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A Bipolar  VLSI  Custom  Macro  Physical  Design 
Verification Strategy 

The  level of complexity and  the  turn-around time  associated  with the  development of custom  bipolar VLSI chips have defined 
the need for a  highly structured  physical and  electrical  design validation  approach which can guarantee fully functional 
first-pass  chips,  yet be flexible enough to allow logical and physical designers  the latitude necessary to achieve  specified  cost 
and performance  objectives.  This  paper describes such a  design verijcation  strategy and its  implied constraints on chip design. 
The rationale for comparing  the  logic  equivalence of the  high-level  logical models  to the  low-level-device physical  models  is 
presented, a description of the  hierarchical logical-to-physical and  electrical  checking is given, and its  impact on cost and 
complexity  is  examined. 

Introduction 
The  ideas discussed in this paper were evolved over a 
three-year period from 1978-1980, and were applied  to  the 
design of a VLSI microprocessor, various aspects of which 
are described  elsewhere in this issue [ 1-31. In this  paper we 
focus on the design-rules generation  and  the physical and 
electrical  design  verification strategy.  Many of the  software 
tools are  similar if not  identical to those  used by IBM’s 
Engineering  Design System [4] for masterslice (Le., gate- 
array) technologies. The significance of the methodology 
described lies in the  application of some of these tools, as well 
as  structure  and rules, to a custom bipolar  design from  the 
chip level down to  the individual devices. The objective was 
to define and  implement a  set of design and checking  rules 
and  procedures which would result in a  fully functional [ 5 ]  
first-pass custom design, but which would also give the logic, 
circuit,  and  chip designers flexibility in logic design  docu- 
mentation  and in  physical  design,  power, performance,  and 
silicon area tradeoffs. 

An initial  set of objectives  were established  early in 1978 
and were followed through  to  the successful  development of 
the  multichip  module microprocessor. These objectives, 
which were key to  the design and verification strategy, 
included the following: 

1 .  Define and design  a  limited number of building-block 
circuits with complete freedom of design  within the 
semiconductor process ground rules,  using  a  limited  set of 
device structures. 

2. Generate rules  governing the application of the building- 

3. Construct  functional  macros [6] using the building blocks 
previously defined. 

4. Construct  the global chip design  using the  functional 
macros  and building blocks previously defined. 

5. Provide the logic designer  with logical macros.  However, 
allow the physical  designer to lay out  the macros  with  a 
choice of physical macro  subtypes  (same building blocks, 
different spacing between  blocks), or the option to  break 
the  macro  up  into  its building blocks if that is more 
efficient for layout purposes. 

6. Make  the checking independent of wiring strategy  (auto- 
matic wiring and/or  manual)  and provide wiring guide- 
lines but  do not constrain  the wiring by machine-coded 
rules. 

7. Provide  rules-driven systematic checking,  utilizing  a  hier- 

8. Provide  rules and  data bases compatible with  semicon- 
ductor  manufacturing release  procedures and  upward 

block circuits. 

archical  approach wherever possible. 
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Figure 1 Hierarchical  representation of the processor  module, 
consisting of four  custom  bipolar  chips,  from the single  module  to the 
devices on each chip. (1 )  Symbolizes the device library where 
different devices  have the  contact  ports  uniquely  identified. (2) 
Symbolizes  the  primitive  circuit  and  macro  library.  Devices are 
wired together  to create primitives  and  devices and/or primitives are 
wired together  to create macros. (3) Symbolizes  the  chip,  with  its 
primitive  macros  and  chip 1/0 connections  wired  together, as well as 
the power distribution  wiring. (4) Symbolizes the module  with its 
four  chips,  signal  wiring, 1 /0  connections,  and  power distribution. 

compatible with the next level of package  (multichip 
module). 

9. Provide  a checking  system  such  that follow-on applica- 
tions of these  macros  can  be  software  validated via 
existing  rules. 

The key to  the successful  design  was breaking  things  up 
into  manageable  parts  (structured  design).  From  the proces- 
sor (engine)  architecture, discussed  in the  paper by Camp- 
bell and  Tahmoush 121, a  logical data flow was defined, as 
well as logical and physical circuit  and  macro objectives.  A 
bipolar custom  macro design approach was  chosen  in order  to 
meet the  performance  and  density objectives  while limiting 
the physical variations.  The physical design,  placement,  and 
wiring  plan  used a combination of automatic  and  custom 
approaches which  consisted of computer-assisted  placement 486 
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Table 1 Primitives  and  macros. 

