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A Bipolar VLSI Custom Macro Physical Design
Verification Strategy

The level of complexity and the turn-around time associated with the development of custom bipolar VLSI chips have defined
the need for a highly structured physical and elecirical design validation approach which can guarantee fully functional
first-pass chips, yet be flexible enough to allow logical and physical designers the latitude necessary to achieve specified cost
and performance objectives. This paper describes such a design verification strategy and its implied constraints on chip design.
The rationale for comparing the logic equivalence of the high-level logical models to the low-level-device physical models is
presented, a description of the hierarchical logical-to-physical and electrical checking is given, and its impact on cost and
complexity is examined.

Introduction

The ideas discussed in this paper were evolved over a 1. Define and design a limited number of building-block

three-year period from 1978-1980, and were applied to the circuits with complete freedom of design within the

design of a VLSI microprocessor, various aspects of which semiconductor process ground rules, using a limited set of

are described elsewhere in this issue [1-3]. In this paper we device structures.

focus on the design-rules generation and the physical and 2. Generate rules governing the application of the building-

electrical design verification strategy. Many of the software block circuits.

tools are similar if not identical to those used by IBM’s 3. Construct functional macros [6] using the building blocks

Engineering Design System [4] for masterslice (i.e., gate- previously defined.

array) technologies. The significance of the methodology 4. Construct the global chip design using the functional

described lies in the application of some of these tools, as well macros and building blocks previously defined.

as structure and rules, to a custom bipolar design from the 5. Provide the logic designer with logical macros. However,

chip level down to the individual devices. The objective was allow the physical designer to lay out the macros with a

to define and implement a set of design and checking rules choice of physical macro subtypes (same building blocks,

and procedures which would result in a fully functional [5] different spacing between blocks), or the option to break

first-pass custom design, but which would also give the logic, the macro up into its building blocks if that is more

circuit, and chip designers flexibility in logic design docu- efficient for layout purposes.

mentation and in physical design, power, performance, and 6. Make the checking independent of wiring strategy (auto-

silicon area tradeoffs. matic wiring and/or manual) and provide wiring guide-
lines but do not constrain the wiring by machine-coded

An initial set of objectives were established early in 1978 rules.

and were followed through to the successful development of 7. Provide rules-driven systematic checking, utilizing a hier-

the multichip module microprocessor. These objectives, archical approach wherever possible.

which were key to the design and verification strategy, 8. Provide rules and data bases compatible with semicon-

included the following: ductor manufacturing release procedures and upward
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Figure 1 Hierarchical representation of the processor modiile,
consisting of four custom bipolar chips, from the single module to the
devices on each chip. (1) Symbolizes the device library where
different devices have the contact ports uniquely identified. (2)
Symbolizes the primitive circuit and macro library. Devices are
wired together to create primitives and devices and/or primitives are
wired together to create macros. (3) Symbolizes the chip, with its
primitive macros and chip I/O connections wired together, as well as
the power distribution wiring. (4) Symbolizes the module with its
four chips, signal wiring, I/O connections, and power distribution.

compatible with the next level of package (multichip
module).

9. Provide a checking system such that follow-on applica-
tions of these macros can be software validated via
existing rules.

The key to the successful design was breaking things up
into manageable parts (structured design). From the proces-
sor (engine) architecture, discussed in the paper by Camp-
bell and Tahmoush [2], a logical data flow was defined, as
well as logical and physical circuit and macro objectives. A
bipolar custom macro design approach was chosen in order to
meet the performance and density objectives while limiting
the physical variations. The physical design, placement, and
wiring plan used a combination of automatic and custom
approaches which consisted of computer-assisted placement
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Table 1 Primitives and macros.

1. Random logic circuits made uniquely from devices:

AND-INVERT (AI), EXCLUSIVE-OR (XOR), AND-OR-
INVERT (AOI), SHIFT REGISTER LATCH (SRL), OFF-
CHIP RECEIVER (OCR), PUSH-PULL DRIVER (PPD),
OPEN-COLLECTOR DRIVER (OCD).

(These circuits are called random-logic primitives in subsequent
discussions.)

2. 1 x N macros made from the above primitives.

