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A VLSI Design Verification Strategy

With the ever-increasing density, development cost, and turn-around time of VLSI chips it becomes increasingly important to
have a design verification methodology which enables first-pass chips to be fully functional. The strategy discussed in this
paper exploits the best attributes of the two traditional methods of design verification (i.e., software simulation and hardware
modeling). Software simulation was chosen for its capability in the area of delay analysis and early functional checking. An
automatically generated nodal-equivalent hardware model was built to provide the vehicle on which exhaustive functional
checking could be performed. The model also operated as early user hardware on which functions such as operating systems,
1/O adapters, and a floating-point feature could be tested. A technique known as interface emulation was used on certain

well-defined subsystems to facilitate a shorter verification schedule through parallel debug efforts.

Introduction

Achieving a first-pass [1] fully functional design in the
current world of Very Large Scale Integration (VLSI) has
become an increasingly difficult task due to the highly
complex systems and large logic circuit counts in state-
of-the-art technologies. In the VLSI microprocessor module
described in the paper by Campbell and Tahmoush [2] there
are approximately 15 000 circuits and an imbedded 1K x
50-bit ROS contained on four custom bipolar chips. In the
storage control unit there are another 5000 circuits contained
on five gate-array chips. With relatively long turn-around
times for the custom chips and the high cost involved in their
design and manufacture, it becomes even more important
that first-pass chips be fully functional.

A design verification strategy was developed to achieve the
desired goal. The approach used has some basic concepts
which, when rigorously applied, ensures not only a fully
functional design but also VLSI chips which are logically
equivalent to the various models used to verify the design.
These concepts are the following:

e Using single-source data bases.

e Minimizing manual intervention.

® Using software simulation for early functional checking
and critical-path analysis.

e Using a hardware model for exhaustive functional testing.

e Using interface emulation on well-defined subsystems.

® Using the hardware model to debug the test bed and tools
prior to the arrival of the VLSI hardware.

This paper describes a comprehensive design verification
strategy which was used successfully in the design of the
referenced microprocessor system [2]. However, the strategy
developed is applicable to most digital systems of various
types and sizes. Methods for the development of a software
simulation and the automatic generation of a hardware
model are described. The tools necessary to complete the
design verification are essential and are described in this

paper.

The first section describes the overall strategy which was
employed. Next, the generation and description of the hard-
ware model are discussed, followed by a section on the
software simulation. Sections on the functional test pro-
grams, processor test station, and the I/O test adapter
describe the tools used to drive the hardware model. Next, a
section on interface emulation describes how a well-defined
subsystem may be verified in parallel with the main system.
Finally, sections on detailed timing analysis and engineering
changes complete the overall strategy.
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Design verification strategy

The design verification strategy was to employ a comprehen-
sive set of tools which would detect as many errors as early as
possible, thereby providing a reasonable assurance that the
manufactured hardware would function as intended. All of
these tools use the data bases from which the hardware was
eventually manufactured. Both software and hardware simu-
lations were performed. Functional testing was provided for
both software and hardware models, in varying degrees of
rigor, from basic operations to exhaustive programs, with
input/output equipment attached. Detailed timing analysis
was performed to ensure proper performance at rated speed.
To achieve the required schedule, the microprocessor module
and storage units were developed and verified independently;
there was minimum opportunity for joint subsystem verifica-
tion. Finally, engineering changes were strictly controlled to
guarantee the equivalence of the verified and manufactured
designs.

Random logic, read-only storage (ROS), and program-
mable logic arrays (PLAs) are used in the processor design.
The personalities of the ROS, PLAs, and logic interconnec-
tions are contained on data bases. The term “single-source
data bases” refers to the method in which the common data
bases for the VLSI chip design are used to generate both the
hardware model and software simulation. Through this
procedure, any change made to a VLSI data base directly
affects the software simulation and hardware model. Use of
the same data throughout all stages of the design provides
continuity, familiarity, a common set of tools for each type of
data (i.e., ROS, PLA, random logic), and a guarantee that
the design which was built was the same one that had been
tested and verified.

The data base for registers and random logic was in the
form of a standard logic-description language used through-
out IBM, known as BDL/S [3]. Logic macros defined in this
language were verified individually by a separate group
which was responsible for their physical and electrical
design. This provided a set of logic primitives with assured
functions from which logic designers could choose. This also
allowed logic and circuit design to proceed in parallel, a
necessity in light of the aggressive schedule.

