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Regenerative  Simulation of Networks of Queues  with 
General  Service  Times:  Passage  Through  Subnetworks 

A linear “job  stack,” an enumeration by service  center and job class of all the jobs,  is an appropriate  state vector for  simulation 
of closed  networks of queues with  priorities  among job  classes.  Using  a representation of the job  stack  process  as an irreducible 
generalized semi-Markov  process, we develop  a regenerative simulation  method for passage  times in networks  with general 
service times. Our estimation  procedure  avoids  Cox-phase representation of general service time  distributions and is  applicable 
to  networks  with “single states”  for  passage  times. Based on a single simulation run.  the procedure  provides  point  estimates 
and conjidence intervals for  characteristics of limitingpassage  times. 

1. Introduction 
Simulation is usually the only method available for studying 
passage times in closed,  multiclass  networks of queues with 
priorities among  job classes. Informally, a  passage time is the 
time for  a job  to  traverse a  portion of the network. Such 
quantities  are  important in computer  and  communication 
system  models where they represent  job “response  times.” 
For networks  with  Cox-phase  service times,  Iglehart  and 
Shedler [ l ,  Sec. 81 and  Shedler  and  Slutz  [2] have shown 
that point estimates  and confidence intervals for characteris- 
tics of passage times  through a subnetwork  can be obtained 
by observing  a  single sample  path of an  irreducible  Markov 
chain.  The  states of this  Markov  chain  are configurations of a 
“fully augmented  linear  job  stack.”  Shedler  and  Southard 
[3] extended the  applicability of this  estimation method to 
networks with unrestricted priorities; for such networks the 
underlying Markov  chain need not be irreducible. In this 
paper we derive an analogous estimation  procedure  (termed 
the “labeled jobs  method”) for  networks with general service 
times having density functions that  are continuous and 
positive on (0, m). In  our procedure,  passage times for all the 
jobs  enter  into  the  construction of point and interval  esti- 
mates.  The  related  procedure of Iglehart  and  Shedler  [4] is 
based on observations of passage times for a  single job. 

An appropriate  state vector for  simulation of closed, 
multiclass  networks of queues is a linear “job stack,”  an 

enumeration of the  jobs by service center  and  job class. 
Passage  times  are recorded by observing  a  “fully augmented 
job  stack process,” which maintains  the position of each of 
the  jobs in the  job  stack.  We show under a mild restriction on 
the priorities among  job classes that  the  job  stack process 
observed at  the epochs at  which passage  times terminate is a 
regenerative process in discrete  time. As a  consequence, 
point and interval estimates for characteristics of limiting 
passage times  can be obtained  from a  single  simulation run. 
To establish  these  results, we use  a  representation of the  job 
stack process as a  generalized semi-Markov process in the 
sense of Whitt [5 ] .  

We show that  terminations of passage times with no other 
passage times underway and exactly  one job in service are 
regeneration  points for the  job  stack process observed at  
termination times. In order for such  epochs to exist we must 
exclude  passage  times which are complete circuits  as well as 
passage times which always terminate with two or more jobs 
in service. A mild restriction on the priorities among  job 
classes ensures  that infinitely many such  epochs occur. 

Section  2 contains a  description of the networks under 
consideration,  a definition of the  job  stack,  and  the  formal 
specification of passage  times. The generalized semi-Markov 
process representation for the  job  stack process and  stochas- 

0 Copyright 1982 by International Business Machines  Corporation.  Copying in printed  form for private use is permitted  without  payment of 
royalty provided that (1) each reproduction is done  without  alteration  and (2) the Journal reference  and IBM copyright  notice are included on 
the first page. The  title  and  abstract,  but no other  portions, of this  paper  may  be copied or distributed  royalty  free  without  further permission by 
computer-based  and  other  information-service  systems.  Permission  to republish any  other  portion of this  paper  must be obtained  from  the 
Editor. 

IBM J. RES. I DEVELOP. 1 IOL. 26 NO. 5 SEPTEMBER 1982 GER .ALD S. SHED1 



tic process results  underlying the  estimates for  passage times 
are in Section 3. The  estimation  procedure  for passage times 
is in Section 4. 

2. Closed, multiclass networks of queues  and 
passage  times 
As in [ 1 1,  we consider closed networks of queues having  a 
finite number of jobs  (customers), N ,  a  finite number of 
(single or multiple  server) service centers, s, and a  finite 
number of (mutually exc1usive)job classes, c. At every epoch 
of continuous time  each  job is in exactly  one  job class, but 
jobs  may  change class as  they  traverse  the network.  Upon 
completion of service a t  center i a job of classj goes to  center 
k  and  changes  to class 1 with probability  pjl,kl, where 
P = {pjj,kl : ( i , j ) ,   ( k ,  I )  E C} is a given irreducible  Markov 
matrix  and C C 11, 2, , s }  x 11, 2, , c }  is the set of 
(center, class)  pairs in the network. At  each service center 
jobs  queue  and receive service according to a fixed priority 
scheme  among classes; the priority scheme  may differ from 
center  to  center.  Within a  class a t  a center,  jobs receive 
service according  to a fixed queue service  discipline, e.g., 
first-come, first-served (FCFS). Note  that in accordance 
with the  matrix P, some centers  may never see jobs of certain 
classes.  According to a fixed procedure for each  center, a job 
in service may or may not be  preempted if another  job of 
higher  priority joins  the  queue at  the  center. For expository 
convenience we assume  that  any  interruption of service is of 
the  preemptive-repeat type.  A job  that  has been preempted 
receives additional service at  the  center before any  other  job 
of its  class at  the  center receives service. 

