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Regenerative Simulation of Networks of Queues with
General Service Times: Passage Through Subnetworks

A linear “job stack,” an enumeration by service center and job class of all the jobs, is an appropriate state vector for simulation
of closed networks of queues with priorities among job classes. Using a representation of the job stack process as an irreducible
generalized semi-Markov process, we develop a regenerative simulation method for passage times in networks with general
service times. Our estimation procedure avoids Cox-phase representation of general service time distributions and is applicable
to networks with “single states” for passage times. Based on a single simulation run, the procedure provides point estimates

and confidence intervals for characteristics of limiting passage times.

1. Introduction

Simulation is usually the only method available for studying
passage times in closed, multiclass networks of queues with
priorities among job classes. Informally, a passage time is the
time for a job to traverse a portion of the network. Such
quantities are important in computer and communication
system models where they represent job “response times.”
For networks with Cox-phase service times, Iglehart and
Shedler [1, Sec. 8] and Shedler and Slutz [2] have shown
that point estimates and confidence intervals for characteris-
tics of passage times through a subnetwork can be obtained
by observing a single sample path of an irreducible Markov
chain. The states of this Markov chain are configurations of a
“fully augmented linear job stack.” Shedler and Southard
[3] extended the applicability of this estimation method to
networks with unrestricted priorities; for such networks the
underlying Markov chain need not be irreducible. In this
paper we derive an analogous estimation procedure (termed
the “labeled jobs method™) for networks with general service
times having density functions that are continuous and
positive on (0, «). In our procedure, passage times for all the
jobs enter into the construction of point and interval esti-
mates. The related procedure of Iglehart and Shedler [4] is
based on observations of passage times for a single job.

An appropriate state vector for simulation of closed,
multiclass networks of queues is a linear “job stack,” an

enumeration of the jobs by service center and job class.
Passage times are recorded by observing a “fully augmented
job stack process,” which maintains the position of each of
the jobs in the job stack. We show under a mild restriction on
the priorities among job classes that the job stack process
observed at the epochs at which passage times terminate is a
regenerative process in discrete time. As a consequence,
point and interval estimates for characteristics of limiting
passage times can be obtained from a single simulation run.
To establish these results, we use a representation of the job
stack process as a generalized semi-Markov process in the
sense of Whitt [5].

We show that terminations of passage times with no other
passage times underway and exactly one job in service are
regeneration points for the job stack process observed at
termination times. In order for such epochs to exist we must
exclude passage times which are complete circuits as well as
passage times which always terminate with two or more jobs
in service. A mild restriction on the priorities among job
classes ensures that infinitely many such epochs occur.

Section 2 contains a description of the networks under
consideration, a definition of the job stack, and the formal
specification of passage times. The generalized semi-Markov
process representation for the job stack process and stochas-
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tic process results underlying the estimates for passage times
are in Section 3. The estimation procedure for passage times
is in Section 4.

2. Closed, multiclass networks of queues and
passage times

As in [1], we consider closed networks of queues having a
finite number of jobs (customers), N, a finite number of
(single or multiple server) service centers, s, and a finite
number of (mutually exclusive) job classes, c. At every epoch
of continuous time each job is in exactly one job class, but
jobs may change class as they traverse the network. Upon
completion of service at center i a job of class j goes to center
k and changes to class / with probability p, ., where
P = {p,.jvk, (i, §), (k, 1) € Clis a given irreducible Markov
matrixand CC {1,2, - « +, s} x {1,2, . - ., ¢} is the set of
(center, class) pairs in the network. At each service center
jobs queue and receive service according to a fixed priority
scheme among classes; the priority scheme may differ from
center to center. Within a class at a center, jobs receive
service according to a fixed queue service discipline, e.g.,
first-come, first-served (FCFS). Note that in accordance
with the matrix P, some centers may never see jobs of certain
classes. According to a fixed procedure for each center, a job
in service may or may not be preempted if another job of
higher priority joins the queue at the center. For expository
convenience we assume that any interruption of service is of
the preemptive-repeat type. A job that has been preempted
receives additional service at the center before any other job
of its class at the center receives service.

