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Design Considerations for a VLSI Microprocessor 

The machine architecture and design  considerations for  an interrupt-driven  bipolar  VLSI  Microprocessor are presented. The 
processor  is  designed to a complex architecture and includes an integrated channel and a flexible storage  interface. 
Floating-point functions are optional. A 3-ns custom  bipolar technology was developed for  the  microprocessor,  resulting in a 
very high circuit density  package. The 50-mm four-chip air-cooled  microprocessor module  is  packaged on a  printed-circuit 
card with associated  repowering  circuits and high-speed  random-access memory. Important  design  considerations and 
tradeoffs  associated with the development  of this machine,  within spec@  cost, performance, reliability, and schedule 
objectives, are discussed. Various  processor  design techniques are described which minimize  hardware where performance is 
not critical. A degree  of functional  parallelism is utilized,  as well as  timingjfexibility,  to  attain the required  performance. 

Introduction 
The VLSI  microprocessor that is the  subject of this  paper 
consists of four bipolar VLSI  chips  contained in a 50 x 
50-mm  361-pin  module.  A very high level of circuit  density is 
obtained in the microprocessor  module,  with approximately 
15 000 equivalent logic circuits  and a 5OK-bit (K = 1024) 
read-only  storage (ROS)  contained in it. 

Various aspects of the design and development of the 
VLSI microprocessor are discussed in this  paper  and in three 
companion papers  appearing in this issue. This  paper focuses 
on the logical  design  considerations and theprocessor  system 
architecture.  Chip design aspects  are  the  subject of the  paper 
by Mathews  and  Lee [ 11, which  discusses the technology, the 
chip  structure,  and  the pseudo-custom macro  chip design 
methodology used. The logical design  verification strategy 
used in the development of the processor system is described 
in the  paper by Tran,  Forsberg,  and  Lee  [2];  and  the physical 
and electrical  design  verification  procedures are covered in 
the  paper by McCabe  and Muszynski [3]. 

The  VLSI microprocessor  module is a key part of a 
processor-component functional building block subsystem, 
the  elements of which are  indicated in Fig. 1. These consist of 
a processor unit (PU), a storage  addressing subsystem 
(SASS), a  high-speed channel, a storage  control unit 
(SCU), afloating-point execution unit (FP),  and a multiple 
processor interfacing  capability. 

The processor is designed to a  32-bit architecture; i.e., the 
machine  can  operate on byte (8-bit), halfword (16-bit),  and 
fullword (32-bit)  operands,  and a storage addressing capabil- 
ity of up  to  32 bits is provided. The  implementation utilizes, 
in some cases, data flow that is less than 32 bits. This was 
done  to minimize cost and is logically transparent  to  the 
system. 

The  storage addressing  subsystem provides dynamic 
address  translation, relocation, and protection. Storage is 
allocated on a block basis, each block containing  2K bytes. 
Translation  tables  are physically located in the  same high- 
speed random-access memory (RAM)  that  contains  general 
registers and work space.  These  spaces  are kept logically 
separate by the  hardware.  The  channel  and  the PU share  the 
SASS,  and  the main storage  interface is asynchronous. 

The high-speed channel provides an 1 / 0  port to pass data 
between main storage  and  external devices. Main  storage 
data  alignment is handled by the  channel,  and  the 1/0 port is 
asynchronous. The  channel utilizes the logic of the processor 
unit to minimize  cost; therefore, when the  channel is active, 
the processor execution is suspended,  since the  data flow is 
shared. 

The  SCU controls the main storage  array  cards  [up  to  8M 
bytes ( M  = 1 048  576)  are  supported in  this implementa- 
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tion]. Error checking and correction (ECC) is used to 
correct single-bit errors  and most double-bit  errors.  The 
SCU contains a four-byte  data buffer as well as a four-byte 
instruction buffer. The processor-to-SCU data bus is a 
two-byte  bidirectional  bus with four-byte multiplexing capa- 
bility. The  SCU-to-storage  interface consists of two unidirec- 
tional four-byte buses. 

The floating-point unit  executes a  set of floating-point 
instructions  and is optional. It  has been implemented, with a 
minor change,  to  an existing  module. 

The  multiple processor interface provides a mechanism  to 
logically share  main  storage  and  translation  tables  among 
two or more processor systems. It  also provides an  interface 
to a shoulder-tap device which provides communication 
between the processor systems. 

The  VLSI microprocessor offers reliability,  availability, 
and serviceability (RAS) improvements as well as  certain 
functional  enhancements which were  not available on pre- 
vious machines of this type. Compatibility of programs is 
generally maintained,  although if new programs use  these 
enhancements  they will not run on previous machines.  The 
1 / 0  interface is physically and functionally compatible with 
previous machines. 

