
Arnold S. Tran 
Richard A. Forsberg 
Jack C. Lee 

A VLSI Design Verification Strategy 

With the ever-increasing density, development cost. and turn-around time of VLSI chips it becomes increasingly important to 
have a  design  verification methodology which enables jirst-pass chips to be fully  functional. The strategy discussed in this 
paper  exploits  the best attributes of the  two  traditional  methods of  design verijcation  (Le., software simulation and hardware 
modeling).  Software  simulation  was chosen for  its  capability in the area  of delay analysis and early  functional checking. An 
automatically generated  nodal-equivalent  hardware model was built to  provide the vehicle on which exhaustive functional 
checking could be performed. The  model also  operated as early user hardware on which functions such as  operating systems, 
I/O adapters, and  a  floating-point feature  could be tested. A technique known as interface emulation  was used on certain 
well-defined subsystems  to  facilitate a  shorter verifcation schedule  through parallel  debug efforts. 

Introduction 
Achieving  a  first-pass [l] fully functional design in the 
current world of Very Large  Scale  Integration  (VLSI)  has 
become an increasingly difficult task  due  to  the highly 
complex  systems and  large logic circuit  counts in state- 
of-the-art technologies. In  the V U 1  microprocessor module 
described in the  paper by Campbell  and  Tahmoush [2] there 
are  approximately 15 000 circuits  and  an  imbedded 1 K x 
50-bit ROS contained on four  custom bipolar  chips. In  the 
storage  control  unit  there  are  another 5000 circuits  contained 
on five gate-array chips. With relatively  long turn-around 
times for the  custom  chips  and  the high  cost involved in their 
design and  manufacture, it becomes even more  important 
that first-pass chips  be fully functional. 

A  design  verification strategy was developed to achieve the 
desired  goal. The  approach used has  some basic  concepts 
which, when rigorously  applied, ensures not only a fully 
functional design but also VLSI  chips which are logically 
equivalent to  the various  models  used to verify the design. 
These concepts are  the following: 

Using single-source data bases. 
Minimizing  manual intervention. 
Using software  simulation for early  functional checking 
and  critical-path analysis. 

0 Using a hardware model  for  exhaustive functional  testing. 
Using interface  emulation on well-defined subsystems. 

0 Using  the  hardware model to  debug  the  test bed and tools 
prior to the  arrival of the  VLSI  hardware. 

This  paper describes  a  comprehensive  design verification 
strategy which was used successfully  in the design of the 
referenced  microprocessor  system [2]. However, the  strategy 
developed is applicable  to most digital systems of various 
types and sizes. Methods for the development of a software 
simulation  and  the  automatic  generation of a hardware 
model are  described.  The tools necessary to complete the 
design  verification are essential and  are described in this 
paper. 

The first section  describes the overall strategy which was 
employed. Next,  the  generation  and description of the  hard- 
ware model are discussed, followed by a  section on the 
software  simulation.  Sections on the functional test pro- 
grams, processor test station,  and  the 1/0 test adapter 
describe  the tools used to drive the  hardware model. Next, a 
section  on interface  emulation describes how a well-defined 
subsystem may be verified in parallel with the main system. 
Finally,  sections on detailed  timing  analysis  and engineering 
changes  complete  the overall strategy. 

Q Copyright 1982 by International Business Machines Corporation. Copying in  printed  form  for private use is permitted without payment of 
royalty provided that ( 1 )  each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on 
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission  by 
computer-based and other information-service systems. Permission to republish any other portion of this paper  must  be obtained from the 
Editor. 

IBM J.  RES. DEVELOP. \ /OL. 26 NO. 4 JULY 1982 P iRNOLD S. TRAN E 



1 476 

ARNOLD S. TRAN ET A LL. 

~~ 

Design verification strategy 
The design  verification strategy was to employ  a comprehen- 
sive set of tools which would detect as many  errors as early as 
possible, thereby providing  a reasonable  assurance  that  the 
manufactured  hardware would function as intended. All of 
these tools use  the  data bases from which the  hardware was 
eventually manufactured.  Both  software  and  hardware simu- 
lations were performed.  Functional  testing was provided for 
both software  and  hardware models,  in varying  degrees of 
rigor, from basic operations  to  exhaustive  programs, with 
input/output  equipment  attached.  Detailed  timing  analysis 
was  performed to  ensure proper performance a t  rated speed. 
To achieve the  required schedule, the microprocessor module 
and  storage  units were developed and verified independently; 
there was minimum  opportunity  for  joint  subsystem verifica- 
tion.  Finally, engineering  changes were strictly controlled to 
guarantee  the equivalence of the verified and  manufactured 
designs. 

Random logic, read-only storage (ROS),  and program- 
mable logic arrays (PLAs)  are used in the processor  design. 
The personalities of the ROS, PLAs,  and logic interconnec- 
tions are  contained on data bases. The  term “single-source 
data bases” refers  to  the  method in  which the common data 
bases  for the  VLSI  chip design are used to  generate both the 
hardware model and  software  simulation.  Through  this 
procedure, any  change  made  to a VLSI  data  base  directly 
affects the  software  simulation  and  hardware model. Use of 
the  same  data  throughout  all  stages of the design provides 
continuity,  familiarity, a  common set of tools for each  type of 
data (i.e., ROS, PLA,  random logic), and a guarantee  that 
the design which was  built  was the  same  one  that  had been 
tested and verified. 

The  data  base for registers  and  random logic was in the 
form of a standard logic-description language used through- 
out  IBM, known as  BDL/S [3]. Logic  macros defined in this 
language were verified individually by a separate  group 
which was responsible for  their physical and  electrical 
design. This provided a set of logic primitives  with assured 
functions  from which logic designers  could choose. This also 
allowed logic and  circuit design to proceed in parallel, a 
necessity  in  light of the aggressive  schedule. 

