440

Common Chip for Use in Disk and Diskette Controllers

The advent of LSI technology makes common microprogrammable controllers very cost-effective today. This paper focuses on
the application of microcontrollers for disk and diskette control functions and describes a custom-designed FET chip which is
being developed for use in these types of controllers. The architecture, the functional organization, and the physical design of
this chip are presented, and the requirement of matching a microcontroller to the application is discussed.

Introduction

Many existing IBM systems have utilized unique disk and
diskette attachments; an example is the attachment of the
72MD diskette magazine drive to the Series/1 [1], System/
34 [2], and System/38 [3]. These attachments were opti-
mized to the internal structure of each system in order to
minimize product cost.

With the advent of LSI, product cost per circuit has
decreased significantly, while both design time and develop-
ment cost per circuit have increased. These factors make it
cost-effective today to produce common controller designs
for attaching disk and diskette drives to a system. An
instance of such a common design was used in the attach-
ment of the 62PC disk drive to the Series/1 [4] and
System/34 [5].

Our objective was to provide common controllers for newly
developed disk and diskette drives which would be available
to each system using those drives. Product cost and develop-
ment resource constraints, along with the need to present a
common appearance for differing drives, led to the develop-
ment of a common chip which serves as a building block
central to several controllers.

In the following sections of this paper, the design consider-
ations leading to the development of this chip are first
discussed. Each functional area of the chip is then described,
including the microcontroller, the Random-Access Memory
(RAM), the system port, and the device port. The physical

design of the chip is then discussed briefly, followed by some
conclusions concerning the design effort.

Design considerations

A common approach to designing controllers is complicated
by unique drive characteristics. One example is that disk
data rates are an order of magnitude higher than diskette
data rates. Sector sizes and data organization vary from one
drive to another. Access control requirements also vary.
Another factor is that diskette drive attachments are more
cost-sensitive because a diskette drive costs much less than a
disk drive.

To allow common attachments, it is necessary to provide
an interface which improves device independence. This
makes the initial attachment of a unique device simpler and
facilitates migration from device to device. Some of the
features of this interface are as follows:

& Sectors are addressed logically by a consecutive linear
number. The system need not be aware of physical disk
characteristics (e.g., number of heads) because the con-
troller performs the logical-to-physical translation.

& Data are transferred using simple read and write com-
mands, with data accessing occurring automatically. Sep-
arate seek commands are unnecessary.

& Error recovery procedures and diagnostics are provided by
the controller. These are typically unique to each device
and in the past have been written uniquely by each system
development group.

© Copyright 1982 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the

Editor.

G. L. DIX AND M. D. BROWN

IBM J. RES. DEVELOP. ¢, VOL. 26 9,NO. 4 ¢gJULY 1982

& Multisector data buffering is provided which is designed to
prevent channel overrun conditions and to handle a range
of system channel performance.

It was apparent that a microcontroller would be a cost-
effective way of providing these higher-level functions. It
would also provide flexibility, since many of the unique drive
characteristics could be handled with microcode. A properly
architected microcontroller would also displace logic by
taking over control of such functions as access control,
spindle speed control, and processing between sectors.

Note that we have referred to a requirement for a micro-
controller (i.e., optimized to device control) rather than to a
microprocessor (i.e., optimized to data processing).
Although the distinction is somewhat nebulous, the following
features were desired.

o Fast execution of simple functions. A two-operand
instruction architecture usually performs better than a
single-operand, accumulator-based architecture because
fewer instructions are required. Since many operations will
involve 1/O control registers, these control registers should
not require special I/O instructions, but should instead be
directly addressable as operands.

® Low cost. This can be accomplished by using an eight-bit
data flow with a relatively simple instruction set. Simple
arithmetic capability is necessary, but operations like
multiply are infrequently used and can be provided by
subroutine.

® Fast interrupt response. Significant 1/O events can be
communicated by an interrupt mechanism rather than by
being sensed by a poll loop. Response time includes any
instructions necessary to save internal registers; automatic
hardware saving is desirable.