1. Random logic  circuits made  uniquely  from  devices: 

AND-INVERT (AI), EXCLUSIVE-OR (XOR), AND-OR- 
INVERT (AOI), SHIFT REGISTER LATCH (SRL), OFF- 
CHIP RECEIVER (OCR), PUSH-PULL DRIVER (PPD), 
OPEN-COLLECTOR DRIVER (OCD). 

(These  circuits are called  random-logic  primitives in subsequent 
discussions.) 

2. 1 x N macros made  from the above  primitives. 

3. PLAs made  from a combination of logic circuits  and  personalized 
devices. 

4. ROS made  from a combination of  decode and powering circuits 
and  personalized  devices. 

tools coupled with automatic  as well as  manual wiring 
performed to guidelines,  not to predefined machine-coded 
rules. This design  was  checked to  rules  independent of the 
design tools. Special  emphasis was  placed on making  the 
rules and checking  methodology correct  the first time, in 
order  to meet the overall  objective of first-pass operational 
parts.  The rules,  physical  design, and checking  were  per- 
formed in  a hierarchical  manner, with the semiconductor 
device as  the  smallest wireable element. 

Under control of the methodology, the  chip model can 
exist  in any  one of the following four  states: 

Physically Logically 

Chip (one-block Chip model 

Interconnected  macro logic Macro models 
Interconnected primitive logic Micro logic 
Interconnected devices Micro logic 

representation with I/O) 

Figure 1 illustrates  the  hierarchical  representation.  The 
chip is composed of ROS, PLA, 1 x N macros,  primitive 
circuits,  chip 1 / 0  ports, and power distribution, plus  signal 
wires. The 1 x N macros  are  made  up of primitive circuits 
and  represent a byte's worth or less ( N  s 9, including parity) 
of function.  The primitive circuits,  PLAs,  and ROS are 
constructed  from  unique combinations of devices. 

In this  case  the  rules describing the  macros  and primitives, 
both logically and physically, had  to  be  generated because, 
although  the silicon process ground  rules were similar  to 
those of existing  designs, the devices and  circuits were unique 
to  this project.  A  listing of the primitives and  macros is given 
in Table 1. Additional  information on the  circuits  may be 
found  in [ 11. 

In the following sections of this  paper,  the  rules methodol- 
ogy, the common data base, the physical verification, the 
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Figure 2 Block-Transformation  Rule  application flow. Shows how this  rule ties (glues)  together  the physical and logical rules  associated  with 
the design and  validation  software tools. 

electrical  verification, the electrical  checking  procedures, 
and  the  performance verification aspects of the physical 
design verification strategy  are described in some  detail.  This 
is followed by a  discussion of some key results and conclu- 
sions of the  program. 

Test  generation was based  on  a  design technique referred 
to  as Level-Sensitive Scan Design (LSSD) [7]. The  method- 
ology used for the logical verification of the  VLSI micropro- 
cessor design is discussed in the  paper by Tran et al. [ 31, and 
the physical  design graphical tools that were used are 
described in the  paper by Mathews  and  Lee [ I ] .  

Rules methodology 
The logic data  base  and rules structure were similar  to those 
used in IBM’s engineering  design  system [4, 81 but were 
uniquely  tailored to meet the objectives of our  hierarchical 
custom design, as previously defined. The  hierarchical 
approach required the logical data  base  to  be completely 
represented at  several  different  physical levels (macro, prim- 
itive, and device). Since we wanted to  maintain only the logic 
designer’s macro  input,  the  other levels were to be automati- 
cally generated by rules defining the  content of the macros. 
These  rules were unique in that  they defined  a macro  to  its 
device level, which is not generally the  case with masterslice 
designs. This  approach was taken because of the  number of 
different silicon circuit designs. 

With  the  language used to define the logic of the system, 
each logical element  (random logic primitive, macro,  ROS, 
and  PLA) is described by identifying the block and defining 
its  input  and  output nets. The block name points to a 
block-transformation rule (BTR).  This is the focal-point 
rule for the methodology, and  one exists  for each primitive, 
macro,  PLA,  and  ROS. As the  name implies, the purpose of 
the block-transformation rule is to describe the  transforma- 
tion of a  primitive or macro block into its  physical and logical 
description. It also  describes to  the logic designer how to code 
the block into  the logic description so that  the block will be 
correctly  interpreted by the design automation  programs. 

The BTR  describes the logical and physical  equivalents, as 
well as  the  electrical  data, needed to  transform  the block into 
a format  compatible with the following applications: 

Simulation, including delay  simulation, 
Test-pattern  generation, 
Physical  design, and 
Physical  design  checking. 