The  control  store of the processor (ROS personality) was 
maintained in a single,  specially formatted  data set.  A  set of 
program tools was developed which allowed rapid  changes 
and  generation of an easy-to-use  listing. 

Programmable logic arrays were handled similarly. Spe- 
cial  programs  were used to  enter  PLA  data,  check for logic 
redundancy,  and  aid in hardware model  personalizing. 

The  central  strength of this methodology  lies in  the  fact 
that  the  same  data base,  for each  data type,  is used during  all 

phases of the design. This common data  base was the  source 
from which ROS  and  PLA personalities and logic models 
were created for software  simulation.  It  was  the  source  from 
which hardware modules  were  personalized when the  hard- 
ware model  was  being built.  It also  served as the  source of the 
design from which the  VLSI  chips were manufactured.  This 
commonality guaranteed  that  the  VLSI  hardware which  was 
built  was identical  to  the  hardware model which had been 
tested  and verified. 

Throughout  the  generation of the  hardware model there 
are  many  steps in which mistakes  can be introduced by 
human  error. To ensure  against  these  errors,  the process of 
building the  hardware model  was  fully automated.  Auto- 
matic conversion programs convert the  VLSI design to a 
model consisting of TTL (transistor-transistor logic) gates, 
PLA  (programmable logic array) modules, and  EPROMs 
(erasable  programmable read-only  memories). To  illustrate 
this  type of error, suppose during  the process of personalizing 
a PLA  module  the  operator types  a  wrong key. This  results in 
a  discrepancy  between the  VLSI design and  the  hardware 
model. To prevent such  an occurrence, an  automatic person- 
alizing tool was designed. This tool reads  the  PLA  data  base, 
converts the  data  to  the  required  format,  and controls the 
burn-in tool. Thus,  all  manual intervention  is eliminated 
from  this process. 

It is essential to  the design verification strategy  that  the 
model be  an  exact logical representation of the  VLSI design. 
This is ensured by the  automatic procedures  developed, but 
another  source of error still  remains. After  the model  is 
debugged  and modified in the  lab,  there is no longer  a 
guarantee  that  the model  in the  lab is equivalent to the  VLSI 
design. To  correct this, a method of reconversion is used 
whereby the model is recreated  from  the  VLSI  data bases. 
The reconversion can be performed on the whole machine, or 
only on certain  areas if desired (e.g., only one  chip of the final 
system might  be converted). The reconverted  model is rever- 
ified with a complete  regression test.  This  guarantees  that 
the  VLSI  data bases are  correct. 

The  software  simulation provides an excellent medium  for 
early  functional checking and verifies the  critical  delay 
paths. Before the  initial  VLSI logic is released  for  use  in 
building the  hardware model,  it is checked via simulation  to 
be functional  to  some  degree;  the checkpoint is to verify the 
system  reset  function. By doing this,  time  can  be saved in 
initial  bring-up of the  hardware model.  However, the  major 
role of the  simulation exists  in the  area of critical-path 
analysis. Since  the  hardware model  does  not run at  the final 
product-rated speed and is built  from different  technologies 
than  the final  product, it is not  useful  for delay analysis. The 
software simulation is capable of exercising the  machine in a 
nominal or worst-case environment.  For delay calculations, 

IBM J.  RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



the  actual physical data  from  the  VLSI  chip design are used. 
These  data consist of line  lengths  and  line  capacitances. 

Simulation of the design  was further  extended beyond the 
processor. A software model of the random-access memory 
(RAM) was developed to  simulate  the local high-speed store 
of the processor and a similar model  was used to  test  the 1/0 
channel.  Later,  the processor model  was joined with the 
storage subsystem  model and combined  system checking was 
performed by running  some  small  functional  test programs. 

Hardware  simulation by means of a functionally equiva- 
lent hardware model  was the  backbone of the logic design 
verification methodology. It provided a practical way to 
accomplish the  exhaustive  testing necessary to  ensure  correct 
operation.  With  the  use of the  functional  test  programs 
(FTPs)  the  machine  can be exhaustively tested logically. 
Approximately 300 000 lines of code are  contained in the 
FTPs,  and  many  times  this  number of instructions were 
executed due  to  the  iterative  nature of the  FTPs.  In  addition 
to  these  programs,  the  operating systems and  other system 
programs were run.  Product 1/0 adapters, a floating-point 
feature,  and  an 1 /0  test  adapter were just a few of the 
devices that were attached  to  the  hardware model. This  type 
of functional  testing could only be  performed using the 
hardware model. One of the most important concepts  in this 
strategy is the  use of the  hardware model to  debug  the  test 
bed and tools prior to  the  availability of the  VLSI  hardware. 

If the methodology  only used a software  simulation  and a 
hardware model  was not  available,  the  VLSI  chips would 
have to  be tested  in  a  test bed which had not  yet been 
debugged. In addition,  all  the  software  and  hardware tools 
needed would not  have been tested.  The  hardware model is 
the vehicle  on  which the test bed and  all  the tools may be 
debugged long  before the  VLSI  hardware is  received. The 
same  hardware  and  software tools  which  were developed and 
used  on the  hardware model are fully functional when the 
VLSI  hardware becomes available, saving much  time in the 
development  schedule. 