The original intent was to use an existing microcontroller;
therefore, several were evaluated. Some of those evaluated
are described in [6—10]. Performance was evaluated by
coding representative kernels to determine execution time
and the number of bytes of microcode required. Cost was also
evaluated and included all components necessary to complete
a disk/diskette controller. The result was that none of the
microcontrollers evaluated satisfied both the cost and per-
formance objectives.

One of the microcontrollers evaluated [9] seemed to be a
good fit to the application and incorporated many of the
features previously described. The problem was that it had
been implemented in a high-performance bipolar technology
[11] and it exceeded our cost objectives. Since it also
exceeded our performance objectives, a possible solution was
to implement the same function in a lower-cost FET technol-
ogy. Initial estimates indicated that a redesign using FET

IBM J. RES. DEVELOP. ¢ VOL. 26 &« NO. 4 ¢ JULY 1982

Read-Onty
Storage
(ROS)

Microcontroller

System Device Device

port __] !__ port logic

pMmA | [oma

Random-Access
Memory (RAM)

Figure 1 Controller structure. (Note: DMA = Direct Memory
Access.)

technology could meet our performance objectives and that it
could be packaged on a portion of a chip. Several packaging
alternatives were then examined, resulting in the common
chip and overall controller structure shown in Fig. 1.

In addition to the microcontroller, the common chip
contains a RAM, a system port, and a device port. In a more
conventional partitioning, the microcontroller and RAM
would be on separate chips, while the RAM controls, system
port, and device port would require one or more chips. In
addition, off-the-shelf chips generally do not interface
directly together, but require some “glue” logic; combining
functions on a single chip eliminates this glue. The end result
is that the chip configuration shown has a significant cost
leverage over a comparable multiple-chip design.

Functions included within the common chip allow it to be
used in several diskette controllers. The ROS personality and
the device logic are unique to a specific controiler and are
partitioned onto separate chips.

Separate buses are used for the ROS, control registers,
and RAM interfaces. This isolates the instruction path from
the data path and allows the microcontroller to operate
concurrently with the high-speed data transfer required by
disk files.

Microcontroller

As previously mentioned, the instruction set of an existing
microcontroller [9] formed the starting point of the design.
As the design progressed, some changes were made to better
suit the application; significant changes are as follows:

o The address space was partitioned to allow addressing of
either the on-chip RAM or the off-chip ROS.

441

G. L. DIX AND M. D. BROWN

442

01 234 56 78 9101 121314 15
11 A N U N S s |

| [\
BR 0000 700 ns
Branch
BAL o110 address 700 ns
BC 0 1 0 0| Cond l 1 700 ns
RR o1 11 ALU LSR2 LSR1 900 ns
Rl 1 I K AlU K LSR 700 ns
CI 001 ALU CR K/LSR 700 ns
BOB-LSR (0 1 O 1 d LSR 900/1600 ns
Bit Displ
BOB-CR 0001 CR 700/1400 ns
DBO 0K K Kl = 1200 ns
F =
CS1 I | 0 1600 ns
0100]
BALR I 10 LSR2 LSR! |R{| 900ns
1
COPY 11 700 ns
ALU functions Abbreviations
And LSR = Local Store Register
Or CR = Control Register
Exclusive Or K = Immediate Operand
Test Under Mask P = Polarity
Compare I = Increment Address
Bit Clear F = Fetch
Move R = Reserved
Add
Add with Carry
Subtract

Subtract with Borrow

Figure 2 Instruction set.

® An indexing capability was added to the addressing of the
on-chip RAM.
® A subtract function was added to the ALU.

The microcontroller uses a 16-bit microinstruction with up
to 16 sub-operations (sub-ops) in a single instruction. There
are six branch-type instructions, four register instructions,
and two storage instructions. The register instructions
address either local store registers (LSRs) or control regis-
ters (CRs). The storage instructions address either external
control store or the on-chip dynamic RAM.