The  BTR  structure is hierarchical in nature, with macros 
pointing to primitives and primitives  pointing to  elemental 
logic functions,  device elements,  and  electrical  characteris- 
tics. Figure 2 illustrates how the block transformation  rule 
acts like the technology glue, binding together  the different 
aspects of design (circuit, logic, and physical) and validation 487 
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Figure 3 Block-Transformation Rule expansion  methodology. A primitive  circuit is transformed in one pass to  its  elemental devices or logic 
equivalent. A macro goes through  two  transformations. 

(simulation, physical-to-logical, performance,  and  test-pat- 
tern  generation).  Figure 3 illustrates  the  hierarchical  nature 
of the  BTR  structure. 

Considerable  care was taken  to minimize redundancy  and 
duplication,  thereby  reducing  the possibility of errors as well 
as  the  number of BTR rules. The key electrical  and  delay 
pointers and logical  equivalents are only defined once  in the 
base-level primitive BTR.  The  language used for  defining 
BTRs allowed looping; therefore only one primitive  expres- 
sion need be coded; then it is automatically  repeated  any 
number of times to produce  from 1 to N of these  circuits.  The 
same coding technique allowed  a  single rule  to  represent a 
class of physical circuits  and could  select  a  single circuit 
automatically by inspection of 1 / 0  pins. This significantly 

488 reduced the  number of rules  and resulted in one rule per 

electrically  different  primitive or macro  circuit. In our 
application, one macro  rule represented up  to 18 physical and 
logical variations, and  the  same model  was used for  both 
logical and physical processing. 

The primitive BTR  rule not only contained up  to five 
physical  variations but also contained different  logical  mod- 
els (high-level and/or micro-block)  depending on user and 
application  program  requirements. Single-block high-level 
models usually require less simulation  time  than  the equiva- 
lent  micro blocks and were used whenever efficiency was  a 
prime  factor. 

Another significant  point is the verification of the  BTR 
rule. Test cases  were generated which validated each model. 
However, an  additional  check was made  to  guarantee  that 
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the models  within the rule, which are usually generated 
independently,  were  functionally equivalent  to  one  another. 
That is, 

0 The primitive, PLA,  and  ROS logic models  were  logically 

0 The logic models  (high-level and micro-block)  were  equiv- 
equivalent to  their physical models, and 

alent. 

A prime  example of the need to  compare models is the 
"ROS," which consists physically of up  to 50K bits in 
addition  to  decode  and sense circuits.  It is represented by two 
levels of transformation down to  the device level. Its logic is, 
however, represented by a single  standard high-level logic 
model which references the 50K personalized  bit pattern. 
Reference [9] describes the  ROS in detail.  The physical 
model of the  ROS was transformed  to  approximately 17 000 
devices; these  devices  were transformed  to  their respective 
elemental logic functions, 

Reverse diode = AND, 
Forward diode = OR, 
Transistor = I (Invert), 

and were then  compared, via a static-type logic analysis, to 
the single high-level logic function defined in the  rule.  This 
procedure was used for the more  complicated circuits.  Figure 
4 illustrates this comparison. 

The high-level model and logical micro blocks can be 
equated at  the  circuit level and/or  at  the  chip level. We used 
the  latter,  and  made a logical comparison of the high-level 
function of the  chip versus the micro-block function of the 
chip. 

Common data base 
The chip logical data base defines the interconnections 
between the logical elements (primitives, 1 x N macros, 
PLAs, ROS). By means of the block rules, previously 
defined, the primitive and 1 x N macro logical elements  are 
functionally  defined. The logical functions of the PLA and 
ROS  are defined by sets of 1/0 bit-pattern files for ROS [9] 
and for  PLAs [IO]. 

Via the block-transformation  rules, the logical chip 
description is converted to several  different but logically 
equivalent  forms  for  use in different parts of the design and 
verification  systems. Figure 5 illustrates  where  the different 
logic forms fit in the  chip  data flow. These forms are listed in 
Table 2. 

Table 3 describes the  hierarchical complexity of our 
application,  from  the  one physical module  to 15 000 equiva- 
lent  AIS plus  a 5OK-bit ROS,  and  from  one high-level model 
representing  the  total processor to 20 000 micro  simulation 
blocks representing  the one-module processor. 