The  VLSI microprocessor is designed  using the level- 
sensitive scan design (LSSD)  [4]  technique.  Parity checking, 
parity prediction, and  ECC were used for enhanced  data 
integrity  and  RAS  characteristics.  It is highly ROS-control- 
led,  allowing functional refinement and design changes at  a 
single  point that  can be changed with minor  effect on the 
manufacturing masks. 

The processor system incorporates a  high degree of check- 
ing. Parity is carried or predicted throughout  the  machine. 
As previously mentioned, ECC is used  in  main storage. 
Process  checks are recorded at  each level and by type in a 
special register in the program  status word (PSW).  Machine 
checks are also logged by type in an  internal  register. If a 
process check occurs,  the  instruction is suppressed and  the 
PSW  instruction  counter points to  the  instruction in error. 
The  SASS prevents  individual programs  from accessing 
storage  that is not  assigned to those programs. Sufficient 
information is available  to isolate errors  to thejield-replace- 
able unit (FRU) level, which in this  case is the  card level. 

The design of a  complex processor using  a custom  VLSI 
approach is considerably  different from a standard  master- 
slice (gate-array) technology  [5]  design. With  custom  VLSI 
[ l ] ,  circuits  are positioned on a chip  as needed. The  circuits 
are  implemented in  various  configurations, and a certain 
amount of flexibility in circuit design  is  allowed. The mas- 
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Figure 1 VLSI microprocessor  and  processor-component  subsys- 
tem. 

terslice approach supplies  a fixed array of circuits  that  can be 
connected while observing specific predefined rules. Such 
items  as  circuit type, circuit  placement,  chip 1/0 connec- 
tions, power, and size are  predetermined when using master- 
slice but  must be considered when using custom  VLSI.  The 
design requirements  must  be established and understood 
completely  before the  actual design is begun. 

The  partitioning of the processor and  the  organization of 
the logic must be determined prior to  the  actual logic design. 
To accomplish this, a thorough  understanding of the technol- 
ogy and of the system  environment is necessary so that  the 
required design  tradeoffs  between processor performance, 
logic density, power, and packaging  considerations can be 
made.  The technology aspects of the  VLSI microprocessor 
are discussed  in more  detail in [ I ] .  A processor card was 
designed  consisting of four  custom bipolar logic chips  (the 
VLSI microprocessor module),  together with  a high-speed 
RAM (10K x 18  bits) and  an oscillator. The  organization of 
the  VLSI microprocessor module  and  its  interface with the 
RAM is shown  in  Fig. 2. 

The 4-wide by 3-high  (14.4-cm by 11.7-cm) processor 
card  has a  bottom  connector  with 144  contacts  and a top 
connector  with 92  contacts.  The  four  custom bipolar logic 
chips  are packaged in a  50-mm multilevel ceramic (MLC) 
module [6].  Each  chip  contains  the equivalent of 3000  to 
5000 circuits. In  addition, one of the logic chips  contains  an 
embedded  1024 x 50-bit ROS. The design is based on a 
hierarchical  approach using  a  set of functional macros as 
building blocks for  more  complex logical functions [ 1, 31. 

Experience  in this  pxject  has shown that  it is possible to 
develop  a processor U S I : ~ ~  custom  VLSI resulting in a  first- 
pass  design (the first set of hardware received from  the 
manufacturing  site)  that is functional. 

In the following sections of this  paper,  the processor 
system  design  objectives, the  functional  partitioning,  the 455 
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Figure 2 Organizational structure of 50-mm microprocessor mod- 
ule and 10K x 18-bit  random-access  memory. 

ROS control mechanism,  the  instruction execution, the 
integrated  channel,  and  the floating-point  option are first 
addressed. Then  the design of the  interrupt  mechanism,  the 
processor clocking, and  the arithmetic and logical unit 
(ALU)  are described in some  detail.  This is followed by 
discussions of the  storage protection mechanism  and work 
space considerations, the  multiple processor function,  and 
the design and  testing procedures. 

Design objectives 
The design philosophy of the processor system  was  based on 
meeting the following criteria: 

Packaging-The complete processor was to  be  packaged 
on one  card, including  a  high-speed channel  and 20K bytes 
of RAM. 

0 Cooling-By forced air. 
0 Performance-To be  greater  than  that of predecessor 

RAS-To exceed the specified standard  for reliability and 
serviceability and provide a high degree of testability  and 
internal  checking,  as well as recoverability. 
Compatibility-Logically compatible with previous im- 

0 Cost-Less than  the previous implementations. 
Schedule-To  produce functional  VLSI on the first pass 

machine. 

plementations. 

to  facilitate system  testing. 