The  hardware model was automatically  generated  from 
the  VLSI  data bases  using the logic conversion programs 
previously described.  Various  technologies  were  used in 
building the model. Two types of PLA modules  were used to 
accommodate  the  custom  PLAs in the processor. Two 
medium-scale integrated chips  were  built to model the  LSSD 
(level-sensitive scan design) [4] latches.  This helped to 
increase  the  circuit  density on the model card.  The  hardware 
model was controlled via a test  adapter which  used the 
SPCTS (single point of control test station). Through use of 
SPCTS,  the  test bed control  became fully automated  and 
was capable of running overnight  tests. An  error log-out 
allowed analysis of errors  encountered. 

IBM J. RES. DEVELOP. VOL. 26 e NO. 4 rn JULY 1982 

An equally important  aspect of this methodology is the 
ability  to accomplish  verification  on each  machine subsystem 
without excessive dependencies  on the  others.  This provides 
an  important  degree of flexibility when scheduling the  large 
number of tasks  required in such a  design  effort. Through  the 
use of separate  hardware models just of the  adjacent subsys- 
tems  and/or  their  interfaces,  these  independent verifications 
can be accomplished. 

The processor subsystem  required models of the  adjacent 
memory and 1/0 subsystems. During  software  simulation, 
the memory  was modeled with a VMS/PL/S [SI behavioral 
model written especially  for this purpose. The equivalent 
function  was provided during  hardware model testing by a 
special  “pseudostorage.” It was designed  using  a storage 
technology  which  could be  made  to function according  to  the 
planned interface with a minimum of effort. The “pseudo- 
storage” played  a major role in processor testing while the 
planned storage subsystem  was  still under development. 

To verify the design of the  storage  control  card, models of 
both the processor and  the  storage  array  cards were required. 
During  software simulation  using VMS [SI, the  storage 
array was modeled with  a  behavioral  model written in a 
hardware description language used within IBM. In the 
hardware model, the  storage  array was a  combination of the 
planned RAM module and a TTL equivalent of the  LSI 
array  support logic. 

Hardware  model 
The  hardware model is the vehicle used to design-verify the 
system. The various functions of the  machine  can be exhaus- 
tively tested  with the use of the  functional  test programs. The 
model runs at  approximately  one-fifth  the  real processor 
speed; a t  this speed,  exhaustive testing  can  be performed 
which would be too costly and time-consuming  for software 
simulation.  Each  VLSI  chip was modeled on a single board, 
with  eight cards per board. A total of four boards and 
twenty-nine cards were needed for this processor [6] .  

Problems  associated  with  building  a hardware model and 
ensuring a  one-to-one relationship with the  VLSI design can 
be  eliminated by using the  automatic procedures  described 
herein. The key concept was using  a minimum of manual 
intervention in generating  the model, thereby  ensuring  the 
relationship. This was realized  with the  use of automatic 
conversion programs,  automatic  card wiring, and use of data 
bases  common to  the  VLSI design  (see  Fig. 1). 

The conversion program  operates on the user-supplied 
data set that  contains  the  VLSI logic design. Output of the 
programs  represents  another  data  set  that  contains both the 
VLSI  and converted logic. The  output includes logic prints, 
module placement,  and  card-wire lists. The wire list is used 477 

ARNOLD S. TRAN ET AL. 