3. PLAs made from a combination of logic circuits and personalized
devices.

4. ROS made from a combination of decode and powering circuits
and personalized devices.

tools coupled with automatic as well as manual wiring
performed to guidelines, not to predefined machine-coded
rules. This design was checked to rules independent of the
design tools. Special emphasis was placed on making the
rules and checking methodology correct the first time, in
order to meet the overall objective of first-pass operational
parts. The rules, physical design, and checking were per-
formed in a hierarchical manner, with the semiconductor
device as the smallest wireable element.

Under control of the methodology, the chip model can
exist in any one of the following four states:
Physically

Chip (one-block
representation with 1/0)

Logically
Chip model

Interconnected macro logic
Interconnected primitive logic
Interconnected devices

Macro models
Micro logic
Micro logic

Figure 1 illustrates the hierarchical representation. The
chip is composed of ROS, PLA, 1 x NN macros, primitive
circuits, chip I/O ports, and power distribution, plus signal
wires. The 1 x N macros are made up of primitive circuits
and represent a byte’s worth or less (V =< 9, including parity)
of function. The primitive circuits, PLAs, and ROS are
constructed from unique combinations of devices.

In this case the rules describing the macros and primitives,
both logically and physically, had to be generated because,
although the silicon process ground rules were similar to
those of existing designs, the devices and circuits were unique
to this project. A listing of the primitives and macros is given
in Table 1. Additional information on the circuits may be
found in [1].

In the following sections of this paper, the rules methodol-
ogy, the common data base, the physical verification, the
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Figure 2 Block-Transformation Rule application flow. Shows how this rule ties (glues) together the physical and logical rules associated with

the design and validation software tools.

electrical verification, the electrical checking procedures,
and the performance verification aspects of the physical
design verification strategy are described in some detail. This
is followed by a discussion of some key results and conclu-
sions of the program.

Test generation was based on a design technique referred
to as Level-Sensitive Scan Design (LSSD) [7]. The method-
ology used for the logical verification of the VLSI micropro-
cessor design is discussed in the paper by Tran et al. [3], and
the physical design graphical tools that were used are
described in the paper by Mathews and Lee [1].

Rules methodology

The logic data base and rules structure were similar to those
used in IBM’s engineering design system [4, 8] but were
uniquely tailored to meet the objectives of our hierarchical
custom design, as previously defined. The hierarchical
approach required the logical data base to be completely
represented at several different physical levels (macro, prim-
itive, and device). Since we wanted to maintain only the logic
designer’s macro input, the other levels were to be automati-
cally generated by rules defining the content of the macros.
These rules were unique in that they defined a macro to its
device level, which is not generally the case with masterslice
designs. This approach was taken because of the number of
different silicon circuit designs.
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With the language used to define the logic of the system,
each logical element (random logic primitive, macro, ROS,
and PLA) is described by identifying the block and defining
its input and output nets. The block name points to a
block-transformation rule (BTR). This is the focal-point
rule for the methodology, and one exists for each primitive,
macro, PLA, and ROS. As the name implies, the purpose of
the block-transformation rule is to describe the transforma-
tion of a primitive or macro block into its physical and logical
description. It also describes to the logic designer how to code
the block into the logic description so that the block will be
correctly interpreted by the design automation programs.

The BTR describes the logical and physical equivalents, as
well as the electrical data, needed to transform the block into
a format compatible with the following applications:

® Simulation, including delay simulation,
® Test-pattern generation,

® Physical design, and

® Physical design checking.

The BTR structure is hierarchical in nature, with macros
pointing to primitives and primitives pointing to elemental
logic functions, device elements, and electrical characteris-
tics. Figure 2 illustrates how the block transformation rule
acts like the technology glue, binding together the different
aspects of design (circuit, logic, and physical) and validation
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Figure 3 Block-Transformation Rule expansion methodology. A primitive circuit is transformed in one pass to its elemental devices or logic
equivalent. A macro goes through two transformations.

(simulation, physical-to-logical, performance, and test-pat-
tern generation). Figure 3 illustrates the hierarchical nature
of the BTR structure.

electrically different primitive or macro circuit. In our
application, one macro rule represented up to 18 physical and
logical variations, and the same model was used for both
logical and physical processing.

