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Automatic  Scaling of Digital  Print  Fonts 

New  raster-based  printers form character patterns using carefully designed matrices  of  dots. I t  is  desirable  to be able to use 
fonts designed for  one printer on a diflerent  machine, but to  do so the  dot  matrix  patterns  should  first be scaled to the second 
printer’s  resolution. If the scaling is carried out  as  a  simple  interpolation, however,  severe degradation in the appearance of the 
characters may occur. A new algorithm reduces such degradation  by recognizing attributes  associated  with  print character 
quality in the  original patterns and  then  correcting  the scaledpatterns in order to maintain those  attributes.  Attributes  that are 
detected and preserved  during scaling  include  local  and  global symmetries,  stroke  width, sharpness of corners. and smoothness 
of  contour. The method has been used  both to scale low-resolution  fonts  to  afiner representation and to reduce the scale of 
high-resolution photocomposer  fonts  for  output on an ofJice-type printer. 

Introduction 
A variety of raster-based  printers have been introduced 
which form  characters  as  matrices of dots.  This  has  created a 
need for  digital  print  fonts  to  support a range of publishing 
activities. The  digital technology permits new character  sets 
to  be specified in only  a few kilobytes of disk storage,  and 
purchasers of the  printers have been encouraged  to develop 
their own fonts for particular  applications.  Indeed,  some 
organizations have  devoted  considerable  effort to designing 
their own character  fonts for particular  printers.  One widely 
used font  catalog lists 421 different digital  fonts in 37 
different  styles [ l ] .  

The  fonts  require meticulous  design since  the  appearance 
of the  printed  character  depends upon the position of each 
dot in the  matrix  pattern.  The cost of designing an extensive 
font library for  a new printer  may  reach several millions of 
dollars,  and  it is extremely  time consuming. Unfortunately, 
fonts designed  for one  printer  cannot  directly  be used on 
machines  having  different print resolutions  unless the  pat- 
terns  are first scaled to  the new array size. The question 
arises  whether  automatic techniques can be applied  to con- 
vert existing fonts  to  the resolution of a new printer.  Digital 
interpolation has been used for this purpose, as described 
below, but it  suffers from  major  limitations. 

Interpolation 
Conventional digital scaling methods have been based on 
interpolation (or filtering) [2] and, indeed,  some digital 
printers  already  include  such  an interpolation  facility for 
scaling.  However,  interpolation introduces distortions into 
dot  array  patterns  and, moreover, in the machines  where it is 
provided the proportional change of resolution is limited. 

Interpolation is carried  out  as follows. Each pixel in the 
output is defined by means of a fixed mapping  from a 
neighborhood of pixel values  in the  input  pattern.  One  may 
visualize  a window being  placed over the  input  pattern  at a 
location dependent on the  coordinates of the  output pixel to 
be evaluated.  The pixel configuration that  appears in the 
window determines  the value  assigned to  the  output pixel. 
The window is then moved to  other locations and  the process 
repeated in order  to assign  values to  the  remaining  output 
pixels. 

Inherent in this fixed-mapping procedure is a type of 
round-off error. If the window is moved by a  small amount, 
the resulting pixel value can  change.  With  binary  inputs  and 
outputs  this phenomenon  produces  some undesirable effects 
(see  Fig. 1). Corners  that  are  squared in the  input  may  be 
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Figure 1 Scaling  done with an  interpolation  filter. 
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Figure 2 Flow chart of the new scaling  method. 

rounded in the  output, or vice versa. Irregular  steps  may 
occur  along an  edge  that was  smooth in the  inputs.  Stroke 
widths may be inconsistent, symmetry  may  be lost, and  other 
distinctive qualities of the  input  pattern  may  be badly 
distorted. 658 
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A scaling method based on pattern features 
In  the new scaling  method  described here, interpolation is 
augmented by techniques to distinguish attributes associated 
with print  character  quality in the  input  pattern,  and those 
attributes  are  then preserved in the scaled character.  Attri- 
butes  that  are  detected  and preserved during scaling include 
local and global symmetries,  stroke width, sharpness of 
corners,  and smoothness of contour. 

The method has been considerably refined since first 
presented in [3]  and  has found  several practical applications. 
A flow chart for the method is shown in  Fig. 2. A large body 
of experimental results has been accumulated, including the 
scaling of a variety of high-  and low-resolution fonts  com- 
prising several thousand  characters,  among which are  Latin, 
Greek,  Cyrillic  (Russian),  Kanji  (Chinese),  and  Katakana 
(Japanese).  Examples of these  results are presented. 