The  VLSI microprocessor  was packaged on a  single mod- 
ule  in order  to meet the design requirement of a  one-card 
processor building-block component.  The  remaining  area on 
the  card was used to  accommodate  the high-speed RAM 456 
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(used for register space  and for storage  management  tables) 
and  an oscillator.  Because of the  large  number of circuits per 
chip it  was  necessary to  determine  the  manufacturing  test 
philosophy before the design was begun. The  LSSD  tech- 
nique  was used at  the  chip  and  module levels. The  testing  at 
the  card level was to  be done in two  steps. First,  the modules 
would be  dc tested  using the module in place (MIP)  test 
methodology [7]. After  the  dc  test was  successfully  com- 
pleted,  a functional  test  capability would be provided which 
would consist of running a representative  sample of machine 
code at  full  speed. 

Functional partitioning 
The  functional  partitioning of the  VLSI microprocessor was 
accomplished by first determining a  technology macro set to 
be used in the design. As  it  turned  out,  the definition of the 
macro  set was a  continuous process, with  some additions  and 
deletions as  the  detailed logic design  progressed.  Because of 
the  extent of the work involved in the design,  verification, 
and  layout of the macros, as well as  the one-pass  schedule 
criteria, a minimum  macro set was established. Following is 
a list of the macros that were developed. 

N-way AIS 
N-way  XORs 
off-chip receiver 

0 active  pullup  (tri-state) driver 
open collector driver 
LSSD  latch 
1024 x 50-bit ROS 

0 I x L x 0-way  PLAs  (programmable logic arrays [8]) 
I x L AND  array  with bit partitioning 
L x 0 O R  array 
where I = number of PLA  inputs, L = number of PLA 
product  terms,  and 0 = number of PLA  outputs. 

These  macros were  combined to offer design blocks con- 
taining  up  to nine macros per block. This allowed the 
designer to use, for example,  N-bit register macros  and  N-bit 
selector  macros. This provided an  aid  to logic designers as 
well as  to  chip  layout,  since  data flow was indicated by macro 
usage.  Because the design was being  executed  in custom 
logic, knowledge of the physical  properties of the  macros  as 
well as  the electrical characteristics of the set was required. 

Once a  basic  set of macros was established,  the  actual 
partitioning of the  machine could be started.  Several  other 
major  factors  that  had  to  be considered during  this  time were 
chip power, driver switching  activity, and  the  practical limit 
of chip size  relative to wafer yield and,  therefore, cost. 

The initial  pass  for the  partitioning  indicated  that  the 
conventional partition would not result in a machine  that 
could be  contained within the  chip  count  required or with an 
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acceptable 1/0 pin count  at  the  card or chip level. This 
partition resulted  in excessive logic and  lack of wireability. 
An  examination of the system  environment  in  which the 
processor system  was to  be used indicated several areas  that 
could reduce  the  amount of chip logic a t  some cost  in 
performance  and not  affect the system throughput.  These 
tradeoffs are examined  in  more detail subsequently. 

Difficulty was experienced in containing  the  number of 
1/0 connections at  all levels of packaging. The  card develop- 
ment  group developed a card connector  with 1 / 0  connections 
at  the bottom of the  card increased by 50%. This new 
connector was helpful but still constrained  the  card 1/0 
design flexibility. Therefore,  the  storage  address bus was 
multiplexed to relieve the  card 1/0 requirement. A status 
code was used to  inform  the  external  attachments of the  type 
of data on this bus, which is used to  transfer  information or 
main storage  addresses  depending on a status code. This 
approach saved  a  significant number of card 1 / 0  connec- 
tions. Similar  techniques were used to keep the  number of 
chip  and module 1 / 0  connections at  an  acceptable level. 

With  the  initial  partitioning completed, the detailed 
design  was started.  As  the design  progressed, the  macro set 
and  partitioning were modified to meet circuit  and logic 
design  refinements. The final partitioning resulted in four 
chips of equal size and  approximately equivalent 1/0 count. 
The three-sigma  worst-case power dissipation of each  chip 
was  between 3.0 and 3.5 watts. 

Machine control 
The  VLSI microprocessor is controlled by a  high-speed 
1024 x 50-bit ROS which contains microcode routines for 
the decoding and execution of instructions  as well as  proces- 
sor control  subroutines (e.g., interrupt,  PSW swap, machine 
check, channel).  See Fig. 2 for the  general  organization  and 
inter-chip  data flow interconnections. 