Considerable care was taken to minimize redundancy and
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duplication, thereby reducing the possibility of errors as well
as the number of BTR rules. The key electrical and delay
pointers and logical equivalents are only defined once in the
base-level primitive BTR. The language used for defining
BTRs allowed looping; therefore only one primitive expres-
sion need be coded; then it is automatically repeated any
number of times to produce from 1 to N of these circuits. The
same coding technique allowed a single rule to represent a
class of physical circuits and could select a single circuit
automatically by inspection of I/O pins. This significantly
reduced the number of rules and resulted in one rule per
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The primitive BTR rule not only contained up to five
physical variations but also contained different logical mod-
els (high-level and/or micro-block) depending on user and
application program requirements. Single-block high-level
models usually require less simulation time than the equiva-
lent micro blocks and were used whenever efficiency was a
prime factor.

Another significant point is the verification of the BTR

rule. Test cases were generated which validated each model.
However, an additional check was made to guarantee that

IBM J. RES. DEVELOP. & VOL. 26 &« NO. 4 & JULY 1982




the models within the rule, which are usually generated
independently, were functionally equivalent to one another.
That is,

® The primitive, PLA, and ROS logic models were logically
equivalent to their physical models, and

o The logic models (high-level and micro-block) were equiv-
alent.

A prime example of the need to compare models is the
“ROS,” which consists physically of up to 50K bits in
addition to decode and sense circuits. It is represented by two
levels of transformation down to the device level. Its logic is,
however, represented by a single standard high-level logic
model which references the 50K personalized bit pattern.
Reference [9] describes the ROS in detail. The physical
model of the ROS was transformed to approximately 17 000
devices; these devices were transformed to their respective
elemental logic functions,

Reverse diode = AND,
Forward diode = OR,

Transistor = [ (Invert),

and were then compared, via a static-type logic analysis, to
the single high-level logic function defined in the rule. This
procedure was used for the more complicated circuits. Figure
4 illustrates this comparison.

The high-level model and logical micro blocks can be
equated at the circuit level and/or at the chip level. We used
the latter, and made a logical comparison of the high-level
function of the chip versus the micro-block function of the
chip.

Common data base

The chip logical data base defines the interconnections
between the logical elements (primitives, 1 x N macros,
PLAs, ROS). By means of the block rules, previously
defined, the primitive and 1 x N macro logical elements are
functionally defined. The logical functions of the PLA and
ROS are defined by sets of 1/0 bit-pattern files for ROS [9]
and for PLAs {10].

Via the block-transformation rules, the logical chip
description is converted to several different but logically
equivalent forms for use in different parts of the design and
verification systems. Figure 5 illustrates where the different
logic forms fit in the chip data flow. These forms are listed in
Table 2.

Table 3 describes the hierarchical complexity of our
application, from the one physical module to 15 000 equiva-
lent Als plus a 50K-bit ROS, and from one high-level model
representing the total processor to 20 000 micro simulation
blocks representing the one-module processor.
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Table 2 Hierarchical logical and physical logic forms.

Form

Application

Comments

1. Macro logic coded by logic de-

signer.

2. Macro logic (physical).

3. Primitive logic, PLA, ROS.

Architectural verification.

Placement and wiring. Hierarchi-
cal logical-to-physical checking.

Normally independent of the physi-
cal implementation.

May be broken into separate parts
with special consideration for driv-
ers, receivers, and breaking macros
into sections.

Chip level logical-to-physical

Device-level logical-to-physical

checking.
4. Device-level logic.

checking.
5. Primitive behavioral logic. Simulation.

6. Elemental logic.

Test generation and low-level simu-

lation.

Normally not done except on a sin-
gle macro. Discussed in the section
on logical-to-physical verification.

Examples are SRL, XOR, AOI,
Al, PLA, and ROS.

Examples are Al, OI, A, O, and
ROS.

Table 3 Typical hierarchical complexity of processor models (four

custom chips — one custom module).