ROS data 
base 

PLA data Logic data 
base base 

I I 

IBM 5100 Card Logic 
partitions 

Programmable 
Signetics 

Field  Board Automatic 

~~~~~ Programmable program programs Logic Array 
conversions 

W‘LA) 

wiring 

Board 
wire list logic data 

Physical 
design 

7 Hardware model 

1 
Automated 

logic 

Figure 1 Hardware model generation flow. 

for automatic wiring on the  wire-wrap  machine.  Many technolo- removed and replaced by a wire. The converted logic is 
gies may be converted to  the modeling  technology; the conver- updated  to include the physical  location, circuit portion, and 
sion program is not  limited to a single technology. module rotation for each logic statement. 

The conversion process using VLSI logic design as  input is 
performed through  the following steps: 

Space is reserved on the automatic logic diagrams (ALDs) 
for printing  the  expanded logic. 
The Engineering Design System  (EDS) [7] expands  the logic 
from  VLSI  to  the modeling  technology  using  a set of transfor- 
mation  rules defined  for the technology  being converted. 

0 Card 1 / 0  pins are assigned  for inter-card wiring. 
Entry blocks or buffer blocks are assigned to  all  card  input 
nets to prevent electrical overloading. 

Each modeling logic circuit is processed according  to  rules 
contained in  a conversion table  that  determines which type of 
TTL module is to  be used  in the  hardware model. For 
example,  the  correct  circuit is selected  depending on the 
number of inputs wired, the  circuit is changed  to  an open- 
collector output if two or more outputs  are  dotted  together; 
selected circuits  are  left  unchanged if they have position- 
sensitive inputs  such  as clock inputs  to a latch;  and a 

4743 noninverting “AND”  circuit  with only one  input wired is 

EDS  PD (Physical  Design) is used to produce  a list of 
modules used and  their location,  a  list of modules  with 
unused circuits, a list of card 1/0 pins used,  a  list of wire 
nets, ALD sheets, and a  module map which shows module 
placement on the  card.  The  output, a from-to wire  list, is used 
for the  automatic wiring tool. 

The  card used allows placement of 14- or 16-pin  modules, 
24- or 28-pin  modules, IBM  MSI [8] modules, and  25-mm 
PLA modules. The  card holds a maximum of 90 14- or 
16-pin TTL modules. The  TTL  count is  reduced  when IBM 
25-mm or other-sized  modules are used. Any  card  may  be 
used for  modeling.  A card  rule (defining the physical param- 
eters of the  card)  and  module  placement  algorithms  are 
required. 

The modules are placed on the  card in an  order  determined 
by a  placement-sequence table. A single  placement-sequence 
table is generated  manually for the  cards used. When more 
than  one  module-placement  table  refers  to  the  same physical 
card location, the first module is placed and  the  other 

ARNOLD S. TRAN ET AL. IBM J. RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



modules use  the next entry in their  table. A  different set of 
module-placement tables would be used if other physical 
card  types were  used. 

The  card pin connections are assigned automatically,  and 
this  information is placed  in the logic data base, by the 
conversion program.  Nets  that  require  card pins are identi- 
fied  by a program. 

Card 1 / 0  pins are sequentially  assigned by the conversion 
programs.  When a card is converted a second time,  it is 
sometimes desirable  to  be %ble to plug the new card in the old 
position on the  board. A HbLDPIN program holds card pins 
and is  used to  set  card pins equal  to  the  card pins from  an 
earlier design level. 

Since a VLSI design  usually is converted to  more  than one 
model card,  some  manual  preparation of the logic is needed 
prior to conversion. First, a copy of the  VLSI logic is made. 
Then  the logic is partitioned  into several data  sets so that  the 
logic contained in each  data set can be packaged on a card. 
The wires (card pins) between the  partitions  are identified 
via a card-pin  program.  About 60% of the  card  area is used; 
the  area  remaining allows  for logic added by conversion 
programs  and for  engineering changes.  The conversion pro- 
grams  create logic by adding pull-up  resistors to internally 
dotted nets, and by powering some  card  inputs. 

The technology  chosen to model the processor and  storage 
subsystems was TTL  (7400  series)  and  other  TTL-compati- 
ble devices. This technology  was  chosen for its high noise 
insensitivity,  high  speed, and single power supply.  Two MSI 
(medium-scale  integration)  parts were  designed to model the 
LSSD  latch  and  register macro. PLAs were  modeled  using 
FPLAs  [9]  and  an  IBM  programmable-array module. This 
was done  to  accommodate  the modeling of the custom-size 
PLAs in the design. An EPROM was  used to model the 1 K x 
SO-bit ROS.  This  made  it simpler to modify the processor 
microcode during  debug. 

Several tools were developed to personalize PLAs [ 10, 1 11 
and  ROS [ 121. The  PLA  data  set was transferred to an  IBM 
5 100  computer controlling  one of the two  personalizing tools. 
A program was written  to convert the  VLSI  data  format  to 
that required  for the  PLA tools. In a similar fashion, the 
ROS data were transferred  to a separate system which took 
the bit patterns  and controlled the  ROS burn-in tool. 

As  the  VLSI  chips become  available, each is substituted 
one at  a time for its model  equivalent. In this model, one  chip 
replaced one board  (eight  cards) of logic. When complete, 
this  procedure  results in  a  model which consists of all  VLSI 
chips. After  the  test bed contained  all  the  VLSI chips, an 
increase in speed  was  achieved.  However, this configuration 
did  not obtain  the full  speed of the final  package. 

Software simulation 
The  software verification of any design in a  custom VLSI 
environment is performed on three levels, each equally 
important.  These levels are verification of the logic function, 
verification of clock timing  delays,  and verification of the 
macro rules library.  The need for logic verification is self- 
evident.  Delay  analysis  is critical because, to  date,  there does 
not  exist  a hardware model that  can  truly  duplicate  the 
timing  and  performance of VLSI technology. Also, in  a 
custom design  environment, the  line  length, width, and 
placement  can have  a tremendous  impact on delays [ 131. 
Finally,  the verification of the  macro rules library is unique 
to  custom design. Since physical  design relies heavily on 
automatic checking, and since manufacturing requires test 