All service times  are assumed to be mutually  independent. 
We also  suppose that service times at  a center have  finite 
mean but otherwise arbitrary density  function which is 
continuous and positive on (0, -). Parameters of the service 
time  distribution  may depend on the service center,  the class 
of job in service, and  the "state" [as defined in Eq. (1)  below] 
of the  entire network at  the  time service  begins. In order  to 
characterize  the  state of the network at  time t ,  we let S j ( t )  
denote  the class of the  job in  service at  center i at  time t ,  
where i = 1, 2, , s; by convention S j ( t )  = 0 if a t  time t 
there  are no jobs at  center i .  [If  center  i  has  more  than  one 
server, we let S,  ( t )  be a vector identifying the class of the  job 
receiving service from  each server a t  center  i.]  The classes of 
jobs serviced at  center i ordered by decreasing priority are 
j,(i),j,(i), . . , j k ( ; ) ( i ) ,  elements of the  set 11, 2, . . . , c } .  
We  denote by C:(t), - e , Cj::i)(t) the  number of jobs in 
queue at  time t of the various  classes of jobs serviced at  
center i, i = 1 ,  2, . . . , s. 

We  think of the N jobs being ordered in a linear  stack 
according  to  the following scheme.  For t 2 0 define the  state 
vector Z ( t )  at  time t by 626 
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The  job  stack at time t then corresponds to  the  order of 
components in the vector Z ( t )  after ignoring any zero 
components. Within a  class a t  a particular service center, 
jobs waiting appear in the  job  stack in FCFS order,  ;.e.. in 
order of their  arrival at  the  center,  the  latest  to  arrive being 
closest to  the top of the  stack.  The job stack process 
Z = { Z ( t )  : t 2 01 has a  finite state space, D*. For any  ser- 
vice center i that sees only one class of job, ;.e., such  that 
k ( i )  = 1, it is possible to simplify the  state vector by 
replacing C:jij)(f), S , ( t )  by Q,( t ) ,  the  total  number of jobs at  
center i. Note  that  the  state vector definition does  not take 
into  account explicitly that  the  total  number of jobs in the 
network is fixed. In the  case of complex  networks, the use of 
this resulting somewhat  larger  state  space  facilitates  genera- 
tion of the  state vector process; for  relatively  simple  net- 
aorks, it may  be  desirable  to remove the  redundancy. 

DeJinition of passage  times 
Arbitrarily choose one of the  jobs  and  refer  to  this  distin- 
guished job  as  the "marked  job." For t 2 0 denote by N ( t )  
the position (from  the  top) of the  marked  job in the  job  stack 
at  time t .  Then set 

X ( t )  = ( Z ( t ) ,  N ( t ) )  ( 2 )  

and call X = { X ( t )  : t 2 O} the  augmentedjob  stack  process. 
Passage  times  are specified in terms of the  marked  job by 
means of four subsets ( A , ,  A,, B , ,  and B , )  of the  state space, 
E *, of the  stochastic process X. The  sets A , ,  A ,  [resp. B , ,  B,] 
jointly  define the  random times at  which passage times for 
the  marked  job  start  [resp.  terminate].  The sets A,,   A, ,  B , ,  
and B, in effect determine when to  start  and  stop  the clock 
measuring a particular passage time of the  marked  job. 

Denote  the  jump  times of the process X by {T, : n 2 01. For 
k, n 2 1 ,  we require  that  the  sets A , ,  A,, B , ,  and B, satisfy  the 
following: 

ifX(T"-I) A,?  X(T") E A,, X ( 7 n - l + k )  E A ,  
and X ( T , + ~ )  E A, , 

then X(7"-,  + m )  E B, and X ( T " + ~ )  E B, for  some 0 < m 5 k; 

and 

i f X ( ~ ~ - , )  B , ,  X(7 , )  E B, ,  X(T,-,+~) E B,  
and X ( T " + ~ )  E B, , 

then X ( T , - , + , , , )  t A ,  and X ( T , + , )  E A ,  for  some 
O s m < k .  

These conditions ensure  that  the  start  and  termination  times 
for the specified passage time  strictly  alternate. 

In terms of the  sets A,,  A,, B , ,  and B,, we define  two 
sequences of random  times, [SI : j 2 O} and [ Tj : j 2 1 }, where 
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S,-, is the  start  time of the j t h  passage time for the  marked 
job  and T, is the  termination  time of this j t h  passage time. 
Assuming that  the  initial  state of the process X is such  that a 
passage time for the  marked  job begins a t  t = 0, let 

so = 0, 

S, = inf 17” 2 Tj : X(T,)  E A,, X ( 7 , _ , )  t A ,  1, j 2 1, 

and 

T j = i n f { 7 , z S j ~ , : X ( ~ , ) E B 2 , X ( 7 , _ , ) E B , ] , ~ ~ 1 .  