The control store of the processor (ROS personality) was
maintained in a single, specially formatted data set. A set of
program tools was developed which allowed rapid changes
and generation of an easy-to-use listing.

Programmable logic arrays were handled similarly. Spe-
cial programs were used to enter PLA data, check for logic
redundancy, and aid in hardware model personalizing.

The central strength of this methodology lies in the fact
that the same data base, for each data type, is used during all
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phases of the design. This common data base was the source
from which ROS and PLA personalities and logic models
were created for software simulation. It was the source from
which hardware modules were personalized when the hard-
ware model was being built. It also served as the source of the
design from which the VLSI chips were manufactured. This
commonality guaranteed that the VLSI hardware which was
built was identical to the hardware model which had been
tested and verified.

Throughout the generation of the hardware model there
are many steps in which mistakes can be introduced by
human error. To ensure against these errors, the process of
building the hardware model was fully automated. Auto-
matic conversion programs convert the VLSI design to a
model consisting of TTL (transistor-transistor logic) gates,
PLA (programmable logic array) modules, and EPROMs
(erasable programmable read-only memories). To illustrate
this type of error, suppose during the process of personalizing
a PLA module the operator types a wrong key. This results in
a discrepancy between the VLSI design and the hardware
model. To prevent such an occurrence, an automatic person-
alizing tool was designed. This tool reads the PLA data base,
converts the data to the required format, and controls the
burn-in tool. Thus, all manual intervention is eliminated
from this process.

It is essential to the design verification strategy that the
model be an exact logical representation of the VLSI design.
This is ensured by the automatic procedures developed, but
another source of error still remains. After the model is
debugged and modified in the lab, there is no longer a
guarantee that the model in the lab is equivalent to the VLSI
design. To correct this, a method of reconversion is used
whereby the model is recreated from the VLSI data bases.
The reconversion can be performed on the whole machine, or
only on certain areas if desired (e.g., only one chip of the final
system might be converted). The reconverted model is rever-
ified with a complete regression test. This guarantees that
the VLSI data bases are correct.

The software simulation provides an excellent medium for
early functional checking and verifies the critical delay
paths. Before the initial VLSI logic is released for use in
building the hardware model, it is checked via simulation to
be functional to some degree; the checkpoint is to verify the
system reset function. By doing this, time can be saved in
initial bring-up of the hardware model. However, the major
role of the simulation exists in the area of critical-path
analysis. Since the hardware model does not run at the final
product-rated speed and is built from different technologies
than the final product, it is not useful for delay analysis. The
software simulation is capable of exercising the machine in a
nominal or worst-case environment. For delay calculations,
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the actual physical data from the VLSI chip design are used.
These data consist of line lengths and line capacitances.

Simulation of the design was further extended beyond the
processor. A software model of the random-access memory
(RAM) was developed to simulate the local high-speed store
of the processor and a similar model was used to test the I/O
channel. Later, the processor model was joined with the
storage subsystem model and combined system checking was
performed by running some small functional test programs.

Hardware simulation by means of a functionally equiva-
lent hardware model was the backbone of the logic design
verification methodology. It provided a practical way to
accomplish the exhaustive testing necessary to ensure correct
operation. With the use of the functional test programs
(FTPs) the machine can be exhaustively tested logically.
Approximately 300 000 lines of code are contained in the
FTPs, and many times this number of instructions were
executed due to the iterative nature of the FTPs. In addition
to these programs, the operating systems and other system
programs were run. Product I/O adapters, a floating-point
feature, and an [/O test adapter were just a few of the
devices that were attached to the hardware model. This type
of functional testing could only be performed using the
hardware model. One of the most important concepts in this
strategy is the use of the hardware model to debug the test
bed and tools prior to the availability of the VLSI hardware.

If the methodology only used a software simulation and a
hardware model was not available, the VLSI chips would
have to be tested in a test bed which had not yet been
debugged. In addition, all the software and hardware tools
needed would not have been tested. The hardware model is
the vehicle on which the test bed and all the tools may be
debugged long before the VLSI hardware is received. The
same hardware and software tools which were developed and
used on the hardware model are fully functional when the
VLSI hardware becomes available, saving much time in the
development schedule.