Operation over an arbitrary range 
The new scaling procedure  operates over an  arbitrary  range 
of transformation  ratios,  permitting conversion of dot  matrix 
characters  from a given array size to  any  other  array size, 
while retaining  the essential  properties of the original char- 
acter.  It  has been used to  magnify [4] characters by factors 
of 10 and  more  and  to  reduce  them  to  as small as 20% of their 
original size. It  has also been applied in cases where  the 
horizontal  scale change differed from  the vertical scale 
change.  This flexibility has been achieved in part by an  initial 
magnification step  and in part by a variety of techniques  to 
track  and  maintain  the correspondence between the  input 
and  output  patterns. 

In the  initial step, the  pattern is magnified by a power of 
two, if necessary, to  cause  it  to become larger  than  the 
desired output  pattern in both the x and y dimensions. The 
subsequent  steps of the process then  reduce  the size of the 
magnified pattern  to  the  exact dimensions  required.  A  size- 
doubling algorithm  has been developed which maintains  all 
the desired characteristics of symmetry,  stroke  width, 
smoothness, etc.  [3].  The  algorithm replaces each pixel of the 
input  pattern by a 2 x 2 array having the  same white or black 
value, then smooths the  contour  to  eliminate  staircase 
effects. If  a font is to  be magnified, this  algorithm is applied 
successively until both x and y dimensions exceed the specifi- 
cation,  and  then  the  appropriate reduction is applied. Figure 
3(a) shows successive stages in the magnification of a Kanji 
character by an overall factor of 16. 

A  second general  rule is that complex patterns  are  sepa- 
rated  into  constituent components which are  then scaled 
individually  (see  Fig. 4). This  permits  symmetry  and  other 
features of the  components  to  be  maintained,  and  later  the 
characteristics of the  pattern  as a whole are  reconstituted by 
a careful reassembly  procedure. As  implemented,  the  separa- 
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tion is applied only to nontouching  components;  for example, 
an “i” is partitioned  into its dot  and  stem.  In principle, this 
concept can  be  extended  to more  complex  decompositions. 

Contour processing 
Once  an  input  pattern  has been magnified  (if  necessary) and 
analyzed  into  components (if any),  the  remainder of process- 
ing is done on the  contour, leaving interior pixels to  be filled 
in at  the end. First,  the  coordinates of edge pixels are 
determined;  then  these  are  mapped  into  the row and column 
coordinates of the  output resolution by a preliminary  scale 
reduction  step. This operation  also  produces  a table  that 
relates  output  contour pixels to  input pixels so that in later 
steps,  corresponding regions of the  input  and  output  contours 
can  be  compared  and necessary corrections  made. 

A primary  function of the reduction step is to  ensure 
consistent stroke width  scaling, which is important  to  the 
appearance of the final character.  Horizontal  or  vertical 
strokes in the  input  pattern  are  detected  and  ranked accord- 
ing to  length. A row-to-row mapping of horizontal  strokes 
and a  column-to-column mapping of vertical strokes  are  then 
constructed  such  that  as  many  as possible of the  strokes 
detected  are properly  scaled. The reduction step is also 
constrained  to  scale  pattern  height  and width to  the values 
computed by rounding off the  input  height  and width multi- 
plied by the respective scale ratios. In  addition,  symmetry 
properties of the  input  are  detected  and  retained. A detailed 
description of the  algorithm is  presented in the Appendix. 

Figure  3(b) shows an initial scaling for the  Kanji  pattern 
of Fig. 3(a),  where  the scaling factor is 11.7 times  the  input 
dimension. The  mapping,  as described  above, operates on the 
successively doubled character  that concludes the sequence 
in Fig. 3(a), and  thus  the  actual scaling ratio for the 
reduction is 11.7/16.  Note in  Fig. 3(b)  that  stroke width is 
consistent  relative to the  input  character. 