Then  the j t h  passage time for the  marked  job is P, = , 
T, - S j - ,  , j 2 1. ““”“““1 

Example I Consider a network  with  two  service centers B ,  BI 

and a single job  class such that  the set C of (center, class) Figure 
pairs is C = { ( I ,   I ) ,  (2, I)] .  Suppose  that a job completing 
service at  center 1 joins the  tail of the  queue a t  center 1 with 
probability p and  (with probability 1 - p )  joins  the  tail of the 
queue  at  center 2. A job completing  service at  center 2 joins 
the  tail of the  queue  at  center 1 .  For t 2 0 let Z ( t )  be the 
number of jobs waiting or in service at  center 1 at  time  and  state z’, given that in state z there is a  completion of service to 
set X ( t )  = ( Z ( t ) ,  N ( t ) ) ,  where N ( t )  is the position of the a job of class j at  center i. When q(z’; z, u )  > 0 for some 
marked job in the  job  stack  at  time t .  The  state  space of the u E U ( z ) ,  we write z - z’. For all z, z’ t D*, we say that 
augmented  job  stack process X = { X ( t )  : t 2 01 is z’ is  accessible f rom z and write z N z’ if there exists  a 

finite  sequence ub, zI, u;.  - , ul of (center, class)  pairs and 
E = { ( i , j ) : O s i s N ,  1 s j s N ] .  job  stacks such that 

A I  
v,- - ’, / 
” ‘X”/’ 

Subsets of E for passage time p ,  

Thus, for example, if all N jobs  are  at  center 2 and  the 
marked  job is in service, the  augmented  job  stack process is in 
state (0, N ) .  Upon  completion of service at  center 2, the 
marked  job goes into service at  center 1, the  remaining N ~ 1 
jobs  are  at  center 2, and  the process is in state (1, 1). 

Consider the passage time which starts when a job com- 
pletes  service at  center 2 (and joins the tail of the  queue  at 
center 1 )  and  terminates when the  job next  joins the  tail of 
the  queue  at  center 2. This passage time is specified by the 
sets 

A,  = {(i, N )  : o 5 i < N } ,  

A, = {(i, 1) : O < i 5 N } ,  

B,  = { ( i .  i)  : O < i s N } ,  

and 

B, = {(i - 1, i) : O < i 5 N ] .  

For N = 2 jobs, these sets  are shown in Fig. 1 .  

q(z , ;  z ,  ub)q(z*; z , ;  u ; )  . . * q(2’; Z”, ub) 1 0 .  (3)  

When z U z’ and z’ u z, we say that z and z’ communicate 
and we write z 2’. 

. We also define U ( x )  for x E E* : U ( x )  = U ( z )  when 
x = ( 2 ,  n )  for some z E D* and n t { I ,  2, , N}. For 
x, x’ E E* and u = (i. j )  E U ( x ) ,  we denote by p(x’; x. u )  
the probability that  the  augmented  job  stack process X jumps 
to  state x’, given that in state x there is a  completion of ser- 
vice to a job of class j at  center i. We write x - x’ when 
p(x’; x, u )  > 0 for some u E U(x). We say that x’ is 
accessible from x and write x n4 x’ if there exists a finite 
sequence ub, x , ,  ui, . - , ui of (center, class)  pairs and 
augmented  job  stacks such that 

p ( x , ;   x ,  u;, p ( x , ;   x , ,  u ; )  * * * p(x‘;   xn.  uh) > 0. (4) 

When x W x’ and x’ u x we say that x and x’ communicate 
and we write x X I .  

Recurrence results can be obtained by restricting  the  job 
Restriction of the job stack  process stack process to a set D within which all  states  communicate. 

To obtain  recurrence results  it is necessary to  restrict  the  job  We  make  the  further  assumption  that for  some z* E D* the 
stack process to a suitably chosen  subset of its state space.  set 
Let U ( z )  be the set of all (center, class) pairs ( i , j )  E Csuch 
that in state z t D* there is a job of classj in service at  center 
i. For z ,  z’ E D* and u = ( i ,  j )  t U ( z ) ,  let q(z’; z, u )  be the is irreducible, i.e., zm z’ for all z, z’ E D*. It is sufficient that 
probability that  the  job  stack process Z jumps (in one  step)  to for some  service center, io, either k(i , )  = 1 or service at  627 

D =  {zE D * : z * U z }  
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I ‘  c=b 1 

1 c = 2 , 4  

Figure 2 Closed multiclass network of queues. 

center  io  to a job of classjk,jo)(io)  (the lowest priority job class 
seen by center  io) is preempted when  a job of higher priority 
joins the  queue.  Let zz  E D*  be  the  job  stack in which there is 
one  job of classj,,,,,(i,) in service a t  center io and N - 1 jobs 
of classj,,lo,(io) in queue  at  center io. Define D to  be  the  set of 
all states of the  job  stack process Z that  are accessible from 
z:, i.e., 

D = {Z E D* : Z: U z } .  (5) 

Then define a  subset  E of the  state  space E* of the 
augmented  job  stack process X according  to 

E = {(z, n )  t E* : z E D}. ( 6 )  

We  assume  that  the  sets A, ,  A,, B,, and B, which define the 
starts  and  terminations of passage times  are  subsets of 
E = { ( z ,  n )  : z fI D, 1 5 n 5 N ) .  

