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Common  Chip  for  Use  in  Disk  and Diskette Controllers 

The advent of LSI  technology makes common microprogrammable controllers very cost-effective today. This paper  focuses on 
the application of microcontrollers for  disk and diskette control functions and describes a custom-designed FET chip which is 
being developed for use in these types of controllers. The architecture, the functional organization, and the physical design of 
this chip are presented, and  the requirement of matching a microcontroller to the application is  discussed. 

Introduction 
Many existing IBM systems  have  utilized unique disk and 
diskette  attachments;  an  example is the  attachment of the 
72MD  diskette  magazine drive to  the  Series/l [ l ] ,  System/ 
3 4  [2],  and  System/38 [3]. These  attachments were  opti- 
mized to  the  internal  structure of each system in order  to 
minimize  product  cost. 

With  the  advent of LSI, product cost per circuit  has 
decreased significantly,  while  both  design time  and develop- 
ment cost  per circuit have  increased. These  factors  make  it 
cost-effective today to  produce common controller designs 
for attaching disk and  diskette drives to a  system. An 
instance of such a  common  design was used in the  attach- 
ment of the  62PC disk drive  to  the  Series/]  [4]  and 
System/34 [ 51. 

Our objective was to provide common  controllers  for newly 
developed disk and  diskette drives which would be available 
to  each system  using  those drives. Product cost and develop- 
ment resource constraints, along  with the need to present  a 
common appearance for differing  drives, led to  the develop- 
ment of a  common chip which serves as a  building block 
central  to several  controllers. 

In the following sections of this  paper,  the design  consider- 
ations leading to the development of this  chip  are first 
discussed. Each  functional  area of the  chip is then  described, 
including the microcontroller, the  Random-Access  Memory 
(RAM),  the system port,  and  the device  port. The physical 

design of the  chip is then discussed briefly, followed by some 
conclusions  concerning the design  effort. 

Design  considerations 
A  common approach  to designing  controllers is complicated 
by unique drive characteristics.  One  example is that disk 
data  rates  are  an  order of magnitude  higher  than  diskette 
data  rates.  Sector sizes and  data  organization  vary  from  one 
drive to  another. Access  control requirements  also vary. 
Another  factor is that  diskette  drive  attachments  are  more 
cost-sensitive  because a diskette drive  costs  much less than a 
disk  drive. 

To allow common attachments, it is necessary to provide 
an  interface which improves  device  independence. This 
makes  the  initial  attachment of a unique device  simpler and 
facilitates  migration  from device to device. Some of the 
features of this  interface  are  as follows: 

Sectors  are  addressed logically by a  consecutive linear 
number.  The system  need  not be  aware of physical  disk 
characteristics (e.g., number of heads) because the con- 
troller performs the logical-to-physical translation. 
Data  are  transferred using simple  read  and  write com- 
mands, with data accessing occurring  automatically.  Sep- 
arate seek commands  are unnecessary. 
Error recovery procedures and  diagnostics  are provided by 
the  controller.  These  are typically unique  to  each device 
and in the past  have  been written uniquely by each system 
development  group. 
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Multisector  data buffering is provided which is designed to 
prevent channel overrun  conditions and  to  handle a range 
of system channel performance. 

It was apparent  that a  microcontroller would be a cost- 
effective way of providing these  higher-level  functions. It 
would also provide flexibility, since many of the  unique drive 
characteristics could be handled with microcode. A properly 
architected microcontroller would also  displace logic by 
taking over control of such functions  as access  control, 
spindle speed control, and processing between  sectors. 

Note  that we have  referred to a requirement for  a micro- 
controller (i.e., optimized to device  control) rather  than  to a 
microprocessor ( i .e . ,  optimized  to  data  processing). 
Although  the distinction is somewhat nebulous, the following 
features were desired. 

Fast execution  of  simple  functions. A two-operand 
instruction architecture usually  performs better  than a 
single-operand, accumulator-based  architecture because 
fewer instructions  are  required.  Since  many  operations will 
involve I/O control  registers,  these control registers  should 
not require special 1/0 instructions, but should  instead be 
directly  addressable  as  operands. 

0 Low cost. This  can be accomplished by using an eight-bit 
data flow with  a  relatively  simple instruction  set.  Simple 
arithmetic  capability is necessary, but  operations like 
multiply are infrequently used and  can  be provided by 
subroutine. 
Fast interrupt  response. Significant 1 / 0  events can be 
communicated by an  interrupt  mechanism  rather  than by 
being sensed by a poll loop. Response time includes any 
instructions necessary to save internal registers; automatic 
hardware saving is desirable. 