While  the  initial scaling step  deals with pattern  stroke 
width and  symmetry,  it neglects local properties of the 
contour such as smoothness and  curvature  at  sharp corners. 
Thus, with the  input-to-output  contour  table  as reference, 
the scaled pattern undergoes  first  a sequence of steps 
designed to  reproduce  directionality  as closely as possible 
along  the  contour  and, finally, several smoothing  steps  to 
ensure  that corresponding lengths of arc  are  similar in 
appearance (see Appendix).  During these  procedures, the 
contours  are  represented not  only as pixel coordinates, but 
also  as a sequence of direction  vectors from pixel to pixel 
along the contours. The  latter  representation, known as  chain 
encoding [5], simplifies the problem of comparing  corre- 
sponding  sections of input  and  output  and of making required 
changes.  Figure 5 shows the  changes  made  to  the  initial 
scaling  for the  Kanji  example. 

Figure 3 Example of the  scaling  procedure.  (a) A Kanji  character 
pattern successively doubled to a final magnification by a  factor of 
16.  (b) An initial  scaling of the magnified pattern by a  factor of 
11.7/ 16. The resulting  pattern is 11.7 times  larger  than  the  original; 
it  has  proper  stroke  width  but is not smooth  and  may differ from  the 
original in tine detail.  (c)  The  output  pattern  obtained  after  correc- 
tion of (b).  (d) A simple  12 x 12-pixel enlargement of the  input for 
comparison. 

A 

I 

Figure 4 Decomposition of a  character  pattern  into  constituents. 
Each  component is scaled  separately,  and  the  resulting  patterns  are 
assembled  into  a  single  output  array. 

When  the  contour processing of a pattern component has 
been completed,  the  contour pixels are plotted into  an  array 
and  the  interior pixels filled in with black. Other  pattern 
components, if any,  are processed in the  same  manner  and 
assembled  in the  array, which becomes the  output  pattern of 
the scaling program.  Figure  3(c) shows the completed Kanji 
character, scaled by a factor of 11.7. A direct 12-fold 
magnification of the  character is also  shown  [Fig. 3(d)] in 659 
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order  to  illustrate  the smoothing  properties of the overall 
transformation.  Note  that  the process tends  to convert the 
single-pixel features a t  corners of the  input  pattern  into 
triangular  shapes  at  the  output.  The effect results from a 
design decision to  treat single-pixel  steps in the  input  contour 
as curved rather  than  square  features, in the  absence of 
knowledge of the  font creator’s  real intent. For Kanji 
patterns in particular, which  were  originally  derived from 
brush-stroked  forms, this  rule proves to  be  advantageous. 

The scaling process is implemented in the  APL  language 
running on the VM system.  The  program is complex,  consist- 
ing of several hundred  APL functions, and  requiring, for 
example,  from 15 to 30 seconds of CPU  time on an IBM 
3033  computer in order  to  map a  single  high-resolution 
character  from a 120 x 80 array  into a 36 x 24 array. 

Limitations 
There  are several inherent  limitations  to a general  font 
scaling algorithm based on the prescribed input-output  crite- 
ria. 

First,  the scaled  font may not meet  subjective aesthetic 
demands-for example,  individual characters seem well 
shaped,  but  the font as a whole may not mesh well. In  printed 
text,  uniformity of character  features is significant. More 
generally, good font  designers are  artists who are governed 
by aesthetic  criteria  that  are difficult to codify in a  set of 
computer  commands. If the  input  to  the scaling process is 
restricted  to a dot  matrix,  as  assumed here,  without other 
parameters  to express the designer’s intent,  then  human 
participation  may be imperative  [6]. 

Figure 5 Detail of the final stages of the scaling process: (a) initial 
scaling, and  (b)  adjusted  output. 

Nevertheless, an  automatic scaling procedure  can  greatly 
reduce  the  human effort required.  In  certain applications, 
only a  rough draft  capability is needed, and  the method may 
effectively be used without human intervention. In  more 
demanding applications, the scaling  operation can yield an 
initial  character  representation,  to  be modified by a  designer 
if necessary. 
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Figure 6 A complex character  pattern  that does not scale directly 
into  the reduced array size. A faithful representation at 2/3 scale is 
not achievable. 
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Another  limitation  arises because the  printer  may not 
faithfully  reproduce  the  pattern specified by the  output 
array.  Printer technologies  have their own idiosyncrasies; 
particular  printers, for example,  may  make  character  strokes 
either wider or thinner  than specified by the  dot  array.  To 
some extent  the scaling procedure  can  be  adjusted  to  suit a 
particular printer’s  behavior, e.g., by setting a minimum 
width constraint on output strokes in order  to  adapt  the 
method to a printer  that  tends  to  fade strokes.  However, 
incorporation of constraints  into  the  program is awkward at  
best, and visual review of printed text  and  subsequent 
manual revision of the  font  patterns is probably the wisest 
recourse in difficult cases. 
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Figure 7 IBM 3800 character  patterns scaled to 240-pixel/inch resolution. 