The hardware model was automatically generated from
the VLSI data bases using the logic conversion programs
previously described. Various technologies were used in
building the model. Two types of PLA modules were used to
accommodate the custom PLAs in the processor. Two
medium-scale integrated chips were built to model the LSSD
(level-sensitive scan design) [4] latches. This helped to
increase the circuit density on the model card. The hardware
model was controlled via a test adapter which used the
SPCTS (single point of control test station). Through use of
SPCTS, the test bed control became fully automated and
was capable of running overnight tests. An error log-out
allowed analysis of errors encountered.
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An equally important aspect of this methodology is the
ability to accomplish verification on each machine subsystem
without excessive dependencies on the others. This provides
an important degree of flexibility when scheduling the large
number of tasks required in such a design effort. Through the
use of separate hardware models just of the adjacent subsys-
tems and/or their interfaces, these independent verifications
can be accomplished.

The processor subsystem required models of the adjacent
memory and I/O subsystems. During software simulation,
the memory was modeled with a VMS/PL/S [5] behavioral
model written especially for this purpose. The equivalent
function was provided during hardware model testing by a
special “pseudostorage.” It was designed using a storage
technology which could be made to function according to the
planned interface with a minimum of effort. The “pseudo-
storage” played a major role in processor testing while the
planned storage subsystem was still under development.

To verify the design of the storage control card, models of
both the processor and the storage array cards were required.
During software simulation using VMS [5], the storage
array was modeled with a behavioral model written in a
hardware description language used within IBM. In the
hardware model, the storage array was a combination of the
planned RAM module and a TTL equivalent of the LSI
array support logic.

Hardware model

The hardware model is the vehicle used to design-verify the
system. The various functions of the machine can be exhaus-
tively tested with the use of the functional test programs. The
mode! runs at approximately one-fifth the real processor
speed; at this speed, exhaustive testing can be performed
which would be too costly and time-consuming for software
simulation. Each VLSI chip was modeled on a single board,
with eight cards per board. A total of four boards and
twenty-nine cards were needed for this processor [6].

Problems associated with building a hardware model and
ensuring a one-to-one relationship with the VLSI design can
be eliminated by using the automatic procedures described
herein. The key concept was using 2 minimum of manual
intervention in generating the model, thereby ensuring the
relationship. This was realized with the use of automatic
conversion programs, automatic card wiring, and use of data
bases common to the VLSI design (see Fig. 1).

The conversion program operates on the user-supplied
data set that contains the VLSI logic design. Output of the
programs represents another data set that contains both the
VLSI and converted logic. The output includes logic prints,
module placement, and card-wire lists. The wire list is used
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Figure 1 Hardware model generation flow.

for automatic wiring on the wire-wrap machine. Many technolo-
gies may be converted to the modeling technology; the conver-
sion program is not limited to a single technology.

The conversion process using VLSI logic design as input is
performed through the following steps:

® Space is reserved on the automatic logic diagrams (ALDs)
for printing the expanded logic.

® The Engineering Design System (EDS) [7] expands the logic
from VLSI to the modeling technology using a set of transfor-
mation rules defined for the technology being converted.

e Card I/O pins are assigned for inter-card wiring.

® Entry blocks or buffer blocks are assigned to all card input
nets to prevent electrical overloading.

Each modeling logic circuit is processed according to rules
contained in a conversion table that determines which type of
TTL module is to be used in the hardware model. For
example, the correct circuit is selected depending on the
number of inputs wired, the circuit is changed to an open-
collector output if two or more outputs are dotted together;
selected circuits are left unchanged if they have position-
sensitive inputs such as clock inputs to a latch; and a
noninverting “AND” circuit with only one input wired is
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removed and replaced by a wire. The converted logic is
updated to include the physical location, circuit portion, and
module rotation for each logic statement.

EDS PD (Physical Design) is used to produce a list of
modules used and their location, a list of modules with
unused circuits, a list of card I/O pins used, a list of wire
nets, ALD sheets, and a module map which shows module
placement on the card. The output, a from-to wire list, is used
for the automatic wiring tool.

The card used allows placement of 14- or 16-pin modules,
24- or 28-pin modules, IBM MSI [8] modules, and 25-mm
PLA modules. The card holds a maximum of 90 14- or
16-pin TTL modules. The TTL count is reduced when IBM
25-mm or other-sized modules are used. Any card may be
used for modeling. A card rule (defining the physical param-
eters of the card) and module placement algorithms are
required.