The original intent was to use an existing  microcontroller; 
therefore, several  were evaluated.  Some of those evaluated 
are described in [6-lo]. Performance was evaluated by 
coding representative kernels to  determine execution time 
and  the  number of bytes of microcode required. Cost was also 
evaluated  and included all components  necessary to  complete 
a disk/diskette  controller.  The result  was that none of the 
microcontrollers evaluated satisfied  both the cost and per- 
formance objectives. 

One of the microcontrollers evaluated  [9] seemed to be a 
good fit to  the  application  and  incorporated  many of the 
features previously described. The problem  was that it had 
been implemented in a high-performance bipolar  technology 
[ l l ]  and it  exceeded our cost objectives. Since  it also 
exceeded our  performance objectives,  a possible solution was 
to implement the  same function in a lower-cost FET technol- 
ogy. Initial  estimates  indicated  that a  redesign  using FET 
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Figure 1 Controller  structure.  (Note: DMA = Direct Memory 
Access.) 

technology could meet our performance objectives and  that  it 
could be packaged on a  portion of a chip.  Several packaging 
alternatives were then  examined, resulting in the common 
chip  and overall  controller structure shown in Fig. 1. 

In addition  to  the microcontroller, the common chip 
contains a RAM, a  system port,  and a  device port. In a  more 
conventional partitioning,  the microcontroller and RAM 
would be on separate chips, while the RAM controls,  system 
port,  and device  port would require one or more  chips. In 
addition, off-the-shelf chips generally do not interface 
directly  together,  but  require some  “glue” logic; combining 
functions on a  single chip eliminates this glue. The end result 
is that  the  chip configuration shown has a  significant  cost 
leverage over a comparable multiple-chip  design. 

Functions included  within the common chip allow it  to  be 
used in several diskette controllers. The ROS personality and 
the device logic are  unique  to a specific controller and  are 
partitioned onto  separate chips. 

Separate buses are used for the ROS, control  registers, 
and RAM interfaces.  This isolates the  instruction  path  from 
the  data  path  and allows the microcontroller to  operate 
concurrently with the high-speed data  transfer required by 
disk files. 

Microcontroller 
As previously mentioned, the  instruction set of an existing 
microcontroller [9]  formed  the  starting point of the design. 
As the design  progressed,  some changes were made  to  better 
suit  the  application; significant changes  are  as follows: 

The  address  space was partitioned  to allow addressing of 
either  the on-chip RAM or the off-chip ROS. 
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Figure 2 Instruction set. 
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An indexing capability was added  to  the addressing of the 
on-chip  RAM. 
A subtract function was added  to  the  ALU. 

The microcontroller uses a 16-bit microinstruction with up 
to 16  sub-operations  (sub-ops) in a  single instruction.  There 
are six branch-type  instructions,  four register  instructions, 
and two storage  instructions.  The register instructions 
address  either local store  registers  (LSRs) or control  regis- 
ters  (CRs).  The  storage  instructions  address  either  external 
control store or the on-chip dynamic  RAM. 

A summary of the microinstruction  set follows (Note:  an 
instruction = 16  bits,  a  halfword = 16  bits, and K = 

1024): 

BR: Branch within the 4K block of instructions, 
with the  address specified by the  immediate 
data. 442 
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BAL: 

BALR: 

BC: 
BOB-LSR: 

BOB-CR: 

RR: 

RI: 

CI: 

COPY: 
DBO: 

CSl:  

4K  branch, with the  branch  address specified 
by the  immediate  data  and  return  address 
saved in the  LSRs. 
64K branch, with both branch  and  return 
address in the  LSRs. 
256-instruction branch on condition  code. 
16-instruction  branch based on the  state of a bit 
in a specified LSR. 
16-instruction branch based on the  state of a  bit 
in the specified CR. 
LSR-to-LSR  ALU operation-has 12 sub- 
ops. 
LSR  immediate  ALU operation with 8 sub- 
ops. 
Control register  immediate operation with 16 
sub-ops. 
Copies one  LSR halfword to  another. 
Moves a  halfword between an  LSR  and  the 
RAM.  LSRl  contains a  base RAM  address 
which is ORed with  a 6-bit  immediate field to 
perform an indexing function. 
Moves a  halfword between an  LSR  and  the 
ROS/RAM.  LSRl  contains  the  ROS/RAM 
address  and  LSR2 is the  data source or destina- 
tion. The  ROS/RAM  address is optionally 
incremented. 

The  instruction set  code  points and  the execution times of the 
instructions  are  summarized in Fig.  2. 