It is also worth  noting that pathological cases  can  occur in 
which an  output meeting  all the desired criteria is not 
possible. For example, Fig. 6(a) shows a Kanji  character 
pattern  meaning “hawk.” When invoked to  reduce this 
character by a factor of 2/3,  the scaling routine produced 
Fig. 6(b). Inspection shows that  it is simply  not possible to 
maintain  the  calculated configuration of horizontal  strokes 
while at  the  same  time  retaining small features  appearing on 
these strokes, keeping separation between components, etc. 

Experiments 
The results shown below are  illustrative of data  obtained over 
a wide range of applications. To  illustrate  the  experiments in 
the limited space of this  paper, we show extracts  from  three 
classes of applications using Latin fonts. First is presented  a 
series  of non-square size increase conversions. Next  are 
shown some  size  reductions from high-resolution input fonts. 
Finally, samples of converted output  are shown in text form, 
permitting  better evaluation of the scaling process over the 
font as a whole. 

Magnijcation 
The IFM San  Jose  Research  Laboratory is developing an 
experimental  printer called Sherpa which has a program- 
mable  control  unit  and  makes  an IBM 6670 laser printer  into 
an  all-points-addressable  printer  that  can plot images or 
composed text of arbitrary size. One  class of output  from 

Sherpa consists of data processing and office typing  font 
styles.  (Composed text  output is discussed in the next 
section). A possible source of data processing fonts is a 
high-speed output  printer,  the IBM 3800.  However, the  3800 
prints a t  a resolution of 180 pixels/inch in the  horizontal 
direction and  144 pixels/inch  vertically, while the  6670 
resolution is 240  pixels/inch  in  both  directions. Therefore, 
the 3800  fonts must be scaled by 4/3 horizontally and by 5/3 
vertically in order  to  appear at  the proper  size  on Sherpa 
output. 

Figure 7 illustrates a number of such conversions. The 
input  dot  array is shown on the left in each case, and  the 
converted form on the right.  Observe that  the  stroke size is 
consistent from  character  to  character,  as well as within  a 
given sample. 

e Reduction 
Again the 240 pixel/inch Sherpa system is used as  the  target 
application.  In this  case, however, the object is to convert 
800-pixel/inch photocomposer  fonts to  the lower resolution. 
This is a  size  reduction by a factor of 3/10 in each  dimen- 
sion. 

Characters designed  for  a low-resolution printer  such  as 
the  3800 tend to be simple in shape, which alleviates the 
magnification  problem since local variation along the con- 
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Figure 8 Photocomposer  (high-resolution) characters scaled to 
240 pixels/inch. Characters that are ordinarily  thought of as sym- 
metrical, e.g., “pi,” are often  not  symmetrical at photocomposer 
resolutions (here 800 pixels/inch). Thus the  scaled  version is not 
pixel-for-pixel  symmetrical. 

tour  after scaling is small.  In  order  to increase the  array size 
of 3800 patterns,  the  primary  requirement is to  maintain 
symmetry  and  stroke width, while repeated  contour smooth- 
ing is needed to minimize staircase effects. On the  other 
hand, reducing the  scale of high-resolution fonts involves 
different  problems,  since these  fonts often contain serifs and 
decorative  curvature.  It is a challenge  to  the conversion 
algorithm  to  retain  as  many  as possible of these features 
through  the  scaling process. 

Figure 8 shows  a number of photocomposer characters  and 
the 240-pixel/inch patterns produced by the scaling  algo- 
rithm.  Note  that  the  algorithm in some cases is forced by the 
array size constraint  to compromise in the  representation of 
local feature  information. 

Several  other  pertinent problems arose in these  tests. The 
photocomposer characters  contain “ink traps,”  extra black or 
white pixels placed at  regions of sharp  curvature in order  to 
enhance  the visual effect, but which are not actually  part of 
the  character  pattern.  The ink traps give the  appearance of 
noise if retained  through  the conversion process,  since each 
pixel carries 11 times as much weight at Sherpa resolution. 

Thus, a  special  filter algorithm was programmed  to  detect 
and remove the ink traps  from  the  input  arrays. 

