pulse width error using 
first-order interpolation. 

Table 2 Picture “text”: sumw = 3  730  625; sumb = 453  439. 

Operator Error Percentage error 

White Black Total  White Black Total 

N N  52 154 33 578 85732 1.40 7.41 2.05 
B1 25 981 4450 30431 0.70 0.98 0.73 
ORD 25 349 2 577 27926 0.68 0.57 0.67 
TRW 24616 I 573 26 189 0.66 0.35 0.63 

pixels/inch,  while the  output is represented  using 1, 2, 4, 6, 
and 8 bits of quantization.  These  outputs  are  then  interpo- 
lated five times  and  compared with the FS/FP at  1248 
pixels/inch. Results for the six-point text  are shown in Fig. 
20. There is no noticeable  difference between the  %bit,  the 
6-bit,  and  the  4-bit pictures. There  are  some differences 
between the 4-bit and  the 2-bit  pictures,  while the  1-bit 
picture is obviously inferior to  all  the  other cases. These 
observations agree with the  analytical  results  obtained in 
previous sections. 

Conclusions 
This  paper  has presented  both analytical  and  experimental 
results in evaluating  the  performance of different linear 
interpolation  schemes for bi-level images. Although we only 
use  a  one-dimensional step  and pulse input model for our 
analysis, we believe that our results are  directly  applicable  to 
binary images, which consist of a  combination of step  and 
pulse inputs. 

The  odd-order  interpolators have better  performance  than 
the even-order interpolators.  The nearest-neighbor  method 
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Figure 18 Selected portions of the IEEE Facsimile Test Chart:  (a) 
picture “text,”  (b) picture “scale,” (c)  picture  “ray.” 

Table 3 Picture “scale”: sumw = 3 452,401; sumb = 731 663. 

Operator Error Percentage error 

White Black Total  White Black Total 

NN 70 848 43 217 114065 2.05 5.91 2.73 
B1 46525 9590 56 115 1.35 1.31 1.34 
ORD 42 474 7  529 50 003 1.23 1.03 1.20 
TRW 40 182 6404 46586 1.16 0.88 1.11 

Table 4 Picture  “ray”: sumw = 2 224 873; sumb = 1 959 191. 

Operator Error Percentage error 

White Black Total  White Black Total 

N N  197 884  I16 731 314615 8.89 5.95 7.52 
B1 129 282 7 575 136 857 5.81 0.39 3.27 
ORD 119 119 7 126 126245 5.35 0.36 3.02 
TRW 116 770 8 024 119 701 5.02 0.41 2.86 
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Figure 19 (a) Reproduction of IEEE chart  two-point letters; (b) 
reproduction of chart six-point letters. 

(zero  order) is simple  to  implement, because  it  does  not 
involve arithmetic  operations,  but  its  performance is  inferior 
to  other  odd-order  interpolators. Among the  odd-order  inter- 
polators tested,  the TRW cubic  has  the best performance, 
followed by the  ordinary  cubic  and  then  the first order.  Since 
the differences in performance of these three  interpolators 
are not significantly large, we recommend  using the bi-linear 
interpolation  method for  image resolution translation  from 
low to high resolution,  because  it requires a smaller  number 
of computation  steps  than  the TRW cubic  and  the  ordinary 
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cubic  interpolators.  The bi-linear interpolator needs four 
points in an  image  to  calculate a new sampling  point, 
whereas the cubic interpolators need sixteen points. 

In processing binary  images for interpolation, we have 
shown that  quantization of 4 to 5 bits is necessary to preserve 
very reasonable  edge location accuracy. 

Appendix 
In this  appendix, we prove that  the modified cubic  and  the 
TRW cubic  interpolators  can  be modeled as a convolution 
with  an  impulse response of the  form shown in Figs. 3(c)  and 
3(d), respectively. In  general,  this  impulse response is 
defined as 

H ( x )  = h , ( x )  0 5 x < 1, 

= h,(x) 1 5 x < 2, 

= o  2 5 x, 

H ( - x )  = H ( x ) ,  (19) 

where both h,  and h, are  third-order polynomials. If the  input 
samples  are  as shown in Fig. 21, the  interpolated  output over 
the  central region, (0, l ) ,  is the sum of the inpulse responses 
f romf(- l ) , f (O),f( l ) ,   and f (2).  Thus,  the  interpolating 
polynomial  is 

