
R. G. Casey
T. D. Friedman
K. Y. Wong

Automatic Scaling of Digital Print Fonts

New raster-based printers form character patterns using carefully designed matrices of dots. I t is desirable to be able to use
fonts designed for one printer on a diflerent machine, but to do so the dot matrix patterns should first be scaled to the second
printer’s resolution. If the scaling is carried out as a simple interpolation, however, severe degradation in the appearance of the
characters may occur. A new algorithm reduces such degradation by recognizing attributes associated with print character
quality in the original patterns and then correcting the scaledpatterns in order to maintain those attributes. Attributes that are
detected and preserved during scaling include local and global symmetries, stroke width, sharpness of corners. and smoothness
of contour. The method has been used both to scale low-resolution fonts to afiner representation and to reduce the scale of
high-resolution photocomposer fonts for output on an ofJice-type printer.

Introduction
A variety of raster-based printers have been introduced
which form characters as matrices of dots. This has created a
need for digital print fonts to support a range of publishing
activities. The digital technology permits new character sets
to be specified in only a few kilobytes of disk storage, and
purchasers of the printers have been encouraged to develop
their own fonts for particular applications. Indeed, some
organizations have devoted considerable effort to designing
their own character fonts for particular printers. One widely
used font catalog lists 421 different digital fonts in 37
different styles [l] .

The fonts require meticulous design since the appearance
of the printed character depends upon the position of each
dot in the matrix pattern. The cost of designing an extensive
font library for a new printer may reach several millions of
dollars, and it is extremely time consuming. Unfortunately,
fonts designed for one printer cannot directly be used on
machines having different print resolutions unless the pat-
terns are first scaled to the new array size. The question
arises whether automatic techniques can be applied to con-
vert existing fonts to the resolution of a new printer. Digital
interpolation has been used for this purpose, as described
below, but it suffers from major limitations.

Interpolation
Conventional digital scaling methods have been based on
interpolation (or filtering) [2] and, indeed, some digital
printers already include such an interpolation facility for
scaling. However, interpolation introduces distortions into
dot array patterns and, moreover, in the machines where it is
provided the proportional change of resolution is limited.

Interpolation is carried out as follows. Each pixel in the
output is defined by means of a fixed mapping from a
neighborhood of pixel values in the input pattern. One may
visualize a window being placed over the input pattern at a
location dependent on the coordinates of the output pixel to
be evaluated. The pixel configuration that appears in the
window determines the value assigned to the output pixel.
The window is then moved to other locations and the process
repeated in order to assign values to the remaining output
pixels.

Inherent in this fixed-mapping procedure is a type of
round-off error. If the window is moved by a small amount,
the resulting pixel value can change. With binary inputs and
outputs this phenomenon produces some undesirable effects
(see Fig. 1). Corners that are squared in the input may be

Q 1982 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty
provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first
page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. \ ‘OL. 26 0 NO. 6 NOVEMBER 1982

657

R. G . CASEY ET AL.

Figure 1 Scaling done with an interpolation filter.

READ INPUT CHARACTER
I

FACTOR>I
SCALE DOUBLE

+SMOOTH

piece I

PIECE'?
I

CORRECT SIZE AND STROKE WIDTHS
I '
I '

r-"""' I

I (IF NEEDED) 1 SYMMETRY

CORRECT
OVERALL SIZE &"""" "-#

"e'

Figure 2 Flow chart of the new scaling method.

rounded in the output, or vice versa. Irregular steps may
occur along an edge that was smooth in the inputs. Stroke
widths may be inconsistent, symmetry may be lost, and other
distinctive qualities of the input pattern may be badly
distorted. 658

R. G . CASEY ET AL

A scaling method based on pattern features
In the new scaling method described here, interpolation is
augmented by techniques to distinguish attributes associated
with print character quality in the input pattern, and those
attributes are then preserved in the scaled character. Attri-
butes that are detected and preserved during scaling include
local and global symmetries, stroke width, sharpness of
corners, and smoothness of contour.

The method has been considerably refined since first
presented in [3] and has found several practical applications.
A flow chart for the method is shown in Fig. 2. A large body
of experimental results has been accumulated, including the
scaling of a variety of high- and low-resolution fonts com-
prising several thousand characters, among which are Latin,
Greek, Cyrillic (Russian), Kanji (Chinese), and Katakana
(Japanese). Examples of these results are presented.