Proposition ( 2 )  provides conditions which ensure  that  all 
states of the  job  stack process Z restricted  to  the set  D 
communicate  and  that all states of the  augmented  job  stack 
process X restricted to  the  set E communicate.  The  argument 
used to establish the result is similar  to  the proof of Proposi- 
tion (3.4) in Shedler  and  Slutz [ 6 ] .  

Proposition 2 Let the  number of service centers s > 1 .  
Suppose  that  the routing matrix P is irreducible  and  that for 
some  service center io either k( io )  = 1 or service to a job of 
classj,,,o,(io) a t  center io is preempted when  a job of higher 
priority  joins the  queue.  Then z Tu z’ for all z ,  z’ E D and 
x W  x’ for all  x, x’ E E .  

Example 3 illustrates  these ideas for a model proposed for 
processor scheduling in data base management systems; see 
Lavenberg  and  Shedler [ 7 ]  and  Iglehart  and  Shedler [ 1, Sec. 
5.21. 

Example 3 Consider  the network shown in Fig. 2. There 
are two  service centers  and seven job classes, and  the  set Cof 
(center,  class) pairs is 

C = {(I, 21, (1, 31, (1 ,4) ,  (1,5),  (1,6), ( 1 , 7 ) ,  ( 2 ,  I)}. 

Suppose  that  the classes of jobs serviced a t  center 1 ordered 628 

GERALD S. SHEDLER A 

by decreasing priority a re   j , ( l )  = 2, j ,(l) = 3, - - , 
j,( 1 )  = 7. Service  to  jobs of class 7 (at  center  1) is subject  to 
preemption when a job of higher priority  joins the  queue  at 
center 1. Service  to  any  other  job  class is not subject  to 
preemption. Also suppose that  (for 0 < +,, +, < 1 )  the  (irre- 
ducible)  routing  matrix P is as shown in Fig. 3. For  t z 0 let 

z ( t )  = (Cy)(t), * * * . Cy)(t), s,(t), Q2(t)), 

where  the  number of jobs of class j in queue at  center 1 a t  
time t is C;’)(t), S , ( t )  is the class of the  job in service a t  
center 1, and Q,(t) is the  number of jobs waiting or in ser- 
vice at  center 2.  As k ( 2 )  = 1 and service to  jobs of class 
j,,,,( 1) = 7 at  center 1 is subject  to  preemption,  either  state 

z ~ = ( N -  1 , 0 , 0 , 0 , 0 , 0 , 7 , 0 )  

or state 

~ : = ( 0 , 0 , 0 , 0 , 0 , 0 , O , N )  

can serve as  the  state z,? which defines the set D. For 
N 2 2 jobs  the  set D* - D # 0 is nonempty;  e.g., the  state 
(0, 0,  0, k - 1, 0, 0, 4, N - k )  is an  element of D* - D 
provided that k 2 2. 

Single  states of the job stack  process 
We now identify  special  “single states” of the  job  stack 
process which are used  explicitly in the labeled jobs method 
of Section 4. A single state of the  job  stack process is a 
configuration of the  job  stack  such  that no  passage times  are 
underway,  all  jobs  are  at  the  same  center with  exactly one  job 
in  service, and  entrances  to  the  state  (from a fixed state) 
correspond to  the  terminations of passage  times. Our notion 
of single state coincides  with that of Fossett [ 8 ]  for general- 
ized semi-Markov processes. 

Formally,  define  two sets S and T according  to 

S = { ( k ,  m )  : k € A , ,  m EA,, and k -  m} 

and 

T = { ( k , m ) : k € B , , m t B , , a n d k - - . m } .  

Let H be the  set of all  (center, class) pairs (i, j )  such  that a 
marked  job  can be of classj   at  center i when the passage time 
specified by the  sets A,, A,, B,, and B, terminates or is not 
underway.  The labeled jobs method  applies to passage times 
through a subnetwork, i.e., to passage times for which 
S n T = 0 so that  the  set H is nonempty. 

Also define  a  function h taking values  in C and having 
domain D x { 1 , 2 ,  - . - , N }  such  that  the value of h(z ,  n) is 
(i, j )  when the  job in position n of the  job  stack associated 
with z € D is of classj   at  center i. 

Dejinition 4 An element z of the set  D is called  a single 
state of the job stack  process for the passage time specified 
by the  sets A,, A,, B,, and B, if 
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1. h(z,  n )  = (io,   j in(io)) € H for some single  server center io, 

2. there exists (z, ,  m )  E B,  such that (z l ,  m )  - (z .  n )  for 
n = 1,2,  . - , N,and 

some (z.  n )  E B,. 