(1) /rule defines 
Block transformation 

Device and primitive circuit 
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I 
I 

Rule defines 

and high-level model 

/m expand  to 

To chip low-level 
merge device model 
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Figure 4 (1) Primitive  and  macro  graphic  design  and  checking; 
and (2) Macro  physical  model  compared  to  the logical. 
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Figure 5 Chip design and  validation flow: shows the merging of 
the  macros  and power distribution  into the chip  graphic design and 
the  release to semiconductor  manufacturing. Also shows the  applica- 
tion of different logic expansions (the numbers  refer  to  the  forms 
described in Table 2). 489 

J .  F. McCABE AND A. Z. MUSZYNSKI IBM J.  RES, DEVELOP. VOL. 26 NO. 4 JULY 1982 



Table 2 Hierarchical logical and physical logic forms. 

Form Application Comments 

1. Macro logic coded by logic de- Architectural verification. 
signer. 

2. Macro logic (physical). 

3. Primitive logic, PLA, ROS 

4. Device-level  logic. 

Placement and wiring. Hierarchi- 
cal logical-to-physical checking. 

Chip level logical-to-physical 
checking. 

Device-level logical-to-physical 
checking. 

5.  Primitive behavioral logic. Simulation. 

6.  Elemental logic. Test generation and low-level simu- 
lation. 

Normally independent of the physi. 
cal implementation. 

May be broken into separate  parts 
with special consideration for driv- 
ers, receivers, and breaking macros 
into sections. 

Normally not done except on a sin- 
gle macro. Discussed in the section 
on logical-to-physical verification. 

Examples are SRL, XOR, AOI, 
AI, PLA, and ROS. 

ROS. 
Examples are  AI, 01, A, 0, and 

Table 3 Typical hierarchical complexity of processor models (four 
custom chips - one custom module). 

Number of modules ~ 1 

Number of custom chips - 4 

Number of logic pages - 150 

Number of logic  blocks coded by - 2,000 
logic designer 

Number of physical circuits placed - 2,500 
and wired by chip designer 

Number of circuits checked during 
logical-to-physical checking with 
only global metal 

Number of circuits checked during 
real logical-to-physical checking 
with all metal 

Number of equivalent three-input 
AI circuits 

Number of devices 

Number of high-level models rep- 
resenting total processor 

symbolic circuits  (outline  shape defining the  circuit  bounda- 
ry) and  their logic and power service terminals  (ports)  are 
positioned at  specific locations on the  chip  image  to  create a 
“placed chip image.” These  circuits  are  then  inter-wired  and 
connected to  chip  input/output ports. The real library cells 
are  then  substituted for the symbolic  ones and merged  with 
the power distribution  (network)  to  create  the “wired chip 
image.” Figure 5 illustrates how this fits into  the  chip  data 
flow. 

- 2,500 Physical verification 
Physical  checking  falls into  the following two essentially 
different  parts: 

1. Shape-geometry, which checks  a shape width and  area  as 
- 5,000 

well as  spacing  and overlap  between  shapes. 

presence and interconnectivity of physical circuits,  as 
- 15,000 2. Connectivity  (logical-to-physical), which compares  the 

- 100,000 defined in the  graphic  language,  to  the logical models. 

+ 5OK-bit ROS 

- 1 Forms 2 and 3 in Table 2 describe these models. 

Number of functional high-level - 5,000 
blocks simulated 

Number of micro blocks simulated - 20,000 
for one-module processor 

The physical design data base is a common graphical 
language [ 111 compatible  with IBM’s design and checking 
tools as well as  with  mask  fabrication. A library of nested 

490 devices, circuit primitives, and  macros is maintained.  The 

Shapes geometry 
For shape  geometry, IBM’s shapes checking  design automa- 
tion tool [ 121 was used to  manipulate  and check the  graphic 
shapes. The checks  themselves (types of checks and limits) 
were defined uniquely to meet the  manufacturing process 
requirements  as well as  the device  electrical requirements 
determined by statistical  circuit analysis. In order  to apply 
variable  shape rules to different  semiconductor structures  as 
well as  to assess that only the necessary shapes were  present 
for  a particular device, a unique  form of device  recognition 
was used which depended on symbolic levels coded into 
devices. This was not  as fail-safe as  true  geometric recogni- 
tion but significantly  reduced the  computer checking time. 
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Each different  device (transistor, resistor, diode)  had  these 
special levels defined to  its  contacts.  These were additionally 
encoded  with  a numeric  attribute which differentiated 
between sizes of devices of the  same  type  (Tl,  T2,  R1,  R2, 
etc.) and was used for  logical-to-physical checking of primi- 
tive circuits. 