A summary of the microinstruction set follows (Note: an
instruction = 16 bits, a halfword = 16 bits, and K =
1024):

BR: Branch within the 4K block of instructions,
with the address specified by the immediate
data.

G. L. DIX AND M. D. BROWN

BAL: 4K branch, with the branch address specified
by the immediate data and return address
saved in the LSRs.

BALR: 64K branch, with both branch and return
address in the LSRs.

BC: 256-instruction branch on condition code.

BOB-LSR: 16-instruction branch based on the state of a bit
in a specified LSR.

BOB-CR: 16-instruction branch based on the state of a bit
in the specified CR.

RR: LSR-to-LSR ALU operation—has 12 sub-
ops.

RI: LSR immediate ALU operation with 8 sub-
ops.

CL: Control register immediate operation with 16
sub-ops.

COPY: Copies one LSR halfword to another.

DBO: Moves a halfword between an LSR and the

RAM. LSRI1 contains a base RAM address
which is ORed with a 6-bit immediate field to
perform an indexing function.

CS1: Moves a halfword between an LSR and the
ROS/RAM. LSR1 contains the ROS/RAM
address and LSR2 is the data source or destina-
tion. The ROS/RAM address is optionally
incremented.

The instruction set code points and the execution times of the
instructions are summarized in Fig. 2.

The local store registers are implemented as a 64 x 16
static RAM which can be read or written in either byte (8
bits) or halfword (16 bits) mode. These LSRs are partitioned
into 16 pages, with each page containing 8 bytes. A local
store page register (LSPR) provides for independent selec-
tion of a primary and secondary page. The LSR addressing
field within the instruction can select a byte or halfword
within either the primary or secondary page.

The instruction set can address up to 32 control registers.
These 8-bit hardware registers are used to control the system
port, the device port, the dynamic RAM, and the interrupts.
A 5-bit field in the instruction directly addresses the register
to be used.

The data flow (shown in Fig. 3) was modified from the
bipolar design to allow operations in parallel and to obtain
more performance with the slower FET technology. For
example, the bipolar design utilized the ALU to assist in
incrementing the instruction address, while the FET design
has a separate incrementer. Another difference is that the
LSRs and the interrupt controls have been integrated into
the microcontroller. Programmable logic arrays (PLAs)
were used in selected areas in order to simplify the design

I1BM J. RES. DEVELOP. » VOL. 26 ® NO. 4 o JULY 1982

process and facilitate change. The ALU is an 8-bit design
providing arithmetic and logical functions. The LSR has an
8-bit path to and from the ALU, but the rest of the LSR
paths are 16 bits wide. A path between the LSRs and the
Memory Address Register/Back-Up Register (MAR/
BUR) provides branching capability. Another path between
the LSRs and dynamic RAM gives the microcontroller
access to the RAM. There is a third path between the LSRs
and control store. Finally, a 16-bit path connects the output
of the LSRs to the input to the LSRs to allow copying one
LSR pair to another in one instruction time.

There are eight interrupt levels in the microcontroller,
Levels O through 7: Level 0 has the highest priority while
Level 7 is the default level. There are two interrupt registers;
CR29 is the interrupt-request register and CR30 is the
interrupt-enable register. The interrupt request is normally
set by a hardware event, but it is also settable by the
microcode. When an interrupt request becomes active and
has the highest priority of the enabled levels, a Program
Status Word (PSW) swap will occur. The instruction
address, the condition code, and the LSPR are automatically
exchanged and the microcontroller starts executing at the
new level. The delay from receipt of the interrupt request
until execution begins in the new level is a maximum of two
instruction times. To exit from an interrupt level, the micro-
controller resets the level bit in the request register. This
causes a PSW swap and execution begins on the next highest
active level.

The chip can address up to 32K halfwords of external
ROS. The memory address register (MAR) is 16 bits long.
Setting the high-order bit (bit 0) on allows the on-chip
3K-byte RAM to be used for instruction storage. The RAM
can thus be used for transient (e.g., diagnostic) programs.