According to  this definition  a  single state of the  job  stack 
process is a  configuration, z ,  of the  job  stack such that no 
passage times  are  underway [h(z ,  n )  E H for  all n ] ,  all jobs 
are  at  the  same  center (io) with exactly  one  job in service, and 
there exists zl such  that a  passage time for some  job 
terminates when the  job  stack process jumps  from zI to z .  
[ j l ( i o ) ,   j 2 ( i o ) ,  - - ,Jk( in)( io)  are  the classes of jobs serviced 
at  center io; the definition requires  that j ln ( i0 ) ,  the class 
a t  center io to which the  job in position n (of job  stack z )  

belongs, satisfy j i>io) t {j,(io), j z ( i o ) ,  - , j k ( in ) ( io ) }  for 
all n.] We  assume  that a single state of the  job  stack process 
exists. In addition, we assume  that  the  initial  state, zo, of 
the  job  stack process is a  single state. 

3. The underlying stochastic structure 
The labeled jobs method  rests on the result that  the  job  stack 
process observed at   the terminations of passage times is a 
regenerative  process in discrete  time.  To show this, we use  a 
representation of the  job  stack process (restricted  to  the  set 
D )  as  an  irreducible generalized semi-Markov process 
(GSMP). 

Following Whitt [ S I ,  a GSMP moves from  state  to  state in 
accordance with the  occurrence of events  associated with the 
occupied state.  Each of the several  events  associated with a 
state  has its own jump  distribution for determining  the next 
state,  and these  events compete with respect to  triggering  the 
next transition.  At  each  transition of the  GSMP, new events 
may  be scheduled.  For each of these new events,  a clock 
indicating  the  time  until  the event is scheduled to occur is set 
according  to  an  independent  (stochastic)  mechanism. If a 
scheduled  event  does not trigger a transition  but is associated 
with the next state, its clock continues  to run; if such an event 
is not associated  with the next state,  it is abandoned. 

The  GSMP associated with the  job  stack process 
Z = { Z ( t )  : t 2 01 has  state  space D and  the completion of 
service to a job of classj   at  center i is an event  associated with 
state z E D provided that ( i ,  j )  E U ( z ) .  Jumps of the process 
from state z triggered by event u are governed by the 
probability mass function p ( .  ; z, u ) .  At a jump  from  state z 
to  state z' triggered by event u, new clock values are 
generated for each u E U(z ' )  - ( U ( z )  - {u ] ) .  The  distribu- 
tion function of such a new clock time  (a service time for a 
job  class a t  some  center) is denoted by F(  -; z', u, z ,  u) ;  by the 
assumptions in Section  2,  each  has finite mean  and a  density 
function which is continuous  and positive on (0, m). For 
v E U ( z ' )  n ( U ( z )  - {u} ) ,  the old clock reading is retained 
after  the  jump. For each u E (U(z )  - { u } )  - U ( z ' ) ,  

( ~ 2 )  ( 1 . 3 )  ( ~ 4 )  (1,s) ( 1 . 6 )  ( ~ 7 )  

(1.4) 

0 1 0  0 

0 0 0 1 0  

0 0 1 0 0  

Figure 3 Routing matrix P. 

event u ceases to be scheduled after  the  jump.  Let U = 

{ u , ,  u2 ,  - - , u t }  be the set of all possible events that  can 
occur, i.e., 

u = u U ( z ) .  

Observe that U = C, the set of (center, class)  pairs in the 
network. 

Z E D  

With  each z € D, associate  the set of clock readings 

C(z) = {(cl, cz, . . - , c,) : ci 2 0 and ci > 0 if and only if 

ui E U(z) l ,  

where c, is the reading on the clock corresponding to event 
ui E U ( z ) .  It follows from Proposition  2 that  the  GSMP is 
irreducible; i.e., for all states z and z' there exists  a  finite 
sequence ub, zI, u:, . e . , u: of events and  states satisfying 

p(zl; z ,  u;)  p ( z z ;  Z'' u ; )  * * . p(z';  Z", u:, > 0. 

Label the  jobs  from 1 to N .  For t 2 0 denote by N'(t)  the 
position of j o b j  in the  job  stack  at  time t ,  j = 1.2, . . , N .  
Then in terms of the vector Z ( t )  of Eq. ( l ) ,  set 

x"t) = ( Z ( f ) , N ' ( t ) ,  f * ,N" ( t ) )  

and  call  the process X o  = ( X o ( t )  : t 2 01 the ful ly  augmented 
job stack process. Denote  the  state  space of this process by 
Go. Next select (zo, n',  . - , n") E Go and set X o ( 0 )  = 

sage  times (irrespective of job  identity) in termination  order. 
Let {TI1 : n 2 11 be  the corresponding sequence of termina- 
tion times  and  set T i  = 0. 

(zo,  1 2 ,  * * , n"). Denote by {PI) : n 2 I ]  the successive pas- 

We now show that  the  job  stack process returns infinitely 
often (i.0.) to a  single state.  This leads to  the result that 
{ ( Z ( T ; ) ,  P : , , )  : n 2 01 is a  regenerative process in discrete 
time. 

Proposition 5 For t 2 0 let M ( t )  be the last state of 
Z = { Z ( t )  : t 2 01 before entrance  to  the  state occupied at  
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time t and  set Y( t )  = ( M ( t ) ,  Z ( t ) ) .  Suppose  that  the  routing 
matrix P is irreducible  and for  some  service center, io, either 
k( io )  = 1 or service to a job of class j,(,o)(i,,) at  center i,, is 
preempted when a job of higher  priority  joins the  queue. 
Denote by (7, : k 2 01 the  jump  times of Y = {Y( t )  : t z 01. 
Then 

P { Y ( ~ , )  = (z .   z ’ )  i.0.) = I 

for all z ,  z’ E D such that z - z’. 

