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Design Considerations for a VLSI Microprocessor

The machine architecture and design considerations for an interrupt-driven bipolar VLSI Microprocessor are presented. The
processor is designed to a complex architecture and includes an integrated channel and a flexible storage interface.
Floating-point functions are optional. A 3-ns custom bipolar technology was developed for the microprocessor, resulting in a
very high circuit density package. The 50-mm four-chip air-cooled microprocessor module is packaged on a printed-circuit
card with associated repowering circuits and high-speed random-access memory. Important design considerations and
tradeoffs associated with the development of this machine, within specific cost, performance, reliability, and schedule
objectives, are discussed. Various processor design techniques are described which minimize hardware where performance is
not critical. A degree of functional parallelism is utilized, as well as timing flexibility, to attain the required performance.

Introduction

The VLSI microprocessor that is the subject of this paper
consists of four bipolar VLSI chips contained in a 50 x
50-mm 361-pin module. A very high level of circuit density is
obtained in the microprocessor module, with approximately
15 000 equivalent logic circuits and a 50K-bit (K = 1024)
read-only storage (ROS) contained in it.

Various aspects of the design and development of the
VLSI microprocessor are discussed in this paper and in three
companion papers appearing in this issue. This paper focuses
on the logical design considerations and the processor system
architecture. Chip design aspects are the subject of the paper
by Mathews and Lee [1], which discusses the technology, the
chip structure, and the pseudo-custom macro chip design
methodology used. The logical design verification strategy
used in the development of the processor system is described
in the paper by Tran, Forsberg, and Lee [2]; and the physical
and electrical design verification procedures are covered in
the paper by McCabe and Muszynski [3].

The VLSI microprocessor module is a key part of a
processor-component functional building block subsystem,
the elements of which are indicated in Fig. 1. These consist of
a processor unit (PU), a storage addressing subsystem
(SASS), a high-speed channel, a storage control unit
(SCU), a floating-point execution unit (FP), and a multiple
processor interfacing capability.

The processor is designed to a 32-bit architecture; i.e., the
machine can operate on byte (8-bit), halfword (16-bit), and
fullword (32-bit) operands, and a storage addressing capabil-
ity of up to 32 bits is provided. The implementation utilizes,
in some cases, data flow that is less than 32 bits. This was
done to minimize cost and is logically transparent to the
system.

The storage addressing subsystem provides dynamic
address translation, relocation, and protection. Storage is
allocated on a block basis, each block containing 2K bytes.
Translation tables are physically located in the same high-
speed random-access memory (RAM) that contains general
registers and work space. These spaces are kept logically
separate by the hardware. The channel and the PU share the
SASS, and the main storage interface is asynchronous.

The high-speed channel provides an 1/O port to pass data
between main storage and external devices. Main storage
data alignment is handled by the channel, and the I/O port is
asynchronous. The channel utilizes the logic of the processor
unit to minimize cost; therefore, when the channel is active,
the processor execution is suspended, since the data flow is
shared.

The SCU controls the main storage array cards [up to 8M
bytes (M = 1 048 576) are supported in this implementa-
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tion]. Error checking and correction (ECC) is used to
correct single-bit errors and most double-bit errors. The
SCU contains a four-byte data buffer as well as a four-byte
instruction buffer. The processor-to-SCU data bus is a
two-byte bidirectional bus with four-byte multiplexing capa-
bility. The SCU-to-storage interface consists of two unidirec-
tional four-byte buses.

The floating-point unit executes a set of floating-point
instructions and is optional. It has been implemented, with a
minor change, to an existing module.

The multiple processor interface provides a mechanism to
logically share main storage and translation tables among
two or more processor systems. It also provides an interface
to a shoulder-tap device which provides communication
between the processor systems.

The VLSI microprocessor offers reliability, availability,
and serviceability (RAS) improvements as well as certain
functional enhancements which were not available on pre-
vious machines of this type. Compatibility of programs is
generally maintained, although if new programs use these
enhancements they will not run on previous machines. The
I/0 interface is physically and functionally compatible with
previous machines.

