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Real-Time  Signal  Processor Software Support 

The Real-Time  Signal Processor (RSP) is  a microprocessor optimized  to  provide  fast, cost-efficient processing for  signal 
processing applications. In order for  the RSP  to become fully useful,  a  complete set of  software  support  tools needed to be 
developed.  The hardware  design and software  development, which took  place between 1978 and 1980, resulted in many 
architectural features which minimized hardware complexity at the  expense of  programmability.  This  paper describes  the 
tools  that were developed and the  decisions that were involved, and includes  hindsight comments on what was  done.  Particular 
emphasis  is  placed on the  most  interesting aspects  of the software  development,  i.e.. how the  special  architectural features of 
the RSP were handled to  make the  overall hardwarelsoftware  system more programmable. 

Introduction 
The  architecture for the  RSP was developed from a few  key 
concepts  concerning  common  functions involved in signal 
processing [I].  Concurrent with the development of these 
ideas  was  Winograd’s work on reducing the  arithmetic 
complexity of the  Discrete  Fourier  Transform  (DFT)  [2], 
and  the work of Agarwal  and Cooley on digital convolutions 
[3].  The  architecture  and  organization of this processor and 
its subsequent evolution are described in the  paper by 
Mintzer  and Peled in this issue [4]. 

It is important  to note, at  this point, that  the  hardware 
design  for the  chip version of the  RSP was begun in 1978, 
with a view to  fabricating production-level chips two to  three 
years  later.  This resulted in a  design which would require 
approximately I O  000 equivalent gates of logic (30 000 tran- 
sistors). The  aim was to satisfy the  computing  requirements 
of a wide spectrum of signal  processing  applications. In order 
to achieve  this,  a  16-bit fixed-point processor was  designed 
with the  capability of performing  extended-precision  compu- 
tations without undue stress. In view of the 10 000-gate 
target, it was decided that a fast multiplier,  a key element of 
most signal processors, would occupy too much  chip  area. 
The  RSP was thus designed  with  a slow multiplier but with 
features which would take  advantage of the work in 
reduced-complexity algorithms  to achieve good perform- 

ance.  The  advantages of the use of rectangular  transforms 
for reduced computational complexity are discussed in the 
paper by Cooley in this issue [ 5 ] .  

There  are a number of features, of both the  architecture 
and its implementation, which,  though they  contribute  to  the 
cost-efficiency of the processor, cause  programming difficul- 
ties. These include the following features: 

The  addressing mechanisms of the  RSP,  although allowing 
great flexibility in accessing data  from a  signal processing 
viewpoint, do not allow multiple data  areas/objects  to be 
accessed concurrently.  This causes  a  problem with param- 
eter passing. Also, in order  to  take  advantage of the 
circular addressing mechanism,  data objects  must be 
located on power-of-two boundaries. 

0 In order  to  make multiplication by constants  as  fast  as 
possible, sequences of “shift-and-addlsubtract” instruc- 
tions  must be constructed  to perform the desired  multipli- 
cation. 
A four-phase pipeline,  with no interlocks, is operational in 
the  RSP  to achieve  a  much faster cycle time for the 
processor. This requires  instruction  sequences to be correc- 
ted for the effect of the pipeline, so that results are not used 
before they  are  computed. 
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0 The  implementation of the  architecture was to  use a 
4K-word program  (instruction)  store  and a  4K-word data 
store.  This does  not  allow  room  for an  operating system; 
thus,  all  programs  are  stand-alone  and  must have  all 
operating system  services  performed  before they  are 
loaded into  the processor and executed. 

The underlying  principle  was to design  a fast microproces- 
sor whose hardware component contained  the basic functions 
and whose software  made  the composite  system  easy to 
program for  signal processing. We  emphasize  the  latter 
because,  once  a processor exists, there is a temptation  to use 
it for functions for which it was  not intended.  We should  also 
stress, at  this point, that signal  processing consists of very 
standardized components,  configured and  parameterized in 
different ways for  different  applications. Thus,  the  RSP is a 
composite of hardware (single chip plus storage)  and soft- 
ware which can be coupled to  perform efficiently over a wide 
range of signal  processing applications,  as described in [4]. 
The  software was, therefore, a key component of the  RSP 
design. 

Programming considerations 
At  the  time  the  software  support effort was initiated,  the 
hardware prototypes  were  still under  construction  and  it was 
clear  that a considerable  amount of software  assistance 
would be required for testing  and debugging the processors. 
As  an  additional  requirement, when the processors became 
operational we would wish to code applications  to verify and 
demonstrate  the success or deficiencies of the processor 
design. These two requirements pointed to  the need for 
developing an  early  programming  capability with  a low-level 
language for  exercising the  hardware  and  an application 
programming facility to develop  real programs reasonably 
quickly. 