Operation over an arbitrary range
The new scaling procedure operates over an arbitrary range
of transformation ratios, permitting conversion of dot matrix
characters from a given array size to any other array size,
while retaining the essential properties of the original char-
acter. It has been used to magnify [4] characters by factors
of 10 and more and to reduce them to as small as 20% of their
original size. It has also been applied in cases where the
horizontal scale change differed from the vertical scale
change. This flexibility has been achieved in part by an initial
magnification step and in part by a variety of techniques to
track and maintain the correspondence between the input
and output patterns.

In the initial step, the pattern is magnified by a power of
two, if necessary, to cause it to become larger than the
desired output pattern in both the x and y dimensions. The
subsequent steps of the process then reduce the size of the
magnified pattern to the exact dimensions required. A size-
doubling algorithm has been developed which maintains all
the desired characteristics of symmetry, stroke width,
smoothness, etc. [3]. The algorithm replaces each pixel of the
input pattern by a 2 x 2 array having the same white or black
value, then smooths the contour to eliminate staircase
effects. If a font is to be magnified, this algorithm is applied
successively until both x and y dimensions exceed the specifi-
cation, and then the appropriate reduction is applied. Figure
3(a) shows successive stages in the magnification of a Kanji
character by an overall factor of 16.

A second general rule is that complex patterns are sepa-
rated into constituent components which are then scaled
individually (see Fig. 4). This permits symmetry and other
features of the components to be maintained, and later the
characteristics of the pattern as a whole are reconstituted by
a careful reassembly procedure. As implemented, the separa-

IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

tion is applied only to nontouching components; for example,
an “i” is partitioned into its dot and stem. In principle, this
concept can be extended to more complex decompositions.

Contour processing
Once an input pattern has been magnified (if necessary) and
analyzed into components (if any), the remainder of process-
ing is done on the contour, leaving interior pixels to be filled
in at the end. First, the coordinates of edge pixels are
determined; then these are mapped into the row and column
coordinates of the output resolution by a preliminary scale
reduction step. This operation also produces a table that
relates output contour pixels to input pixels so that in later
steps, corresponding regions of the input and output contours
can be compared and necessary corrections made.

A primary function of the reduction step is to ensure
consistent stroke width scaling, which is important to the
appearance of the final character. Horizontal or vertical
strokes in the input pattern are detected and ranked accord-
ing to length. A row-to-row mapping of horizontal strokes
and a column-to-column mapping of vertical strokes are then
constructed such that as many as possible of the strokes
detected are properly scaled. The reduction step is also
constrained to scale pattern height and width to the values
computed by rounding off the input height and width multi-
plied by the respective scale ratios. In addition, symmetry
properties of the input are detected and retained. A detailed
description of the algorithm is presented in the Appendix.

Figure 3(b) shows an initial scaling for the Kanji pattern
of Fig. 3(a), where the scaling factor is 11.7 times the input
dimension. The mapping, as described above, operates on the
successively doubled character that concludes the sequence
in Fig. 3(a), and thus the actual scaling ratio for the
reduction is 11.7/16. Note in Fig. 3(b) that stroke width is
consistent relative to the input character.

While the initial scaling step deals with pattern stroke
width and symmetry, it neglects local properties of the
contour such as smoothness and curvature at sharp corners.
Thus, with the input-to-output contour table as reference,
the scaled pattern undergoes first a sequence of steps
designed to reproduce directionality as closely as possible
along the contour and, finally, several smoothing steps to
ensure that corresponding lengths of arc are similar in
appearance (see Appendix). During these procedures, the
contours are represented not only as pixel coordinates, but
also as a sequence of direction vectors from pixel to pixel
along the contours. The latter representation, known as chain
encoding [5], simplifies the problem of comparing corre-
sponding sections of input and output and of making required
changes. Figure 5 shows the changes made to the initial
scaling for the Kanji example.

Figure 3 Example of the scaling procedure. (a) A Kanji character
pattern successively doubled to a final magnification by a factor of
16. (b) An initial scaling of the magnified pattern by a factor of
11.7/ 16. The resulting pattern is 11.7 times larger than the original;
it has proper stroke width but is not smooth and may differ from the
original in tine detail. (c) The output pattern obtained after correc-
tion of (b). (d) A simple 12 x 12-pixel enlargement of the input for
comparison.