The modules are placed on the card in an order determined
by a placement-sequence table. A single placement-sequence
table is generated manually for the cards used. When more
than one module-placement table refers to the same physical
card location, the first module is placed and the other

IBM J. RES. DEVELOP. & VOL. 26 « NO. 4 & JULY 1982




modules use the next entry in their table. A different set of
module-placement tables would be used if other physical
card types were used.

The card pin connections are assigned automatically, and
this information is placed in the logic data base, by the
conversion program. Nets that require card pins are identi-
fied by a program.

Card I/O pins are sequentially assigned by the conversion
programs. When a card is converted a second time, it is
sometimes desirable to be g*ble to plug the new card in the old
position on the board. A HOLDPIN program holds card pins
and is used to set card pins equal to the card pins from an
earlier design level.

Since a VLSI design usually is converted to more than one
model card, some manual preparation of the logic is needed
prior to conversion. First, a copy of the VLSI logic is made.
Then the logic is partitioned into several data sets so that the
logic contained in each data set can be packaged on a card.
The wires (card pins) between the partitions are identified
via a card-pin program. About 60% of the card area is used;
the area remaining allows for logic added by conversion
programs and for engineering changes. The conversion pro-
grams create logic by adding pull-up resistors to internally
dotted nets, and by powering some card inputs.

The technology chosen to model the processor and storage
subsystems was TTL (7400 series) and other TTL-compati-
ble devices. This technology was chosen for its high noise
insensitivity, high speed, and single power supply. Two MSI
(medium-scale integration) parts were designed to model the
LSSD latch and register macro. PLAs were modeled using
FPLAs [9] and an IBM programmable-array module. This
was done to accommodate the modeling of the custom-size
PLAs in the design. An EPROM was used to model the 1K x
50-bit ROS. This made it simpler to modify the processor
microcode during debug.

Several tools were developed to personalize PLAs [10, 11]
and ROS [12]. The PLA data set was transferred to an IBM
5100 computer controlling one of the two personalizing tools.
A program was written to convert the VLSI data format to
that required for the PLA tools. In a similar fashion, the
ROS data were transferred to a separate system which took
the bit patterns and controlled the ROS burn-in tool.

As the VLSI chips become available, each is substituted
one at a time for its model equivalent. In this model, one chip
replaced one board (eight cards) of logic. When complete,
this procedure results in a model which consists of all VLSI
chips. After the test bed contained all the VLSI chips, an
increase in speed was achieved. However, this configuration
did not obtain the full speed of the final package.
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Software simulation

The software verification of any design in a custom VLSI
environment is performed on three levels, each equally
important. These levels are verification of the logic function,
verification of clock timing delays, and verification of the
macro rules library. The need for logic verification is self-
evident. Delay analysis is critical because, to date, there does
not exist a hardware model that can truly duplicate the
timing and performance of VLSI technology. Also, in a
custom design environment, the line length, width, and
placement can have a tremendous impact on delays [13].
Finally, the verification of the macro rules library is unique
to custom design. Since physical design relies heavily on
automatic checking, and since manufacturing requires test
patterns to produce good parts, the rules library plays an
important role in the design process. In a gate-array technol-
ogy, these rules would have been verified before release for
general use. However, in a custom design environment, these
rules are written and are constantly updated by the in-house
designers, and therefore require the added verification of
software models to guarantee their accuracy.

The software model is a simplified system model of the
total machine and has the following structure. It consists of
logic models made up of primitive functions such as Als,
XORs, and latches along with behavior models for repre-
senting PLAs, RAM, and main storage. The total structure
has an equivalent logic of over 20 000 circuits. In addition, an
adapter model was created for extended testing. A high-level
control language is used to drive the system model, and
simulation is performed by a standard IBM simulator. It
should be emphasized that the source data bases used to
create the software model are the same data bases used to
generate the hardware model and the VLSI physical design
(see Fig. 2). Certain tools were used to facilitate debug,
including printed and interactive timing charts, other EDS
statistical tools, 2 TRACE feature of PLAs, and automatic
conversion of simulation runs to test patterns for dc and ac
testing. Even though the total model is unique in its applica-
tion and function, the whole system conforms to IBM design
methodology as prescribed by EDS. This is especially helpful
in the later manufacturing, release, and testing stages of the
final product.

A few years ago, IBM introduced the idea of structured
processing in its design methodology [14]. This was the
keystone to many improvements in the areas of simulation,
behavioral modeling, and test-pattern generation at the
higher integration level. The goal of structured processing is
to design and process using the building blocks that were
created at the lowest level of design. This saves the large
CPU time required for model re-build at each higher pack-
age level. Another advantage is the ability to mix behavioral
models and micro-block logic models into a hybrid model.
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Figure 2 Flowchart of software system simulation model.