At  this point, it was clear  that we should  first develop an 
assembler  and  loader,  and  therefore a  basic  cross-assembler 
and loader  were  developed. What was  not clear was whether 
we should then build  a high-level language (HLL) compiler. 
There were  a number of factors which influenced the deci- 
sion on this: 

An  important  customer for the processor was the Defense 
Department, which was at  that  time  trying  to define and 
create  as a standard  the  Ada  programming  language. 
Unfortunately,  Ada was neither fully defined nor accept- 
ed. Also, Ada is a very large  language  with no subsets, by 
definition. 
It is not clear  that  any HLL exists that  satisfactorily 
captures  the primitives of signal processing in a manner 
that allows a  compiler to  generate good code  for  a machine 
suited to  signal processing [6]. 

There were  a number of other  factors, such as lack of 
manpower and  the  fact  that  the  applications  programmers 
were already very familiar with  assembly languages for 
signal processing. As a result of these  factors,  it was  decided 
not to build  a  compiler, but instead to extend the assembly 
language so as  to provide the functions of a HLL, and  also  to 
provide in a high-level form  the  functions  that were only 
provided by the  hardware in  a very low-level manner. 

Impact of RSP architecture on its software 
The assembly language is, for the most part, a regular 
assembly language, having  a  one-to-one mapping  from  state- 
ment  to  machine  instruction.  It was modeled on the  System/ 
370 Basic Assembly Language.  This was done partly for 
convenience,  since the  automatic assembler-generator, used 
to  construct  the assembler, was designed for System/370- 
style  syntax,  but mainly  for familiarity  to  the  programmers. 
The interesting aspects of the  language  are, however, those 
features  that  attempt  to  restore  the facilities of a HLL and 
those features  that circumvent the  programming problems, 
previously mentioned, that  are associated with the  RSP. 

Addressing mechanisms 
Although  there  are seven addressing modes in the  RSP,  there 
is no general  “base plus index” mechanism which allows easy 
access to several data  areas  concurrently.  There is only one 
base  register, and for most instructions  this  can  be used only 
in combination with one of the two  index  registers, and  this 
base  register is inconvenient to load. This causes  a  problem 
with passing parameters  to  subroutines, since  indexing into a 
parameter  array requires the base  register to point to  that 
array,  whereas indexing into a work array requires that  the 
base  register point to  the base of that also (or  to  some known 
offset from  that base address).  Thus, for array  parameters, 
passing by address is not  convenient and  therefore one of two 
mechanisms is used instead.  The  parameter  can  either be 
passed by value, or its name  can  be known globally. The 
latter  mechanism,  although not esthetically pleasing, is far 
more efficient. Even scalar  parameters  are not well passed by 
address, since they  then  require  one of the  three addressing 
registers to be set to point to  them before  being  accessed. 

The HLL concepts of procedures, arguments,  and  param- 
eters were carried over into  the assembly language. A 
procedure is defined with a “PROC”  statement, its parame- 
ters  are identified by “INPUT,”  “INOUT,”  and  “OUT- 
PUT”  statements,  and  the invoking procedure identifies  it by 
the  “XPROC”  statement, which also names  the  arguments. 
The following example shows how these statements  are used 
together  to pass parameters by value from one procedure  to 
another: 
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SUB  PROC 
INPUT  BUF 
INPUT VAL 
OUTPUT  ANS 

BUF DATA 4 
VAL DATA 1 
ANS DATA 1 

Another assembly language  procedure  can invoke this 
procedure  as follows: 

SUB  XPROC B,V,A 

*Move data  into B and V 

BS SUB Branch  and  stack  to  SUB 

*Answer is now in A 

In this  example, B and  BUF  are  thus synonyms  for the  same 
data object. This  mechanism is, of course, provided in a 
CALL macro: 

C A L L  SUB,((MYB(INPUT),(MYV(INPUT), 
(NEWV(0UTPUT))) 

This moves the  data  from  MYB  into  BUF,  MYV  into V, 
branches  to  SUB,  and on return moves ANS into  NEWV. 

In fact,  this parameter-definition mechanism also inter- 
faces with a PL/I calling program.  The  PL/I-to-RSP  inter- 
face moves PL/I  arguments  into  the  RSP  parameters  and, 
after execution, moves the  OUTPUT  parameters  back  to  the 
corresponding PL/I  arguments. 

In order  to  share  data objects among  many procedures, the 
“XDATA”  statement is an extension of the basic “DATA” 
statement.  It reserves data  storage, allows initialization,  and 
makes  the  name known to  all  other procedures. 