The local store registers are  implemented  as a 64 x 16 
static  RAM which can  be read or  written in either byte (8 
bits) or halfword (16 bits)  mode. These  LSRs  are partitioned 
into  16  pages, with each page containing 8  bytes.  A local 
store page  register (LSPR) provides for  independent selec- 
tion of a primary  and secondary  page. The  LSR addressing 
field within the  instruction  can select  a  byte or halfword 
within either  the  primary or secondary  page. 

The instruction  set can  address  up  to 32 control  registers. 
These 8-bit hardware registers are used to control the system 
port, the device port, the  dynamic  RAM,  and  the  interrupts. 
A  5-bit field in the  instruction  directly addresses the register 
to be used. 

The  data flow (shown  in  Fig. 3) was modified from  the 
bipolar  design to allow operations in parallel and  to  obtain 
more performance with the slower FET technology. For 
example,  the bipolar  design  utilized the  ALU  to assist in 
incrementing  the  instruction  address, while the  FET design 
has a separate  incrementer.  Another difference is that  the 
LSRs  and  the  interrupt  controls  have been integrated  into 
the microcontroller. Programmable logic arrays  (PLAs) 
were used in selected areas in order  to simplify the design 

IBM J .  RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



process and  facilitate  change.  The  ALU is an  8-bit design 
providing arithmetic  and logical functions. The  LSR  has  an 
8-bit  path  to  and  from  the  ALU,  but  the  rest of the  LSR 
paths  are  16  bits wide. A path between the  LSRs  and  the 
Memory  Address  Register/Back-Up  Register  (MAR/ 
BUR) provides branching  capability.  Another  path between 
the  LSRs  and  dynamic  RAM gives the microcontroller 
access to  the  RAM.  There is a third  path between the  LSRs 
and  control  store.  Finally, a  16-bit path  connects  the  output 
of the  LSRs  to  the  input  to  the  LSRs  to allow copying one 
LSR  pair  to  another in one  instruction  time. 

There  are  eight  interrupt levels in the microcontroller, 
Levels 0 through 7: Level 0 has  the highest priority while 
Level 7 is the  default level. There  are two interrupt registers; 
CR29 is the  interrupt-request  register  and  CR30 is the 
interrupt-enable register. The  interrupt  request is normally 
set by a hardware event,  but  it is also  settable by the 
microcode.  When an  interrupt  request becomes active and 
has the highest priority of the  enabled levels, a Program 
Status  Word  (PSW)  swap will occur. The  instruction 
address,  the condition  code, and  the  LSPR  are  automatically 
exchanged and  the microcontroller starts  executing at  the 
new level. The  delay  from receipt of the  interrupt request 
until  execution  begins in the new level  is a maximum of two 
instruction times. To exit  from an  interrupt level, the micro- 
controller  resets the level bit in the request  register. This 
causes a PSW  swap  and execution  begins on the next  highest 
active level. 

The  chip  can  address  up  to 32K  halfwords of external 
ROS.  The memory address  register  (MAR) is 16  bits  long. 
Setting  the  high-order bit (bit 0) on allows the on-chip 
3K-byte  RAM  to  be used for instruction  storage.  The  RAM 
can  thus be used for transient ( e g . ,  diagnostic)  programs. 

Random-access memory 
A 3K-byte  dynamic  RAM is provided which is organized as 
1.5K x 18  bits and  has a  cycle time of 400 ns. The overhead 
for refresh is approximately 3% with all refresh  controls 
contained on the  chip, yielding  a  useful RAM  data  rate of 
4.85 megabytes per second. This allows the controller to 
support disk data  rates in excess of 2 megabytes per second, 
since on consecutive  sector operations  this  data  rate  can  be 
supported simultaneously  on  both the system and device 
ports. 

RAM accesses are  allocated on a  priority  basis, with  the 
microcontroller,  system port, device port,  and  refresh con- 
trols requesting RAM cycles as  required.  RAM-address 
registers and  length-count registers are provided for the 
system and device  ports;  they are accessible to  the microcon- 
troller as control  registers. 

RAM 
I ROS 

11’ r 

1 
Abbreviations 

MIR = Memory Instruction Register 
INT = Interrupt 
PLA = Programmable Logic Array 
INCR = Increment 
CCR = Condition-Code Register 
MAR = Memory Address Register 
BUR = Back-up Register 

Figure 3 Data flow. 
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System port 
The system  port contains  registers  and controls which allow 
the controller to  function  as a  slave to a  using  system. The 
bus  structure  supports both DPC  (Direct  Program  Control) 
and  DMA  (Direct  Memory Access) operations.  DPC cycles 
are used to  transfer  commands  from  the system and  to  return 
status  to  the  system, while DMA cycles are used to  transfer 
data between the system and  the  controller. For flexibility, 
both  one-byte and two-byte transfer options are provided on 
the  interface. 