The ROS word is divided into  the following control fields: 

Chip 1 control 
ALU  control/tester control 
Chip 2 control 
High-speed RAM control 

0 Chip 3 control 
SASS  control 

0 Clock control 
Next-address/branch code type 
Branch  control 

The  next-address field is used for both  conditional and 
unconditional ROS branching.  When  branching conditional- 
ly, part of the  next-address field defines the  branch code 
type. The  complete field is used as  an  address for branching 

unconditionally. Thus,  the  branch code type  represents both 
address  and  data.  Ten of the  ROS  output bits are used for the 
“next-address field.” An  additional bit  is  implemented as  the 
“branch bit.”  If the  branch bit is inactive, the  branch is 
unconditional; if the  branch bit is active, the five low-order 
bits of the next-address field are inspected  for the  branch 
condition. For a  conditional branch not taken,  the present 
ROS address is incremented by one to  generate  the next 
address for the ROS. If the  branch is taken, conditionally or 
unconditionally, the next-address field is the next ROS 
address.  This  procedure continues until  an “exit” is reached 
in the microcode  sequence. At  this  time,  the ROS address is 
generated from the  instruction decode. 

ROS design tool 
Previous  design  experience  indicated that  an improved 
method was needed to  generate ROS  code, to check the 
ROS, to personalize the ROS, and  to  document  the code. 
Such a design tool should operate on a  single  source of data  to 
enable  the elimination of manual  errors  and  to  facilitate 
changes  and verification. 

A PL/I  program was developed that took a  single-source 
data set and  generated physical  addresses,  checked function, 
and produced an easy-to-read document.  This  data set was 
also used to  generate  the  ROS personality used on the  chip  as 
well as on the simulation models. The physical address 
generation relieved the ROS coder from  having to be aware 
of physical constraints  and allowed him to  write code in a 
logical  sequence. This  facilitated readability of the  automati- 
cally generated  documentation  and also eliminated  the possi- 
bility of transcription  errors.  In  addition,  the labeling and 
footnoting capability  enhanced  the  readability of the docu- 
mentation. 

A  considerable amount of checking was built into  the 
program. ROS control was  chosen  because  it provides unam- 
biguous control function and lends itself to  clear, easy- 
to-read  documentation.  It is easy to modify and requires only 
personality changes on one level of the  chip mask. The 
turn-around required to  make a ROS (personality)  change 
with this tool is measured in days instead of months for  a 
circuit  change.  Due  to  the one-pass VLSI design commit- 
ment,  the use of control  ROS was instrumental in meeting 
the schedule. 

Instruction fetch and execution 
The  instruction  fetch  and  the decoding of the next instruction 
is overlapped  with the  instruction execution. Other  machine 
functions,  such as monitoring the  external  interrupts,  chan- 
nel requests, and  instruction-counter synchronization, are 
performed in parallel with  execution (see Fig. 3). Exception 
cases  are handled  such that execution is suppressed in 
accordance with the  architecture. An eight-byte buffer is 
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located in the  storage  control unit (SCU)  as  an  instruction 
cache.  The PU-SCU interface is asynchronous;  a  signal 
(Select)  to  the  SCU  indicates  that a storage  operation was 
required and  that  the PU-SCU interface is valid. The  SCU 
then signals  with  a  line (Ready)  that  the requested data  are 
available on the  data bus (if the  operation is a read)  or  that 
the operation is complete (if the  request is a write). If the  PU 
reaches a  point that it requires  the  SCU response, the  PU 
stops executing  and waits. 

The  time  available for the  SCU  to respond to  the  PU 
varies  depending on what  the  machine  can  do while waiting 
for the response. The microcode  is written so that  the  PU will 
continue  to  execute  until  it  requires a  response from  the 
SCU. If the  instruction being fetched is in the  instruction 
buffer, there is no wait period because the  SCU will respond 
faster  than is required.  The point a t  which the  PU waits  for  a 
response is dependent on the  particular  request  to  the  SCU. 
If the request is for  a fetch of the next instruction,  the  PU 
only requires one  machine cycle to decode the  instruction, so 
the wait is microcoded one  machine cycle from  the  end of the 
instruction. If the request to  the  SCU is a data  fetch,  the wait 
is microcoded at  the point that  the  PU is to  operate on that 
data.  The  translation  table  operation for the next SCU 
operation can coincide  with the  current  SCU  operation. 

A four-byte  (fullword)  data buffer is used in the  SCU  to 
allow a  fullword store  operation. Because of 1/0 pin limita- 
tions, the  data  interface between the  PU  and  the  SCU is a 
halfword.  However, the  interface between the  SCU  and  the 
main  store is a  fullword. The  architecture  contains  instruc- 
tions that  operate on more than  one halfword at  a time;  the 
SCU implements a  fullword data buffer to improve the 
performance of these instructions. The  SCU  can access the 
storage a  fullword a t  a time while operating with the  PU on a 
halfword basis using this buffer. This  mechanism is also  used 
in channel  burst operations. 
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Integrated channel 
As previously mentioned, the  channel  shares  the processor 
logic for cost savings. It drives  a  halfword 1/0 port  asynchro- 
nously. Data  can be byte- or halfword-aligned and  the 
channel  can  operate with combinations of byte or halfword 
devices. FRU isolation is provided by the  channel  hardware. 
The  channel-SCU  interface uses the SASS function. 