As another consequence of the  addressing modes,  not only 
are  parameters inconvenient to  handle via addresses  but so 
also  are  any  other  data  objects whose location  is  unknown at  
program-load time. In particular,  dynamic  storage for tem- 
porary  use  cannot  be conveniently addressed if an  operating 
system  function  is  used to  acquire  the  storage a t  execution 
time. Thus, for just  this purpose another  data  statement was 
defined: “ADATA,” which  reserves storage in a shared pool 
of temporary  storage,  to be allocated a t  load time by the 
linkage loader. The  implementation of this  mechanism is 
described  in greater  detail in a subsequent section on execu- 
tion-time support. 

As  a result of the  circular  addressing  mechanism  available 
on the  RSP,  it is  necessary to  ensure  that  data objects to  be 
accessed in this way are located on an  appropriate power- 
of-two boundary in data memory. Thus, if a  32-word 
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buffer is used in this  manner, it must be located on a 32-word 
boundary. A  final  extension of the basic “DATA”  statement 
permits  just this alignment.  The  “BDATA”  statement 
reserves data  storage, allows initialization, and also allows 
specification of the  boundary on which the object is to lie. 

8 Coefficient multiplication 
The  RSP does not,  in the present implementation,  contain a 
fast multiplier. Instead, a  16-by-16-bit  multiply  yielding  a 
31-bit result is performed  two bits a t  a time for  eight  cycles, 
using  a modified Booth’s algorithm [4]. Much of signal pro- 
cessing, however, involves multiplications by constants,  the 
exceptions  being adaptive processing and  direct correlations. 
The  RSP utilizes this  fact by providing “shift-and-add”-type 
instructions  to perform  these  multiplications  in much less 
than  the  eight cycles required for the full  multiply. The 
reduction can  be seen in the following example. If we take a 
binary  fractional  number, e.g., A = 0.0001 110  (eight  bits 
only, for convenience), we can  represent  this in  canonical 
signed-digit format  as 

A = o.oolooio = 0.0010ooo - o.ooo0010. 

Now to  multiply  any  other  number B by A we need only 
compute 

A x B  = B x ~ - ~  - B x ~ - ~ ,  

i.e., B shifted right 3  places minus B shifted right 6 places. 
This  can be coded as [“H” is a  mnemonic letter for sHift 
(“S” for Subtract)] 

L Z  B Z = B  
H Y   z , 3  Y = B x 2” 
HSY Z,6 Y = Y - B X 2-6, 

Le., A x  B can be computed in only two cycles instead of four 
for an  8-bit  number, or eight  for a  16-bit number. As can  be 
seen from  this example, the  technique  can achieve  significant 
savings  in computation  time. In fact, typical uses of multipli- 
cation by constants  occur in “window” operations, in fixed 
filters, and in transforms. In all  these cases, the  sum of the 
constants, for one  iteration of the  algorithm, is typically  one. 
Thus,  many of the  constants  are close to  zero  and  require 
very few “shift-and-. . .” operations  to complete. As a result, 
the multiplication by a constant typically averages only two 
to four  cycles. In order  to allow easy  use of this  architectural 
feature of the  RSP,  the assembly language provides an 
“instruction”  MCY  (multiply by coefficient), which gener- 
ates  the  appropriate  sequence of machine  instructions  to 
perform the  multiplication. 

The  RSP  architecture also has  an extension of the above 
technique; since only four bits of the  instruction  are  actually 
used to  indicate which “shift-and-add/subtract” is intended 
and  another  four  to  indicate  the  shift  amount,  it is only 
necessary to  store  eight bits of the  instruction.  For  this 433 
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purpose, the  RSP defines a  section of instruction  store  to 
have only eight  bits,  the  remaining  bits being provided to 
satisfy  the decoding process. This  storage is used to hold the 
“shift-and-. . .” sequences and  they  are  executed by a corou- 
tine linkage. There is a coroutine  branch  to  initiate a 
sequence; thereafter,  the  last “shift-and-. . .” instruction in 
the sequence for  one  constant also  performs  a coroutine 
branch  back  to  the  mainline sequence,  which  loads the next 
data value to be multiplied and  also  performs a coroutine 
branch back to  the next shift sequence. Due  to  the  operation 
of the pipeline, this  coroutine  branching does  not cause  any 
extra cycles to be taken over the basic operations being 
performed.  Since  the “coefficient storage” is only eight  bits 
wide, compared  to  the  regular  instruction width of 24 bits, 
this is a valuable coding technique when used. 

The assembly language provides statements which take 
lists of constants  as  arguments  and  generate  the  appropriate 
“shift-and-. . .” sequences, and  designate  these  instructions 
to be loaded into  the coefficient storage by the  linkage  loader. 
In  this way, with a  single statement,  an  entire vector of 
multiplication instructions is stored  away  ready for use. 
There  are  three types of coefficient statement: 

COEF A(. . .) All  results are  added  to Y register; 
COEF S(. . .) First  result loaded into Y register 

and  subsequent results are  added; 
and 

COEF L(. . .) All  results are loaded into Y regis- 
ter. 