A  more difficult matter is the tendency of Sherpa  to  print 
strokes somewhat  finer than  their  array  representations 
prescribe. Due  to technical  considerations in the laser print- 
ing process, a faithful scaling of a  photocomposer character 
may  appear  to be broken in places  where the  stroke width 
narrows  to a  single pixel in  width.  A constraint was therefore 
imposed on the initial  scaling routine  to force  vertical or 
horizontal  strokes to be at  least two pixels in width. This was 
surprisingly easy to do;  indeed, the notion of such  a 
constraint is almost  inherent in the  approach, since the 
thickness of each vertical or  horizontal  stroke is dictated by a 
conversion table. However, the thickness of curved or slanted 
strokes is more difficult to  constrain.  Manual  editing of the 
patterns is possible a t  reasonable cost,  since the problem 
occurs only sporadically. Another  alternative  that shows 
promise  for Sherpa is a  uniform thickening of the  entire  font 
by algorithm  either before or after scaling. 

Sample  text 
In Fig. 9 are shown several  examples of text using 800- 
pixel/inch photocomposer fonts scaled to  Sherpa specifica- 
tions (240 ppi).  Composing characters  into  text poses the 
additional problem of scaling  the  parameters  that govern the 
placement of characters with respect to  each  other in the 
lines of text.  Text also reveals defects  that  may not be 
apparent when isolated characters  are scaled,  such as  varia- 
tions in height or in location  with  respect to  the baseline of 
the  text. 

For example,  the body of a  lower-case  “p”  should rest  on 
the baseline and its top should be at  the  same level as,  say,  the 
top of an  “m,” while the bottom  should be at  the level of the 
bottom of a  “q.” The conversion algorithm does  not  explicitly 
enforce all such constraints,  though both  overall  height and 
baseline  location are controlled.  Nevertheless in most cases, 
as  illustrated,  an  acceptable conversion is obtained without 
the  added complexity that those constraints would entail. 

Conclusions 
It  has been shown that by a  combination of contour process- 
ing, feature  detection,  and smoothing, automatic  digital  font 
scaling can be accomplished while preserving  essential pat- 
tern  characteristics, such as  symmetry,  stroke  width, smooth- 
ness, and local curvature. In scaling thousands of character 
patterns, relatively few have required  human revision, The 
key to  the  transformation lies in the  automatic recognition of 
attributes of font patterns associated with print  character 
quality,  permitting comparison of the  input  and scaled 
patterns  to  detect  and  correct discrepancies that occur due  to 
the  nature of the  mapping  task.  The  technique  may  thus  be 
considered to  be a type of pattern recognition  procedure. 
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0 shame to men! Devil with Devil damn’d 
Firm  concord holds:.men only disagree 
Of Creatures rational, though under hope 
Of heavenly Grace; and God proclaiming  peace, 
Yet live in hatred,  emnity,  and strife 
Among themselves, and levy cruel wars, 
Wasting the Earth, each other to destroy. 

Milton 

0 shame to men! Devil with Devil damn’d 
Firm concord holds: men only disagtee 
Of Creatures  rational, though under hope 
Of heavenly Grace; and God prodaiming peace, 
Yet live in hatred, emnity, and strife 
Among themselves, and levy auel wars, 
W t d n g  the Earth, each  other to destroy. 

Miton 

0 shame   to   men!   Dev i l   w i th   Dev i l   damn’d  
Firm  concord   holds:   men only  d isagree  
Of Creatures   ra t ional ,   though  under   hope  
Of  heavenly  Grace;  and God p r o c l a i m i n g   p e a c e ,  
Yet   l ive  in  ha t red ,   emni t y ,   and   s t r i f e  
Among  themselves ,   and  levy   cruel   wars .  
Wast ing  the  Earth,   each  other  to   destroy.  

M i l t o n  

0 shame to men! Devil with Devil damn’d 
Firm concord  holds:  men only disagree 
Of Creatures rational,  though  under  hope 
Of heavenly Grace; and God proclaiming  peace, 
Yet  live  in hatred, emnity,  and strife 
Among  themselves,  and  levy  cruel wars, 
Wasting the Earth, each other to destroy. 