Logical-to-physical verification 
This  checking is performed  hierarchically: 

First-primitives and  macros 
Next-chip 

Check  to  macro  ports (includes  only global  metal). A 
significant reduction in computer checking time was 
achieved over the  all-metal  case when performing  this 
check.  However, there were some  detection  limitations 
and  the  all-metal  case was done when the  chip was 
relatively error-free. 
Check  to primitive  ports (includes  all  metal). 
Backup  capability  to check to device contacts (includes 
all  metal).  This  check was done only  once to prove that 
the  hierarchical concept  was  valid, and was demon- 
strated not to be required for every chip. 

The primitive, macro,  and  chip models  for these  checks  are 
created by expanding a  single  logical circuit or a chip of logic 
into  its physical counterparts,  as described in a previous 
section. (Refer  to Figs. 4 and 5, macro  and  chip  data flows.) 
When using this  hierarchical  approach,  an  additional  shapes 
check must be included to  ensure  that  the level-naming 
conventions  were followed and  that global metal does not 
touch internal  circuit  metal.  IBM's  USC  shapes checking 
tool [ 121 was used to perform this checking. The objective 
was to include, in the primitive and chip-level models,  every 
type  of signal and power connection made on the  chip 
between device  contact holes.  For a  list of specific types of 
checks, refer  to  Table 4. 

Electrical verification 
The basic  objective of electrical verification is to  ensure  the 
electrical functionality of a chip within specified operating 
limits, i.e., power supply  voltages, temperature,  and  input 
and  output loading. The  electrical verification  methodology 
was designed to achieve this objective by detecting  any of the 
following three possible failure modes: a communication 
failure,  caused by noise introduction between  a driver  and a 
receiver, and by a possible specification mismatch between 
driving and receiving logic; afunctional  failure,  caused by a 
logic block failing  to perform its designed function; a  reli- 
ability  failure,  caused by excessive voltages and  currents on 
the chip. The methodology  presented here  departs signifi- 
cantly  from  the conventional  rules-driven  verification ap- 
proach  used  in  a masterslice  (gate-array) environment. It is 
based on a detailed  electrical  analysis of the  entire  chip  and 
chip  carrier. 

I 
il 

Hyperbolic approximation 

""" 

blse width 

Figure 6 Noise rejection curve  represents receiving circuit 
immunity to noise spikes. Use of the hyperbolic approximation 
permits us to develop equivalency between noise pulses of different 
duration.  (Note:  MPDL = Most Positive Down Level.) 

Table 4 Contents of the physical models 

Primitive and macro: 
Signal and power connections between device ports. 

0 Device ports connected to primitive and macro signal and 

Subcollector contact  to + V, one per resistor. 
Substrate  contact  to ground, at least one per primitive. 

0 Within  1 x N macros, connections between primitive ports. 

power ports. 

Chip  macro level: 
Signal connections between global macros and primitives. 
Signal connections between global circuits and  chip I/O. 

Chip primitive level: 
0 Signal and power connections between primitives (all 1 x 

Signal  and power connections between primitives and chip 

Power-protect diode connections to the power distribution 

N macros expanded to primitives). 

1/0 (this includes power distribution). 

network. 

Chip device level  (if used): 
Same  as  chip primitive, except to device ports instead of 
primitives. 

A  communication failure mode is checked by comparing 
noise margin  against  estimated noise on a  net-by-net basis. 
Although  this concept is a rather simple  one, its  practical 
implementation was possible only by making several  assump- 
tions and  approximations, which we  now examine. The  net 
noise margin,  illustrated in Fig. 6 ,  is a  function of drivers and 
receivers on a  net. The  dc portion of a noise sensitivity curve 
is calculated by subtracting a driver  output voltage level 49 1 
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/ c-4 pads 

Figure 7 A simple module  resistive  model  is used to establish 
relative  voltages  between C-4 pads. 

from a  receiver threshold voltage. The  ac portion represents 
immunity  to  fast noise spikes and is assumed to  be bound by a 
hyperbolic curve governed by the  equation 

K = (PW)(AMP), 

where K is a constant, PWis a noise pulse width,  and AMP is 
a noise pulse amplitude. 

The hyperbolic noise sensitivity curve  approximation is 
significant since it permits a development of equivalency 
between  different  pulse  width noise spikes; e.g., a  receiver 
immune  to a 1-V 1-ns noise pulse will also  be  immune  to a 
250-mV 4-11s noise pulse. By bringing all  the  ac noise 
components  to  an equivalent  point a t  which the hyperbolic 
curve  intersects  the  dc  immunity line, the  entire noise 
calculation  can be carried  out by dc analysis. 