Instruction format 
Apart  from specifying the  operation  to be performed,  the 
op-code  for the  machine  instruction also contains  the specifi- 
cation of the  source  and  target  registers for the  instruction 
and  the addressing  mode of the  “real”  operand.  The  instruc- 
tion length is 24 bits, 8 bits for the op-code and 16 bits  for the 
operand,  This  format yields 244 different instructions, with 
an overload of information in the  operation  name.  This is 
replaced in the assembly language by a  two-operand format 
with the  target  register specified in  the  operation mnemonic, 
the source register  and  the  “real”  operand specified as  the 
two operands,  and  the  addressing mode specified as a “tag” 
on the  “real”  operand. 

The  addressing modes are 

I = Immediate, 
N = Nonindexed (absolute), 
X1 = Indexed  using Index  Register  1, 
X2 = Indexed  using  Index Register 2, 
M 1 = Masked  (circular) using Index  Register 1, 
M2 = Masked  (circular) using Index  Register  2, 

434 B = Offset + Base Register with no indexing. 
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The  tag is optional, with an  appropriate  default being 
taken.  Some examples are 

AY Z,29(I) Y = Z + 2 9  

AZ  Z,INCR(N) Add  the value of the  data 
i tem  INCR,  addressed 
with absolute  addressing, 
to  Register Z and put the 
result in Z. 

MY ZJNPUT(M1)  Multiply  Register Z by the 
circularly addressed  vector 
INPUT, indexed by X1, 
and  put  the result  in Y. 

Miscellaneous  features 
For application development  ease, a large  number of arith- 
metic  functions were provided in the assembly language  and 
evaluated by the  assembler.  This  enriched  the  language 
considerably, and was particularly useful in the  area of 
coefficient definition, e.g., 

C1  COEF S(COS(PIx1/32)-SIN(PIx1/32), . . .) 
which is part of the coefficient sequence used in the FFT. 

The assembler generator  that was  used  incorporates the 
OS/VS Assembler H macro processor [7]. Thus,  this  fairly 
powerful macro facility is available  as  an extension to  the 
basic language. 

0 Optimization  for  pipeline execution 
As previously mentioned, the RSP achieves  increased 
performance  through  the use of a  noninterlocking, pipelined 
execution unit [4]. This  creates sequencing  problems  for the 
programmer which can in  most  cases be overcome by reor- 
dering  the  instructions  to perform  useful noninteracting 
instructions in the  “dead space” while other  instructions in 
the pipeline are completing. If the simple technique of 
inserting  no-operation (NOP)  instructions is used, about 
20-25% execution  overhead can be expected. This falls to 
less than 5% in almost  all  cases when reordering is 
performed,  and in many cases to less than 1 %. 

In  order  to  free  the  programmer  from  this  error-prone 
activity, the assembler incorporates a reordering  algorithm. 
The  algorithm  operates  from a table listing the data-flow 
characteristics  and dependencies  for each  instruction.  It 
performs  label-to-label  data-flow analysis  and optimizes the 
code by reordering  the  sequence  to  maintain  the  same  data 
flow with the  minimum  number of pipeline  dependencies  still 
exposed. Even though  it  operates only label-to-label with 
worst-case assumptions at  each end-point, the  algorithm still 
reduces the NOP overhead to less than 5%. 
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Code  scheduling in  a  compiler  is  a  common practice,  but in 
assembly languages  it is rare  and  has  an  interesting side 
issue. There is a  problem with presenting the  assembled code 
to  the  programmer: In which sequence should it be listed, as 
reordered or as  written?  The compromise  chosen  was to leave 
the  written  sequence on the listing  with any deviation from 
this highlighted  in the  “OBJECT  TEXT” section. In Table 1 
(taken  from a real  program listing), the  “LOCATION” field 
lists the offset from  the beginning of the  program in decimal 
and  hexadecimal,  and is not important.  The  “OBJECT 
TEXT” lists the location of the  “real”  operand  (D  indicates 
data  storage),  the hexadecimal  op-code, the  operand in 
decimal  and  hexadecimal,  and finally any difference between 
the  instruction  at  that location and  the  one coded  in the 
“SOURCE  STATEMENT” field for that  line.  The 
“STMT” field is a statement  number  count only. The 
“SOURCE  STATEMENT” records the  line  from  the source 
program.  As  can  be seen from  the  example,  the  instruction  at 
statement 464 has been moved down to 466 and  statements 
465 and 466 have moved up. The second reordering is 
similar. 