Number of modules

1

Number of custom chips 4

Number of logic pages 150

Number of logic blocks coded by 2,000
logic designer

Number of physical circuits placed 2,500
and wired by chip designer

Number of circuits checked during 2,500
logical-to-physical checking with
only global metal

Number of circuits checked during 5,000
real logical-to-physical checking
with all metal

Number of equivalent three-input 15,000
Al circuits + S0K-bit ROS

Number of devices 100,000

Number of high-level models rep- 1
resenting total processor

Number of functional high-level 5,000
blocks simulated

Number of micro blocks simulated 20,000

for one-module processor

The physical design data base is a common graphical
language [11] compatible with IBM’s design and checking
tools as well as with mask fabrication. A library of nested
devices, circuit primitives, and macros is maintained. The
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symbolic circuits (outline shape defining the circuit bounda-
ry) and their logic and power service terminals (ports) are
positioned at specific locations on the chip image to create a
“placed chip image.” These circuits are then inter-wired and
connected to chip input/output ports. The real library cells
are then substituted for the symbolic ones and merged with
the power distribution (network) to create the “wired chip
image.” Figure 5 illustrates how this fits into the chip data
flow.

Physical verification
Physical checking falls into the following two essentially
different parts:

1. Shape-geometry, which checks a shape width and area as
well as spacing and overlap between shapes.

2. Connectivity (logical-to-physical), which compares the
presence and interconnectivity of physical circuits, as
defined in the graphic language, to the logical models.
Forms 2 and 3 in Table 2 describe these models.

e Shapes geometry

For shape geometry, IBM’s shapes checking design automa-
tion tool [12] was used to manipulate and check the graphic
shapes. The checks themselves (types of checks and limits)
were defined uniquely to meet the manufacturing process
requirements as well as the device electrical requirements
determined by statistical circuit analysis. In order to apply
variable shape rules to different semiconductor structures as
well as to assess that only the necessary shapes were present
for a particular device, a unique form of device recognition
was used which depended on symbolic levels coded into
devices. This was not as fail-safe as true geometric recogni-
tion but significantly reduced the computer checking time.
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Each different device (transistor, resistor, diode) had these
special levels defined to its contacts. These were additionally
encoded with a numeric attribute which differentiated
between sizes of devices of the same type (T1, T2, R1, R2,
etc.) and was used for logical-to-physical checking of primi-
tive circuits.

® [ogical-to-physical verification
This checking is performed hierarchically:

First—primitives and macros
Next—chip
® Check to macro ports (includes only global metal). A
significant reduction in computer checking time was
achieved over the all-metal case when performing this
check. However, there were some detection limitations
and the all-metal case was done when the chip was
relatively error-free.
® Check to primitive ports (includes all metal).
® Backup capability to check to device contacts (includes
all metal). This check was done only once to prove that
the hierarchical concept was valid, and was demon-
strated not to be required for every chip.

The primitive, macro, and chip models for these checks are
created by expanding a single logical circuit or a chip of logic
into its physical counterparts, as described in a previous
section. (Refer to Figs. 4 and S, macro and chip data flows.)
When using this hierarchical approach, an additional shapes
check must be included to ensure that the level-naming
conventions were followed and that global metal does not
touch internal circuit metal. IBM’s USC shapes checking
tool [12] was used to perform this checking. The objective
was to include, in the primitive and chip-level models, every
type of signal and power connection made on the chip
between device contact holes. For a list of specific types of
checks, refer to Table 4.

Electrical verification

The basic objective of electrical verification is to ensure the
electrical functionality of a chip within specified operating
limits, i.e., power supply voltages, temperature, and input
and output loading. The electrical verification methodology
was designed to achieve this objective by detecting any of the
following three possible failure modes: a communication
failure, caused by noise introduction between a driver and a
receiver, and by a possible specification mismatch between
driving and receiving logic; a functional failure, caused by a
logic block failing to perform its designed function; a reli-
ability failure, caused by excessive voltages and currents on
the chip. The methodology presented here departs signifi-
cantly from the conventional rules-driven verification ap-
proach used in a masterslice (gate-array) environment. It is
based on a detailed electrical analysis of the entire chip and
chip carrier.
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Figure 6 Noise rejection curve represents receiving circuit
immunity to noise spikes. Use of the hyperbolic approximation
permits us to develop equivalency between noise pulses of different
duration. (Note: MPDL = Most Positive Down Level.)

Table 4 Contents of the physical models.

Primitive and macro:
® Signal and power connections between device ports.
® Device ports connected to primitive and macro signal and
power ports.
® Subcollector contact to + V, one per resistor.
® Substrate contact to ground, at least one per primitive.
® Within I x N macros, connections between primitive ports.