Another simplication is made by reducing multiple noise 
margins, corresponding to various combinations of drivers 
and receivers on a net,  to a  single  worst-case noise margin. 
This is done  to  reduce  the  number of software  iterations per 
net. The worst-case noise margin is calculated by subtracting 
the  greatest of the  driver  output levels from  the lowest of the 
receiver thresholds. 

Each  circuit is  designed to drive  a certain  maximum 
number of loads, and  the  output voltage level is specified a t  
that  maximum loading. Since  the  output level improves as 
the loads decrease  and a typical  circuit  loading is below 
maximum,  an  additional level of conservatism  is built  into 
the  calculation. 

The noise calculation methodology assumes  that a net is a t  
its  down level. This  assumption is justified  since the  typical 

492 worst-case down-level noise margin is about 130 mV as 

opposed to 600 mV at  the  up level. Therefore, if one  assumes 
noise symmetry, noise violation  should be first  observed on 
the down level before the  up level will be affected. 

Next, we examine  the  nature  and source of noise found on 
a chip  and project it  to a  higher-level package  (module). 
From a dc analysis  point of  view there  are two contributing 
noise components:  resistive  voltage net  drops  and  ground 
shifts. 

The  net resistive  voltage drop is a  function of the  net 
topology. When several  drivers are present in a net, voltage 
drops are a function of a particular  driver being  active. Thus, 
a  checking routine  must have the  capability of iterating over 
each  driver on a net. 

The  ground  shift between  a  driving and a receiving circuit 
is caused by a ground power distribution loss. This loss is a 
function of switching  activities on the  chip,  the  major switch- 
ing function  being driver switching.  Four distinct driver 
states corresponding to  four processor clocks are recognized, 
resulting in  four  distinctly  different  values of the  ground 
shift. 

The  ac noise generated on a chip comes from line-to-line 
capacitive  and  magnetic coupling (referred  to  as crosstalk) 
and  from  more diffuse  global magnetic coupling  between 
module  substrate,  chip power distribution,  and signal  nets. 
The resistive  voltage drops  resulting  from switching  drivers 
are covered by ground-shift noise and  are considered dc since 
the  duration of a resulting noise pulse  exceeds the  ac portion 
of a noise sensitivity  curve. 

The overall ac noise adds  up  to  about 50 mV dc equivalent. 
Most of the  ac noise estimation is based on a  large-scale 
model simulation [ 131. Although we presently  have analyti- 
cal tools capable of precise ac  noise calculation, we feel that 
the  additional  gain in calculation  accuracy does not justify  an 
additional  software simulation  cost. 

A functional failure mode is  checked by comparing  the 
macro power service terminal voltage requirement  against 
the  calculated voltage  across these  terminals. As in the  case 
of a communication  failure mode, the power noise sensitivity 
curve is used as a failure  criterion; however, it is not  derived 
on an individual macro basis but is global  for all  the  circuits 
on a particular power distribution level. 

A  conservative approach is taken by disregarding  the  ac 
portion of a power noise sensitivity  curve. The reason is that 
noise is generated  primarily by switching  drivers and  there- 
fore occurs  simultaneously  on  signal nets  and on a power 
distribution network. The  ac portion of a noise rejection 
curve at  the  input  terminal is strongly correlated  to  the  ac 
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Figure 8 Set of procedures and  routines follows three  failure  mechanisms:  communication,  function, and current  density  failure  checks. 

portion of a noise rejection  curve of a macro power terminal. 
A double  accounting of the  ac noise may lead to  an incorrect 
conclusion. 

Power voltage drops for each  macro  are  calculated by 
adding  ground  and voltage distribution  drops for that  partic- 
ular  macro. Voltage drops on ground  distribution  are  calcu- 
lated by subtracting  the power service terminal voltage from 
the most positive C-4  [14] module  connection.  For other 
voltage distributions  the difference is taken between  a power 
service terminal  and  the most negative C-4 connection. 

Power distribution  analysis is carried beyond the  chip level 
since the module substrate is the  integral  part of that 
distribution. A very simplified modeling of the  package (see 
Fig. 7) is used to  estimate  the relative potential of C-4s with 
respect to  one  another. 

Since  the  chip  current  demand  and  the power distribution 
voltage drops  are  functions of switching  activities, the power 
distribution analysis is carried  out  four times,  corresponding 
to four distinct logic states  and  driver switching  activities (as 
in the  case of the ground-shift calculation).  The worst-case 
voltage drops  are selected for the final functional  failure 
mode  analysis. 