patterns  to produce good parts,  the rules library plays an 
important role in the design  process. In a gate-array technol- 
ogy, these rules would have been verified before  release  for 
general use.  However, in a  custom design environment,  these 
rules are  written  and  are  constantly  updated by the in-house 
designers, and  therefore  require  the  added verification of 
software models to guarantee  their  accuracy. 

The  software model is a simplified system model of the 
total  machine  and  has  the following structure.  It consists of 
logic models made  up of primitive functions such as  AIS, 
XORs, and  latches along  with behavior models for repre- 
senting  PLAs,  RAM,  and  main  storage.  The  total  structure 
has  an equivalent logic of over 20 000 circuits. In addition,  an 
adapter model was created for  extended  testing.  A high-level 
control language is used to  drive  the system  model, and 
simulation is performed by a standard  IBM  simulator.  It 
should be emphasized that  the  source  data bases  used to 
create  the  software model are  the  same  data bases used to 
generate  the  hardware model and  the  VLSI physical  design 
(see Fig. 2). Certain tools were used to  facilitate  debug, 
including  printed and  interactive  timing  charts,  other  EDS 
statistical tools, a TRACE  feature of PLAs,  and  automatic 
conversion of simulation runs to  test  patterns for dc  and  ac 
testing. Even though  the  total model is unique in its applica- 
tion and  function,  the whole system  conforms to  IBM design 
methodology as prescribed by EDS.  This is especially  helpful 
in the  later  manufacturing, release, and  testing  stages of the 
final product. 

A few years ago, IBM  introduced  the idea of structured 
processing in  its  design methodology [ 141. This was the 
keystone to  many improvements in the  areas of simulation, 
behavioral  modeling, and  test-pattern  generation  at  the 
higher integration level. The goal of structured processing is 
to design and process using the building blocks that were 
created at   the lowest level of design. This saves the  large 
CPU  time required  for  model  re-build a t  each higher  pack- 
age level. Another  advantage is the  ability  to mix behavioral 
models and micro-block logic models into a  hybrid  model. 

ARNOLD S. TRAN I 

479 

ZT AL. IBM J. RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



Chip logic 
data base High-level 

control 
language I 

J ’  1 1 

Expanded 
data base 

Rules 
library ROS behavior PLA behavior 

Memory  load 

Chlp logic model 
with delays 

Figure 2 Flowchart of software system simulation model. 

This gives the designer the flexibility of using  a faster 
behavioral in place of micro logic for all except the  area of 
design being worked on. Also, the behavioral allows early 
simulation to  take place  before the micro logic design is 
completed.  For example,  the processor made use of a  behav- 
ioral model for the  storage subsystem at  the  early  stage of 
design;  once the  detailed  storage  subsystem model was 
debugged,  the  behavioral model  was replaced with the 
detailed model and  testing  continued. 

The  software system model was created over a period of time 
concurrent with the design and  debug of the  hardware model. 
The  initial simulation was performed  on functional units  with 
unit delays [ 151. As  the pieces were interconnected,  the  accu- 
racy of the  delay simulation  was  improved. Nominal  delays were 
first calculated using equations supplied by the technology 
designer. Critical  nets were analyzed with ASTAP [ 161 and  the 
delay  numbers were added  to  the model.  Finally, as  the  on-chip 
wiring information  became  available  from  the physical design,  it 
was incorporated in the final delay  calculations.  Worst-case 
delays  were generated by scaling the nominal delays with  a 
multiplier specified by the technology  designer. This process 
represents  stage-of-the-art logic delay modeling and simulation 
[17, 181. 

run  time of a  simulation model of this scale, the  test cases 
were  reduced. This, however, does  not  limit the effectiveness 
of the model to  duplicate  any  unique  test condition under 
investigation. The model is able  to exercise each  instruction 
once (to prove it works), but exhaustive  testing is left  to  the 
hardware model [ 191. 

The  software simulation structure  can be easily adapted 
for creating ac functional  testing at   the higher  package level, 
where  problems  have come  up in the past due  to lower test 
coverage. This  functional  testing  leads  to a simplified manual 
test-pattern  generation procedure, in addition  to  the  auto- 
matic  test-generation  scheme [20] to  obtain  the  required  test 
coverage. 

Functional test programs 
Functional  Test  Programs  (FTPs)  are  programs designed to 
verify that  the processor conforms to design specifications. 
Design requirements selected  for the  FTPs  ensure high 
confidence that  the  tested processor is fully  functional. Such 
an exhaustive level of testing  requires  that  the  FTPs  run on a 
vehicle with an execution  speed approaching  that of final 
hardware.  Special  features of the  functional  test  programs 
allow them  to  determine if design  objectives  have been met. 

The  test  cases used to exercise the system model are a critical Each  functional  test  program verifies a particular  aspect 
subset of the  functional  test  programs used by the  hardware of the processor design, for  example,  the  priority level 
model.  Because of the  l imitations  on  the  size  and switching mechanism.  In  the FTP, a set of driver  routines 

I ARNOLD S. TRAN ET AL. IBM I. RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



precedes one or more  test cases. The driver  routines, under 
control of data  bits in  a control  table,  can  vary  the execution 
of the  test  case(s).  For example, the  test  case  may be 
executed  using  different  register sets, on different  priority 
levels, from different  locations in main  storage,  and using 
different  memory addressing modes. Each of these options 
may  be independently  varied by setting  the value of certain 
flags in the FTP control  table. 

Within  each  test  case,  variations of the basic test  are also 
stored in a table  format. For example, in testing a  Load 
Register  Immediate  instruction,  the  test  table  might  contain 
all possible variations of such an  instruction, in which both 
register operands  and  immediate fields are cycled. Parame- 
ters  from  the  test  table  are  dynamically moved from  the test 
table  into  the  instruction  stream of the  executing  test case. 