The VLSI microprocessor is designed using the level-
sensitive scan design (LSSD) [4] technique. Parity checking,
parity prediction, and ECC were used for enhanced data
integrity and RAS characteristics. It is highly ROS-control-
led, allowing functional refinement and design changes at a
single point that can be changed with minor effect on the
manufacturing masks.

The processor system incorporates a high degree of check-
ing. Parity is carried or predicted throughout the machine.
As previously mentioned, ECC is used in main storage.
Process checks are recorded at each level and by type in a
special register in the program status word (PSW). Machine
checks are also logged by type in an internal register. If a
process check occurs, the instruction is suppressed and the
PSW instruction counter points to the instruction in error.
The SASS prevents individual programs from accessing
storage that is not assigned to those programs. Sufficient
information is available to isolate errors to the field-replace-
able unit (FRU) level, which in this case is the card level.

The design of a complex processor using a custom VLSI
approach is considerably different from a standard master-
slice (gate-array) technology [5] design. With custom VLSI
[1], circuits are positioned on a chip as needed. The circuits
are implemented in various configurations, and a certain
amount of flexibility in circuit design is allowed. The mas-
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Figure 1 VLSI microprocessor and processor-component subsys-
tem.

terslice approach supplies a fixed array of circuits that can be
connected while observing specific predefined rules. Such
items as circuit type, circuit placement, chip 1/O connec-
tions, power, and size are predetermined when using master-
slice but must be considered when using custom VLSI. The
design requirements must be established and understood
completely before the actual design is begun.

The partitioning of the processor and the organization of
the logic must be determined prior to the actual logic design.
To accomplish this, a thorough understanding of the technol-
ogy and of the system environment is necessary so that the
required design tradeoffs between processor performance,
logic density, power, and packaging considerations can be
made. The technology aspects of the VLSI microprocessor
are discussed in more detail in [1]. A processor card was
designed consisting of four custom bipolar logic chips (the
VLSI microprocessor module), together with a high-speed
RAM (10K x 18 bits) and an oscillator. The organization of
the VLSI microprocessor module and its interface with the
RAM is shown in Fig. 2.

The 4-wide by 3-high (14.4-cm by 11.7-cm) processor
card has a bottom connector with 144 contacts and a top
connector with 92 contacts. The four custom bipolar logic
chips are packaged in a 50-mm multilevel ceramic (MLC)
module [6]. Each chip contains the equivalent of 3000 to
5000 circuits. In addition, one of the logic chips contains an
embedded 1024 x 50-bit ROS. The design is based on a
hierarchical approach using a set of functional macros as
building blocks for more complex logical functions [1, 3].

Experience in this project has shown that it is possible to
develop a processor using custom VLSI resulting in a first-
pass design (the first set of hardware received from the
manufacturing site) that is functional.

In the following sections of this paper, the processor
system design objectives, the functional partitioning, the

455

JOHN E. CAMPBELL AND JOSEPH TAHMOUSH




456

Tester

|
| interface :
| |
| — | 10K x 18
| . | High-speed RAM
' - Clock ROS 50K |
| * Error registers * RAM control |
| Lbus | - RAM address | Translation
) table
| Chip 1 L Chip 4 Control
: T [ _RAM data bus
| ’ Address
| |
: « Instruction decode * Storage address| :
e ROS address * Storage control ) General
N Interrupt logic + 1/0 control ) WS register
: | i space
. . |
I Chip 2 Chip 3 | \',Vork space
| I
l____$__¢_ _______ N 50-mm MLC module
Main /O i
Main /0
(sitacto;age data storage  control
address
and control

Figure 2 Organizational structure of 50-mm microprocessor mod-
ule and 10K x 18-bit random-access memory.

ROS control mechanism, the instruction execution, the
integrated channel, and the floating-point option are first
addressed. Then the design of the interrupt mechanism, the
processor clocking, and the arithmetic and logical unit
(ALU) are described in some detail. This is followed by
discussions of the storage protection mechanism and work
space considerations, the multiple processor function, and
the design and testing procedures.