Programming methodology 
The  approach chosen for  programming  the  RSP was to 
develop as  much  as possible on the  System/370,  and only as 
the  last  step  to  actually run programs on the  RSP  hardware. 
This  general  approach is illustrated in  Fig. 1. PL/I  was 
chosen as  the high-level development language because it is 
possible to define data types exactly  matching those sup- 
ported by the  RSP  architecture. 

The  hardware  testing configuration is illustrated in  Fig. 2. 
Most applications developed were  one-dimensional, using 
speech,  music, or telephone  as  the  source of the signal. For 
those cases  where  the signal  was  originally digital,  the  IBM 
Series/l  minicomputer was used to provide data  and  to 
collect  results  for later analysis. 

Tools 
In order  to  support development  using this methodology and 
configuration, a relatively complete  set of software  support 
tools were written.  These were mainly for application devel- 
opment  but  also  for  testing  and  debugging  the  hardware. 
They initially  consisted of the 

Cross-assembler, 
PL/I-to-RSP  interface, 
Linkage  loader, 
Simulators, 
System/370-to-RSP  interface,  and 
Debug package. 

The cross-assembler  executed on the  System/370  and  gener- 
ated a System/370  object module which could be processed 
by the  linkage  loader  and  then  simulated.  It could also be 

Block diagram  and  specification 

Code in PL/I floating point -Test on Systeml370 

Code in PL/I fixed  point + - Test  on System/370 

1 
Recode in RSP assembler- - Test  on  RSP  simulator 

\ 
Timing  estimates 

t 
Algorithm plus I/O code 4 * Test  on  simulator 
in  RSP  assembler 

Test  on RSP hardwm 

Figure 1 General approach used for programming the RSP. 

4 
4 4 

RSPl  RSP2  RSP3 

L L 4 

fi Senedl 

Figure 2 Configuration for hardware testing. 

Table 1 Sample assembler listing illustrating code reordering. 

Location Object text STMT Source statement 

56/0038 D 75 2056/0808 

57/0039 D 5D 2056/0808 LZ 

58/003A BO 1/0001 HZ 

59/003B CO 16/0010 LR 

60/003C  D 41 2056/0808 

6l/003D D 75 2056/0808 

62/003E  D 7D 2056/0808 LX2 

63/003F D 25 2057/0809 AZ 

64/0040 CO 8/0008 LR 

65/0041 D 41 2054/0806 

66/0042 D 75 2054/0806 

67/0043 D 79 2057/0809 LXl 

463 LV WlHALF 

464 LR Wl(R),V 

465 LZ  WlHALF 

466 HZ Z,1 

467 STZ  WlHALF 

468  LV WlHALF 

468 LR B(R),V 

470 LX2 WlHALF 

471 AZ Z,DATADDR 

472 STZ UR 

473 LV UR 

474  LR W2(R),V 
435 
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data, and 

PLII-to-RSP 
Related 

J i i n 1 1 1  iJ 
Simulator/ 
hardware 
interface 

package 

”””“””””” 

RSP memory 
image 

program “stub,” which receives control when the  RSP 
program is invoked from a HLL.  This  small  program invokes 
the  RSP  linkage  loader, passing as  parameters  the several 
tables  and  data  areas which  comprise the  rest of the assem- 
bled RSP program.  One of these tables  contains  the  informa- 
tion about  parameters  from  the  INPUT,  INOUT,  and 
OUTPUT  statements.  When  the  RSP  program is loaded into 
the  RSP  storage  image,  the  PL/I-to-RSP  interface uses this 
table  to move parameters between the invoking PL/I  pro- 
gram  and  the  RSP  program,  and  after execution it moves the 
values  in the  INOUT  and  OUTPUT  data objects back  to  the 
PL/I  arguments. 

Figure 3 Operation flow for execution-time tools. 

down-loaded into  the  RSP prototypes and executed there 
through  the  System/370-to-RSP  interface.  In  either  case, 
the  debug  package could be used to  interrogate  the  state of 
the  RSP  (either  simulated or real).  The  PL/I-to-RSP  inter- 
face allowed the  substitution of RSP assembler  programs for 
PL/I  subroutines, without the necessity of changing  any of 
the  PL/I  programs.  The design and  implementation of these 
tools have  several novel aspects;  these  are described  in the 
following sections. 

Execution-time support 
Traditionally,  simulators  for  machines  under development 
have been stand-alone processors, interfacing with  a  user a t  a 
terminal.  Commands  are usually provided to load  a program 
image file into  the simulator’s storage,  to  start  simulation, 
and  for a host of display and  change facilities to  examine  and 
control  the  state of the  simulated  machine  during  and  after 
the  program execution. This  same set of interfaces is often 
used to  execute  programs on the  hardware model of the 
machine being developed. The  approach  taken for the  RSP 
was entirely  different.  It was, rather,  to  make  the  RSP 
(simulator or hardware model)  a  black-box computational 
resource that was activated when necessary,  with  no detailed 
specification or commands  from  the  user.  Full  traditional 
monitoring and  debugging facilities  were also provided. This 
approach was  chosen to  make  application development as 
easy as possible, though it  was less convenient for  debugging 
the  hardware.  The most novel aspects of the  execution-time 
tools are  those which support  this black-box  concept and 
those  facilities of the  linkage  loader which support  the  HLL 
features of the  RSP assembly language. 