Chip macro level:
® Signal connections between global macros and primitives.
® Signal connections between global circuits and chip I/0.

Chip primitive level:
® Signal and power connections between primitives (all 1 x
N macros expanded to primitives).
® Signal and power connections between primitives and chip
I/0O (this includes power distribution).
® Power-protect diode connections to the power distribution
network.

Chip device level (if used):
® Same as chip primitive, except to device ports instead of
primitives.

A communication failure mode is checked by comparing
noise margin against estimated noise on a net-by-net basis.
Although this concept is a rather simple one, its practical
implementation was possible only by making several assump-
tions and approximations, which we now examine. The net
noise margin, illustrated in Fig. 6, is a function of drivers and
receivers on a net. The dc portion of a noise sensitivity curve
is calculated by subtracting a driver output voltage level 491
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from a receiver threshold voltage. The ac portion represents
immunity to fast noise spikes and is assumed to be bound by a
hyperbolic curve governed by the equation

K = (PW)(AMP),

where K is a constant, PW is a noise pulse width, and AMP is
a noise pulse amplitude.

The hyperbolic noise sensitivity curve approximation is
significant since it permits a development of equivalency
between different pulse width noise spikes; e.g., a receiver
immune to a 1-V 1-ns noise pulse will also be immune to a
250-mV 4-ns noise pulse. By bringing all the ac noise
components to an equivalent point at which the hyperbolic
curve intersects the dc immunity line, the entire noise
calculation can be carried out by dc analysis.

Another simplication is made by reducing multiple noise
margins, corresponding to various combinations of drivers
and receivers on a net, to a single worst-case noise margin.
This is done to reduce the number of software iterations per
net. The worst-case noise margin is calculated by subtracting
the greatest of the driver output levels from the lowest of the
receiver thresholds.

Each circuit is designed to drive a certain maximum
number of loads, and the output voltage level is specified at
that maximum loading. Since the output level improves as
the loads decrease and a typical circuit loading is below
maximum, an additional level of conservatism is built into
the calculation.

The noise calculation methodology assumes that a net is at
its down level. This assumption is justified since the typical
worst-case down-level noise margin is about 130 mV as
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opposed to 600 mV at the up level. Therefore, if one assumes
noise symmetry, noise violation should be first observed on
the down level before the up level will be affected.

Next, we examine the nature and source of noise found on
a chip and project it to a higher-level package (module).
From a dc analysis point of view there are two contributing
noise components: resistive voltage net drops and ground
shifts.

The net resistive voltage drop is a function of the net
topology. When several drivers are present in a net, voltage
drops are a function of a particular driver being active. Thus,
a checking routine must have the capability of iterating over
each driver on a net.

The ground shift between a driving and a receiving circuit
is caused by a ground power distribution loss. This loss is a
function of switching activities on the chip, the major switch-
ing function being driver switching. Four distinct driver
states corresponding to four processor clocks are recognized,
resulting in four distinctly different values of the ground
shift.

The ac noise generated on a chip comes from line-to-line
capacitive and magnetic coupling (referred to as crosstalk)
and from more diffuse global magnetic coupling between
module substrate, chip power distribution, and signal nets.
The resistive voltage drops resulting from switching drivers
are covered by ground-shift noise and are considered dc since
the duration of a resulting noise pulse exceeds the ac portion
of a noise sensitivity curve.

The overall ac noise adds up to about 50 mV dc equivalent.
Most of the ac noise estimation is based on a large-scale
model simulation [13]. Although we presently have analyti-
cal tools capable of precise ac noise calculation, we feel that
the additional gain in calculation accuracy does not justify an
additional software simulation cost.

A functional failure mode is checked by comparing the
macro power service terminal voltage requirement against
the calculated voltage across these terminals. As in the case
of a communication failure mode, the power noise sensitivity
curve is used as a failure criterion; however, it is not derived
on an individual macro basis but is global for all the circuits
on a particular power distribution level.