Floating-point operations 
A floating-point (FP)  module existed for a previous 
machine, so development of a new module would not  have 
been cost-effective. Instead,  the FP module  control  was 
modified to  map  the  machine  interface of the processor to 
that of the  FP.  The key here was  use of the  variable-length 
machine cycle of the processor unit, which allowed the 
processor machine cycle to be mapped to  the cycle of the 
existing FP module. 

Interrupt mechanism 
The purpose of the  interrupt  mechanism is to  generate  an 
internal mask which is used in monitoring the 1 / 0  interrupt 
request bus. Once  an allowable request is found,  this  mecha- 
nism has  to  store  information  pertaining  to  the present level 
and retrieve  necessary  information  for the level to which the 
machine has been interrupted (next level). 

A significant part of the  interrupt mechanism  for this 
processor is contained in a ROS  subroutine.  The reason  for 
this is that  interruptions were infrequent relative to  instruc- 
tion execution, so performance  degradation was an insignifi- 
cant  factor. By sharing existing  function to  handle  interrupts, 
logic was  minimized so the microprocessor  could be con- 
tained within the  four chips. The  interrupt  subroutine seeks 
out  the highest-priority interrupt request among unmasked 
requests made  from  either  the  program  or 1/0 devices. Once 
that  request is found, the  internal  mask  to be used at  the next 
level is generated  and stored in the  interrupt register. The 
subroutine  then  compares  the  current level with the new level 
obtained  to  determine if they  are  the  same.  They could be  the 
same since the  machine could branch  into  the  interrupt 
subroutine without changing levels from  any one of several 
control  instructions. If the two levels are  the  same,  the 
subroutine exits and  the processor executes the next instruc- 
tion; if the two levels are different, the  subroutine  branches  to 
the  PSW  swap routine. 

An internal  mask is used to look at  the  external 1 /0  
interrupts. If a  higher-level unmasked request is sensed, or if 
the present interrupt is removed, the  hardware requests  a 
swap  to  the highest interrupt level pending. This design 
provides a fast  detection of changes in external  interrupts. 

An additional  feature  incorporated  into  the  interrupt 
design is a hardware  retry. If  a parity  error is detected  during 
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a sampling of the  interrupt bus, the  hardware performs an 
automatic  retry.  After seven tries, if the  error still  exists, the 
error is reported. 

Clock design and timing considerations 
The  VLSI microprocessor clock is an  LSSD clock design 
driven by a  single-phase  oscillator. A four-bit  shift  register 
generates  four  sequential pulses named C1, C2, C3, and C4. 
They  switch  after  the rising transition of the oscillator input. 
The  shift  register is self-correcting and will not  have  more 
than  one clock active at  any  one  time  after its initial  start 
cycle. 

The processor  clock  also generates  four feature clocks 
called F1, F2, F3, and F4. These clocks are used by logic 
external  to  the processor;  they  become active at  the  same 
time  as  their corresponding “C” clock and  remain  active 
until the middle of the next sequential “C” clock. 

The  machine cycle time  can  be varied in two  ways. Y 
clocks are  dead  times (no machine clocks are active) that 
occur between C3 and C4 (see Fig. 3). There  can be up  to 
three of them in one  machine cycle. The Y clocks are  under 
ROS  control. 

“Hold” clocks can  occur between C2 and C3 and  are of an 
indefinite  length. They  are controlled in part by an  external 
event,  usually asynchronous  to  the  machine clock logic. 
Under ROS control,  the clock logic can hold for storage or 
1/0 operations. A storage hold will prevent C3 from becom- 
ing active until the  storage  has responded to a storage  Select 
signal. An 1/0 hold will prevent C3 from becoming active 
until  there is a  response from  an 1/0 device or a timeout 
exception  occurs. 

“Storage clock” is a square wave generated by the  PU. 
The negative active levels of “storage clock” are coincident 
with machine clocks C1  and C3. If there  are Y clocks 
between C3 and C4, the  storage clock will remain active  until 
C4 becomes active. If the clocks are being held or are 
stopped,  the  storage clock will continue.  This clock provides 
synchronism  for SCU-PU controls. 