A

I

Figure 4 Decomposition of a character pattern into constituents.
Each component is scaled separately, and the resulting patterns are
assembled into a single output array.

When the contour processing of a pattern component has
been completed, the contour pixels are plotted into an array
and the interior pixels filled in with black. Other pattern
components, if any, are processed in the same manner and
assembled in the array, which becomes the output pattern of
the scaling program. Figure 3(c) shows the completed Kanji
character, scaled by a factor of 11.7. A direct 12-fold
magnification of the character is also shown [Fig. 3(d)] in 659

IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982 R. G. CASEY ET AL.

t h)

order to illustrate the smoothing properties of the overall
transformation. Note that the process tends to convert the
single-pixel features a t corners of the input pattern into
triangular shapes at the output. The effect results from a
design decision to treat single-pixel steps in the input contour
as curved rather than square features, in the absence of
knowledge of the font creator’s real intent. For Kanji
patterns in particular, which were originally derived from
brush-stroked forms, this rule proves to be advantageous.

The scaling process is implemented in the APL language
running on the VM system. The program is complex, consist-
ing of several hundred APL functions, and requiring, for
example, from 15 to 30 seconds of CPU time on an IBM
3033 computer in order to map a single high-resolution
character from a 120 x 80 array into a 36 x 24 array.

Limitations
There are several inherent limitations to a general font
scaling algorithm based on the prescribed input-output crite-
ria.

First, the scaled font may not meet subjective aesthetic
demands-for example, individual characters seem well
shaped, but the font as a whole may not mesh well. In printed
text, uniformity of character features is significant. More
generally, good font designers are artists who are governed
by aesthetic criteria that are difficult to codify in a set of
computer commands. If the input to the scaling process is
restricted to a dot matrix, as assumed here, without other
parameters to express the designer’s intent, then human
participation may be imperative [6].

Figure 5 Detail of the final stages of the scaling process: (a) initial
scaling, and (b) adjusted output.

Nevertheless, an automatic scaling procedure can greatly
reduce the human effort required. In certain applications,
only a rough draft capability is needed, and the method may
effectively be used without human intervention. In more
demanding applications, the scaling operation can yield an
initial character representation, to be modified by a designer
if necessary.

.
..I w m..

m 8 . .

. .m w3 .m . . .m.

. . E a . ma!aX9........99..

..m. .m.-..

..m. E a m . . . l aos.m -. . .

. .m. .m. . .-.

..BpBBoBBB.ldo.. .W. .E.

..Em... m...Em... m... . .
.m..m.. .-.

.. m . . . m m

..Em.. .v.

. .m. . .-m . . . m..Em.. . . .

.Em... .-,I.. .

.99 m m . .

.os... .-. .
m.. .-. .m = E . .

m.m..B..ma.BBp....ma..
E m . m . . m . . m . ~ m...99.. E 9 9 9 . . .

. . .
. . . .

....

....
.

Figure 6 A complex character pattern that does not scale directly
into the reduced array size. A faithful representation at 2/3 scale is
not achievable.

~ 660

~ R. G. CASEY ET AL

Another limitation arises because the printer may not
faithfully reproduce the pattern specified by the output
array. Printer technologies have their own idiosyncrasies;
particular printers, for example, may make character strokes
either wider or thinner than specified by the dot array. To
some extent the scaling procedure can be adjusted to suit a
particular printer’s behavior, e.g., by setting a minimum
width constraint on output strokes in order to adapt the
method to a printer that tends to fade strokes. However,
incorporation of constraints into the program is awkward at
best, and visual review of printed text and subsequent
manual revision of the font patterns is probably the wisest
recourse in difficult cases.

IBM J. RES. DEVELOP. VOL. 26 I ‘40. 6 NOVEMBER 1982

M

A
M

Figure 7 IBM 3800 character patterns scaled to 240-pixel/inch resolution.

It is also worth noting that pathological cases can occur in
which an output meeting all the desired criteria is not
possible. For example, Fig. 6(a) shows a Kanji character
pattern meaning “hawk.” When invoked to reduce this
character by a factor of 2/3, the scaling routine produced
Fig. 6(b). Inspection shows that it is simply not possible to
maintain the calculated configuration of horizontal strokes
while at the same time retaining small features appearing on
these strokes, keeping separation between components, etc.