All service times are assumed to be mutually independent.
We also suppose that service times at a center have finite
mean but otherwise arbitrary density function which is
continuous and positive on (0, «). Parameters of the service
time distribution may depend on the service center, the class
of job in service, and the “state” [as defined in Eq. (1) below]
of the entire network at the time service begins. In order to
characterize the state of the network at time #, we let S,(¢)
denote the class of the job in service at center i at time ¢,
, §; by convention S,(¢) = 0if at time ¢
there are no jobs at center i. [If center i/ has more than one
server, we let S, (7) be a vector identifying the class of the job
receiving service from each server at center i.] The classes of
jobs serviced at center i ordered by decreasing priority are
PO NG ,Jk(,)(z) elements of the set {1,2, . - -, ¢}
We denote by C“)(t) C(') (¢) the number of ]ObS in
queue at time ¢ of the varlous classes of jobs serviced at
centeri,i =1,2,- - -,s.

wherei=1,2,. ..

We think of the N jobs being ordered in a linear stack
according to the following scheme. For ¢ = 0 define the state
vector Z(¢) at time ¢ by
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Z(t) = (Cj (0, -+, C (@, S,(0); - - -5
Cins @, =+, Cirtn, S,(1)). )

The job stack at time t then corresponds to the order of
components in the vector Z(z) after ignoring any zero
components. Within a class at a particular service center,
jobs waiting appear in the job stack in FCFS order, i.e., in
order of their arrival at the center, the latest to arrive being
closest to the top of the stack. The job stack process
Z = {Z(1) : t = 0} has a finite state space, D*. For any ser-
vice center i that sees only one class of job, i.e., such that
k(i) = 1, it is possible to simplify the state vector by
replacing C(') (2), S,(t) by Q,(¢), the total number of jobs at
center i. Not(e that the state vector definition does not take
into account explicitly that the total number of jobs in the
network is fixed. In the case of complex networks, the use of
this resulting somewhat larger state space facilitates genera-
tion of the state vector process; for relatively simple net-
works, it may be desirable to remove the redundancy.

® Definition of passage times

Arbitrarily choose one of the jobs and refer to this distin-
guished job as the “marked job.” For ¢ = 0 denote by N(¢)
the position (from the top) of the marked job in the job stack
at time ¢. Then set

X(1) = (Z(1), N(1)) (2)

and call X = {X(¢) : t = 0} the augmented job stack process.
Passage times are specified in terms of the marked job by
means of four subsets (4,, 4,, B, and B, ) of the state space,
E*, of the stochastic process X. The sets 4, 4, [resp. B, B, ]
jointly define the random times at which passage times for
the marked job start [resp. terminate]. The sets 4,, 4,, B,,
and B, in effect determine when to start and stop the clock
measuring a particular passage time of the marked job.

Denote the jump times of the process X by {r, : n = 0}. For
k, n = 1, we require that the sets 4, 4,, B, and B, satisfy the
following:

ifX(r, )€ A4, X(r,) € 4,, X(7
and X(r,,,) € 4,,

) € A,

n—1l+k

then X(r ) € B, and X(r,,,,) € B, forsome 0 < m < k;

n—l+m n+m

and

if X(r,_)) € B, X(z,) € B,, X{(r,_,,,) € B,

and X(7,,,) € B,,
then X(r, ,,,.) € 4, and X(7, ,.) € A, for some
O=m<k

These conditions ensure that the start and termination times
for the specified passage time strictly alternate.

In terms of the sets 4, 4,, B, and B,, we define two
sequences of random times, {S]. :j=0}and {TJ :j = 1}, where
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S,_, is the start time of the jth passage time for the marked
job and T is the termination time of this jth passage time.
Assuming that the initial state of the process X is such that a

passage time for the marked job begins at ¢ = 0, let
S,=0,
S, =inflr,=T,:X(r,) € 4, X(r,_)) EA}, j=1,

J

and
T,=inf{r,=S,  :X(r,) € B, X(r,_) EB}, j=1.

Then the jth passage time for the marked job is P, =
T,— S,
J

oy j=1.