Design objectives
The design philosophy of the processor system was based on
meeting the following criteria:

e Packaging—The complete processor was to be packaged
on one card, including a high-speed channel and 20K bytes
of RAM.

¢ Cooling—By forced air.

® Performance—To be greater than that of predecessor
machine.

® RAS—To exceed the specified standard for reliability and
serviceability and provide a high degree of testability and
internal checking, as well as recoverability.

e Compatibility—Logically compatible with previous im-
plementations.

® Cost—Less than the previous implementations.

e Schedule—To produce functional VLSI on the first pass
to facilitate system testing.

The VLSI microprocessor was packaged on a single mod-
ule in order to meet the design requirement of a one-card
processor building-block component. The remaining area on
the card was used to accommodate the high-speed RAM
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(used for register space and for storage management tables)
and an oscillator. Because of the large number of circuits per
chip it was necessary to determine the manufacturing test
philosophy before the design was begun. The LSSD tech-
nique was used at the chip and module levels. The testing at
the card level was to be done in two steps. First, the modules
would be dc tested using the module in place (MIP) test
methodology [7]. After the dc test was successfully com-
pleted, a functional test capability would be provided which
would consist of running a representative sample of machine
code at full speed.

® Functional partitioning

The functional partitioning of the VLSI microprocessor was
accomplished by first determining a technology macro set to
be used in the design. As it turned out, the definition of the
macro set was a continuous process, with some additions and
deletions as the detailed logic design progressed. Because of
the extent of the work involved in the design, verification,
and layout of the macros, as well as the one-pass schedule
criteria, a minimum macro set was established. Following is
a list of the macros that were developed.

® N-way Als

® N-way XORs

® off-chip receiver

e active pullup (tri-state) driver
® open collector driver
e LSSD latch

® 1024 x 50-bit ROS

® [ x L x O-way PLAs (programmable logic arrays [8])

I x L. AND array with bit partitioning

L x OOR array

where I = number of PLA inputs, L = number of PLA
product terms, and O = number of PLA outputs.

These macros were combined to offer design blocks con-
taining up to nine macros per block. This allowed the
designer to use, for example, N-bit register macros and N-bit
selector macros. This provided an aid to logic designers as
well as to chip layout, since data flow was indicated by macro
usage. Because the design was being executed in custom
logic, knowledge of the physical properties of the macros as
well as the electrical characteristics of the set was required.

Once a basic set of macros was established, the actual
partitioning of the machine could be started. Several other
major factors that had to be considered during this time were
chip power, driver switching activity, and the practical limit
of chip size relative to wafer yield and, therefore, cost.

The initial pass for the partitioning indicated that the
conventional partition would not result in a machine that
could be contained within the chip count required or with an
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acceptable I/O pin count at the card or chip level. This
partition resulted in excessive logic and lack of wireability.
An examination of the system environment in which the
processor system was to be used indicated several areas that
could reduce the amount of chip logic at some cost in
performance and not affect the system throughput. These
tradeoffs are examined in more detail subsequently.

Difficulty was experienced in containing the number of
1/0 connections at all levels of packaging. The card develop-
ment group developed a card connector with 1/O connections
at the bottom of the card increased by 50%. This new
connector was helpful but still constrained the card 1/0
design flexibility. Therefore, the storage address bus was
multiplexed to relieve the card 1/O requirement. A status
code was used to inform the external attachments of the type
of data on this bus, which is used to transfer information or
main storage addresses depending on a status code. This
approach saved a significant number of card 1/O connec-
tions. Similar techniques were used to keep the number of
chip and module I/O connections at an acceptable level.

With the initial partitioning completed, the detailed
design was started. As the design progressed, the macro set
and partitioning were modified to meet circuit and logic
design refinements. The final partitioning resulted in four
chips of equal size and approximately equivalent 1/O count.
The three-sigma worst-case power dissipation of each chip
was between 3.0 and 3.5 watts.