A conservative approach is taken by disregarding the ac
portion of a power noise sensitivity curve. The reason is that
noise is generated primarily by switching drivers and there-
fore occurs simultaneously on signal nets and on a power
distribution network. The ac portion of a noise rejection
curve at the input terminal is strongly correlated to the ac
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portion of a noise rejection curve of a macro power terminal.
A double accounting of the ac noise may lead to an incorrect
conclusion.

Power voltage drops for each macro are calculated by
adding ground and voltage distribution drops for that partic-
ular macro. Voltage drops on ground distribution are calcu-
lated by subtracting the power service terminal voltage from
the most positive C-4 [14] module connection. For other
voltage distributions the difference is taken between a power
service terminal and the most negative C-4 connection.

Power distribution analysis is carried beyond the chip level
since the module substrate is the integral part of that
distribution. A very simplified modeling of the package (see
Fig. 7) is used to estimate the relative potential of C-4s with
respect to one another.

Since the chip current demand and the power distribution
voltage drops are functions of switching activities, the power
distribution analysis is carried out four times, corresponding
to four distinct logic states and driver switching activities (as
in the case of the ground-shift calculation). The worst-case
voltage drops are selected for the final functional failure
mode analysis.

The ac noise contribution is estimated to be in the range of
20 mV of equivalent dc noise. This estimate applies to the
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1.7-V and 5-V internal power distributions on chip. The 5-V
off-chip driver power distribution is considerably larger (100
mV of equivalent dc noise).

A reliability failure (physical failure) mode is checked by
comparing voltage and current densities against predeter-
mined guidelines which guarantee adequate chip reliability.
The voltage criterion is not checked during the chip verifica-
tion stage. All the circuits are designed not to exceed a
certain reverse bias voltage and isolation guidelines. The
same applies to current densities on an individual circuit
basis. However, a global connection current density check is
required. Three items are verified: via, signal net, and
power-metal current densities.

Electrical checking procedures

The overall electrical checking procedure is illustrated in
Fig. 8. Three distinct paths correspond to the evaluation of
the three failure modes previously discussed.

The dc signal-line analysis program checks for possible
communication failure mode violations. It calculates worst-
case noise margins, estimates resistive signal-line drops, and
adds these to the other noise contributions—ground shift and
a combined ac noise. The ground-shift voltage drops are
supplied by the power distribution analysis routine. This
entry mode can be bypassed and a fixed, manually calculated
ground shift can be entered. This option was particularly
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useful during a global wiring phase of a chip design when
power distribution was not totally completed. It provided a
quick estimate of possible wiring violations. The ac noise
contribution of 50 mV is allocated for each net. Again, it is a
manual entry and can be changed as more precise informa-
tion becomes available.

The program indicates the nets where noise margin was
exceeded. The errata consist of a plot of a net found in
violation, a list of line resistances, and the common graphical
language level (graphic representation) of each section of the
net. Noise margins, resistive drops, ground shifts, an ac noise
contribution estimate, and a macro block coordinate are also
indicated. This sort of detailed description permits a quick
assessment of the seriousness of a violation by a chip designer
and greatly enhances design correction effectiveness.

The functional failure mode verification is performed by a
large network analyzer and power distribution analysis pro-
gram. It takes a resistive model of the entire chip power
distribution, combines it with the current-sink representation
of individual macros, and then analyzes the configuration for
the resistive voltage drops.

The resistive network is calculated partly by the power
distribution analysis program and partly by a separate,
stand-alone routine called DCAN [15]. The two programs
are used to reduce computation cost. The first- and second-
level power distribution is distributed via a wiring system
similar to that of net wiring. Therefore, a net resistance can
be calculated by adding up segment resistances. Each seg-
ment resistance is calculated by the equation

R =pL/W,

where R is the line resistance, p is the metal square resistivi-
ty, L is the line length, and W is the line width. The
third-level power distribution is considerably more difficult
to analyze, since it contains irregular shapes. The DCAN
program is used to generate a resistive equivalent matrix for
the third-level metal. A modified output file is then fed to the
power analysis program.

A current demand of an individual circuit is calculated by
considering the circuit intrinsic current demand and the
output current demand that eventually has to be channeled
through the distribution system. It has been assumed that
circuits are typically 40% in the on and 60% in the off state,
and that the placement does not affect this ratio. The actual
output loading determines additional current flow through a
ground power service terminal.