Example 1  Consider a network with two service centers
and a single job class such that the set C of (center, class)
pairs is C = {(1, 1), (2, 1)}. Suppose that a job completing
service at center 1 joins the tail of the queue at center 1 with
probability p and (with probability 1 — p) joins the tail of the
queue at center 2. A job completing service at center 2 joins
the tail of the queue at center 1. For ¢ = 0 let Z(#) be the
number of jobs waiting or in service at center | at time 7 and
set X(1) = (Z(1), N(1)), where N(2) is the position of the
marked job in the job stack at time ¢. The state space of the
augmented job stack process X = {X(¢) : t = O} is

E={(i,j):05isN,lgjsN}.

Thus, for example, if all N jobs are at center 2 and the
marked job is in service, the augmented job stack process is in
state (0, V). Upon completion of service at center 2, the
marked job goes into service at center 1, the remaining N — 1
jobs are at center 2, and the process is in state (1, 1).

Consider the passage time which starts when a job com-
pletes service at center 2 (and joins the tail of the queue at
center 1) and terminates when the job next joins the tail of
the queue at center 2. This passage time is specified by the
sets

A, =[G, N):0=i<N}
A, =1, 1):0<i=N}

B, =1{(i,i):0<i=N}
and
B,=1{(i-1,i:0<i=N}L

For N = 2 jobs, these sets are shown in Fig. 1.

® Restriction of the job stack process

To obtain recurrence results it is necessary to restrict the job
stack process to a suitably chosen subset of its state space.
Let U(z) be the set of all (center, class) pairs (i, j) € Csuch
that in state z € D* there is a job of class j in service at center
i.Forz, 22 € D*and u = (i, j) € U(2), let q(z’; z, u) be the
probability that the job stack process Z jumps (in one step) to
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Figure 1 Subsets of F for passage time P.

state z/, given that in state z there is a completion of service to
a job of class j at center i. When q(z"; z, u) > 0 for some
u € U(z), we write z — Z'. For all z, 2/ € D*, we say that
7' is accessible from z and write z n4 z' if there exists a
finite sequence uy, z |, u), - - -, u, of (center, class) pairs and
job stacks such that

q(z;z,up)q(zy; z s uy) - - - g2z, ) > 0. 3)

When zn4 7' and z' "4 z, we say that z and z’ communicate
and we write z p4 2.

We also define U(x) for x € E* : U(x) = U(z) when
x = (z,n) forsomez € D¥andn € {1,2, - - -, N}. For
x, x' € E* and u = (i, j) € U(x), we denote by p(x’; x, u)
the probability that the augmented job stack process X jumps
to state x', given that in state x there is a completion of ser-
vice to a job of class j at center i. We write x — x’ when
p(x’; x, u) > O for some u € U(x). We say that x' is
accessible from x and write x n4 x’ if there exists a finite
sequence ug, x,, #;, - - -, u, of (center, class) pairs and
augmented job stacks such that

Pl x,u) pxy x,u)) -+ - p(Xsx,u,) >0. 4)

When x "4 x" and x’ n4 x we say that x and x' communicate
and we write x pJ X'

Recurrence results can be obtained by restricting the job
stack process to a set D within which all states communicate.
We make the further assumption that for some z* € D* the
set

D=1{zE D*:z*n4 z}

is irreducible, i.e., zn4 Z' for all z, 2 € D*. It is sufficient that
for some service center, i, either k(i,) = 1 or service at
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Figure 2 Closed multiclass network of queues.

center i, to a job of class j, (i) (the lowest priority job class
seen by center i,) is preempted when a job of higher priority
joins the queue. Let z,?:)‘ € D¥* be the job stack in which there is
one job of class jk(io)(io) in service at center i and IV — 1 jobs
of class jk(l.u)(io) in queue at center i,. Define D to be the set of
all states of the job stack process Z that are accessible from

zi’:, ie.,
D={z€D*:zryz). (5)

Then define a subset £ of the state space E* of the
augmented job stack process X according to

E ={(z,n) € E*:z€ D}. 6)

We assume that the sets 4, 4,, B,, and B, which define the
starts and terminations of passage times are subsets of
E={zn:z€D,1 <n=N}

Proposition (2) provides conditions which ensure that all
states of the job stack process Z restricted to the set D
communicate and that all states of the augmented job stack
process X restricted to the set £ communicate. The argument
used to establish the result is similar to the proof of Proposi-
tion (3.4) in Shedler and Slutz [6].