Machine control

The VLSI microprocessor is controlled by a high-speed
1024 x 50-bit ROS which contains microcode routines for
the decoding and execution of instructions as well as proces-
sor control subroutines (e.g., interrupt, PSW swap, machine
check, channel). See Fig. 2 for the general organization and
inter-chip data flow interconnections.

The ROS word is divided into the following control fields:

e Chip 1 control

e ALU control/tester control

¢ Chip 2 control

® High-speed RAM control

e Chip 3 control

® SASS control

¢ Clock control

® Next-address/branch code type
® Branch control

The next-address field is used for both conditional and
unconditional ROS branching. When branching conditional-
ly, part of the next-address field defines the branch code
type. The complete field is used as an address for branching
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unconditionally. Thus, the branch code type represents both
address and data. Ten of the ROS output bits are used for the
“next-address field.” An additional bit is implemented as the
“branch bit.” If the branch bit is inactive, the branch is
unconditional; if the branch bit is active, the five low-order
bits of the next-address field are inspected for the branch
condition. For a conditional branch not taken, the present
ROS address is incremented by one to generate the next
address for the ROS. If the branch is taken, conditionally or
unconditionally, the next-address field is the next ROS
address. This procedure continues until an “exit” is reached
in the microcode sequence. At this time, the ROS address is
generated from the instruction decode.

® ROS design tool

Previous design experience indicated that an improved
method was needed to generate ROS code, to check the
ROS, to personalize the ROS, and to document the code.
Such a design tool should operate on a single source of data to
enable the elimination of manual errors and to facilitate
changes and verification.

A PL/I program was developed that took a single-source
data set and generated physical addresses, checked function,
and produced an easy-to-read document. This data set was
also used to generate the ROS personality used on the chip as
well as on the simulation models. The physical address
generation relieved the ROS coder from having to be aware
of physical constraints and allowed him to write code in a
logical sequence. This facilitated readability of the automati-
cally generated documentation and also eliminated the possi-
bility of transcription errors. In addition, the labeling and
footnoting capability enhanced the readability of the docu-
mentation.

A considerable amount of checking was built into the
program. ROS control was chosen because it provides unam-
biguous control function and lends itself to clear, easy-
to-read documentation. It is easy to modify and requires only
personality changes on one level of the chip mask. The
turn-around required to make a ROS (personality) change
with this tool is measured in days instead of months for a
circuit change. Due to the one-pass VLSI design commit-
ment, the use of control ROS was instrumental in meeting
the schedule.

Instruction fetch and execution

The instruction fetch and the decoding of the next instruction
is overlapped with the instruction execution. Other machine
functions, such as monitoring the external interrupts, chan-
nel requests, and instruction-counter synchronization, are
performed in parallel with execution (see Fig. 3). Exception
cases are handled such that execution is suppressed in
accordance with the architecture. An eight-byte buffer is
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Figure 3 Instruction execution sequence. (Note: NSI = next
sequential instruction.)

located in the storage control unit (SCU) as an instruction
cache. The PU-SCU interface is asynchronous; a signal
(Select) to the SCU indicates that a storage operation was
required and that the PU-SCU interface is valid. The SCU
then signals with a line (Ready) that the requested data are
available on the data bus (if the operation is a read) or that
the operation is complete (if the request is a write). If the PU
reaches a point that it requires the SCU response, the PU
stops executing and waits.

The time available for the SCU to respond to the PU
varies depending on what the machine can do while waiting
for the response. The microcode is written so that the PU will
continue to execute until it requires a response from the
SCU. If the instruction being fetched is in the instruction
buffer, there is no wait period because the SCU will respond
faster than is required. The point at which the PU waits for a
response is dependent on the particular request to the SCU.
If the request is for a fetch of the next instruction, the PU
only requires one machine cycle to decode the instruction, so
the wait is microcoded one machine cycle from the end of the
instruction. If the request to the SCU is a data fetch, the wait
is microcoded at the point that the PU is to operate on that
data. The translation table operation for the next SCU
operation can coincide with the current SCU operation.