The  operation of the  execution-time tools is illustrated in 
Fig. 3. The  output of the  assembler is an  object module, 
suitable  for loading into  the  System/370  storage by the 
linkage editor. The first  portion of this is a System/370 

Apart  from  the basic operations of any  linkage  loader,  the 
RSP linkage  loader also performs  the processing to  support 
the pseudo-dynamic storage  mechanism in the assembly 
language.  It does this by constructing a  “call-tree” as  it 
resolves the  external references. (Note,  this implies that 
recursive programs  are  rejected,  though  this is not a  problem 
for  signal processing applications.) For  each RSP program, 
there is a table  containing a  list of the  ADATA objects  for 
that  program.  These  tables  are  then used, together with the 
“call-tree,” to  determine a t  each invocation level the  maxi- 
mum  ADATA  requirements, i.e., the  program a t  each level 
which requires  the most ADATA space. The  maximum  at 
each level is then reserved by the  linkage loader and  all 
programs at  that level have their  ADATA objects mapped 
into  this  area. Also, as  the  linkage  loader is creating  the 
“call-tree,” the  parameter  table description  is  checked  for 
agreement with the  external reference table of the invoking 
RSP program.  This  catches gross interface  errors very 
quickly. 

After  the  linkage  loader  has processed all  the necessary 
RSP programs  and  created load images for the  instruction 
and  data  stores of the  RSP,  it invokes the  simulator/ 
hardware  interface  to  execute  the RSP program.  This  inter- 
face uses an  external option to  determine  whether  to down- 
load the memory images  into  the  hardware  and  start execu- 
tion there, or to invoke the  simulator.  When a “STOP” 
statement is executed, the  simulator  returns  control  to  the 
interface. When the  hardware option is used, the  interface 
awaits a  signal from  the  RSP processor indicating  that a 
“STOP” has been executed  and  then up-loads the  stores  into 
the  storage image. In  either case, the  PL/I-interface portion 
of the  linkage loader then moves the values of any  OUTPUT 
parameters  to  the  PL/I  argument  variables  and  PL/I execu- 
tion continues.  Owing to  this movement of parameter values 
back and  forth  from  PL/I  to  the  RSP  program,  the  RSP 
program  can be invoked in exactly  the  same  manner  as a 
functionally  equivalent PL/I  subroutine would be. Also, 
whether  the RSP program is executed  on the  simulator or the 
hardware  prototype is not reflected at  all in the invoking 
PL/I  program. 
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0 Simulator design 
Owing to  the  stage of hardware development at  the  time  the 
simulator was designed, it was expected,  correctly,  that  the 
simulator would be  the  main  application development pro- 
cessor during  the  hardware  implementation.  Thus, it  was 
decided to  make  the  simulator  operate  as  fast  as possible, so 
as to  simulate  entire  applications within  a reasonable  amount 
of time. In order  to  achieve  this,  all  monitoring, debugging, 
and 1 / 0  functions were implemented  outside  the  simulator 
kernel, which was written in a systems  programming lan- 
guage. As a result,  the  simulator  operates  at  approximately 
50 KIPS on a System/370 Model 168. While  this is 100 
times slower than  the  real processor, it still  allows  most 
one-dimensional signal processing algorithms  to  be executed 
within  a reasonable  time.  This is because most such algo- 
rithms  are designed to  run in 10 to 50 ms  before repeating on 
fresh  data. 

An interesting  aspect of the design of the  simulator is the 
way  in which it is constructed.  The  RSP is a four-phase 
pipelined machine with each  phase  performing a certain 
function.  The  simulator is built from two  components:  a 
framework  and a multi-level macro definition of the  instruc- 
tions. The  framework  contains  the  support  routines which 
perform the more  complex functions  such  as  ALU  operation 
and  address  computation,  and  the housekeeping routines of 
the  simulator.  For  the  instruction definition,  a macro-level 
interface was  designed to allow easy specification of each 
phase,  and  each  instruction was then defined as a sequence of 
four macros. So the  simulator was constructed by a program 
which matched  the  instruction definitions already  created 
with the op-code, using the  mnemonic  as  the link, and which 
then inserted these definitions into  the  simulator  framework 
before  compilation. This allowed the  simulator to be always 
in synchronism  with the  assembler,  and  permitted both to 
track  changes in the  RSP definition/implementation very 
quickly. This process  is illustrated in  Fig. 4. 