Proposition 2 Let the number of service centers s > 1.
Suppose that the routing matrix P is irreducible and that for
some service center i, either k(i;) = 1 or service to a job of
class jk(,.o)(io) at center i, is preempted when a job of higher
priority joins the queue. Then z A4 Z' for all z, 2 € D and
xpd x' forall x, x’ € E.

Example 3 illustrates these ideas for a model proposed for
processor scheduling in data base management systems; see
Lavenberg and Shedler [7] and Iglehart and Shedler [1, Sec.
5.2].

Example 3 Consider the network shown in Fig. 2. There
are two service centers and seven job classes, and the set C of
(center, class) pairs is

C=11,2),0,3),(1,4),(1,5),(1,6),(1,7), (2, D}

Suppose that the classes of jobs serviced at center 1 ordered
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by decreasing priority are j, (1) = 2, j,(1) = 3,--. .,
Jo(1) = 7. Service to jobs of class 7 (at center 1) is subject to
preemption when a job of higher priority joins the queue at
center 1. Service to any other job class is not subject to
preemption. Also suppose that (for 0 <, ¥, < 1) the (irre-
ducible) routing matrix P is as shown in Fig. 3. For ¢ = 0 let

Z(0) = (€ @), - - -, C ), 5,(1), @,0)),

where the number of jobs of class j in queue at center 1 at
time ¢ is C{"(¢), S, (z) is the class of the job in service at
center 1, and Q,(¢) is the number of jobs waiting or in ser-
vice at center 2. As k(2) = 1 and service to jobs of class
Juay(1) = 7 at center 1 is subject to preemption, either state

z¥ = (N - 1,0,0,0,0,0,7,0)

or state

z¥ =(0,0,0,0,0,0,0, N)

can serve as the state zF* which defines the set D. For
N = 2 jobs the set D* — D # @ is nonempty; e.g., the state
(0,0,0,k—-1,0,0,4, N — k) is an element of D¥ — D
provided that k = 2.

® Single states of the job stack process

We now identify special “single states” of the job stack
process which are used explicitly in the labeled jobs method
of Section 4. A single state of the job stack process is a
configuration of the job stack such that no passage times are
underway, all jobs are at the same center with exactly one job
in service, and entrances to the state (from a fixed state)
correspond to the terminations of passage times. Our notion
of single state coincides with that of Fossett [8] for general-
ized semi-Markov processes.

Formally, define two sets .S and T according to

S ={(k,m): k€ 4, m €A,,and k — m}

and

T={(k,m):kE B,,mE B,,and k — m}.

Let H be the set of all (center, class) pairs (i, j) such that a
marked job can be of class j at center i when the passage time
specified by the sets 4,, 4,, B, and B, terminates or is not
underway. The labeled jobs method applies to passage times
through a subnetwork, i.e., to passage times for which
S M T = @ sothat the set H is nonempty.

Also define a function & taking values in C and having
domain D x {1, 2, - - -, N} such that the value of h(z, n) is
(i, j) when the job in position n of the job stack associated
with z € D s of class j at center i.

Definition 4 An element z of the set D is called a single
state of the job stack process for the passage time specified
by the sets 4,, A,, B,, and B, if
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1. h(z, n) = (i, j, (iy)) € H for some single server center i,
n=12,... :'N;and

2. there exists (z,, m) € B, such that (z,, m) — (z, n) for
some (z, n) € B,.

According to this definition a single state of the job stack
process is a configuration, z, of the job stack such that no
passage times are underway [A(z, n) € H for all n], all jobs
are at the same center (i) with exactly one job in service, and
there exists z, such that a passage time for some job
terminates when the job stack process jumps from z, to z.
[/, Go)s 1), - - - ,jk(,.o)(io) are the classes of jobs serviced
at center ij; the definition requires that j, (i,), the class
at center i, to which the job in position n ('(')f job stack z)
belongs, satisfy j, (i,) € {7,Go)s o), - - - ,jk(,.o)(io)} for
all n.] We assume that a single state of the job stack process
exists. In addition, we assume that the initial state, z,, of
the job stack process is a single state.