A four-byte (fullword) data buffer is used in the SCU to
allow a fullword store operation. Because of I/O pin limita-
tions, the data interface between the PU and the SCU is a
halfword. However, the interface between the SCU and the
main store is a fullword. The architecture contains instruc-
tions that operate on more than one halfword at a time; the
SCU implements a fullword data buffer to improve the
performance of these instructions. The SCU can access the
storage a fullword at a time while operating with the PU on a
halfword basis using this buffer. This mechanism is also used
in channel burst operations.

JOHN E. CAMPBELL AND JOSEPH TAHMOUSH

Integrated channel

As previously mentioned, the channel shares the processor
logic for cost savings. It drives a halfword I/O port asynchro-
nously. Data can be byte- or halfword-aligned and the
channel can operate with combinations of byte or halfword
devices. FRU isolation is provided by the channel hardware.
The channel-SCU interface uses the SASS function.

Floating-point operations

A floating-point (FP) module existed for a previous
machine, so development of a new module would not have
been cost-effective. Instead, the FP module control was
modified to map the machine interface of the processor to
that of the FP. The key here was use of the variable-length
machine cycle of the processor unit, which allowed the
processor machine cycle to be mapped to the cycle of the
existing FP module.

Interrupt mechanism

The purpose of the interrupt mechanism is to generate an
internal mask which is used in monitoring the I/O interrupt
request bus. Once an allowable request is found, this mecha-
nism has to store information pertaining to the present level
and retrieve necessary information for the level to which the
machine has been interrupted (next level).

A significant part of the interrupt mechanism for this
processor is contained in a ROS subroutine. The reason for
this is that interruptions were infrequent relative to instruc-
tion execution, so performance degradation was an insignifi-
cant factor. By sharing existing function to handle interrupts,
logic was minimized so the microprocessor could be con-
tained within the four chips. The interrupt subroutine seeks
out the highest-priority interrupt request among unmasked
requests made from either the program or I/O devices. Once
that request is found, the internal mask to be used at the next
level is generated and stored in the interrupt register. The
subroutine then compares the current level with the new level
obtained to determine if they are the same. They could be the
same since the machine could branch into the interrupt
subroutine without changing levels from any one of several
control instructions. If the two levels are the same, the
subroutine exits and the processor executes the next instruc-
tion; if the two levels are different, the subroutine branches to
the PSW swap routine.

An internal mask is used to look at the external I/O
interrupts. If a higher-level unmasked request is sensed, or if
the present interrupt is removed, the hardware requests a
swap to the highest interrupt level pending. This design
provides a fast detection of changes in external interrupts.

An additional feature incorporated into the interrupt
design is a hardware retry. If a parity error is detected during
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a sampling of the interrupt bus, the hardware performs an
automatic retry. After seven tries, if the error still exists, the
error is reported.

Clock design and timing considerations

The VLSI microprocessor clock is an LSSD clock design
driven by a single-phase oscillator. A four-bit shift register
generates four sequential pulses named C1, C2, C3, and C4.
They switch after the rising transition of the oscillator input.
The shift register is self-correcting and will not have more
than one clock active at any one time after its initial start
cycle.

The processor clock also generates four feature clocks
called F1, F2, F3, and F4. These clocks are used by logic
external to the processor; they become active at the same
time as their corresponding “C” clock and remain active
until the middle of the next sequential “C” clock.

The machine cycle time can be varied in two ways. Y
clocks are dead times (no machine clocks are active) that
occur between C3 and C4 (see Fig. 3). There can be up to
three of them in one machine cycle. The Y clocks are under
ROS control.

“Hold” clocks can occur between C2 and C3 and are of an
indefinite length. They are controlled in part by an external
event, usually asynchronous to the machine clock logic.
Under ROS control, the clock logic can hold for storage or
I/0 operations. A storage hold will prevent C3 from becom-
ing active until the storage has responded to a storage Select
signal. An I/O hold will prevent C3 from becoming active
until there is a response from an I/O device or a timeout
exception occurs.