Experiments
The results shown below are illustrative of data obtained over
a wide range of applications. To illustrate the experiments in
the limited space of this paper, we show extracts from three
classes of applications using Latin fonts. First is presented a
series of non-square size increase conversions. Next are
shown some size reductions from high-resolution input fonts.
Finally, samples of converted output are shown in text form,
permitting better evaluation of the scaling process over the
font as a whole.

Magnijcation
The IFM San Jose Research Laboratory is developing an
experimental printer called Sherpa which has a program-
mable control unit and makes an IBM 6670 laser printer into
an all-points-addressable printer that can plot images or
composed text of arbitrary size. One class of output from

Sherpa consists of data processing and office typing font
styles. (Composed text output is discussed in the next
section). A possible source of data processing fonts is a
high-speed output printer, the IBM 3800. However, the 3800
prints a t a resolution of 180 pixels/inch in the horizontal
direction and 144 pixels/inch vertically, while the 6670
resolution is 240 pixels/inch in both directions. Therefore,
the 3800 fonts must be scaled by 4/3 horizontally and by 5/3
vertically in order to appear at the proper size on Sherpa
output.

Figure 7 illustrates a number of such conversions. The
input dot array is shown on the left in each case, and the
converted form on the right. Observe that the stroke size is
consistent from character to character, as well as within a
given sample.

e Reduction
Again the 240 pixel/inch Sherpa system is used as the target
application. In this case, however, the object is to convert
800-pixel/inch photocomposer fonts to the lower resolution.
This is a size reduction by a factor of 3/10 in each dimen-
sion.

Characters designed for a low-resolution printer such as
the 3800 tend to be simple in shape, which alleviates the
magnification problem since local variation along the con-

5

A

5
A

66 1

IBM J . RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982 R. G. CASEY ET AL.

662

Figure 8 Photocomposer (high-resolution) characters scaled to
240 pixels/inch. Characters that are ordinarily thought of as sym-
metrical, e.g., “pi,” are often not symmetrical at photocomposer
resolutions (here 800 pixels/inch). Thus the scaled version is not
pixel-for-pixel symmetrical.

tour after scaling is small. In order to increase the array size
of 3800 patterns, the primary requirement is to maintain
symmetry and stroke width, while repeated contour smooth-
ing is needed to minimize staircase effects. On the other
hand, reducing the scale of high-resolution fonts involves
different problems, since these fonts often contain serifs and
decorative curvature. It is a challenge to the conversion
algorithm to retain as many as possible of these features
through the scaling process.

Figure 8 shows a number of photocomposer characters and
the 240-pixel/inch patterns produced by the scaling algo-
rithm. Note that the algorithm in some cases is forced by the
array size constraint to compromise in the representation of
local feature information.

Several other pertinent problems arose in these tests. The
photocomposer characters contain “ink traps,” extra black or
white pixels placed at regions of sharp curvature in order to
enhance the visual effect, but which are not actually part of
the character pattern. The ink traps give the appearance of
noise if retained through the conversion process, since each
pixel carries 11 times as much weight at Sherpa resolution.

Thus, a special filter algorithm was programmed to detect
and remove the ink traps from the input arrays.

A more difficult matter is the tendency of Sherpa to print
strokes somewhat finer than their array representations
prescribe. Due to technical considerations in the laser print-
ing process, a faithful scaling of a photocomposer character
may appear to be broken in places where the stroke width
narrows to a single pixel in width. A constraint was therefore
imposed on the initial scaling routine to force vertical or
horizontal strokes to be at least two pixels in width. This was
surprisingly easy to do; indeed, the notion of such a
constraint is almost inherent in the approach, since the
thickness of each vertical or horizontal stroke is dictated by a
conversion table. However, the thickness of curved or slanted
strokes is more difficult to constrain. Manual editing of the
patterns is possible a t reasonable cost, since the problem
occurs only sporadically. Another alternative that shows
promise for Sherpa is a uniform thickening of the entire font
by algorithm either before or after scaling.

Sample text
In Fig. 9 are shown several examples of text using 800-
pixel/inch photocomposer fonts scaled to Sherpa specifica-
tions (240 ppi). Composing characters into text poses the
additional problem of scaling the parameters that govern the
placement of characters with respect to each other in the
lines of text. Text also reveals defects that may not be
apparent when isolated characters are scaled, such as varia-
tions in height or in location with respect to the baseline of
the text.