Parameters  from  the  test  table  are also used to check the 
results of each  test. 

The table-driven nature of the  FTPs  has  three  main 
advantages.  First,  the code is efficient. Since  test  parameters 
are used to self-modify  executing  code,  relatively little  stor- 
age is necessary to  contain  an exhaustive test.  This  same 
feature increases programmer productivity. Second,  the 
FTPs  are flexible. By altering  the  constants  that define the 
test  tables,  an FTP may be set by the user to  run using  a 
subset of all its possible test variations. This allows the FTP 
to be used as a debug tool during  initial  hardware  bring-up, 
and  as a  regression test tool after  installation of a hardware 
change.  Third,  the  structured design of the  FTPs allows them 
to  be  run  under  an  automated  test  system.  Each  test  case 
signals  completion or failure using the  same routines, and  the 
main storage location  for control  tables is the  same in all 
FTPs.  Therefore, using  a table  parameter,  FTPs  may be set 
for maximum  testing  duration  and  left  to  execute  unaided in 
an  automatic  test  station. 

Processor test station 
Functional  test  programs  run  under  control of a single point 
of control test station (SPCTS).  The  SPCTS  performs  three 
basic  functions. First, it stores  the FTP's object code and 
tables on a  disk file. Second,  it controls  execution of FTPs in 
the processor either  under user control  or in an  automatic  test 
environment via a command list facility. Finally,  it allows 
access to  internals of the processor under  test via a test 
adapter  and its CRT terminals.  The  test  adapter continu- 
ously monitors the processor through  testing  and allows the 
processor to  run  under different  modes, e.g., single instruc- 
tion or single  cycle. 

Figure 3 shows  a  typical processor test-bed  layout.  It 
shows the processor under test connected via a test  adapter  to 
the  SPCTS  test  station.  The SPCTS may connect to  other 
devices under  test.  FTPs  are coded and assembled off line 

Model logic or LSI equivalent 

Local store model 

Main store model 

Memory  subsystem 

IiO bus 
I I 1 

I 
IBM 3790 

control p r r "  Functional 

'61""' I I Test programs I 

display 

Figure 3 Hardware model structure. 

from  the  test environment. Object code for the  FTPs is 
transferred  to  the  SPCTS via a BSC link [21]. Under control 
of either a  user or a command list, programs  are loaded to  the 
processor under test and executed. The  test  adapter  has a 
"stop on instruction fetch"  facility that allows the test station 
to signal either completion or error. In the  case of unattended 
test runs, relevant data  from  the processor are logged on the 
SPCTS line printer. 

The processor test  station was partially  debugged without 
the  hardware model where possible. Debug of the  test bed 
was  completed concurrently with the  bring-up of the  hard- 
ware model. 

I /O test adapter 
The 1/0 interface of the processor is tested on the  hardware 
model by an 1/0 test  adapter.  This  adapter is attached  to  the 
1 / 0  port of the device under  test.  This is essentially  a 
programmable  test  adapter  that  may  be set up  to  act  as  any 
kind of 1/0 device which is allowed by the processor archi- 
tecture.  The 1/0 adapter is capable of performing all valid 
and invalid  types of programmed 1/0 and  channel 1/0 
operations. Other  features  include  the  ability  to  program 
control-tag responses by the 1 / 0  test adapter,  and  to  delay 48 1 

IBM J. RES. DEVELOP. VOL. 26 . NO. 4 JULY 1982 ARNOLD S. TRAN ET AL. 



482 

these tag responses by different programmable  time delays. 
These  features accomplish further checking of the channel’s 
function. Interference  from  the  adapter  may also be set up by 
the  functional  test  programs, Le., 1/0 interrupts,  channel 
requests, and  EMA  (external  memory  access)  interference. 

Memory  subsystem driver 
The processor-to-storage interface is thedriving  stimulus  to 
the  storage  subsystem.  Thus,  the need arose  for a means of 
driving this  interface.  Furthermore,  testing  had  to  be  done on 
early  software models and  again on hardware  as  it was 
developed. The conventional method  for modeling such  an 
interface is to develop  a  model of the  entity on the  other side 
of the  interface  (the processor in this  case),  and  obtain  the 
values of the  interface lines as a by-product of its behavior. 
Because of the complexity of the processor, and because 
neither  software nor hardware processor models  were  avail- 
able,  an  alternate  technique called  interface emulation was 
used. 

Interface emulation 
Interface  emulation models only the behavior of the logical 
lines that  make  up  the  interface,  rather  than  the  entity which 
generates  them.  This  technique is accomplished  with  two 
components-a test  case  description,  and a means of convert- 
ing  it into a form which is compatible with the  entity being 
verified, the  storage  control  card in this case. 

The  test  case descriptions are  written in  a language which 
uses predefined mnemonics to  describe how the  interface 
lines change with time.  Some mnemonics, or keywords, 
represent  the passage of a fixed amount of time  each  time 
they  appear.  As  an  example, consider an  interface with  a 
four-phase clock: 

C1  C2  C3 ADDR(OOF302) READ  HW  C4  C1  SEL  C2  C3 
c 4 . .  . 
The keywords C1 through C4 represent  the passage of one 
clock time  and  also specify the values of the  four clock lines. 
A  halfword read  from  address  F302 is specified starting  at 
C3 time  and  the  storage select goes active at  the following C1 
time. 

Each keyword mnemonic applies to  one of six logical 
spaces  describing  the  interface.  Pattern space represents 
random control lines. Their values are  repeated  each fixed 
time interval  unless changed.  Delay space represents  the 
propagation delay of each  interface line  in pattern  space. 
Address space represents a group of address lines  which 
change value together when  a  single keyword with parameter 
[e.g., ADDR(OOF302)l appears in the  test  case. Output data 
space represents a group of data lines on the  storage  interface 
when  “write” data  are being sent  to  the  storage subsystem. 
Compare  data space represents  the  same  group of storage 

ARNOLD S. TRAN ET AL 

interface  data lines when  a storage read  occurs. Static space 
represents  control lines which remain  static  throughout  the 
duration of a test case. 

Converting the  test  case description into a form  that is 