Milton 

Figure 9 Scaled  photocomposer  characters  composed  into  text.  At  the  240-pixel/inch resolution illustrated  here  a lower-case character such as 
e IS only about 16 pixels high  compared  to over 50 pixels in the  original  font.  The  amount of detail  captured at  the  coarser resolution is a good 

measure of the  success of the  scaling  method. 
‘1 3 ,  . 
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Appendix 

An initial  scaling that preserves stroke  width and symme- 
try 
The problem  considered here is to define two discrete  map- 
pings, T, and Ty, that  transform  an  input  pattern P by scale 
factors rx and r,,, respectively, to  produce  an  output  pattern 
P’. A contour pixel located a t  (x, y )  in P is mapped  into 
( T , ( x ) .  T y ( y ) )  in P‘. T, and Ty are vectors of integers having 
lengths  equal  to  the respective  dimensions of P. We  assume 
for convenience that P has at  least one  black pixel in each of 
its  boundary  columns  and rows, so that its array dimensions 
are  equal  to its  width and  length. Also, rx 5 1 and ry 5 1. 

The  scale mappings are  to  be  adjacency preserving, i.e., for 
each integer Z < width of P, either T,(Z + 1 )  = T,(Z) or else 
TX(Z+ 1) = T,(Z) + 1. 

The overall  mappings are  to  be  approximately  linear, 
subject to  the following three  requirements: 

1. Consistent stroke  widths Let P contain a subpattern Q 
consisting of a vertical (or horizontal) black bar of width 
t .  Then T , ( Q )  [or T y ( Q ) ]  should  have  width d , ( t )  
[or d y ( t ) ] ,  where d, and d, are  discrete mappings. d,, dy 
depend on the  scale  factors r,,  ry and  may be defined by a 
simple round-off rule  as described in (3) below or by some 
other consistent formula. 

2.  Symmetry If there exist constants a and/or b such that 
one or  more of the following relations holds in P, then 
there  must exist constants a‘ and/or b’ such that  the 
corresponding relations hold in P’: 
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3. Overall dimensions If (w. h )  are  the width and height of 
P, then  the corresponding  dimensions (w’, h’) of P’ should 
satisfy  the  usual round-off formulas W’ = trunc 0.5 + 
r,)w and h’ = trunc 0.5 + r,h, where  trunc z is defined to 
be  the next integer less than or equal  to z. 

These  constraints  preclude use of a  simple  scaling and 
round-off rule  to  determine T, and T,. For example,  the 
specification 

T,(I) = trunc c, + r,x 

affords  control only over a  single parameter c, in order  to 
meet all  constraints.  Simple  examples suffice to show that 
this is not possible. 

In fact, if P contains  many  strokes, it may not be possible 
to define  a  scaling transformation  that  maps  all  the  strokes so 
as  to  satisfy (1)  above. In  such  cases  the  method described 
here is made  to fulfill constraints (2) and  (3),  but  to  satisfy 
(1) only for  a  selected  subset of the  strokes in P. 

A further difficulty must also be resolved in the  case of 
symmetrical  patterns.  Suppose, for example,  that w, the 
width of the  input  pattern, is an odd number while the scaled 
pattern width w’ is even. In  this  case, P is said  to have odd 
symmetry, while P‘ is said  to have even symmetry in the 
horizontal direction. These conditions  imply that P’ is made 
up of pairs of matching columns, while the  center column of 
P has no symmetrical  counterpart.  The  column in P’ to which 
this  column is mapped by an  arbitrary T, cannot  be  guaran- 
teed to  match  the  other  member of its  symmetry  pair; i.e., it 
may not be possible to satisfy (3) .  

To prevent this problem from  occurring, while  still retain- 
ing generality, at  the  start of the  algorithm P is tested  for 
symmetry,  and  its  height  and width are  measured. If either w 
or h is odd,  and if the  pattern is symmetrical in the 
corresponding direction,  then  the  doubling  algorithm  (see 
text) is invoked to produce  a pattern having even height  and 
width. The  scale  factors  are halved, and  the process con- 
tinues as if the doubled pattern were the  input. 

T, and T, can  be  constructed independently of one  anoth- 
er; i.e., (1)-(3)  can  be resolved into  one  set of constraints 
involving only T, and  another set involving only T,. Since 
they  are  determined in an identical manner, we describe the 
specification only of T,. 

The  formation of T, proceeds  in the following steps: 

1. A stroke  table is calculated, listing the locations and sizes 

2. The  stroke  table is reduced to  denote only a subset of 
of the  strokes  to  be scaled by T,. 

“admissible” strokes. 
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3. The  stroke  table is used to  create a scale interval table, S, 
giving the  mapping  from  each  interval width in P to a 
corresponding  width  in P’. 