This gives the designer the flexibility of using a faster
behavioral in place of micro logic for all except the area of
design being worked on. Also, the behavioral allows early
simulation to take place before the micro logic design is
completed. For example, the processor made use of a behav-
ioral model for the storage subsystem at the early stage of
design; once the detailed storage subsystem model was
debugged, the behavioral model was replaced with the
detailed model and testing continued.

The software system model was created over a period of time
concurrent with the design and debug of the hardware model.
The initial simulation was performed on functional units with
unit delays [15]. As the pieces were interconnected, the accu-
racy of the delay simulation was improved. Nominal delays were
first calculated using equations supplied by the technology
designer. Critical nets were analyzed with ASTAP [16] and the
delay numbers were added to the model. Finally, as the on-chip
wiring information became available from the physical design, it
was incorporated in the final delay calculations. Worst-case
delays were generated by scaling the nominal delays with a
multiplier specified by the technology designer. This process
represents stage-of-the-art logic delay modeling and simulation
[17,18].

The test cases used to exercise the system model are a critical
subset of the functional test programs used by the hardware
model. Because of the limitations on the size and
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run time of a simulation model of this scale, the test cases
were reduced. This, however, does not limit the effectiveness
of the model to duplicate any unique test condition under
investigation. The model is able to exercise each instruction
once (to prove it works), but exhaustive testing is left to the
hardware model [19].

The software simulation structure can be easily adapted
for creating ac functional testing at the higher package level,
where problems have come up in the past due to lower test
coverage. This functional testing leads to a simplified manual
test-pattern generation procedure, in addition to the auto-
matic test-generation scheme [20] to obtain the required test
coverage.

Functional test programs

Functional Test Programs (FTPs) are programs designed to
verify that the processor conforms to design specifications.
Design requirements selected for the FTPs ensure high
confidence that the tested processor is fully functional. Such
an exhaustive level of testing requires that the FTPs runona
vehicle with an execution speed approaching that of final
hardware. Special features of the functional test programs
allow them to determine if design objectives have been met.

Each functional test program verifies a particular aspect
of the processor design, for example, the priority level
switching mechanism. In the FTP, a set of driver routines
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precedes one or more test cases. The driver routines, under
control of data bits in a control table, can vary the execution
of the test case(s). For example, the test case may be
executed using different register sets, on different priority
levels, from different locations in main storage, and using
different memory addressing modes. Each of these options
may be independently varied by setting the value of certain
flags in the FTP control table.

Within each test case, variations of the basic test are also
stored in a table format. For example, in testing a Load
Register Immediate instruction, the test table might contain
all possible variations of such an instruction, in which both
register operands and immediate fields are cycled. Parame-
ters from the test table are dynamically moved from the test
table into the instruction stream of the executing test case.
Parameters from the test table are also used to check the
results of each test.

The table-driven nature of the FTPs has three main
advantages. First, the code is efficient. Since test parameters
are used to self-modify executing code, relatively little stor-
age is necessary to contain an exhaustive test. This same
feature increases programmer productivity. Second, the
FTPs are flexible. By altering the constants that define the
test tables, an FTP may be set by the user to run using a
subset of all its possible test variations. This allows the FTP
to be used as a debug tool during initial hardware bring-up,
and as a regression test tool after installation of a hardware
change. Third, the structured design of the FTPs allows them
to be run under an automated test system. Each test case
signals completion or failure using the same routines, and the
main storage location for control tables is the same in all
FTPs. Therefore, using a table parameter, FTPs may be set
for maximum testing duration and left to execute unaided in
an automatic test station.

Processor test station

Functional test programs run under control of a single point
of control test station (SPCTS). The SPCTS performs three
basic functions. First, it stores the FTP’s object code and
tables on a disk file. Second, it controls execution of FTPs in
the processor either under user control or in an automatic test
environment via a command list facility. Finally, it allows
access to internals of the processor under test via a test
adapter and its CRT terminals. The test adapter continu-
ously monitors the processor through testing and allows the
processor to run under different modes, e.g., single instruc-
tion or single cycle.