compatible with the  entity  under  test is done in two stages. 
First,  the  test  case is run through a PL/I  program which 
converts it  into a  series of bit  patterns.  The  program is driven 
by a keyword table which defines, by means of control  bits 
and  parameters,  each mnemonic appearing in the  test  case 
description  source code. 

The second stage of test-case conversion uses the bit 
patterns  generated by the  PL/I converter program.  Its 
implementation is different when driving software  or  hard- 
ware models, although  the function is analogous. In the  case 
of software  simulation,  the bit patterns  are converted to 
simulation net  changes by a  behavioral model written in  a 
hardware description language used within IBM. 

When  the transition is made  to  hardware,  the  same bit 
patterns  are converted to  electrical signals by an  interface 
emulation test adapter specifically designed and built  for this 
purpose  (see Fig. 3). Its function is analogous to  that of the 
software behavioral  test-case converter, including  all the 
logical spaces previously described. Furthermore,  it  can 
generate signals which were  observed and recorded during 
software  simulation,  thereby  simulating nonexistent hard- 
ware for which only a software model is available. 

In the  case of the  storage  subsystem, where interface 
emulation was  employed, the  same  test cases  were used 
during both software  and  hardware  testing.  This provided 
several  significant benefits. First,  test-case definition  began 
early in the design  cycle, so that both test cases and  early 
software models  could be used to verify each  other.  Second, 
these  existing  test cases were used to  validate  more detailed 
software models as  they  became  available, by observing that 
they functioned  similarly. At  the  same  time, progress was 
continuing  toward  writing  a  complete set of tests for all basic 
functions of the  storage  subsystem.  These  test  cases were 
again used when bringing up  the  hardware model and  VLSI 
hardware.  Due  to  the relative  expense of software  simulation, 
it was  limited to  testing basic  functions. In  software,  each 
processor instruction and  storage  control sequence  was veri- 
fied in  a  limited  subset of all possible operating conditions. 
As  software verification progressed, however, a  point  was 
reached  where increasingly  exhaustive testing  became less 
and less practical using  a software model. For this reason, 
more  exhaustive  testing was  performed  on  a hardware model 
of the  storage  control subsystem  using the previously 
described functional  test  programs.  At various  points  in the 
development process, the processor and  storage  hardware 
models were  connected together  and tested  with these 
exhaustive  functional  test programs. 

IBM J.  RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



Detailed timing  analysis 
As previously mentioned,  software  simulation was  used to 
help  identify  critical  timing  relationships in the machine. In 
addition,  paths which  were known to  be  critical  to  the design 
were  identified for further analysis.  Finally, all lines  between 
chips were systematically  examined. Logic paths which 
appeared  to be critical were then  analyzed in more  detail 
using  a  collection of computational tools and  techniques. 

Most of this effort  was  accomplished  using a series of 
delay calculators  written in the  APL  language. Foremost 
among these was  the  APL  delay  calculator  written specifi- 
cally to  support  the  custom bipolar  technology macro set. 
The  delay  paths were defined manually,  but a program 
automatically  obtained  data  such  as loading,  wire length,  etc. 
for use by the  delay  calculator.  Approximately 350 delay 
paths  were  calculated.  The  delay  equations were  based on the 
electrical characteristics of the logic circuits  and were gener- 
ated by the  group responsible  for their design. The  APL 
delay calculator used delay equations for random logic, 
registers, PLA,  and ROS macros.  Existing APL  delay  calcu- 
lators were used for IBM gate  array logic. 

APL  delay  calculators were  used for well-defined combi- 
nations of technologies, but  there  are a host of other physical 
configurations  for which delay equations  do not  exist. Net- 
works of this  type  include those which exceed wiring rule 
length restrictions, interface between  technologies  with  dif- 
ferent switching levels, employ unusual  dotting combina- 
tions, exceed usual  parameter  limits,  etc. In these cases, 
propagation  delays  must be determined  through  the  use of 
electrical  circuit  analysis  programs  such  as  ASTAP.  ASTAP 
was also used extensively for determining  the  constant values 
in the  custom  macro  delay equations. 

Engineering changes 
At selected times in the development process, the design  was 
checked and  subsequent  changes were  controlled by a formal 
engineering-change procedure. This was the  primary mecha- 
nism for  keeping the  software  and  hardware models at  the 
same  and  latest  change level. This is essential to prevent 
finding the  same problem twice when  both types of verifica- 
tion are  occurring in parallel. It also provided valuable 
change-history information, which  was frequently useful  in 
solving design  problems. The  formal  change  procedure was 
based on a standard well-defined form which  was used each 
time a change  was  made.  The  form is intended  to  be easy to 
use by providing  places  for the following information: 

description of the problem; 
previous, related problems; 
test being performed when the problem was  found; 
list of all  available  documentation  where those requiring 
updates  may  be  indicated; 

0 description of the  actual logic change  that was made  to 

tests  that were run  to verify the  correctness of the fix; 
places to  be initialed by the person completing each  part of 

0 place where  any  related  future problems can be indicated. 

Conclusion 
A  complex set of VLSI  chips  requires a  comprehensive 
design  verification strategy  and set of tools to successfully 
produce operational first-pass  chips. The  strategy chosen 
consisted of software  simulation,  hardware modeling, and 
interface  emulation.  Software models are most effective for 
initial  and  critical function verification and for performance 
estimation.  Hardware models are most effective when per- 
forming a  complete set of functional tests. Also, hardware 
models are most effective for debugging a test bed prior to 
the  arrival of VLSI  hardware.  Interface  emulation provides 