4. T, is formed  from  the specification  in S. 

A more  detailed description of these  steps follows. 

Stroke  table 
Note  that T, controls the width of vertical  strokes in P‘. A 
vertical  bar of width t in P consists of a number of sequences 
o f t  1’s that occupy the  same columns  in  consecutive rows of 
P. Such  bars  may be interrupted by intersections  with other 
strokes  and by the presence of serifs on the  contour.  The 
algorithm used  for stroke detection finds all sequences of 1’s 
in P and  tabulates those  having  a  common  length and  initial 
column. A table is formed whose rows list for each such 
collection (1) the  initial  column, (2) the  length t ,  and (3) the 
number of bit  sequences  represented in this  entry.  The rows 
of this  stroke  table having  highest  weight (the frequency of 
bit sequence  occurrence recorded in column  3 generally 
pertain  to  strokes in the  input  pattern. 

Next, using d,  as described  above, the width  desired  for 
each  stroke is added  to  the  table  as a fourth column. Pattern 
P is then complemented and  the  procedure  repeated  to 
tabulate  the position, width, weight, and desired  width after 
scaling for white bars. A fifth column is appended  to  each 
table  to  indicate 1 for  black strokes  and 0 for  white, and a 
master  table  containing both sets of data is assembled and 
sorted  on stroke weight. A bottom row is appended,  contain- 
ing  in columns 2 and 4 the value of the overall  width of P and 
the desired  width of P‘, respectively. 

0 Reduction of the stroke table 
T, is primarily  intended  to  set  the  correct black stroke width 
and overall  width of P’. As a secondary objective it is 
concerned  with maintaining  the  separation between closely 
spaced  strokes. This is the reason for recording white  strokes 
as well as black in the  table. As an  initial  reduction,  then,  any 
row describing  a  white stroke is deleted from  the  table if the 
value  in  column 4 (desired  width in P’) exceeds 3. A second 
reduction  is effected by selecting from  the  table a  sequence of 
rows describing  strokes  (either white or black)  that occupy 
nonoverlapping  columns. The selection is done  iteratively in 
order of stroke weight, and  the selected rows are  stored  as a 
new table.  The bottom row of the original table,  containing 
the overall stroke width  specification, is also placed at   the 
end of this  table. 

0 Interval table 
The reduced stroke  table, R ,  is ordered on column 1 (x- 
coordinate of the  left  edge of a stroke)  and used to calculate 
the  scale  interval  table, S. S is an  array having 2 rows and 
2M + 1 columns, where M is the  number of strokes 
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I and R(I ,  4), respectively. 

The  remaining M + 1 odd-numbered  columns in S 
describe the  space between strokes.  The first row of column 
21 - 1,  where I = 2, 3, . . . , M ,  contains  the  quantity 

R(I ,  1) + 1 - R ( I  - 1, 1) - R ( I  - I ,  2), 

which is the  number of pixels between the  end of the 
( I  - 1)th  stroke  and  the  start of the Zth. The second row is 
computed  as 

S(2,  21 - 1) = trunc0.5 + (r,)S(l ,  21 - 1). 

That is, the second row entries  are  calculated by scaling and 
rounding off the first row values. Columns 1 and 2M + 1 
contain  similar  data, except that  the  intervals described run 
from  the left edge of P to  the left edge of the first stroke  and 
from the  right  edge of the  last  stroke  to  the  right  edge of P ,  
respectively. 

S describes the  mapping  from successive horizontal  inter- 
vals of P to  intervals in P’ .  The  entries in row 2 of the 
odd-numbered  columns  are  free; i.e., they are  adjustable  to 
meet certain  criteria.  The even-numbered entries  are fixed 
by the  stroke width constraints. 

S is next adjusted, if necessary,  in order  to  satisfy  the 
following requirements. Let S ,  ( I ) ,  S ,  ( I )  be the  I th  elements 
in rows 1 and 2 of S ,  respectively. Then, 

1. x S , ( I )  = W‘, where W‘ = the  desired width of P‘ .  
2” I 

I =  I 

2. 0 5 S , ( I )  5 SI ( I ) .  
3.  If SI([) > 0, then S ,  > 0. 
4. For I odd, IS,(Z) - rxSl  ( I ) [  5 1 + c rxS,  ( I ) ,  

where c is an  arbitrary  constant less than 1. 