Random-access memory

A 3K-byte dynamic RAM is provided which is organized as
1.5K x 18 bits and has a cycle time of 400 ns. The overhead
for refresh is approximately 3% with all refresh controls
contained on the chip, yielding a useful RAM data rate of
4.85 megabytes per second. This allows the controller to
support disk data rates in excess of 2 megabytes per second,
since on consecutive sector operations this data rate can be
supported simultaneously on both the system and device

ports.

RAM accesses are allocated on a priority basis, with the
microcontroller, system port, device port, and refresh con-
trols requesting RAM cycles as required. RAM-address
registers and length-count registers are provided for the
system and device ports; they are accessible to the microcon-
troller as control registers.

IBM J. RES. DEVELOP. e VOL. 26 » NO. 4 ¢ JULY 1982

Data in A B
LSR H—J

64x16 |= ALU

INCR
—| CRs

Abbreviations

MIR = Memory Instruction Register
INT = Interrupt

PLA = Programmable Logic Array
INCR = Increment

CCR = Condition-Code Register
MAR = Memory Address Register
BUR = Back-Up Register

Figure 3 Data flow.

System port

The system port contains registers and controls which allow
the controller to function as a slave to a using system. The
bus structure supports both DPC (Direct Program Control)
and DMA (Direct Memory Access) operations. DPC cycles
are used to transfer commands from the system and to return
status to the system, while DMA cycles are used to transfer
data between the system and the controller. For flexibility,
both one-byte and two-byte transfer options are provided on
the interface.

Commands and parameters received from the system
during DPC cycles are buffered internally and then automat-
ically stored in preassigned RAM locations. After an entire
command block has been received, the microcontroller is
interrupted to notify it of the command receipt.

DMA data transfers are initiated after the microcontroller
loads the address and length count for the system port. Data
are transferred between the system and the RAM, utilizing a
buffer register and controls contained in the system port. The
data transfer is paced using “request” and “acknowledge”

443

G. L. DIX AND M. D. BROWN

444

System port
RAM clock
Dynamic RAM
RAM cntrl
LSR
out Device port
i "
.
[. l q MAR/BUR
Micro- AL
. controller
Main PLA Tk K MPX and LSR SRL)
LSR Static RAM
addressing
= o - oo e e
A B registers— —-16-bit incrementer

Figure 4 Physical layout. (Note: MPX = multiplexer, SRL =
Shift Register Latch.)

lines. Because the data are buffered, the transfer rate need
not match the instantaneous file data rate, and data may be
transferred at either a faster or slower rate. Data transfer
continues, under control of the system port, until the length

‘count is exhausted. Data transfer then terminates and an

ending interrupt is presented to the microcontroller.

After an entire command sequence has been completed,
the microcontroller loads the ending status into a control
register and creates an interrupt to the using system. The
system then performs a DPC operation to read the ending
status. :

Device port

The device port contains registers and control circuitry which
allow the common chip to interface with device logic. The
microcontroller can read or write device logic registers by
utilizing a DPC path. Two control registers are provided: a
DPC address register, which is used to select a particular
register in the device logic, and a DPC data register, which is
used to buffer data being read from or written to the device
logic.

A DMA path is provided for transferring data between the
RAM and the device logic. DMA transfers are enabled after
the microcontroller loads the address and length count, but
the actual data transfer is paced by the device logic utilizing
a “request DMA” line. These transfers may occur in either
one-byte or two-byte mode.

G. L. DIX AND M. D. BROWN

DMA and DPC cycles are time-multiplexed on a single
bus. Bus cycle time options are provided for flexibility in
attaching either bipolar or FET logic.

An on-chip interval timer facilitates real-time device
control. It is programmable in 50-microsecond increments to
a maximum of 12.8 milliseconds.