For example, the body of a lower-case “p” should rest on
the baseline and its top should be at the same level as, say, the
top of an “m,” while the bottom should be at the level of the
bottom of a “q.” The conversion algorithm does not explicitly
enforce all such constraints, though both overall height and
baseline location are controlled. Nevertheless in most cases,
as illustrated, an acceptable conversion is obtained without
the added complexity that those constraints would entail.

Conclusions
It has been shown that by a combination of contour process-
ing, feature detection, and smoothing, automatic digital font
scaling can be accomplished while preserving essential pat-
tern characteristics, such as symmetry, stroke width, smooth-
ness, and local curvature. In scaling thousands of character
patterns, relatively few have required human revision, The
key to the transformation lies in the automatic recognition of
attributes of font patterns associated with print character
quality, permitting comparison of the input and scaled
patterns to detect and correct discrepancies that occur due to
the nature of the mapping task. The technique may thus be
considered to be a type of pattern recognition procedure.

R. G . CASEY ET AL. IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

0 shame to men! Devil with Devil damn’d
Firm concord holds:.men only disagree
Of Creatures rational, though under hope
Of heavenly Grace; and God proclaiming peace,
Yet live in hatred, emnity, and strife
Among themselves, and levy cruel wars,
Wasting the Earth, each other to destroy.

Milton

0 shame to men! Devil with Devil damn’d
Firm concord holds: men only disagtee
Of Creatures rational, though under hope
Of heavenly Grace; and God prodaiming peace,
Yet live in hatred, emnity, and strife
Among themselves, and levy auel wars,
W t d n g the Earth, each other to destroy.

Miton

0 shame to men! Dev i l w i th Dev i l damn’d
Firm concord holds: men only d isagree
Of Creatures ra t ional , though under hope
Of heavenly Grace; and God p r o c l a i m i n g p e a c e ,
Yet l ive in ha t red , emni t y , and s t r i f e
Among themselves , and levy cruel wars .
Wast ing the Earth, each other to destroy.

M i l t o n

0 shame to men! Devil with Devil damn’d
Firm concord holds: men only disagree
Of Creatures rational, though under hope
Of heavenly Grace; and God proclaiming peace,
Yet live in hatred, emnity, and strife
Among themselves, and levy cruel wars,
Wasting the Earth, each other to destroy.

Milton

Figure 9 Scaled photocomposer characters composed into text. At the 240-pixel/inch resolution illustrated here a lower-case character such as
e IS only about 16 pixels high compared to over 50 pixels in the original font. The amount of detail captured at the coarser resolution is a good

measure of the success of the scaling method.
‘1 3 , .

Acknowledgment
A. Greene of IBM suggested the conversion problem and
sponsored the algorithm development. J . King and K. Hitch-
cock of the Sherpa project provided data and programming
that assisted in the evaluation and improvement of the scal-
ing routines. D. Ngan of IBM Tucson helped in the applica-
tion to 3800 fonts and gave feedback on performance. The
support of these individuals and others who came into con-
tact with the work reported here is gratefully acknowledged.

Appendix

An initial scaling that preserves stroke width and symme-
try
The problem considered here is to define two discrete map-
pings, T, and Ty, that transform an input pattern P by scale
factors rx and r,,, respectively, to produce an output pattern
P’. A contour pixel located a t (x, y) in P is mapped into
(T , (x) . T y (y)) in P‘. T, and Ty are vectors of integers having
lengths equal to the respective dimensions of P. We assume
for convenience that P has at least one black pixel in each of
its boundary columns and rows, so that its array dimensions
are equal to its width and length. Also, rx 5 1 and ry 5 1.

The scale mappings are to be adjacency preserving, i.e., for
each integer Z < width of P, either T,(Z + 1) = T,(Z) or else
TX(Z+ 1) = T,(Z) + 1.

The overall mappings are to be approximately linear,
subject to the following three requirements:

1. Consistent stroke widths Let P contain a subpattern Q
consisting of a vertical (or horizontal) black bar of width
t . Then T , (Q) [or T y (Q)] should have width d , (t)
[or d y (t)] , where d, and d, are discrete mappings. d,, dy
depend on the scale factors r,, ry and may be defined by a
simple round-off rule as described in (3) below or by some
other consistent formula.