Particular attention was given to current assignment asso-
ciated with the driver macro. Two current values are
assigned, one corresponding to the worst-case dc loading and
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the other to the peak current experienced during transient
switching. '

A current density failure mode is analyzed by two
programs: The first calculates the current density for first-
and second-level metal, the currents through 1-2 and 2-3
vias, and the current through the power C-4 pads. The second
program is the DCAN program, which is used to calculate
the current density of third-level metal. Again, DCAN is
used because the main program is incapable of processing the
graphic language with 45° shapes. Histograms produced by
the programs are then manually examined for current-
density violation. The data are also used in reliability calcu-
lations.

Performance verification

Because of the time and effort required to accurately com-
pute internal and between-chip delays, it is not practical to
analyze the delay of every circuit on a VLSI chip. The
procedure is to first selectively define delay chains for
analysis, and then to accurately analyze these chains from a
worst-case or statistical point of view. The selection of
critical paths was accomplished in two ways:

® Manually, by the logic designer’s knowledge of his critical
logic path.

® Automatically, via software tools [4] which place delays
on logic functions and either simulate functionally across
chips and compare to predetermined waveshapes or add
blocks of delay and compare to a predetermined expected
delay.

The statistical analysis tool [16] is a circuit-modeling pro-
gram which uses device and wiring parameter distributions.

The key to automatic delay computation lies in the defini-
tion of simplified delay equations and the methods used to
make assumptions required in order to choose the more
accurate equation or constant. The object is to make the
results slightly pessimistic and re-examine whatever fails on
an off-line tool [16], as described previously. The delay
equations are derived from linear regression approximations
made from the results of the more accurate statistical
analysis based on mask and process variations [1]. The basic
form of the internal chip equations is

circuit output delay = (K, + K,C))M,

where

K

(1]

intrinsic delay of the circuit,

= constant multiplier for capacitance,
= total pin and wire capacitance, and

TOX
|

multiplier for worst case.
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® Delay methodology

The automatic tools are the same as those used in the IBM
engineering design system (4]. Figure S illustrates the data
flow. However, the procedure for computing net capacitance
was tailored to our custom wiring approach. We utilized an
existing USC tool [12] to assemble the graphic shapes into
nets during logical-to-physical checking, compute the area,
and feed a capacitance value back to the input logic for
subsequent use by the delay tools. This was different from
the standard masterslice approach since our custom wiring
did not have wire-type rules defining electrical equivalents.
This also added the fiexibility to apply different capacitance
coefficients to the metal area depending on what shapes were
over or under it. Once the delays were automatically gener-
ated and placed into the logical expansion, the results were
simulated with respect to expected function and timing.

Results and conclusions

During the design period, the only significant physical design
error to escape detection was in the “ROS” of the first test
chip. This problem was caused by an error in the physical
model and was subsequently discovered when the low-level
physical model was compared to the high-level logical model.
The physical model matched the graphic data but one
decoder was out of phase with the logical model.

The first-pass product chips were fully functional and
were used in system hardware models [3]. Final validation of
each chip was completed in 24 to 48 hours after the last
change.

The computer costs to perform the software validation
were initially considerable and much effort was expended in
minimizing run times. The following areas were addressed:

® Hierarchical checking and the previously mentioned
method of device recognition reduced run times four-
to-one for logical-to-physical checks. However, they com-
plicated the validation with additional checking for the
following reasons: (1) to ensure that errors did not exist
between internal elements of one checking level and the
global elements of the next level; and (2) to ensure that
level-naming conventions were followed and that symbolic
shapes used as blockages, etc. in the next level of checking
were correctly placed. These two items were checked
automatically but required considerable thought to
include all possible cases.

e Graphic design techniques were used when designing the
physical books, which eliminated time-consuming data
manipulation during checking (e.g., unioning).

® The order of checking and minimizing shape counts also
had a significant impact on run time. The order of
checking was designed to perform checks on large numbers
of shapes first, then to eliminate these shapes prior to
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performing subsequent checks. This eliminated the need
for the software to process large numbers of nonrequired
shapes. It was also found effective to perform a common
operation once and then to use the result for several
different checks.

In addition to further reducing the computer costs, future
objectives should also include defining the additional audit
controls to permit a paper qualification on chips using the
existing library of books.
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