Commands  and  parameters received from  the system 
during  DPC cycles are buffered internally  and  then  automat- 
ically  stored in preassigned RAM locations. After  an  entire 
command block has been received, the microcontroller  is 
interrupted  to notify it of the  command receipt. 

DMA  data  transfers  are  initiated  after  the microcontroller 
loads the  address  and  length  count  for  the system  port. Data 
are  transferred between the system and  the  RAM, utilizing a 
buffer register and  controls  contained in the system  port. The 
data  transfer is paced  using “request”  and “acknowledge” 443 
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Figure 4 Physical  layout. (Note: MPX = multiplexer, SRL = 
Shift Register Latch.) 

lines. Because the  data  are buffered, the  transfer  rate need 
not  match  the  instantaneous file data  rate,  and  data  may  be 
transferred at  either a faster or slower rate.  Data  transfer 
continues, under control of the  system port, until  the  length 
count is exhausted.  Data  transfer  then  terminates  and  an 
ending  interrupt is presented to the microcontroller. 

After  an  entire  command  sequence  has been completed, 
the microcontroller  loads the  eading  status  into a control 
register  and  creates  an  interrupt  to  the using system.  The 
system then  performs a DPC  operation  to  read  the  ending 
status. 

Device port 
The device  port contains  registers  and  control  circuitry which 
allow the common chip  to  interface with  device logic. The 
microcontroller can  read or write device  logic registers by 
utilizing  a DPC  path. Two control  registers  are provided:  a 
DPC  address  register, which  is used to  select a particular 
register in the device logic, and a DPC  data  register, which is 
used to buffer data being read  from or written  to  the device 
logic. 

A DMA  path is provided for transferring  data between the 
RAM  and  the device logic. DMA  transfers  are  enabled  after 
the microcontroller  loads the  address  and  length  count,  but 
the  actual  data  transfer is paced by the device logic utilizing 
a “request  DMA” line. These  transfers  may  occur in either 
one-byte or two-byte mode. 444 
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DMA  and  DPC cycles are time-multiplexed on a  single 
bus. Bus cycle time options are provided for flexibility in 
attaching  either bipolar or FET logic. 

An on-chip  interval timer  facilitates  real-time device 
control. It is programmable in 50-microsecond increments  to 
a maximum of 12.8 milliseconds. 

Physical  design 
A  physical layout is shown in Fig. 4. The microcontroller is 
contained on the lower portion of the  chip  and is partitioned 
into several  macros. Each  macro is a  functional unit; e.g., 
PLA,  ALU, register, and  static  RAM.  Manual design and 
wiring were utilized  in order  to  maximize density. 

The  dynamic  RAM occupies the  upper  left portion of the 
chip. It utilizes  a  single-device-per-bit  technology and 
includes a refresh  address  counter. 

The  RAM control, system port, and device port  are 
contained on the  upper  right portion of the chip. This  area 
was designed  using logic books, (Le., circuits) which fit into a 
regular  structure  and allow the use of automated  placement 
and wiring  programs. Examples of book types are  AND,  OR, 
latch,  register,  and  parity functions. 

The design philosophy was to achieve the highest  densities 
on the most design-stable portion (the microcontroller) of the 
design. On the less stable portions, density was  sacrificed 
somewhat in order  to use automated design aids,  to  shorten 
design time,  and  to  facilitate engineering  design changes. 
The  result is that  alternative  chip designs which modify the 
system and/or device ports but  do not modify the microcon- 
troller or RAM can  be produced  with  limited  development 
effort. 

Conclusions 
The common chip described in this  paper is capable of 
supporting controllers  for  a variety of disk and  diskette 
drives. The  additional  chip  functions which are  required for 
common  use, and which may  not  be  required in  a particular 
controller,  are more than offset by an aggressive  design 
which integrates  functions previously contained on multiple 
chips into a  single  chip. 

Although  this  chip was  designed specifically for  disk and 
diskette controllers, there is potential for application  to  other 
types of devices: e.g., magnetic  tape,  printers,  and  communi- 
cation lines. If necessary, alternative versions of the  chip 
could be developed to fit a particular  application.  Since  the 
device and system  ports are designed  using regular  struc- 
tures,  they  are  amenable  to  change, while changes  to  the 
microcontroller and  RAM would be more difficult. 
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The  current  status of the development  effort  is that  the 
chip design is complete  and  functional  parts have  been  built. 
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