2. Symmetry If there exist constants a and/or b such that
one or more of the following relations holds in P, then
there must exist constants a‘ and/or b’ such that the
corresponding relations hold in P’:

IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982 R. G . C

663

:ASEY ET AL.

664

3. Overall dimensions If (w. h) are the width and height of
P, then the corresponding dimensions (w’, h’) of P’ should
satisfy the usual round-off formulas W’ = trunc 0.5 +
r,)w and h’ = trunc 0.5 + r,h, where trunc z is defined to
be the next integer less than or equal to z.

These constraints preclude use of a simple scaling and
round-off rule to determine T, and T,. For example, the
specification

T,(I) = trunc c, + r,x

affords control only over a single parameter c, in order to
meet all constraints. Simple examples suffice to show that
this is not possible.

In fact, if P contains many strokes, it may not be possible
to define a scaling transformation that maps all the strokes so
as to satisfy (1) above. In such cases the method described
here is made to fulfill constraints (2) and (3), but to satisfy
(1) only for a selected subset of the strokes in P.

A further difficulty must also be resolved in the case of
symmetrical patterns. Suppose, for example, that w, the
width of the input pattern, is an odd number while the scaled
pattern width w’ is even. In this case, P is said to have odd
symmetry, while P‘ is said to have even symmetry in the
horizontal direction. These conditions imply that P’ is made
up of pairs of matching columns, while the center column of
P has no symmetrical counterpart. The column in P’ to which
this column is mapped by an arbitrary T, cannot be guaran-
teed to match the other member of its symmetry pair; i.e., it
may not be possible to satisfy (3) .

To prevent this problem from occurring, while still retain-
ing generality, at the start of the algorithm P is tested for
symmetry, and its height and width are measured. If either w
or h is odd, and if the pattern is symmetrical in the
corresponding direction, then the doubling algorithm (see
text) is invoked to produce a pattern having even height and
width. The scale factors are halved, and the process con-
tinues as if the doubled pattern were the input.

T, and T, can be constructed independently of one anoth-
er; i.e., (1)-(3) can be resolved into one set of constraints
involving only T, and another set involving only T,. Since
they are determined in an identical manner, we describe the
specification only of T,.

The formation of T, proceeds in the following steps:

1. A stroke table is calculated, listing the locations and sizes

2. The stroke table is reduced to denote only a subset of
of the strokes to be scaled by T,.

“admissible” strokes.

R. G . CASEY ET AL

3. The stroke table is used to create a scale interval table, S,
giving the mapping from each interval width in P to a
corresponding width in P’.

4. T, is formed from the specification in S.

A more detailed description of these steps follows.

Stroke table
Note that T, controls the width of vertical strokes in P‘. A
vertical bar of width t in P consists of a number of sequences
o f t 1’s that occupy the same columns in consecutive rows of
P. Such bars may be interrupted by intersections with other
strokes and by the presence of serifs on the contour. The
algorithm used for stroke detection finds all sequences of 1’s
in P and tabulates those having a common length and initial
column. A table is formed whose rows list for each such
collection (1) the initial column, (2) the length t , and (3) the
number of bit sequences represented in this entry. The rows
of this stroke table having highest weight (the frequency of
bit sequence occurrence recorded in column 3 generally
pertain to strokes in the input pattern.

Next, using d, as described above, the width desired for
each stroke is added to the table as a fourth column. Pattern
P is then complemented and the procedure repeated to
tabulate the position, width, weight, and desired width after
scaling for white bars. A fifth column is appended to each
table to indicate 1 for black strokes and 0 for white, and a
master table containing both sets of data is assembled and
sorted on stroke weight. A bottom row is appended, contain-
ing in columns 2 and 4 the value of the overall width of P and
the desired width of P‘, respectively.

0 Reduction of the stroke table
T, is primarily intended to set the correct black stroke width
and overall width of P’. As a secondary objective it is
concerned with maintaining the separation between closely
spaced strokes. This is the reason for recording white strokes
as well as black in the table. As an initial reduction, then, any
row describing a white stroke is deleted from the table if the
value in column 4 (desired width in P’) exceeds 3. A second
reduction is effected by selecting from the table a sequence of
rows describing strokes (either white or black) that occupy
nonoverlapping columns. The selection is done iteratively in
order of stroke weight, and the selected rows are stored as a
new table. The bottom row of the original table, containing
the overall stroke width specification, is also placed at the
end of this table.