“Storage clock™ is a square wave generated by the PU.
The negative active levels of “storage clock™ are coincident
with machine clocks C1 and C3. If there are Y clocks
between C3 and C4, the storage clock will remain active until
C4 becomes active. If the clocks are being held or are
stopped, the storage clock will continue. This clock provides
synchronism for SCU-PU controls.

The clock logic can be stopped and then run in a manual
mode under the control of a few external signals. A “stop”
signal to the clock logic will cause the clocks to stop at the
end of the current instruction. After the last C4, the clock
logic will signal that it has stopped. If the stop signal is
removed, the clocks will resume with C1. While the stop
signal is active, the clocks can be run in a single-instruction
or single-cycle mode. Single-instruction mode will cause the
clocks to run until the end of the next instruction. Single-
cycle operation will cause the clocks to run for one machine
cycle.
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Figure 4 Arithmetic and Logical Unit (ALU) data flow. (Note:
RCV = receiver, DRV = driver, SEL = selector.)

In order to minimize the effect of asynchronous external
signals which could cause metastability in the logic, the
signals are latched with a clock that will be inactive for one
more clock period before the signal is used. Thus the primary
latch may go metastable but propagation of the metastable
signal is unlikely.

Arithmetic and logical unit design

The VLSI microprocessor ALU is used in the configuration
shown in Fig. 4. The buses shown are all 16 bits plus 2 parity
bits. The ALU design had the following objectives:

® 16-bit data flow, performing the standard ALU functions
of SUM, AND, OR, and EXCLUSIVE-OR.

® Medium performance, allowing a propagation delay of two
circuits per bit for the SUM operation.

® Output parity prediction based on input data and parity

(91

The ALU bit slice is shown in Fig. 5. Two of the eight
circuits shown (those marked with *) are for parity predic-
tion. There are four lines to control the ALU. The control
lines are

& SN—Active if a SUM or AND operation is required.

® SO—Active if a SUM or OR operation is required.

® SX—Active if a SUM or XOR operation is required.

® SNO—Active if a SUM or AND or OR operation is
required.
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Figure 5 ALU bit slice. (Note: OE = EXCLUSIVE OR,
Al = AND-INVERT.)

Additional parity-prediction logic required for each byte
of the ALU is shown in Fig. 6 (here, the control lines are
indicated as K). The resultant design achieves 100% single-
error detection for all circuit faults except for control lines.
Errors are detected by a parity check on the output data and
predicted parity further on in the data flow.

One reason for the low circuit count is that the sum
operation uses ripple carry propagation instead of carry-
look-ahead. This allows each ALU bit to be identical and
also simplifies the achievement of 100% single-error detec-
tion of circuit faults. An added benefit is that the traditional
selector on an ALU which is used to select the desired
function on the output can be eliminated.

The elimination of the output function selector further
reduces the circuit count required. The penalty is that the
OR and AND functions are shifted left one bit via the carry
propagation lines. Since the ALU requires a shift-right
selector for multiplication, a compensating shift right is
performed at no cost in circuits or performarice for every OR
or AND function.

Circuit faults in the ALU are detected by a parity check
performed on the output data and predicted output parity.
This check is performed before the data are driven off-chip
on Fig. 4. Other circuit faults, both before and after the
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ALU, will show up in the same check; that is why parity
prediction rather than parity generation of the ALU output
parity is used.

The equations for the predicted output parity are as
follows:

SUM: p(r) = p(a) + p(b) + p(c),
XOR: p(r) = —p(a) + p(b),
AND: p(r) = p(a) + p(b) + p(0),
OR:p(r) = p(a) + p(b) + p(n),

where p(r), p(a), and p(b) are the parity bits of the result,
the a input, and the b input, respectively; p(c) is the parity of
the carry inputs into each bit; p(o) is the parity of a OR b,
p(n) is the parity of a AND b; and the “+” operation is a
logical OR. Note that the parity tree shown in Fig. 6
generates p(c), p(o), or p(n) depending on whether the
ALU operation is SUM, AND, or OR, respectively.