flexibility in verifying the design of multiple  subsystems 
concurrently.  The use of common data bases  is  essential to 
maintain  control  and  compatibility of the  hardware  and 
software models. Through  the use of functional  test pro- 
grams,  test  station  adapters,  and delay calculators,  the  total 
verification  was  accomplished. 

solve the problem; 

the  update;  and 

The validity of any  strategy or methodology can only be 
judged by the results which are produced. The objective here 
was to design  a processor in  a custom  VLSI technology and 
to  ensure  that  it follows the  architecture  and  meets  the design 
schedule. Using  the  strategy described in this  paper,  the 
first-pass VLSI  hardware was  designed and  built,  and is fully 
functional a t  full  speed. 

As  the size of the  machine design  increases, the difficulties 
in building  a hardware model increase  much  more rapidly. 
To accomplish this, some additional  macro  chips  might  be 
built to help in keeping the model small.  PLAs  are  another 
device which will aid in dense model packaging in the 
future. 

In conclusion, the  importance of software simulation and 
hardware modeling of any design in a VLSI environment 
needs to be emphasized, especially  with regard  to  delay 
analysis [22]  and  functional testing. In  the  past, problems 
associated  with timing or functional deviation  have been 
corrected in the field with some expense, but nevertheless 
corrected. In VLSI, that option  is  closed; to  take  additional 
time  and resources to recycle  a chip could  prevent  a product 
from ever being shipped. 

Acknowledgments 
The  authors would like  to  thank  the following people and 
groups: Floyd Petersen  and  the  Systems Modeling group for 
their work in building the  hardware model and for contribu- 483 

ARNOLD S .  TRAN ET AL. IBM J.  RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



tions to this  paper; Joe Kavaky,  Paul  Lakin,  and the Design 
Verification  group for writing  the  functional test programs 
and  for  contributions to this paper; Mark Johnson  for  his 
design of the 1 / 0  test adapter, test-station adapter,  and 
interface  emulation  test  adapter,  and for contributions to this 
paper;  Courtny  Barnett, Lisa Goodwin,  and  other  contribu- 
tors to the  development  of  the  hardware  model  conversion 
programs;  Charlie  Winn for writing  the APL delay  calcu- 
lator  and  other  programs; Gerry Thompson for writing  the 
program to automatically  generate  input to the  APL  delay 
calculator;  and Joe Tahmoush  and  John  Campbell  for  devel- 
oping the methodology  described  in this paper. In  addition 
we  would  like to thank Fred Weiss for recognizing the need 
for  hardware  modeling  and  his  support of it.  Finally,  we 
thank  all  the  others involved in  this  project for the  successful 
achievement  realized. 

References and notes 
1 .  First-pass-initial release and manufactured hardware. 
2. John E. Campbell and Joseph Tahmoush, “Design Consider- 

ations for a VLSI Microprocessor,” IBM J.  Res.  Develop. 26, 
454-463 (1982, this issue). 

3. BDL/S (Basic Design Language for Structure) is an IBM 
logic-description language. 

4. E. B. Eichelberger and T. W. Williams, “A Logic Design 
Structure for LSI Testability,” Proceedings of the 14th Design 
Automation Conference, New Orleans, LA, 1977, pp. 462- 
468. 

5.  J. S. Jephson, R. P. McQuarrie,  and R. E. Vogelsberg, “A 
Three-Value Computer Design Verification System,” IBM 

6. For a description of card and board packaging technology used 
at IBM,  the reader is referred to D. P. Seraphim  and  I. 
Feinberg, “Electronic Packaging Evolution  in IBM,” IBM J .  
Res.  Develop. 25,617-629 (1981). 

7. P. W. Case, M. Correia, W. Gianopulos, W. R. Heller, H. Ofek, 
T.  C. Raymond, R. L. Simek, and  C. B. Stieglitz, “Design 
Automation in IBM,” IBM J .  Res.  Develop. 25, 631-646 
(1981). 

8. IBM MSI-bipolar gate array medium-scale integrated circuit 
with approximately 100 gates and 45 signal 1/0 pins. 

9. Signetics 82S100 FPLA, Signetics Corporation, 81 1 East 
Arques Ave.,  P.O.  Box 409, Sunnyvale, CA 94086. 

10. IBM Programmable Array Module Personalization Tool- 
program and hardware to automatically personalize IBM pro- 
grammable array modules, R.  Harr, IBM Lexington, KY. 

S y ~ t .  J .  8, 178-188 (1969). 

1 1 .  FPLA-program and hardware to automatically personalize 
FPLA modules  on a Data 1 / 0  Corporation PLA burn-in tool,  A. 
Tran and C. Winn, IBM Kingston, NY, 1978. 

12. EPROM-program and hardware to automatically personalize 
an erasable programmable read-only storage module on a 
Prolog Corporation PROM burner, G. Salyer, IBM Kingston, 
NY, 1977. 

13. Amr M. Mohsen and Carver A. Mead, “Delay-time Optimiza- 
tion  for Driving and Sensing of Signals on High-Capacitance 
Paths of VLSI Systems,” IEEE Trans. Electron Devices ED26, 
540-548 (1979). 

14. W. M. Vancleemput, “Hierarchical VLSI Design,” IEEE Com- 
puter  Society 20th International Conference, COMPCON 
Spring 80, San Francisco, CA,  February 25-28, 1980, pp. 

15. Unit delay-a VMS simulation mode  in  which the propagation 
delay through each logic  block  is  one time unit. 

16. Advanced Statistical  Analysis Program (ASTAP). General 
Information Manual,  Order No. GH20-1271; available 
through IBM branch offices. 

17. P. Losleben, “Utilizing Semiconductor Technology of the 80s- 
A Design Problem,” Proceedings of the Conference on Com- 
puting in the 1980s, Portland, OR, 1978, pp. 237-243. 

18. Raymond P. Capece, “Tackling the Very Large Problems of 
VLSI: A Special Report,’’ Electronics 51, 1 1  1-125 (November 
23, 1978). 

19. W. M. Vancleemput, “Design Automation Requirements for 
VLSI,” IEEE Computer  Society 18th International Confer- 
ence, COMPCON Spring 79, San Francisco, CA, February 
26-March 1, 1979, pp. 2-6. 

20. Keiji Muranaga, “Utilization of Logic Simulation and  Fault 
Isolation Software for Practical LSI and VLSI Component Test 
Program Generation,’’ Semiconductor Test  Symposium on LSI 
and Boards, Cherry Hill, NJ, October 23-25, 1979, pp. 193- 
202. 

83-87. 

21. J. W. Cullen, “Binary Synchronous Communications,” Techni- 
cal Report No. TR-29.0029. IBM Raleigh, June 1968. 

22. W. C. Holton and G. Brown, “Potential Barriers to Very Large 
Scale Integration,” Proceedings of the Conference on Com- 
putingin the 1980s. Portland, OR, 1978, pp. 213-218. 

Received September 14, 1981; revised February 5, 1982 

The authors are located at the IBM System Products 
Division laboratory, Neighborhood Road, Kingston, New 
York 12401. 

484 

ARNOLD S. TRAN ET AL. IBM J. RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 