Proof The process Y has  state  space F = { ( z ,   z ’ )  : z ,  z’ E D 
and z - z’}. Associate with ( z ,   z ’ )  E F the  set of events U(z’) 
and vector of clock settings C(z’). Then {Y( t )  : t 2 01 is a 
GSMP with finite state  space.  Select (z ,  z’)  E F. We  appeal 
to Glynn [9] to show that  the  general  state  space  Markov 
chain  (GSSMC) associated  with the  GSMP Y returns 
infinitely often to  the set ((2, z ’ )}  x C(z’); it follows immedi- 
ately  that P {Y(7,)  = ( z ,  z’) i.o.1 = 1 .  Three conditions must 
be checked: 

a.  The  GSMP Y is irreducible in the sense that y w  y’ for all 

b. The density functions associated with the clock readings ci 
have finite means  and  are continuous and positive on 
(0,  a); and 

set { ( z ,  z ’ ) )  x C(z’ )  for ( z ,  z’) t F. 

Y ,  Y‘ E F; 

c .  A “recurrence  measure” assigns positive measure  to  the 

Condition (a) holds as a  consequence of Proposition 2; 
z2 z; for y = (zl, z , )  and y’ = (zl, z;). By assumption, 
condition (b) holds. With respect to condition ( c ) ,  note that 
because the set U(z’) is nonempty, a t  least one  element of the 
set C(z’)  is positive. This implies that  the  recurrence  mea- 
sure of ((2, z ’ ) }  x C(z’)  is positive, in fact, infinite. Hence 
condition (c) holds and  the  GSSMC  hits { ( z ,  z’)}  x C(z’) 
infinitely often with probability one. 

Proposition 6 Let z be a  single state of the  job  stack 
process for the passage time specified by the  sets A , ,  A,,  B,,  
and B,. Then  under  the conditions of Proposition 5, 

P{z(T:)  = z LO.) = I .  ( 7 )  

Proof Condition (2) of the definition of a  single state 
implies that  there exists ( z , ,  z )  E F such that a  passage time 
for some  job  terminates when Z jumps  from z ,  to z .  There- 
fore, every jump  time 7, such that Y(7, )  = ( z , ,   z )  is an 
element of {TI: : n z 01 and is such  that Z(7, )  = z. The result 
now follows from  Proposition 5. 

Proposition 7 Under  the conditions of Proposition 5, the 
process { ( z ( T : ) ,  P:+,) : n 2 01 is a  regenerative process in 
discrete  time. 

Proof Recall that Z(0)  = z,,, a  single state of the  job  stack 
process. Let { T o  : k 2 0} be the successive epochs at  which a 
passage time  terminates with Z in state zo, and set Ti, = 0. 
We must show that 

Ok 

a. {P, : k 2 01 is a  renewal process, and 
b. P{Z(Ti,+,) = 2, f‘ip+m+l 5 x} = 

P{Z(Tz) = z ,  Pi+, 5 x}  for m 2 0, k z 0 
and independent of {(Z( Tg ), P( T;+ , )) : 0 5 j < p,]. 

Let 7@,) = min {7,, : 7, > Ti,]. At  time Ti,, no passage 
times are  underway.  Therefore, {Z( t )  : t z 7 ( P k ) ]  determines 
the  distributions of Z(Ti ,+m) ,  and Pk+’ - P, for 
m z 0. (Note  that &+, - P, is finite with probability one by 
Proposition 6.) Now observe that  each of the clocks running 
at  time 7 ( p k )  was set a t  time 7 ( P k ) .  The  joint  distribution of 
Z(7(8 , ) )  and  the clocks  set at 7@,) depends on the past 
history of Z only through zo and  the event occurring at  time 
7 ( p k ) .  Hence  this  distribution is the  same for all P,, indepen- 
dent of { ( Z ( T : ) ,  P:+J : n < p,}. The  future  course of Z is 
governed by Z(7(Pk))  and  the clocks running at  time 
7 ( P k ) .  0 

Proposition 8 asserts  that  the sequences of passage times 
associated with starting  the  job  stack process in  a fixed single 
state converge to a  common random  variable.  The proof is 
similar  to  that of Proposition (4.9) of Shedler  and  Southard 
~31.  

Proposition 8 Suppose  that x Tu x’ for  all x, x’ t E .  Let zo 
be a  single state of the  job  stack process. Denote X o ( 0 )  by 
(zo, n’, . . , n”)  and let {P: : n 2 I }  be the successive pas- 
sage  times (irrespective of job  identity)  enumerated in termi- 
nation order.  Then 

P : = ) P o a s n + m  

where Po is the limiting  passage time for any  marked  job. 

4. Simulation for passage  times 
The goal of the simulation is estimation of 

wherefis a  real-valued (measurable) function and Po is the 
limiting  passage time for any  marked  job. 