Figure 3 shows a typical processor test-bed layout. It
shows the processor under test connected via a test adapter to
the SPCTS test station. The SPCTS may connect to other
devices under test. FTPs are coded and assembled off line
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from the test environment. Object code for the FTPs is
transferred to the SPCTS via a BSC link [21]. Under control
of either a user or a command list, programs are loaded to the
processor under test and executed. The test adapter has a
“stop on instruction fetch” facility that allows the test station
to signal either completion or error. In the case of unattended
test runs, relevant data from the processor are logged on the
SPCTS line printer.

The processor test station was partially debugged without
the hardware model where possible. Debug of the test bed
was completed concurrently with the bring-up of the hard-
ware model.

1/0 test adapter

The 1/0 interface of the processor is tested on the hardware
model by an I/O test adapter. This adapter is attached to the
I/O port of the device under test. This is essentially a
programmable test adapter that may be set up to act as any
kind of 1/0O device which is allowed by the processor archi-
tecture. The I/O adapter is capable of performing all valid
and invalid types of programmed I/O and channel I/O
operations. Other features include the ability to program
control-tag responses by the 1/O test adapter, and to delay
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these tag responses by different programmable time delays.
These features accomplish further checking of the channel’s
function. Interference from the adapter may also be set up by
the functional test programs, i.e., 1/O interrupts, channel
requests, and EMA (external memory access) interference.

Memory subsystem driver

The processor-to-storage interface is the.driving stimulus to
the storage subsystem. Thus, the need arose for a means of
driving this interface. Furthermore, testing had to be done on
early software models and again on hardware as it was
developed. The conventional method for modeling such an
interface is to develop a model of the entity on the other side
of the interface (the processor in this case), and obtain the
values of the interface lines as a by-product of its behavior.
Because of the complexity of the processor, and because
neither software nor hardware processor models were avail-
able, an alternate technique called interface emulation was
used.

Interface emulation

Interface emulation models only the behavior of the logical
lines that make up the interface, rather than the entity which
generates them. This technique is accomplished with two
components—a test case description, and a means of convert-
ing it into a form which is compatible with the entity being
verified, the storage control card in this case.

The test case descriptions are written in a language which
uses predefined mnemonics to describe how the interface
lines change with time. Some mnemonics, or keywords,
represent the passage of a fixed amount of time each time
they appear. As an example, consider an interface with a
four-phase clock:

C1 C2 C3 ADDR(00F302) READ HW C4 C1 SEL C2 C3
Cq...

The keywords C1 through C4 represent the passage of one
clock time and also specify the values of the four clock lines.
A halfword read from address F302 is specified starting at
C3 time and the storage select goes active at the following C1
time.

Each keyword mnemonic applies to one of six logical
spaces describing the interface. Pattern space represents
random control lines. Their values are repeated each fixed
time interval unless changed. Delay space represents the
propagation delay of each interface line in pattern space.
Address space represents a group of address lines which
change value together when a single keyword with parameter
[e.g.. ADDR(00F302)] appears in the test case. Output data
space represents a group of data lines on the storage interface
when “write” data are being sent to the storage subsystem.
Compare data space represents the same group of storage
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interface data lines when a storage read occurs. Static space
represents control lines which remain static throughout the
duration of a test case.

Converting the test case description into a form that is
compatible with the entity under test is done in two stages.
First, the test case is run through a PL/I program which
converts it into a series of bit patterns. The program is driven
by a keyword table which defines, by means of control bits
and parameters, each mnemonic appearing in the test case
description source code.

The second stage of test-case conversion uses the bit
patterns generated by the PL/I converter program. Its
implementation is different when driving software or hard-
ware models, although the function is analogous. In the case
of software simulation, the bit patterns are converted to
simulation net changes by a behavioral model written in a
hardware description language used within IBM.

When the transition is made to hardware, the same bit
patterns are converted to electrical signals by an interface
emulation test adapter specifically designed and built for this
purpose (see Fig. 3). Its function is analogous to that of the
software behavioral test-case converter, including all the
logical spaces previously described. Furthermore, it can
generate signals which were observed and recorded during
software simulation, thereby simulating nonexistent hard-
ware for which only a software model is available.