The clock logic can be stopped and  then run in a manual 
mode under  the  control of a few external signals.  A  “stop” 
signal to  the clock logic will cause  the clocks to  stop at  the 
end of the  current  instruction.  After  the  last C4, the clock 
logic will signal that it has stopped.  If the  stop signal is 
removed, the clocks will resume with C1. While  the  stop 
signal is active, the clocks can be run in  a  single-instruction 
or single-cycle  mode. Single-instruction mode will cause  the 
clocks to  run  until  the  end of the next instruction. Single- 
cycle operation will cause  the clocks to run for one  machine 
cycle. 
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Figure 4 Arithmetic and  Logical Unit (ALU) data flow. (Note: 
RCV = receiver, DRV = driver, SEL = selector.) 

In order  to minimize the effect of asynchronous external 
signals which could cause  metastability in the logic, the 
signals  are  latched with a clock that will be inactive  for one 
more clock period before the signal is used. Thus  the  primary 
latch  may  go  metastable  but propagation of the  metastable 
signal is unlikely. 

Arithmetic and logical unit  design 
The  VLSI microprocessor ALU is used in the configuration 
shown in Fig. 4. The buses shown are  all 16  bits  plus 2 parity 
bits. The  ALU design had  the following objectives: 

16-bit data flow, performing the  standard  ALU functions 

Medium  performance, allowing  a  propagation  delay of two 

Output  parity prediction  based on input  data  and  parity 

of SUM,  AND,  OR,  and  EXCLUSIVE-OR. 

circuits per bit for the  SUM  operation. 

[91. 

The  ALU bit slice is shown in Fig. 5. Two of the  eight 
circuits shown (those  marked with *) are for parity predic- 
tion. There  are four  lines to  control  the  ALU.  The control 
lines are 

SN-Active if a SUM or AND operation is required. 
SO-Active if a SUM or OR operation is required. 
SX-Active if a SUM or XOR  operation is required. 
SNO-Active if a SUM or AND or O R  operation  is 
required. 459 
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* R  

Figure 5 ALU bit slice. (Note:  OE = EXCLUSIVE OR, 
AI = AND-INVERT.) 

Additional  parity-prediction logic required  for each  byte 
of the  ALU is shown in Fig. 6 (here,  the  control lines are 
indicated  as K ) .  The  resultant design  achieves 100% single- 
error detection  for all  circuit  faults except  for  control lines. 
Errors  are  detected by a parity  check on the  output  data  and 
predicted parity  further on in the  data flow. 

One reason  for the low circuit  count is that  the  sum 
operation uses ripple carry propagation instead of carry- 
look-ahead. This allows each  ALU bit to  be  identical  and 
also simplifies the achievement of 100% single-error detec- 
tion of circuit  faults.  An  added benefit is that  the  traditional 
selector  on an  ALU which is used to select the desired 
function on the  output  can be eliminated. 

The  elimination of the  output  function selector further 
reduces the  circuit  count  required.  The  penalty is that  the 
OR  and  AND functions are  shifted  left  one bit via the  carry 
propagation lines. Since  the  ALU  requires a shift-right 
selector  for multiplication, a compensating  shift  right is 
performed at  no cost in circuits or performarice  for  every OR 
or AND function. 

Circuit  faults in the  ALU  are  detected by a parity  check 
performed  on the  output  data  and predicted output  parity. 
This check is performed  before the  data  are driven  off-chip 

460 on Fig. 4. Other  circuit  faults, both  before and  after  the 
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ALU, will show up in the  same  check;  that is why parity 
prediction rather  than  parity  generation of the  ALU  output 
parity is used. 

The  equations for the predicted output  parity  are  as 
follows: 

SUM:p(r )  = p ( a )  + p(b)  + p ( c ) ,  

XOR:p(r)  = - p ( a )  + p(b) ,  

AND:p(r )  = p ( a )  + p(b)  + p ( o ) ,  

O R : p ( r )  = p ( a )  + p(b)  + p i n ) ,  

wherep(r), p ( a ) ,  andp(b)   are   the parity bits of the  result, 
the a input,  and  the b input, respectively; p ( c )  is the  parity of 
the  carry  inputs  into  each bit; p ( o )  is the  parity of a O R  b, 
p ( n )  is the  parity of a AND b; and  the "+" operation is a 
logical OR.  Note  that  the  parity  tree shown in Fig. 6 
generates p ( c ) ,  p ( o ) ,  or p ( n )  depending on whether  the 
ALU  operation is SUM,  AND, or OR, respectively. 