Select a  single state, zo, of the  job  stack process and  an 
initial state (zo,  n’ ,  a . . , n”) for the fully augmented  job 
stack process Xo. Carry  out  the simulation of the fully 
augmented  job  stack process in blocks defined by the succes- 
sive epochs {T i ,  : k z 11 at  which a  passage time  terminates 
with the  job  stack process in state zo (Po = 0 and Tio = 0). 
Let 

Propositions 9 and 10 lead to point and interval estimates 
for E {  f (P O ) } .  The  results follow directly  from Proposition 7 
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and  general  theorems for regenerative processes; see Crane 
and  Iglehart [ I O ] .  

Proposition 9 The pairs of random  variables 

{ ( Y L ( ~ ) .  a;) : m 2 11  
are  independent  and identically distributed. 

Proposition 10 Let  D( f) be the set of discontinuities  for 
the function f. Provided that P{Po  € D(f)} = 0 and 
E{ I f ( P o )  I 1 < m, 

E { f ( p o ) l  = E { Y v ( f ) } / E b y 1 .  

Given  Propositions 9 and 10, the  standard  regenerative 
method  applies and  (from a fixed number, n, of blocks) 
provides the  strongly consistent  point estimate 

?:(f) = Y : ( f ) / z :  3 

where 
n - 

Y 3 . f )  = n - l D Y O , ( f )  
m= I 

and 

a,, = n"xaYO,. 

Confidence intervals for ro( f) are based on the  central limit 
theorem 

" 
-0 

m= I 

n"2[?:(f) - ~ o ( f ) I / [ . ( f ) / E l a y l l  - N O ,  11, 
where 02( f) is the  variance of Yy( f) - ro( f ) a y  and N(0, 1) 
is a standardized  (mean 0, variance 1) normal random 
variable.  It follows that (for 0 < y < 1/2) 

i"( f )  = [?:(f) ~ z ,&ysn/ (a"n 1, ?"(f) + zI_ys"/(a"n 11 -0 112 -0 112 

is a lOO(1 - 2y)% confidence interval for r o ( f ) .  Here zl-? 
= W ' ( 1  ~ y), where +(.) is the  distribution function of a 
standardized normal random  variable,  and sn is the  quantity 

S" = [SI, - 2 ? " ( f b , ,  + ( 4 ( f l ) 2 S 2 2 1 1 ' 2 .  

The  quantities st , ,  s,,, and s,, are  the  usual unbiased 
estimates for (r'{ Y,( f)}, a2{ai}, and cov { Yz( f), a",, respec- 
tively. 

Example I I Consider a  network  with  two  service centers 
and two job classes  such that C = { ( I ,  l ) ,  (2,  l),   (2,  2)} and 
jobs of class 2 have  nonpreemptive  priority over jobs of class 
1 a t  center 2. For t 2 0 let 

z(t) = (Q,(tL C;,)(t), Ci2)(t), S,(t)). 

Suppose  the  irreducible routing matrix P is 

( 1 ,  1)  (2, 1 )  

(1,  1) 0 1 

(271) [ ; ; 1. 0 
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Since  center 1 sees only one  job class, we can  take io = 1 and 
z t  = ( 2 , 0 , 0 , 0 ) .  Since  all  elements of the set D* except 
(0, 0, 2,  2) and (0, I ,  1, 1) are accessible from z:,  the set 
D = D* - {(O, 0, 2,  2,), (0, 1 ,   1 ,  l)}. According to Proposi- 
tion 2, any two elements of D communicate. 

Consider the passage time specified by the  subsets A, ,  A,, 
B,,  and B, of E: 

A ,  = {(I, 0, 1,  2, 11, (1,   1,0,  1, 1 1 ,  (2, 0, O,O,  211, 

A, = ((0, 1, 1 ,2 ,  11, (0 ,2 ,0 ,  1, 1 1 ,  (1 ,   1 ,0 ,  1,211, 

B ,  = {(O, 1 ,  1,2,   2),  1 ,  2,211, 

and 

~ , = ~ ~ 1 , l , 0 , l , ~ ~ , ~ ~ , 0 , 0 , 0 , ~ ~ , ~ ~ , ~ , ~ , ~ , ~ ~ 1 .  

Observe that S n T = 0 .  The passage time  starts when a 
job joins the  queue at  center 2 as class 1 and  terminates when 
the  job completes  service at  center 2 as class 2. [Note  that 
because (0, 0, 2,  2,) e D, (0, 0, 2,  2, 2) 6 B,.] For this 
passage  time, H = {( i ,  I ) ]  and zo = (2, 0,  0, 0) is a  single 
state.  Clearly, zo satisfies  condition (1) of Definition 4. 
Condition (2) is also satisfied because 

(1,0, 1 ,2 ,   2 )  "j (2 ,0 ,0 ,0 ,   1 ) .  

Now consider the passage time specified by the  subsets A, ,  
A,, B, ,  and B, of E: 

A ,  = 1(1,0, 1 ,  2,2) ,  (O ,O,  2 ,2 ,  21, (0, 1, 1,2,2)1,  

A, = 1(2,0,0,  1, 11, (1 ,0 ,   1 ,2 ,  11, ( 1 ,  1,0, 1 ,  I ) ] ,  

B ,  = { ( I ,  1 ,0 ,   1 ,2) ,   (0 ,2 ,0 ,   1 ,  2)1, 

and 

B, = {(1,0, 1 ,2 ,2 ) ,  (0, 1 ,  1,2,2)1.  