One hundred percent single-error detection can be demon-
strated based on the fact that any circuit fault will affect an
odd numiber of outputs which drive a parity check tree. To
show this, note the following with reference to Figs. 5 and 6:

e The r outputs are connected to a parity tree further on in
the data flow.

® The P, lines (P, through P, and P of Fig. 6) are
connected to the parity tree shown in Fig. 6. This tree is
active for all ALU functions except the XOR. The output
is the predicted parity which is eventually checked in the
data flow.

® The C,y; line (Fig. 5) affects the R output of the next
stage (the three Als generating R are connected in an
exclusive-or configuration) and either none or both of the
riext stage Py ; and Cqyp lines. Thus, C,j; affects an odd
number of R and P, outputs.

® Any circuit fault in a given stage will either affect P,
Cour» OF R alone, or will affect R and both P, and
COUT'

® For the XOR function, Py and C,; are either not used
or turned off. In this case any circuit fault will either affect
the R output of the given stage or the R output of the next
stage.

Storage protection

Storage translation and protection is allocated on 2K-byte
blocks. Translation space is implemented in separate high-
speed RAM, as illustrated in Fig. 2. In order to increase the
logical address capability and flexibility, an identifier field
(LOCK) is associated with each translation table entry. This
LOCK, if not = 0, must match a KEY located in the PSW.
If the KEY or LOCK = 0, the match is assumed. This allows
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programs to be assigned both private and shared areas on
2K-byte x n blocks. This facility could assist a software
storage management mechanism.

Work space

With the organization of the high-speed RAM that was
chosen, there was a portion that was not required for
general-purpose registers or translation tables. In order to
meet the packaging objectives, this portion of the RAM is
used as general work space (region WS, Fig. 2). Most of the
registers necessary for the interrupt mechanism, the address
recovery register, program control functions, and temporary
registers are implemented in this area of the RAM.

A copy of the instruction counter (the recovery register) is
saved here whenever a branch-type or jump-type instruction
is executed. If an error occurs, the address of the instruction
is derived from the recovery register and a two-bit hardware
counter which keeps track of the displacement of the instruc-
tion address from the recovery register. The recovery register
enables the instruction counter to be used as a data-address
register during storage-to-storage operations.

By implementing control space in work space, hardware
registers are minimized and control space is made available
to the service tool.

Multiple processor configurations

The processor system can be attached to additional processor
systems through the SCU. One or two SCUs can be attached
to each processor system. If two are attached, each one
addresses the even-odd word, respectively. This allows stor-
age refresh and cycle overhead to be effectively reduced to
zero. Each SCU contains contention logic, which allows two
or more pairs of SCUs to share the same storage, thus
allowing multiple processors to share the same storage with
no new hardware. Function is built into the SCUs to allow
dynamic duplication of translation tables to effectively allow
each processor system to share the storage map (except for a
fixed amount assigned to each processor). The processor
systems communicate over the I/O interface through a
shoulder-tap device.

Design procedure

The design responsibility of the processor system was divided
into four groups: the PU/SASS/channel logic design, the
SCU logic design, functional test generation, and hardware
modeling. A nodal-equivalent hardware model was built [2].
Each custom chip was assigned to two or three people who
had complete responsibility for the design. As the data flow
progressed, a comprehensive chip description was written by
each chip group. The ROS document was available early in
the design. As changes were made to the ROS, a PL/I
program automatically time-stamped the change in the ROS
document.
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Figure 6 ALU bit slice connection and parity prediction. (Note:
C\ is equal to Pp.)

A strict engineering change procedure was established to
coordinate the design with the verification models and docu-
mentation. Changes had to be acknowledged by all groups
before the VLSI change was complete.

RAS design

Parity is carried throughout the machine. ECC on main
storage automatically corrects all single-bit and virtually all
double-bit errors on both fetch and store operations. The
SCU uses the ECC logic to predict parity, and main storage
address parity is included in the ECC, so the SCU is highly
checked. A diagnostic mode allows software checking of the
SCU and storage.