3. The underlying stochastic structure

The labeled jobs method rests on the result that the job stack
process observed at the terminations of passage times is a
regenerative process in discrete time. To show this, we use a
representation of the job stack process (restricted to the set
D) as an irreducible generalized semi-Markov process
(GSMP).

Following Whitt [5], a GSMP moves from state to state in
accordance with the occurrence of events associated with the
occupied state. Each of the several events associated with a
state has its own jump distribution for determining the next
state, and these events compete with respect to triggering the
next transition. At each transition of the GSMP, new events
may be scheduled. For each of these new events, a clock
indicating the time until the event is scheduled to occur is set
according to an independent (stochastic) mechanism. If a
scheduled event does not trigger a transition but is associated
with the next state, its clock continues to run; if such an event
is not associated with the next state, it is abandoned.

The GSMP associated with the job stack process
Z = {Z(t) : t = 0} has state space D and the completion of
service to a job of class jat center i is an event associated with
state z € D provided that (i, j) € U(z). Jumps of the process
from state z triggered by event u are governed by the
probability mass function p(- ; z, #). At a jump from state z
to state z’' triggered by event u, new clock values are
generated for each v € U(z') — (U(z) — {u}). The distribu-
tion function of such a new clock time (a service time for a
job class at some center) is denoted by F(-; z', », z, u); by the
assumptions in Section 2, each has finite mean and a density
function which is continuous and positive on (0, «). For
v € U(2") N (U(z) — lu}), the old clock reading is retained
after the jump. For each v € (U(z) — {u) — U(2),
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(1,2) (1,3) (1,4 (1,5 (1,6) (1,7) (2, 1)

1,2) 0 1—¢, O 0 0 0 ¥,
(1,3 [1-v¢, 0 0 0 0 ¥, 0
(1,4) ] 1—-y¢, O 0 ] 0 ¥,
(1,5 |[1-¢, 0 0 0 0 ¥, 0
(1,6) ] 0 1 0 0 0
a,7 0 0 0 0 1 0
@n Lo 0 1 0 0 |

Figure 3 Routing matrix P.

event v ceases to be scheduled after the jump. Let U =
{u,, u,, - « -, ul be the set of all possible events that can
occur, i.e.,

U= U U(z).

z€D

Observe that U = C, the set of (center, class) pairs in the
network.

With each z € D, associate the set of clock readings
C(z) = {(cl, Cy - -
u, € U()},

-, ¢):¢;=0and ¢ > 0if and only if

where ¢, is the reading on the clock corresponding to event
u, € U(z). It follows from Proposition 2 that the GSMP is
irreducible; i.e., for all states z and z’ there exists a finite
-, u, of events and states satisfying

’

sequence up, z,, Uy, *

plz; z, uy) p(z,; 2, uy) - - - p(2lsz,, 1) > 0.

Label the jobs from 1 to V. For ¢ = 0 denote by N’(¢) the
position of job j in the job stack at time ¢,j = 1,2, - - - | N.
Then in terms of the vector Z(¢) of Eq. (1), set

X°(t) = (Z(), N'(t), - - -, N™(1))

and call the process X° = {X°(¢) : 1 = 0} the fully augmented
Jjob stack process. Denote the state space of this process by
G°. Next select (zg» ..., ") e G° and set XO(O) =
(éo, n', -« ., n"). Denote by {P°: n = 1} the successive pas-
sage times (irrespective of job identity) in termination order.
Let {T%: n = 1} be the corresponding sequence of termina-
tion times and set Tg = 0.

We now show that the job stack process returns infinitely
often (i.0.) to a single state. This leads to the result that
{(z(T5), P}, ) : n= 0} is a regenerative process in discrete
time.

Proposition 5 For t = 0 let M(¢) be the last state of
Z = {Z(1) : t = 0} before entrance to the state occupied at
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time ¢ and set Y(¢) = (M(¢), Z(1)). Suppose that the routing
matrix P is irreducible and for some service center, i, either
k(iy) = 1 or service to a job of class j, ., (i,) at center i, is
preempted when a job of higher priority joins the queue.
Denote by (7, : k = 0} the jump times of Y = {¥(¢) : ¢ = 0}.
Then

PlY(r,) = (z.Z)io} =1

for all z, z/ € Dsuch thatz — z'.