In the case of the storage subsystem, where interface
emulation was employed, the same test cases were used
during both software and hardware testing. This provided
several significant benefits. First, test-case definition began
early in the design cycle, so that both test cases and early
software models could be used to verify each other. Second,
these existing test cases were used to validate more detailed
software models as they became available, by observing that
they functioned similarly. At the same time, progress was
continuing toward writing a complete set of tests for all basic
functions of the storage subsystem. These test cases were
again used when bringing up the hardware model and VLSI
hardware. Due to the relative expense of software simulation,
it was limited to testing basic functions. In software, each
processor instruction and storage control sequence was veri-
fied in a limited subset of all possible operating conditions.
As software verification progressed, however, a point was
reached where increasingly exhaustive testing became less
and less practical using a software model. For this reason,
more exhaustive testing was performed on a hardware model
of the storage control subsystem using the previously
described functional test programs. At various points in the
development process, the processor and storage hardware
models were connected together and tested with these
exhaustive functional test programs.
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Detailed timing analysis

As previously mentioned, software simulation was used to
help identify critical timing relationships in the machine. In
addition, paths which were known to be critical to the design
were identified for further analysis. Finally, all lines between
chips were systematically examined. Logic paths which
appeared to be critical were then analyzed in more detail
using a collection of computational tools and techniques.

Most of this effort was accomplished using a series of
delay calculators written in the APL language. Foremost
among these was the APL delay calculator written specifi-
cally to support the custom bipolar technology macro set.
The delay paths were defined manually, but a program
automatically obtained data such as loading, wire length, etc.
for use by the delay calculator. Approximately 350 delay
paths were calculated. The delay equations were based on the
electrical characteristics of the logic circuits and were gener-
ated by the group responsible for their design. The APL
delay calculator used delay equations for random logic,
registers, PLA, and ROS macros. Existing APL delay calcu-
lators were used for IBM gate array logic.

APL delay calculators were used for well-defined combi-
nations of technologies, but there are a host of other physical
configurations for which delay equations do not exist. Net-
works of this type include those which exceed wiring rule
length restrictions, interface between technologies with dif-
ferent switching levels, employ unusual dotting combina-
tions, exceed usual parameter limits, etc. In these cases,
propagation delays must be determined through the use of
electrical circuit analysis programs such as ASTAP. ASTAP
was also used extensively for determining the constant values
in the custom macro delay equations.

Engineering changes

At selected times in the development process, the design was
checked and subsequent changes were controlled by a formal
engineering-change procedure. This was the primary mecha-
nism for keeping the software and hardware models at the
same and latest change level. This is essential to prevent
finding the same problem twice when both types of verifica-
tion are occurring in parallel. It also provided valuable
change-history information, which was frequently useful in
solving design problems. The formal change procedure was
based on a standard well-defined form which was used each
time a change was made. The form is intended to be easy to
use by providing places for the following information:

® description of the problem;

® previous, related problems;

o test being performed when the problem was found;

® list of all available documentation where those requiring
updates may be indicated;
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® description of the actual logic change that was made to
solve the problem,;

tests that were run to verify the correctness of the fix;
places to be initialed by the person completing each part of
the update; and

place where any related future problems can be indicated.

Conclusion

A complex set of VLSI chips requires a comprehensive
design verification strategy and set of tools to successfully
produce operational first-pass chips. The strategy chosen
consisted of software simulation, hardware modeling, and
interface emulation. Software models are most effective for
initial and critical function verification and for performance
estimation. Hardware models are most effective when per-
forming a complete set of functional tests. Also, hardware
models are most effective for debugging a test bed prior to
the arrival of VLSI hardware. Interface emulation provides
flexibility in verifying the design of multiple subsystems
concurrently. The use of common data bases is essential to
maintain control and compatibility of the hardware and
software models. Through the use of functional test pro-
grams, test station adapters, and delay calculators, the total
verification was accomplished.

The validity of any strategy or methodology can only be
judged by the results which are produced. The objective here
was to design a processor in a custom VLSI technology and
to ensure that it follows the architecture and meets the design
schedule. Using the strategy described in this paper, the
first-pass VLSI hardware was designed and built, and is fully
functional at full speed.

As the size of the machine design increases, the difficulities
in building a hardware model increase much more rapidly.
To accomplish this, some additional macro chips might be
built to help in keeping the model small. PLAs are another
device which will aid in dense model packaging in the
future.

In conclusion, the importance of software simulation and
hardware modeling of any design in a VLSI environment
needs to be emphasized, especially with regard to delay
analysis [22] and functional testing. In the past, problems
associated with timing or functional deviation have been
corrected in the field with some expense, but nevertheless
corrected. In VLSI, that option is closed; to take additional
time and resources to recycle a chip could prevent a product
from ever being shipped.
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