Physical design

A physical layout is shown in Fig. 4. The microcontroller is
contained on the lower portion of the chip and is partitioned
into several macros. Each macro is a functional unit; e.g.,
PLA, ALU, register, and static RAM. Manual design and
wiring were utilized in order to maximize density.

The dynamic RAM occupies the upper left portion of the
chip. It utilizes a single-device-per-bit technology and
includes a refresh address counter.

The RAM control, system port, and device port are
contained on the upper right portion of the chip. This area
was designed using logic books, (i.e., circuits) which fitinto a
regular structure and allow the use of automated placement
and wiring programs. Examples of book types are AND, OR,
latch, register, and parity functions.

The design philosophy was to achieve the highest densities
on the most design-stable portion (the microcontroller) of the
design. On the less stable portions, density was sacrificed
somewhat in order to use automated design aids, to shorten
design time, and to facilitate engineering design changes.
The result is that alternative chip designs which modify the
system and/or device ports but do not modify the microcon-
troller or RAM can be produced with limited development
effort.

Conclusions

The common chip described in this paper is capable of
supporting controllers for a variety of disk and diskette
drives. The additional chip functions which are required for
common use, and which may not be required in a particular
controller, are more than offset by an aggressive design
which integrates functions previously contained on multiple
chips into a single chip.

Although this chip was designed specifically for disk and
diskette controllers, there is potential for application to other
types of devices: e.g., magnetic tape, printers, and communi-
cation lines. If necessary, alternative versions of the chip
could be developed to fit a particular application. Since the
device and system ports are designed using regular struc-
tures, they are amenable to change, while changes to the
microcontroller and RAM would be more difficult.

IBM J. RES. DEVELOP. e VOL. 26 » NO. 4 o JULY 1982

The current status of the development effort is that the 7. MCS-85 User’s Manual, ®Intel Corporation, Santa Clara, CA

. o . . 1977).
chip design is complete and functional parts have been built. 8. MCS-48 User's Manual, ®Intel Corporation, Santa Clara, CA
(1979).
Acknowledgments 9. John L. Norris, “A High-Performance Microprocessor,” IBM
. Disk Storage Technology, 27-30 (1980); Order No. GA26-
The authors thank John Guest and John Burchfiel for th.elr 1665-0, available through IBM branch offices.
support and encouragement. We are also grateful to Mike 10. E. F. Dumstorff, “Application of a Microprocessor for 1/O
Sheehan and Bernie Manning for their contributions to the Control,” IBM System/38 Technical Developments, 28-31
. . (1978); Order No. G580-0237, available through IBM branch
physical design. offices
11. R. J. Blumberg and S. Brenner, “A 1500 Gate, Random Logic,
References LSI Masterslice,” IEEE J. Solid-State Circuits SC-14, 818—
822 (1979).

1. IBM Series/1 4966 Diskette Magazine Unit Description, Order
No. GA34-0052, available through IBM branch offices.

2. IBM System/34 Functions Reference Manual, Chapter 8,
Order No. SA21-9243, available through IBM branch offices.

3. J. W. Froemke, N. N. Heise, and J. J. Pertzborn, “System/38 . .
Magnetic Media Controller,” IBM System/38 Technical De\/zel— Received July 28, 1981; revised January 29, 1982
opments, 41-43 (1978); Order No. G580-0237, available
through IBM branch offices. :

4. IBM Series/l 4963 Disk Subsystem Description, Order No.
GA34-0051, available through IBM branch offices.

5. IBM System/34 Functions Reference Manual, Chapter 11, The authors are located at the IBM System Products

Order No. SA21-9243, available through IBM branch offices. P .
6. M6800 Microcomputer System Design Data, ®Motorola Semi- Division laboratory, 3605 Highway 52, 37th Street N.,

conductor Products Inc., Phoenix, AZ (1976). Rochester, Minnesota 55901.

445

IBM J. RES. DEVELOP. & VOL. 26 4 NO. 4 & JULY 1982 G. L. DIX AND M. D. BROWN