The passage time  starts when a job completes  service at  
center 2 as class 2 and  terminates when the  job completes 
service at  center 2 as class 1. For this passage time,  the set 
H = {(2, 2)}. There is a t  least  one  passage time  underway 
unless the configuration of the  job  stack is (0, 0, 2, 2). Since 
(0, 0, 2, 2) (f D, there is no single state  and  the  estimation 
method of this paper does not apply. 

5. Concluding remarks 
When developing simulation  methodology  it is important  to 
be  able  to assess the  statistical efficiency of proposed estima- 
tion procedures. With  the labeled jobs method developed in 
this  paper,  the half-length of the confidence interval  (ob- 
tained from  a  simulation of  fixed length) for the expected 
value of a general function f of the limiting  passage time is 
proportional to a quantity eo( f). This  quantity is indepen- 
dent of the blocks of the underlying  regenerative process and 
therefore is an  appropriate  measure of the  statistical effi- 63 1 
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ciency of the  estimation procedure.  For Markovian networks 
of queues,  it is possible to  compute  theoretical values  for 
expected  passage times  and  the associated variance  constants 
appearing in central limit theorems used to  form confidence 
intervals  for  passage time  characteristics.  This leads to a 
quantitative assessment (Iglehart  and  Shedler [2]) of the 
relative statistical efficiencies of the  estimation procedures in 
[ I ]  for networks  with Cox-phase service  times. For networks 
of queues with general service  times, there is little hope of 
computing  the needed theoretical values, even for  expected 
passage  times. Central limit theorems  and  continuous  map- 
ping theorem  arguments  can be used to show [ l  11 that  the 
confidence intervals  obtained  from  the labeled jobs method 
are  shorter  than those obtained by observation of a  single 
“marked  job.”  This is consistent with intuition  since the 
labeled jobs method extracts more  passage time  information 
from  a fixed length  simulation run. 

The  requirements for applicability of the labeled jobs 
method of Section 4 are  that  (a)  there exist sets D and E as in 
Eqs. ( 6 )  and  (7),  (b)  the  sets A, ,   A , ,  B,,  and B, which define 
the passage time  are  subsets of E,  and  (c)  there is recurrence 
in the sense of Proposition 5 .  We have shown that when all 
service time  density  functions  are  continuous  and positive on 
(0, GO), it is sufficient that  either some  service center see only 
one  job class or the lowest priority job class seen by the  center 
be subject  to preemption. The  requirement  that  there exist  a 
“single state” of the  job  stack process [as in Eq. (lo)] is 
essential. 

For networks in which all  centers  are multiple  servers, and 
for some  passage times in networks  with  single  servers, no 
single state will exist. Extending  the  procedure  to  handle 
such situations is an open problem. 

We have assumed  that  any  interruption of service at  a 
center is  of the  preemptive-repeat  (rather  than preemptive- 
resume)  type. Passage  times for preemptive-resume net- 
works can be recorded by observing  a  fully augmented  job 
stack process which maintains  the position of each of the  jobs 
in the  job  stack  along with whether or not the job has been 
preempted. Specifically,  let 

X o ( t )  = (z(t), Q’ct), Q2W, . , @W, 

~ ‘ ( t ) ,   ~ ~ ( t ) ,  , N N ( t ) ) ,  

where Q ’ ( t )  equals 1 if the  job in position j of the  job  stack  at 
time t is in queue  at some  service center  and its  most recent 
service  has not been completed, and  equals 0 otherwise. 
(Note  that we do not incorporate  the  remaining service time 
of a  preempted job  into  the  state definition.) Then  estimates 
for passage times  can be obtained  as in Section 4 provided 
that  the process { ( Z ( t ) ,  Q’(t) ,  Q2(t ) ,  . . . , @(t)) : t 2 0} ob- 
served at  terminations of passage times is a regenerative 632 
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process in discrete  time.  This will be the  case if the process 
{ ( Z ( t ) ,  Q’(t) ,  Q’(t), - , @ ( t ) )  : t 2 0) returns infinitely 
often  to a single  state.  The  process { ( Z ( t ) ,  Q ’ ( t ) ,  
Q2(t), e . , @ ( t ) )  : t 2 O} can be represented as a GSMP in 
which the  trigger event depends on the clocks for  events 
associated with the occupied state  as well as  the speeds 
(possibly zero) at which these clocks run. [Completion of 
service to some job labeled I of class j at  center i is an event 
associated with a state (z,  ql ,   q2,  - . . , q N )  of the  GSMP 
provided that ( i , j )  E U(z) .  If qk = 1, then  (for  some i a n d j )  
completion of service to  job k as  classj  at  center i is an event 
associated with state ( z ,  q’,  q2, . -, qN) and in this  state  the 
clock for this event runs at  zero  speed.] We  conjecture  that 
even if there  are  states in which some of the clocks run  at zero 
speed, the process { ( Z ( t ) ,  Q’(t) ,  Q2(t),  - -, @ ( t ) )  : t 2 0) 
returns infinitely often to a  single state if conditions (a),  (b), 
and  (c) in the proof of Proposition 5 are satisfied. 
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