0 Interval table
The reduced stroke table, R , is ordered on column 1 (x-
coordinate of the left edge of a stroke) and used to calculate
the scale interval table, S. S is an array having 2 rows and
2M + 1 columns, where M is the number of strokes

IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

I and R(I , 4), respectively.

The remaining M + 1 odd-numbered columns in S
describe the space between strokes. The first row of column
21 - 1, where I = 2, 3, . . . , M , contains the quantity

R(I , 1) + 1 - R (I - 1, 1) - R (I - I , 2),

which is the number of pixels between the end of the
(I - 1)th stroke and the start of the Zth. The second row is
computed as

S(2, 21 - 1) = trunc0.5 + (r,)S(l , 21 - 1).

That is, the second row entries are calculated by scaling and
rounding off the first row values. Columns 1 and 2M + 1
contain similar data, except that the intervals described run
from the left edge of P to the left edge of the first stroke and
from the right edge of the last stroke to the right edge of P ,
respectively.

S describes the mapping from successive horizontal inter-
vals of P to intervals in P’ . The entries in row 2 of the
odd-numbered columns are free; i.e., they are adjustable to
meet certain criteria. The even-numbered entries are fixed
by the stroke width constraints.

S is next adjusted, if necessary, in order to satisfy the
following requirements. Let S , (I) , S , (I) be the I th elements
in rows 1 and 2 of S , respectively. Then,

1. x S , (I) = W‘, where W‘ = the desired width of P‘ .
2” I

I = I

2. 0 5 S , (I) 5 SI (I) .
3. If SI([) > 0, then S , > 0.
4. For I odd, IS,(Z) - rxSl (I) [5 1 + c rxS, (I) ,

where c is an arbitrary constant less than 1.

Constraint (1) maintains the desired overall width of P’,
while (2) is a feasibility condition. Constraint (3) maintains
separation between successive strokes in P if there exists
separation in P. The last constraint (with c = 0.25 in the
experiments reported in the text) determines the amount by
which the space between strokes is allowed to differ from
strict linear scaling. This requirement enforces “local” lin-
earity to ensure that T, does not overly expand or compress
the space between strokes. The smaller c, the less variation
permitted, but a t least one pixel of variation from linear
scaling is always allowed.

Initially S , will meet constraints (2) and (4). If (3) is
violated, then elements of S, must be increased from 0 to 1.
When this is done, all that remains is to satisfy the overall
width constraint (1) by adjusting the odd-numbered ele-
ments of S , within the limits imposed by (4).

IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

The direction of change required is determined; then, for
each odd I the boundary for S , (I) in that direction is
calculated. This limit, obtained by combining (2)-(4), is

max { I , rx (l - ~) S , (I) - I } 5 S , (I)

5 min {SI (I) , r,(l - CIS, (I) + 11,
for all I such that SI (I) > 0.

The element S,(I) that is furthest from the constraint
boundary is determined, and if this distance is a t least unity,
then S , (I) is increased or decreased by 1 as needed. This
procedure is repeated until either (1) is satisfied or else no
element of S, can be altered without violating the boundary
constraints. In the former case, the specification of S is
complete. In the latter case, the constraints cannot be met.
The algorithm then returns to the stroke table R and deletes
the row describing the stroke of least weight. The reduced
stroke table is used to specify a new S table as above. In this
way, a stroke table is eventually obtained that produces an S
table satisfying all conditions (1)-(4).

Calculation of T, from S
Consider the 2-tuple (SI, S,) contained in an arbitrary
column of S . By the usual division algorithm, if SI > 0, then
we can write

SI = PS, + q,

where p , q are integers such that q < S , and p > 0. Thus the
set of integers 1, 2, 3, . . . , SI can be partitioned into S,
subintervals, such that (S , - q) of the subintervals contain p
consecutive integers, while q of the subintervals contain
p + 1 consecutive integers.

An algorithm for generating the sequence of subinterval
lengths is the following. Let rn = trunc (S,/2). Construct
the sequence of SI integers given by

vi = rn + (i - 1)S, i = I , 2, ,SI.