Constraint (1) maintains  the desired  overall  width of P’, 
while (2) is a  feasibility  condition. Constraint (3) maintains 
separation between successive strokes in P if there exists 
separation in P. The  last  constraint  (with c = 0.25 in the 
experiments reported in the  text)  determines  the  amount by 
which the  space between strokes is allowed to differ  from 
strict  linear scaling. This  requirement enforces  “local” lin- 
earity  to  ensure  that T, does not overly expand or compress 
the  space between strokes.  The  smaller c, the less variation 
permitted,  but a t  least one pixel of variation  from  linear 
scaling is always  allowed. 

Initially S ,  will meet constraints (2) and (4). If (3) is 
violated, then  elements of S,  must be increased from 0 to 1. 
When  this is done,  all  that  remains is to  satisfy  the overall 
width constraint  (1) by adjusting  the  odd-numbered ele- 
ments of S ,  within the limits imposed by (4). 
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The direction of change required is determined;  then, for 
each odd I the  boundary for S , ( I )  in that direction is 
calculated.  This  limit,  obtained by combining (2)-(4), is 

max { I ,  rx ( l  - ~ ) S , ( I )  - I }  5 S , ( I )  

5 min {SI ( I ) ,  r,(l - CIS, ( I )  + 11, 
for all I such that SI ( I )  > 0. 

The  element  S,(I)  that is furthest from the  constraint 
boundary is determined,  and if this distance is a t  least unity, 
then S , ( I )  is increased or decreased by 1 as needed. This 
procedure is repeated until either  (1) is satisfied or else no 
element of S,  can  be  altered without  violating the  boundary 
constraints.  In  the  former case, the specification of S is 
complete. In the  latter case, the  constraints  cannot be met. 
The  algorithm  then  returns  to  the  stroke  table R and deletes 
the row describing the  stroke of least  weight. The reduced 
stroke  table is used to specify  a new S table  as above. In this 
way,  a stroke  table is eventually obtained  that produces an S 
table satisfying  all  conditions (1)-(4). 

Calculation of T, from S 
Consider the  2-tuple (SI, S, )  contained in an  arbitrary 
column of S .  By the  usual division algorithm, if SI > 0, then 
we can  write 

SI = PS, + q, 

where p ,  q are  integers  such  that q < S ,  and p > 0. Thus  the 
set of integers 1, 2, 3, . . . , SI can be partitioned  into S,  
subintervals, such that (S ,  - q )  of the subintervals contain p 
consecutive  integers, while q of the  subintervals  contain 
p + 1  consecutive  integers. 

An algorithm for generating  the  sequence of subinterval 
lengths is the following. Let rn = trunc (S,/2).  Construct 
the  sequence of SI integers given by 

vi = rn + (i - 1)S, i = I ,  2, ,SI. 

Now  define 

f ( v i )  = 1 + trunc ( n i / S I )  

and 

l l = I { i : f ( u i ) = J } (  j = 1 , 2 , .  . . , S , .  

The subintervals so determined correspond to a  linear  scaling 
and round-off of the interval of P corresponding to SI. Note 
that  the  scale  factor is not r,, but S ,  /S2.  

The  procedure  just described is repeated for each  column 
of S ,  generating for the I t h  column the  sequence of subinter- 
val lengths 11(1), wherej = I ,  2, . . , S, ( I ) .  These  are next 
arranged in order of increasing I to give the vector w defined 
as 665 
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w = O , Z I ( 1 ) ,  4 ( 1 ) ,  * . * 1 zs2(1)(1)’ Z l W ,  , zs2(2M+I). 
Let us call g, the  kth  element of this sequence. The desired 
mapping T, is obtained by setting 
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T, x g , ,  + j  = k + 1 f o r a l l j  = 1, 2, e . . ,gk+,. 
C I  1 

If  P is symmetrical,  then  the  right-hand side of T, beyond the Road. Jose, California 95193, 
Richard G. Casey IBM Research Division, 5600 Cottle 

axis of symmetry is deleted. T, is then  completed by reflect- 
ing the left-hand  side (i.e.,  reversing the  order of its 
elements),  adding a  value determined from the  axis of 
symmetry,  and  concatenating  the  resultant  to  the  left-hand 
side. 
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