The  ac noise contribution is estimated  to be in the  range of 
20 mV of equivalent dc noise. This  estimate applies to  the 

1.7-V and 5-V internal power distributions on chip. The 5-V 
off-chip driver power distribution is considerably larger (100 
mV  of equivalent dc noise). 

A reliability  failure (physical failure) mode is checked by 
comparing voltage and  current densities against  predeter- 
mined  guidelines which guarantee  adequate  chip reliability. 
The voltage criterion is not  checked during  the  chip verifica- 
tion stage. All the  circuits  are designed  not to exceed a 
certain reverse  bias  voltage and isolation  guidelines. The 
same applies to  current densities on an individual circuit 
basis. However,  a  global  connection current density  check is 
required. Three  items  are verified: via,  signal net,  and 
power-metal current densities. 

Electrical checking procedures 
The overall electrical checking procedure is illustrated in 
Fig. 8. Three  distinct  paths correspond to  the evaluation of 
the  three  failure modes previously discussed. 

The  dc signal-line  analysis program checks  for possible 
communication  failure mode violations. It  calculates worst- 
case noise margins,  estimates resistive signal-line drops,  and 
adds these to  the  other noise contributions-ground shift  and 
a  combined ac noise. The  ground-shift voltage drops  are 
supplied by the power distribution analysis  routine. This 
entry mode can  be bypassed and a fixed, manually  calculated 
ground  shift  can  be  entered.  This option  was particularly 493 
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useful during a  global  wiring phase of a chip design  when 
power distribution was not  totally  completed.  It provided a 
quick  estimate of possible wiring violations. The  ac noise 
contribution of 50 mV is allocated for each  net.  Again,  it is a 
manual  entry  and  can be changed  as  more precise informa- 
tion becomes available. 

The  program indicates the  nets  where noise margin was 
exceeded. The  errata consist of a plot of a  net  found in 
violation,  a list of line  resistances, and  the common graphical 
language level (graphic  representation) of each section of the 
net. Noise  margins, resistive drops,  ground shifts, an  ac noise 
contribution  estimate,  and a macro block coordinate  are  also 
indicated.  This  sort of detailed description permits a quick 
assessment of the seriousness of a  violation by a chip designer 
and  greatly  enhances design  correction  effectiveness. 

The  functional  failure mode  verification is performed by a 
large network analyzer  and power distribution  analysis pro- 
gram.  It  takes a  resistive model of the  entire  chip power 
distribution, combines  it  with the  current-sink  representation 
of individual macros,  and  then  analyzes  the configuration  for 
the resistive  voltage  drops. 

The resistive  network is calculated  partly by the power 
distribution  analysis  program  and  partly by a separate, 
stand-alone  routine called DCAN [ 151. The two programs 
are used to  reduce  computation cost. The first- and second- 
level power distribution is distributed via a  wiring  system 
similar  to  that of net wiring. Therefore, a net  resistance  can 
be  calculated by adding  up  segment resistances. Each seg- 
ment  resistance is calculated by the  equation 

R = pL/W, 

where R is the line  resistance, p is the  metal  square resistivi- 
ty, L is the line length,  and W is the line  width. The 
third-level power distribution is considerably more difficult 
to  analyze, since it  contains  irregular shapes. The  DCAN 
program is used to  generate a resistive  equivalent matrix for 
the third-level metal. A modified output file is then fed to  the 
power analysis  program. 

A current  demand of an individual circuit is calculated by 
considering the  circuit  intrinsic  current  demand  and  the 
output  current  demand  that eventually has  to  be  channeled 
through  the  distribution  system.  It  has been assumed  that 
circuits  are typically 40% in the on and 60% in the off state, 
and  that  the  placement does not affect this ratio. The  actual 
output loading determines  additional  current flow through a 
ground power service terminal. 

Particular  attention was given to  current  assignment asso- 
ciated with the  driver  macro.  Two  current values are 

494 assigned, one corresponding to  the worst-case dc loading and 

the  other  to  the peak current experienced during  transient 
switching. 

A current density  failure mode is analyzed by two 
programs: The first calculates  the  current density for first- 
and second-level metal,  the  currents  through 1-2 and 2-3 
vias, and  the  current  through  the power C-4 pads. The second 
program is the  DCAN  program, which is used to  calculate 
the  current density of third-level metal.  Again,  DCAN is 
used because the  main  program is incapable of processing the 
graphic  language with 45' shapes.  Histograms produced by 
the  programs  are  then  manually  examined for current- 
density violation. The  data  are also used in  reliability calcu- 
lations. 