One  hundred  percent single-error detection  can  be  demon- 
strated based on the  fact  that  any  circuit  fault will affect an 
odd number of outputs which drive  a parity  check  tree.  To 
show this, note  the following with reference  to Figs. 5 and 6 :  

The r outputs  are connected to a parity  tree  further on  in 

0 The POUT lines (Po through P, and P,, of Fig. 6 )  are 
connected to  the  parity  tree shown in Fig. 6 .  This  tree is 
active  for all  ALU  functions except the  XOR.  The  output 
is the predicted parity which is eventually  checked  in the 
data flow. 
The CouT line (Fig. 5) affects the R output of the next 
stage  (the  three  AIS  generating R are connected in an 
exclusive-or  configuration) and  either none or both of the 
next stage POUT and C,,, lines. Thus, CouT affects an odd 
number of R and POUT outputs. 
Any  circuit  fault in a given stage will either affect POUT, 
CouT, or R alone, or will affect R and both POUT and 

For  the  XOR  function, POUT and CouT are  either not used 
or turned off. In  this  case  any  circuit  fault will either affect 
the R output of the given stage or the R output of the next 
stage. 

the  data flow. 

'OUT' 

Storage protection 
Storage  translation  and protection is allocated on 2K-byte 
blocks. Translation  space is implemented in separate high- 
speed RAM,  as  illustrated in Fig. 2. In  order  to  increase  the 
logical address  capabiiity  and flexibility, an identifier field 
(LOCK) is associated  with each  translation  table  entry.  This 
LOCK, if not = 0, must  match a KEY located  in the PSW. 
If the  KEY or LOCK = 0, the  match is  assumed. This allows 
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programs  to  be assigned  both private  and  shared  areas on 
2K-byte x n blocks. This facility  could  assist  a software 
storage  management mechanism. 

Work space 
With  the  organization of the high-speed RAM  that was 
chosen, there was  a  portion that was not  required  for 
general-purpose registers or translation tables. In  order  to 
meet the  packaging objectives, this portion of the  RAM is 
used as  general work space (region WS, Fig. 2).  Most of the 
registers  necessary  for the  interrupt  mechanism,  the  address 
recovery register, program control  functions, and  temporary 
registers are  implemented in this  area of the  RAM. 

A copy of the  instruction  counter  (the recovery register) is 
saved here whenever a branch-type or jump-type  instruction 
is executed. If an  error occurs, the  address of the  instruction 
is derived from  the recovery register  and a  two-bit hardware 
counter which keeps track of the  displacement of the  instruc- 
tion address  from  the recovery register. The recovery register 
enables  the  instruction  counter  to be used as a data-address 
register  during  storage-to-storage operations. 

By implementing control space in work space,  hardware 
registers  are minimized and  control  space is made  available 
to  the service tool. 

Multiple processor configurations 
The processor system  can be attached  to  additional processor 
systems through  the  SCU.  One  or two SCUs  can  be  attached 
to  each processor system.  If  two are  attached,  each one 
addresses  the even-odd word, respectively. This allows stor- 
age  refresh  and cycle  overhead to  be effectively reduced to 
zero. Each SCU contains contention logic, which  allows  two 
or more pairs of SCUs  to  share  the  same  storage,  thus 
allowing multiple processors to  share  the  same  storage with 
no new hardware. Function is built  into  the  SCUs  to allow 
dynamic  duplication of translation  tables  to effectively allow 
each processor system  to  share  the  storage  map (except for a 
fixed amount assigned to  each processor). The processor 
systems communicate over the 1 / 0  interface  through a 
shoulder-tap device. 

Design procedure 
The design  responsibility of the processor  system  was  divided 
into  four groups: the  PU/SASS/channel logic design, the 
SCU logic design, functional  test  generation,  and  hardware 
modeling.  A  nodal-equivalent hardware model  was  built [2]. 
Each  custom  chip was  assigned to two or three people who 
had  complete responsibility  for the design. As the  data flow 
progressed,  a  comprehensive chip description  was written by 
each  chip  group.  The  ROS  document was available  early in 
the design.  As changes were made  to  the ROS, a PL/I 
program  automatically  time-stamped  the  change in the ROS 
document. 

L 

Figure 6 ALU bit slice  connection and parity prediction. (Note: 
C,, is equal  to P,, .) 

A strict engineering change  procedure was  established to 
coordinate  the design  with the verification models and docu- 
mentation.  Changes  had  to  be acknowledged by all  groups 
before the  VLSI  change was  complete. 

RAS design 
Parity is carried  throughout  the  machine.  ECC on main 
storage  automatically  corrects  all single-bit and virtually all 
double-bit errors on both fetch  and  store operations. The 
SCU uses the  ECC logic to  predict  parity,  and main storage 
address  parity is included in the  ECC, so the  SCU is highly 
checked.  A  diagnostic  mode allows software checking of the 
SCU  and  storage. 

More  than 90% of the processor logic is error checked. The 
errors  are reported in a  set of registers which are available  for 
software diagnostics and  FRU isolation. 