Program generators 
So far we have  been  concerned  with the  more novel aspects of 
the  otherwise relatively standard  software  support tools for 
any new machine. We now look a t  a  different approach,  one 
that  has been partially successful  in the business world-that 
of program  generators. As stressed  in the  introduction, signal 
processing is very standardized, with  filters, transforms,  and 
correlators  forming  the bulk of the  computational load. 
Thus, with  a  processor specifically designed to solve these 
particular problems, and with the only programming  lan- 
guage  implemented being an assembly language,  there is a 
good opportunity for program  generators. For almost  any 
analytical signal  processing, the  Fourier  Transform consti- 
tutes most of the processing. The  RSP  has  an  architecture in 
which the  Winograd  Fourier  Transform  (WFT) is strongly 
favored. Unfortunately,  general  WFTs  are difficult to pro- 
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Figure 4 Illustrating method of construction of RSP stimulator. 

gram  and so, initially, the first program  generator  that was 
constructed was  a  finite-impulse-response (FIR) band-pass- 
filter generator. 

FIRjilter generator 
In order  to  automate  the  construction of FIR filter programs, 
an  interactive  questionnaire was developed. (It should be 
noted that  the  RSP is very well suited  to  symmetric  FIR 
filter programs,  and  can  execute  them with no cycles lost to 
pipeline hazards.)  The  questionnaire seeks a specification of 
the filter characteristics,  such  as  sampling  frequency, pass 
bands,  stop  bands,  attenuation,  etc.  These  data  are collected, 
as  illustrated in Table 2, and  an  annotated file is produced. 

Having collected the specification, the  Parks-McClellan- 
Rabiner [8] program is used to derive  a symmetric  FIR using 
floating-point arithmetic.  This process is iterated upon, 
usually  increasing the filter length,  until a filter  is  found that, 
when implemented in the limited precision specified, still 
meets  requirements over the  entire  range.  For  more  details 
on the results obtained, see [ 9 ] .  The impulse-response coeffi- 
cients produced by the  Parks-McClellan-Rabiner  program 
are used to build  a very standardized,  but efficient, symmet- 
ric  FIR filter program for the  RSP.  The  resulting  program is 
an  RSP  subroutine  that  accepts signal input  data  and  outputs 
filtered data  as  RSP  parameters  (see previous description of 
this  mechanism). 

As an option  with the filter generator,  the  program  can  be 
assembled and  simulated, if input  data  are  made available, or 
even executed on the  hardware configuration. A digital 
mixer program is executed on one  RSP  to combine analog 
input  with a  wide range of other signals. The mixer program 
can  generate white noise and most of the  standard signal- 437 
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Table 2 Interactive  questionnaire  used  in  development of symmet- algebra  manipulation is well understood. Unfortunately, no 
ric  finite-impulse-response (FIR) filter  generator  program. package  has been  produced to  automatically build a WFT of 

Computer question User  response a specified size for the  RSP. 

Type of filter? B (for band-pass) 

Sampling frequency? 10,000 (10-kHz sampling) 

Precision? 12 (12 bits) 

Specify filter shape: B 0 1000 0 
(band  from 0 to 1 kHz 
is  to  be a stop band) 

(2-3  kHz is the pass  band) 

(4-5 kHz is also a stop  band) 

B 2000 3000 1 

B 4000 5000 0 

Sampling ratio? 1 : 1 (no decimation/interpolation) 

Filter length or O? 0 (Let the computer work out 
an appropriate length) 

Pass  band  ripple  in dB? 0.2 

Stop band attenuation 40 
in dB? 

Summary and conclusions 
The overall approach  to  the  software  support of a processor 
so specialized, and  therefore  limited,  as a  signal processor 
was to use  a  host System/370  computer wherever possible. 
While obviously the  RSP could never support a  useful 
assembler/compiler,  this  approach is more evident  in the 
lack of any  bootstrap  code  to  control loading and  debugging. 
The cross-assembler itself illustrates  the  approach:  HLL 
features wherever possible and extensive expression handling 
to produce  highly  optimized  multiplication  sequences from 
natural specifications. The  execution-time  support  also illus- 
trates  this, with the  RSP processor itself treated  as a  black 
box and  integrated  into  PL/I. Finally, even the  programming 
of some functions is automated on the host computer by use 
of the  program  generators. 

End of specification. 

generator waveforms, with any  combination,  at  any  frequen- 
cy. These  signals  can be mixed  with any  analog  input  and  the 
resulting waveform  fed digitally  to  the filter program  under 
test.  The  output  from  the filter is sent  to a D/A  converter  and 
can be displayed on an oscilloscope, frequency  analyzer, or 
distortion meter,  to verify that  it is performing  as  required. In 
all, this  technique was  very  successful, and in  a few minutes 
a t  a terminal, a digital filter satisfying most  common  require- 
ments could be designed,  built, and tested. 