Proof The process Y hasstate space F = {(z,2') 12,2 € D
and z — z'}. Associate with (z, z’) € F the set of events U(z')
and vector of clock settings C(z’). Then {Y(¢):¢=0}is a
GSMP with finite state space. Select (z, z’) € F. We appeal
to Glynn [9] to show that the general state space Markov
chain (GSSMC) associated with the GSMP Y returns
infinitely often to the set {(z, ')} x C(z'); it follows immedi-
ately that P {Y(r,) = (z,2') i.0.} = 1. Three conditions must
be checked:

a. The GSMP Y is irreducible in the sense that y 4 y' for all
»y er,

b. The density functions associated with the clock readings c,
have finite means and are continuous and positive on
(0, «); and

¢. A “recurrence measure” assigns positive measure to the
set {(z, ')} x C(2') for (z,2') € F.

Condition (a) holds as a consequence of Proposition 2;
z,pd z, for y = (z,, z,) and y' = (Z, z;). By assumption,
condition (b) holds. With respect to condition (c), note that
because the set U(z') is nonempty, at least one element of the
set C(z') is positive. This implies that the recurrence mea-
sure of {(z, z')} x C(z’) is positive, in fact, infinite. Hence
condition (c) holds and the GSSMC hits {(z, z'}} x C(z')
infinitely often with probability one. O

Proposition 6 Let z be a single state of the job stack
process for the passage time specified by the sets 4,, 4,, B,
and B,. Then under the conditions of Proposition 5,

PlZ(T) = zio} = 1. 7

Proof Condition (2) of the definition of a single state
implies that there exists (z,, z) € F such that a passage time
for some job terminates when Z jumps from z, to z. There-
fore, every jump time 7, such that Y(r,) = (z,,2) is an
element of {T?: n = 0} and is such that Z(r,) = z. The result
now follows from Proposition 5. O

Proposition 7 Under the conditions of Proposition 5, the
process {(Z(T?), PS,,):n =0} is a regenerative process in
discrete time.

Proof  Recall that Z(0) = z,, a single state of the job stack
process. Let {Tgk : k = 0} be the successive epochs at which a
passage time terminates with Z in state z,, and set Tgn = 0.
We must show that
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a. {8, : k = O} is a renewal process, and
b. P{Z(Tgkm) =z, ng+m+, =x}=
P{Z(T?n) =z, P?"H =x}form=0,k=0

and independent of {(Z(T?), P(T",))) : 0 =j < B,).

Let 7(8,) = min{r,:7, > Tgk}. At time Tgk, no passage
times are underway. Therefore, {Z(?) : t = 7(B,)} determines
the distributions of Z(Tgkm), ng+m+l’ and 8,,, — 8, for
m = 0. (Note that 8, , | — 8, is finite with probability one by
Proposition 6.) Now observe that each of the clocks running
at time 7(8,) was set at time 7(8,). The joint distribution of
Z(7(8,)) and the clocks set at 7(§,) depends on the past
history of Z only through z, and the event occurring at time
7(8, ). Hence this distribution is the same for all §,, indepen-
dent of {(Z(T?)), P}, ) : n<B,}. The future course of Z is
governed by Z(7(8,)) and the clocks running at time

7(8,). O

Proposition 8 asserts that the sequences of passage times
associated with starting the job stack process in a fixed single
state converge to a common random variable. The proof is
similar to that of Proposition (4.9) of Shedler and Southard
[3].

Proposition8  Suppose that x A4 x’ for all x, x' © E. Let z,
be a single state of the job stack process. Denote X°(0) by
(zp» ..., nN) and let {Pg :n = 1} be the successive pas-
sage times (irrespective of job identity) enumerated in termi-
nation order. Then

0 0
P,—Pasn— =

for all (z,, e, nN) e G°,

where P’ is the limiting passage time for any marked job.

4. Simulation for passage times
The goal of the simulation is estimation of

A(f) = E{f (PO}

where f'is a real-valued (measurable) function and P° is the
limiting passage time for any marked job.