P(x)  = f ( - l ) h , ( x  + 1) + f ( O ) h , ( x )  

+ f ( l ) h , ( l  - x) + f ( 2 ) h , ( 2  - x). (20) 

Since  the  interpolating  function has to pass through  the 
sampling points, h , ( x )  and h,(x)  satisfy  the following condi- 
tions: 

h,(O) = 1, (21) 

h , ( l )  = 0, 

h,(l) = 0, 

h,(2) = 0. 

h , ( x )  = (1  - x ) ( l  + Ax + Bx2) ,  (23) 

h,(x) = (1 - x)(2 - x)(C + DX). (24) 

Thus,  the polynomials h ,  and h, are of the form 

The  parameters A,  B, C, and D are  determined by the 
interpolating  scheme used. We now consider two special 
cases. 

In the modified cubic  interpolator,  the function P ( x )  and 
its extensions over the regions (- 1 ,  0) and  (1, 2) is a 
third-order polynomial of the  form 

P ( x )  = a. + a,x + a2x2 + a3x3 (25) 

that should  pass through  all  the  sampling points. Thus, 
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P(-1) = f ( - 1 )  = a. - a1 + a, - a 3 ,  

P(0) = f ( O )  = a0 1 

P(1) = f ( l )  = a. + a l l  + a2 + a 3 ,  

P ( 2 )   = f ( 2 )  = a. + 2a ,  + 4ff, + 8a,. (26 )  

Solving for cyo, a,, a2, and a3, and  substituting in Eq. (25 ) ,  we 
have 

Rearranging  the previous equation, 

P(x) = f ( - , ) [ - G ) . +  (+- ( 3 x 3 1  

+ f ( O ) [  1 - (i) x -- x2 + ( 3  x’] 

+ ( + -  (;)x3] 

Comparing with Eq. (20 ) ,  we have 

h , ( x )  = ( 1  - x) ( 1 + (;)x - (:)x2)’ 

h2(x)  = ( 1  - x)(2 - x) ((i) - (;)x3) 

We consider now a  generalized  derivation of a group of 
cubic  interpolators  that includes the  TRW  cubic  as a  special 
case. We mentioned  before that  the  TRW  cubic results in an 
interpolating function that  has a continuous first derivative 
at  the  sampling points. We show here  that  this first  derivative 
is a fixed ratio of the slope of the line  joining the two adjacent 
sampling points. I f  this generalized  condition is satisfied at  
any  sampling point, it will be true for any  other  sampling 
point. Therefore, we consider the first derivative at  the 
sampling point x,,. This derivative  should equal a fixed ratio a 
of the  differencef(x,) - f ( x _ , ) .  Thus, 

dpo I = a ( f ( 1 )  - f ( - 1 ) ) .  
dx o 
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Figure 20 Effects of quantization using bi-linear interpolation. 

Figure 21 Illustration for cubic  convolution. 

By substituting  the values of P(x),  h,(x),  and h,(x) from Eqs. 
( 2 0 ) ,   ( 2 3 ) ,  and ( 2 4 ) ,  Eq. ( 3 0 )  is reduced to 

f ( - l ) ( - (C+ D l )  + f ( O ) ( A  - 1) +f(l)(A + B + 1)  

+ f ( 2 ) ( - C - 2 0 )  = a ( f ( l )  - f ( - l ) ) .  (31 )  

Since this is true for all  values of f ( x ) ,  the following 
conditions  should be satisfied: 679 
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a = C t D ,  

O = A - 1 ,  

a = A + - B + l ,  

0 = c t- 2D. (32) 

Solving in A ,  B,  C, and D, we have 

A = 1 ,  

B = -.- 2, 

c = 2a, 

D = -a. (33) 

If we choose a = 1, we then have the  TRW  cubic  interpola- 
tor.  It is interesting  to note that  the slope of the  interpolated 
function at  any  sampling point is twice the slope of a line 
connecting the two adjacent  sampling points. Equality of the 
two slopes can be achieved if we choose a = 1/2; this  other 
case was suggested in [9]. However, it  appears  that  the  TRW 
cubic  has  better  performance in the  case of binary pictures. 
A different derivative of the  TRW  interpolator is given in 
[ I O ] .  

Since all parameters in Eq. (31) are single-valued  func- 
tions of a, we can  change  the value of cy to  optimize  the 
performance for any given signal  model. This idea needs 
further  study. 
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