More than 90% of the processor logic is error checked. The
errors are reported in a set of registers which are available for
software diagnostics and FRU isolation.

Due to the nature of the dense technology used, the failure
rate is very low relative to previous technologies. The design
itself uses three-sigma worst-case delay assumptions, provid-
ing manufacturing margin and increasing reliability. A
special interface provides access to internal status for moni-
toring the machine. An engineering tool was developed to
help the system designer build and debug the system.

Integrated test capability
With the density of the physical package of the processor,
test requirements at all levels of the design had to be
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established. On the basis of previous designs, the required
test functions were known. The following are the major
functions provided:

stop

single-cycle step

single-instruction step

read/write register by external means

read/write storage by external means

machine status (interrupt level, logical address, etc.)

Most of the information provided is internal to the VLSI
microprocessor. To minimize the nimber of 1/O connections
needed to provide this information, the information is multi-
plexed over existing I/O. The multiplexing is controlled by
the status bus previously mentioned.

Improved manufacturing test capability

Due to the large number of circuits on the chips, it was
decided to follow the LSSD rules. This provided a mecha-
nism to automatically generate dc test patterns and provide a
procedure to determine the dc test coverage. This method
allowed the standard procedures to be followed in submitting
the chips for processing.

The chips (including the clock logic) were designed and
checked to ensure that the LSSD rules were followed. Once
the module design was complete, the module was checked to
ensure compliance with the LSSD rules. This procedure
resulted in a chip dc testability [10] greater than 99%, on all
four chips, and a module testability of greater than 95%.

In the development of the circuit family for the VLSI
microprocessor, circuit speed was an important factor. Like
most circuit families that are designed for speed, there are
components that are used for the exclusive purpose of speed;
i.e., the circuit will still operate properly without the compo-
nent but at a slower speed. This creates a testing problem
when a dc test is the only testing available. In order to ensure
that the circuits are functioning properly, they must be ac
tested (performance tested).

In the analysis of the problem for the processor system,
performing an ac test at the component level and at the
product level was considered. Looking at the resources
necessary and the existing capabilities, it was determined
that the product level test was best. In this case, the product
level is the card that contains the VLSI microprocessor.

When the details of the available card testers were studied,
the path to developing an ac test was clear. With the addition
of one card to the tester, the microprocessor module was
capable of executing machine code at machine speed when
attached to the tester. The oscillator necessary to operate the
processor was located on the added card. With this approach,
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the speed of the processor under test can be selected by the
tester. The added card contained a test program that
executed the complete instruction set of the processor with
the exception of 1/O instructions. The test consisted of 2000
bytes of code and exercised most of the circuits in the
processor. Working with the card test facility, the test was
assigned an 80% efficiency.

Conclusion

The design of the VLSI microprocessor showed that, with
sufficient planning, a VLSI design can result in a one-pass
machine. A key point is understanding the criteria to which
the machine must adhere. As an example, understanding the
machine software environment allowed tradeoffs between
performance and circuit count which did not affect system
throughput. Establishing automatic devices to facilitate the
design and to minimize manual interaction resulted in limit-
ing the main source of design error. The single source input
for the ROS illustrated this point during the design cycle.
While the ROS coding was a major cause of errors in
previous designs for machines of this type, it was not in this
design.

A comprehensive multiple-approach test strategy estab-
lished early in the design resulted in a product that exceeded
all test requirements, from the chip level through the final
product. Early comprehensive documentation and close com-
munication with all involved areas were essential in the
design phase. With the many complex functions required,
and with limited hardware resources to provide these func-
tions, the design task could not be accomplished without
early comprehensive documentation. The design environ-
ment was highly controlled (to control the progress of the
design) without placing undue restrictions on designers; thus,
a designer had primary responsibility for a function and
secondary responsibility for the overall design. This design
resulted in a fully functional first-pass machine.
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