Due  to  the  nature of the  dense technology  used, the  failure 
rate is very low relative to previous  technologies. The design 
itself uses three-sigma worst-case  delay  assumptions, provid- 
ing manufacturing  margin  and increasing  reliability.  A 
special interface provides access to  internal  status for moni- 
toring  the  machine.  An engineering tool was developed to 
help  the system  designer  build and  debug  the system. 

Integrated test capability 
With  the  density of the physical package of the processor, 
test  requirements a t  all levels of the design had  to be 46 1 
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established. On the basis of previous  designs, the required 
test  functions were known. The following are  the  major 
functions provided: 

stop 
0 single-cycle step 

single-instruction step 
read/write  register by external  means 

0 read/write  storage by external  means 
machine  status  (interrupt level, logical address,  etc.) 

Most of the  information provided is internal  to  the  VLSI 
microprocessor. To minimize the  number of 1/0 connections 
needed to provide this  information,  the  information is multi- 
plexed over existing I/O. The multiplexing is controlled by 
the  status  bus previously mentioned. 

Improved manufacturing test capability 
Due  to  the  large  number of circuits on the  chips, it  was 
decided to follow the  LSSD rules. This provided a mecha- 
nism to  automatically  generate  dc  test  patterns  and provide a 
procedure  to  determine  the dc test coverage. This method 
allowed the  standard  procedures  to be followed in submitting 
the  chips for  processing. 

The  chips  (including  the clock logic) were  designed and 
checked to  ensure  that  the  LSSD  rules were followed. Once 
the  module design  was complete,  the  module was  checked to 
ensure  compliance with the  LSSD rules. This  procedure 
resulted in a chip dc testability [ 101 greater  than 99%, on all 
four chips, and a  module testability of greater  than 95%. 

In the development of the  circuit family  for the  VLSI 
microprocessor, circuit speed was an  important  factor.  Like 
most circuit families that  are designed for speed, there  are 
components  that  are used for the exclusive purpose of speed; 
i.e., the  circuit will still operate properly  without the compo- 
nent but a t  a slower speed. This  creates a testing problem 
when a dc  test is the only testing  available. In order  to  ensure 
that  the  circuits  are functioning  properly, they  must be ac 
tested (performance  tested). 

In the  analysis of the problem  for the processor system, 
performing  an  ac  test  at  the component level and  at  the 
product level was  considered.  Looking at  the resources 
necessary and  the existing capabilities,  it was determined 
that  the  product level test  was  best. In this case, the product 
level is the  card  that  contains  the  VLSI microprocessor. 

When  the  details of the  available  card  testers were studied, 
the  path  to developing an  ac  test was clear.  With  the  addition 
of one  card  to  the  tester,  the microprocessor module was 
capable of executing  machine code at  machine speed when 
attached  to  the  tester.  The oscillator  necessary to  operate  the 
processor was located on the  added  card.  With  this  approach, 

the speed of the processor under  test  can be selected by the 
tester.  The  added  card  contained a test  program  that 
executed the complete instruction set of the processor with 
the exception of 1 / 0  instructions.  The  test consisted of 2000 
bytes of code and exercised  most of the  circuits in the 
processor. Working with the  card  test  facility,  the  test was 
assigned an 80% efficiency. 

Conclusion 
The design of the  VLSI microprocessor showed that, with 
sufficient planning,  a VLSI design can result in a  one-pass 
machine. A Key point is understanding  the  criteria  to which 
the  machine  inust  adhere. As an  example,  understanding  the 
machine  software environment allowed tradeoffs  between 
performance  and  circuit  count which did not affect  system 
throughput. Establishing automatic devices to  facilitate  the 
design and  to minimize manual  interaction resulted  in  limit- 
ing the  main  source of design error.  The single  source input 
for the ROS illustrated  this point during  the design  cycle. 
While  the ROS coding  was  a major  cause of errors in 
previous designs for machines of this type,  it  was not in this 
design. 

A  comprehensive multiple-approach  test  strategy  estab- 
lished early in the design  resulted in a  product that exceeded 
all  test requirements,  from  the  chip level through  the final 
product. Early comprehensive documentation  and close com- 
munication with all involved areas were  essential in the 
design  phase. With  the  many complex  functions required, 
and with  limited hardware resources to provide these func- 
tions, the design task could  not be accomplished  without 
early comprehensive documentation.  The design  environ- 
ment was  highly  controlled (to control the progress of the 
design)  without  placing undue  restrictions on designers; thus, 
a  designer had  primary responsibility  for  a  function and 
secondary  responsibility  for the overall  design. This design 
resulted in a  fully functional first-pass  machine. 
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