Now define

f (v i) = 1 + trunc (n i / S I)

and

l l = I { i : f (u i) = J } (j = 1 , 2 , . . . , S , .

The subintervals so determined correspond to a linear scaling
and round-off of the interval of P corresponding to SI. Note
that the scale factor is not r,, but S , /S2.

The procedure just described is repeated for each column
of S , generating for the I t h column the sequence of subinter-
val lengths 11(1), wherej = I , 2, . . , S, (I) . These are next
arranged in order of increasing I to give the vector w defined
as 665

R. G . CASEY ET AL.

w = O , Z I (1) , 4 (1) , * . * 1 zs2(1)(1)’ Z l W , , zs2(2M+I).
Let us call g, the kth element of this sequence. The desired
mapping T, is obtained by setting

Received May 6.1982; revised June 29,1982

T, x g , , + j = k + 1 f o r a l l j = 1, 2, e . . ,gk+,.
C I 1

If P is symmetrical, then the right-hand side of T, beyond the Road. Jose, California 95193,
Richard G. Casey IBM Research Division, 5600 Cottle

axis of symmetry is deleted. T, is then completed by reflect-
ing the left-hand side (i.e., reversing the order of its
elements), adding a value determined from the axis of
symmetry, and concatenating the resultant to the left-hand
side.

References and notes
1 .

2.

3.

4.

5.

6.

7.

P. Archibald, Fonts Manual, Version 2, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, September 1977.
R. Schafer and L. Rabiner, “A Digital Processing Approach to
Interpolation,” Proc. IEEE 61,692-702 (June 1973).
R. G. Casey, T. D. Friedman, and K. Y. Wong, “Use of Pattern
Processing Techniques for Rescaling Digital Print Fonts,” Proc.
4th International Con$ on Pattern Recognition. Miami Beach,
FL, December 1-4, 1980.
Converting a pattern to a new resolution involves exactly the
same process as changing its size, and the two operations are used
interchangeably in this paper. Converting a pattern from, say, a
coarse to a fine grid resolution while retaining the pattern’s
original size requires that the number of dot elements in the
pattern be increased. This transformation is equivalent to enlarg-
ing the size of a pattern in a resolution whose grid size is fixed. It
should be noted that in practice, designers alter relative propor-
tions as they change the size of characters. This artistic rule has
not been included in the present work.
H. Freeman, “On the Encoding of Arbitrary Geometric Configu-
rations,” IEEE Trans. Electron. Computers EC-10, 260-268
(June 1961).
Some scaling techniques, e.g., Knuth’s [7], call for a complex and
explicit description of the character pattern, thereby avoiding the
need to derive qualitative attributes of patterns as in the approach
reported here. These systems, however, require that the font be
created manually a t a computer console to begin with in order to
establish the parameters, and thus are not directly suitable for
scaling a pre-existing font represented only as a set of dot arrays.
D. Knuth, TEX and METAFONT, New Directions in Typeset-
ting. Digital Press, Bedford, MA, 1979.

(See page 656 for biography.)

Theodore D. Friedman IBM Research Division, 5600 Cot-
tle Road, San Jose, California 951 93. Dr. Friedman joined the IBM
Thomas J. Watson Research Center in 1963 and in 1966 became
manager of the machine-assisted design project, producing the
ALERT system, the first logic design compiler. In 1970 he trans-
ferred to the IBM San Jose Research laboratory, where he developed
analysis tools for digital networks and devised an access control
system for shared data. With Dr. R. G. Casey, he developed a
facsimile compression method using an extendable decision-tree
search technique. He also helped devise and implement a general-
purpose digital image enhancement algorithm. Currently, Dr. Fried-
man is working on computer-aided design of VLSI. Prior to joining
IBM, he was a member of the scientific staff a t Technical Research
Group, Inc., where he was responsible for the design specification of
a space vehicle computer. He received his B.A. from the University
of Michigan in 1958 and his M S . and Ph.D. degrees in computer
science from the University of California, Berkeley, in 1973 and
1976.

Kwan Y. Wong IBM Research Division, 5600 Cottle Road,
San Jose. California 951 93.

(See page 656 for biography.)

666

R. G . CASEY ET AL IBM J. RES. DEVELOP. VOL. 26 NO. 6 NOVEMBER 1982