Select a single state, z,, of the job stack process and an
initial state (z,, n', - - -, n") for the fully augmented job
stack process X°. Carry out the simulation of the fully
augmented job stack process in blocks defined by the succes-
sive epochs {Tgk .k = 1} at which a passage time terminates
with the job stack process in state z, (8, = 0 and Tgﬂ = 0).
Let

B
Yi(f)= > f(P)
J=Bp_1+1

andletai:,ﬁ'm—ﬁ m=1.

m—1°

Propositions 9 and 10 lead to point and interval estimates
for E{ f (P°)). The results follow directly from Proposition 7
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and general theorems for regenerative processes; see Crane
and Iglehart [10].

Proposition 9 The pairs of random variables

(Yo a) m=1}

are independent and identically distributed.

Proposition 10 Let D(f) be the set of discontinuities for
the function f. Provided that P{P° € D(f)} = 0 and
E{|f (P} < =,

ELf (PO} = E{Y) (N Ela}}).

Given Propositions 9 and 10, the standard regenerative
method applies and (from a fixed number, n, of blocks)
provides the strongly consistent point estimate

) =YUSf)/a,

where

YUS)=n'2_YUS)
and

n

—0 _ -1 0

an—n 04
m=1

Confidence intervals for ro(f) are based on the central limit
theorem

AP = POV () Elad] — NGO, 1),

where az(f) is the variance of Y?(f) — ro(f)a? and N(0, 1)
is a standardized (mean O, variance 1) normal random
variable. It follows that (for 0 <y < 1/2)

IO = CS) — 2,8,/ @n ") 3,0 f) + 2,5,/ @]

is a 100(1 — 2v)% confidence interval for ro(f). Here z,
= & '(1 — v), where ®(.) is the distribution function of a
standardized normal random variable, and s, is the quantity

5, = [y, =22,()s, + LN 5]
The quantities s,,, s,,, and s, are the usual unbiased

estimates for o”{Y,( )}, o’lal}, and cov {Y( f), o}, respec-
tively.

m*

Example 11  Consider a network with two service centers
and two job classes such that C = {(1, 1), (2, 1), (2, 2)} and
jobs of class 2 have nonpreemptive priority over jobs of class
1 at center 2. For ¢ = 0 let

Z() = (2,1, (1), (1), Sy(1)).

Suppose the irreducible routing matrix P is

a,n (@1 (2,2

(1,1) 0 1 0
2,1 0 0 1
2,2) 1 0 0
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Since center 1 sees only one job class, we can take i, = 1 and
z;;‘ = (2,0,0,0). Since all elements of the set D* except
(0,0,2,2) and (0, 1,1, 1) are accessible from z¥, the set
D =D* — {(0,0,2,2), (0, 1, 1, 1)}. According to Proposi-
tion 2, any two elements of D communicate.

Consider the passage time specified by the subsets 4,, 4,,
»and B, of E:

B
A4, =1(1,0,1,2,1),(1,1,0,1,1),(2,0,0,0, 2)},
A,=1(0,1,1,2,1),(0,2,0,1,1),(1, 1,0, 1, 2)},
B, =1(0,1,1,2,2),(1.0,1,2,2)},

and

B, =1{(1,1,0,1,1),(2,0,0,0,1), (1,0, 1, 2, D}

Observe that S N T = @. The passage time starts when a
job joins the queue at center 2 as class 1 and terminates when
the job completes service at center 2 as class 2. [Note that
because (0, 0, 2, 2,) & D, (0,0, 2, 2, 2) ¢ B,.] For this
passage time, H = {(i, )} and z, = (2, 0, 0, 0) is a single
state. Clearly, z, satisfies condition (1) of Definition 4.
Condition (2) is also satisfied because

(1,0,1,2,2) — (2,0,0,0, 1).

Now consider the passage time specified by the subsets 4,
A,, B,,and B, of E:

A, =1(1,0,1,2,2),(0,0,2,2,2), (0,1, 1,2, 2)},
A4,=1(2,0,0,1,1),(1,0,1,2,1),(1,1,0, 1, 1},
B, =1(1,1,0,1,2),(0,2,0, 1, 2)},

and

B,=1{(1,0,1,2,2),(0,1,1,2,2)}.