Performance verification 
Because of the  time  and effort required  to accurately com- 
pute  internal  and between-chip  delays,  it is not practical  to 
analyze  the delay of every circuit on a VLSI chip. The 
procedure is to first selectively define  delay chains for 
analysis, and  then  to  accurately  analyze these chains from  a 
worst-case or statistical point of view. The selection of 
critical  paths was accomplished in two ways: 

Manually, by the logic designer's knowledge of his critical 
logic path. 
Automatically, via software tools [4] which place  delays 
on logic functions  and  either  simulate functionally  across 
chips  and  compare  to  predetermined waveshapes or add 
blocks of delay and  compare  to a predetermined expected 
delay. 

The  statistical analysis tool 1161 is a  circuit-modeling pro- 
gram which uses device and wiring parameter distributions. 

The key to  automatic delay computation lies in the defini- 
tion of simplified delay  equations  and  the  methods used to 
make  assumptions required in order  to choose the  more 
accurate  equation or constant.  The object is to  make  the 
results  slightly  pessimistic and  re-examine whatever  fails on 
an off-line tool 1161, as described previously. The delay 
equations are derived from  linear regression approximations 
made  from  the results of the  more  accurate  statistical 
analysis  based on mask  and process variations [ 11. The basic 
form of the  internal  chip  equations is 

circuit output  delay = (KO + K,C,)M, 

where 

KO = intrinsic delay of the  circuit, 
K,  = constant multiplier  for capacitance, 
C, = total pin and wire capacitance,  and 
M = multiplier for  worst  case. 
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0 Delay methodology 
The  automatic tools are  the  same  as those used in the  IBM 
engineering  design  system [4]. Figure 5 illustrates  the  data 
flow. However, the  procedure for computing  net  capacitance 
was tailored  to  our  custom wiring approach.  We utilized an 
existing USC tool [ 121 to assemble the  graphic  shapes  into 
nets during logical-to-physical checking,  compute  the  area, 
and feed a capacitance value back  to  the  input logic for 
subsequent use by the delay tools. This was different from 
the  standard  masterslice  approach  since  our  custom wiring 
did not  have  wire-type  rules  defining electrical equivalents. 
This also added  the flexibility to  apply different capacitance 
coefficients to  the  metal  area  depending on what  shapes were 
over or under it. Once  the  delays were automatically  gener- 
ated  and placed into  the logical expansion, the results  were 
simulated with respect to expected  function and  timing. 

Results and conclusions 
During  the design  period, the only significant  physical  design 
error  to  escape  detection was in the “ROS” of the first  test 
chip. This problem was caused by an  error in the physical 
model and was subsequently  discovered  when the low-level 
physical model was compared  to  the high-level logical model. 
The physical model matched  the  graphic  data  but one 
decoder was out of phase with the logical  model. 

The first-pass  product  chips  were  fully functional  and 
were used in system hardware models [3]. Final  validation of 
each  chip was completed in 24 to 48 hours after  the  last 
change. 

The  computer costs to perform the  software validation 
were  initially considerable  and  much effort was expended in 
minimizing run times. The following areas were addressed: 

Hierarchical  checking and  the previously mentioned 
method of device  recognition  reduced run  times four- 
to-one  for  logical-to-physical  checks.  However, they com- 
plicated the validation with additional  checking for the 
following reasons: (1)  to  ensure  that  errors  did not  exist 
between internal  elements of one checking level and  the 
global elements of the next level; and (2) to  ensure  that 
level-naming  conventions  were followed and  that symbolic 
shapes used as blockages, etc. in the next level of checking 
were correctly placed. These two  items  were  checked 
automatically  but  required  considerable  thought  to 
include  all possible cases. 

0 Graphic design  techniques  were used when  designing the 
physical books, which eliminated time-consuming data 
manipulation  during checking (e.g., unioning). 

0 The  order of checking  and minimizing shape  counts also 
had a  significant impact on run  time.  The  order of 
checking was designed to perform  checks  on large  numbers 
of shapes first, then  to  eliminate  these  shapes prior to 
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performing subsequent checks. This  eliminated  the need 
for the  software  to process large  numbers of nonrequired 
shapes.  It was also found effective to  perform a  common 
operation once and  then  to  use  the result for several 
different  checks. 

In  addition  to  further  reducing  the  computer costs, future 
objectives  should  also include defining the  additional  audit 
controls to  permit a paper qualification  on chips using the 
existing library of books. 
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