The passage time starts when a job completes service at
center 2 as class 2 and terminates when the job completes
service at center 2 as class 1. For this passage time, the set
H = {(2, 2)}. There is at least one passage time underway
unless the configuration of the job stack is (0, 0, 2, 2). Since
(0,0, 2, 2) & D, there is no single state and the estimation
method of this paper does not apply.

5. Concluding remarks

When developing simulation methodology it is important to
be able to assess the statistical efficiency of proposed estima-
tion procedures. With the labeled jobs method developed in
this paper, the half-length of the confidence interval (ob-
tained from a simulation of fixed length) for the expected
value of a general function f of the limiting passage time is
proportional to a quantity €% /). This quantity is indepen-
dent of the blocks of the underlying regenerative process and
therefore is an appropriate measure of the statistical effi-
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ciency of the estimation procedure. For Markovian networks
of queues, it is possible to compute theoretical values for
expected passage times and the associated variance constants
appearing in central limit theorems used to form confidence
intervals for passage time characteristics. This leads to a
quantitative assessment (Iglehart and Shedler [2]) of the
relative statistical efficiencies of the estimation procedures in
[1] for networks with Cox-phase service times. For networks
of queues with general service times, there is little hope of
computing the needed theoretical values, even for expected
passage times. Central limit theorems and continuous map-
ping theorem arguments can be used to show [11] that the
confidence intervals obtained from the labeled jobs method
are shorter than those obtained by observation of a single
“marked job.” This is consistent with intuition since the
labeled jobs method extracts more passage time information
from a fixed length simulation run.

The requirements for applicability of the labeled jobs
method of Section 4 are that (a) there exist sets D and E as in
Eqgs. (6) and (7), (b) the sets 4, A,, B, and B, which define
the passage time are subsets of E, and (c) there is recurrence
in the sense of Proposition 5. We have shown that when all
service time density functions are continuous and positive on
(0, =), it is sufficient that either some service center see only
one job class or the lowest priority job class seen by the center
be subject to preemption. The requirement that there exist a
“single state” of the job stack process [as in Eq. (10)] is
essential.

For networks in which all centers are multiple servers, and
for some passage times in networks with single servers, no
single state will exist. Extending the procedure to handle
such situations is an open problem.

We have assumed that any interruption of service at a
center is of the preemptive-repeat (rather than preemptive-
resume) type. Passage times for preemptive-resume net-
works can be recorded by observing a fully augmented job
stack process which maintains the position of each of the jobs
in the job stack along with whether or not the job has been
preempted. Specifically, let

X'y = (@), 0'(1), Q*(1), - - -, Q"(),
N'(t), N*(1), - - - ,N" (1)),

where Q “(¢) equals 1 if the job in position j of the job stack at
time ¢ is in queue at some service center and its most recent
service has not been completed, and equals O otherwise.
(Note that we do not incorporate the remaining service time
of a preempted job into the state definition.) Then estimates
for passage times can be obtained as in Section 4 provided
that the process {(Z(2), 0'(¢), @*(¢), - - -, O"(1)) : t = O} ob-
served at terminations of passage times is a regenerative

GERALD S. SHEDLER AND JONATHAN SOUTHARD

process in discrete time. This will be the case if the process
{(z@), 0'(0), O°(t), - - -, @"(t)) : t = 0} returns infinitely
often to a single state. The process {(Z(1), Ql(t),
0), - - -, 0"(1) : t = O} can be represented as a GSMP in
which the trigger event depends on the clocks for events
associated with the occupied state as well as the speeds
(possibly zero) at which these clocks run. [Completion of
service to some job labeled / of class j at center i is an event
associated with a state (z, ¢', ¢°, - - -, qN) of the GSMP
provided that (i, j) € U(z). If ¢* = 1, then (for some i and j)
completion of service to job k as class j at center { is an event
associated with state (z, ¢', qz, - <+, 4") and in this state the
clock for this event runs at zero speed.] We conjecture that
even if there are states in which some of the clocks run at zero

speed, the process {(Z(2), Q'(1), Q*(1), - - -, Q" (1)) : 1 = 0}
returns infinitely often to a single state if conditions (a), (b),
and (c) in the proof of Proposition 5 are satisfied.
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