DFT generator 
In those cases  where  the power-of-two Fourier  Transform is 
not a suitable  transform size, the  Winograd  Fourier  Trans- 
form is particularly  attractive on the  RSP.  This is so because 
the  dynamic  multiply  takes  eight  machine cycles as opposed 
to  one cycle for  almost  all  other  operations,  and  the  address- 
ing  modes of the  RSP allow very irregular  patterns with no 
penalty. The  algebraic  manipulations  required  to  construct a 
general WFT are, however, sufficiently difficult to  deter 
most programmers.  The  computer  can  be a  tireless manipu- 
lator of algebra [lo] and so all  that is required  for a WFT 
generator is a set of decomposition rules  to  bring  large 
transforms down to  reasonable size (e.g., a  420-point 
becomes a 20x 21-point), a base  set of smaller  transforms 
already  coded,  and  an  escape  mechanism  into  an  algebra 
manipulator  for previously unencountered sizes. Agarwal 
has  already suggested  a set of decompositions for  many 
transforms  up  to  2000 points [ 1 11. A library of some of the 

438 primitive WFT components  has been generated,  and  the 

This,  then, was the  strategy  as  it evolved; how well did it 
work? 

0 Programming  experience 
The first use  of the  programming tools was in the  architec- 
tural evaluation of the processor before and  during  its 
construction.  For  this function,  producing timing  estimates 
of common  kernels or entire  applications,  the tools proved to 
be very effective. Particularly useful  also  was the  fast 
tracking of architectural  alternatives.  This was due  to  the 
multi-level macro  construction  and table-driven implementa- 
tion. 

The second  use of the  support tools was to load programs 
into  the  RSP models to  test  and  debug  them.  This worked 
fairly well, though  the engineers  still preferred  to load small 
instruction sequences  “by hand,”  either for assurance of 
what was really  in the  machine or for faster  turnaround. If  a 
truly  interactive  debugging facility had been available, even 
via the host computer,  it would have  assisted this process. 

After  these two slightly unusual uses, the bulk of the 
programming was in  building applications or subsystems, 
which was the envisioned role of the tools. In general  the 
experience  was good; most  signal  processing programmers 
had a strong  hardware  background  and were comfortable 
with assembly-language  programming.  In  fact,  as  extra HLL 
features were added,  it was difficult to  encourage  their  use a t  
first. All programmers tried to  hand-optimize  one  program 
for the pipeline; some even tried two programs,  but  all 
quickly found  that  the  assembler  did a very good job  and 
produced correct code. Some  programmers did  not use  the 
PL/I  interface, except as  required;  others used it heavily, 
gradually converting  a PL/I  application  to  RSP code.  All 
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programmers, however, developed their code on the  simula- 
tor before trying it on the  hardware models. Finally, despite 
its  potential time-saving appeal,  the filter generator received 
almost no real  usage. The reason for  this  may have  been that 
in the  applications developed, the filters  were  not  simple 
band-pass  filters;  usually extra  shaping was required in the 
pass-band or transition  region. 

Missing functions and future support 
There  are  three  major  areas of missing support:  hardware 
operation, HLL compiler, and  WFT  generator.  Undoubted- 
ly, the  testing, debugging, and  later development  work on the 
hardware models would have  been  assisted  considerably had 
there been support equivalent to  that  available in the micro- 
programming development  systems currently in use  with the 
popular microprocessors. This  requires  software  to be devel- 
oped on a  mini- or microcomputer, a t  least the debugging 
facilities and  hardware  interface. Also, it would be more 
convenient if programs could be developed on the  same 
computer. Building  a HLL compiler, however, is certainly 
easier on a mainframe  and is somewhat a t  odds with develop- 
ing  a microprogramming development  system on a  minicom- 
puter.  Already, however,  some applications  are developed 
entirely in PL/I  and  then  translated  into RSP code. Thus, we 
know that  PL/I,  at  least, is not intolerable  for coding  signal 
processing applications. In fact,  it  has proved much  more 
convenient than  expected,  and  the choice  not to build  a 
compiler, may, in retrospect, have been wrong, though  the 
choice of language is  still as difficult as ever.  For  nondefense 
applications, it now seems  clear  that a FORTRAN, PL/I, or 
Pascal compiler would be very beneficial, though  some 
programmers would not wish to leave the  comfort of an 
assembly language. 

The  WFT  generator is always  useful, regardless of the 
programming  language  or development technique.  This is 
particularly so for  a machine with a multiply-to-add-time 
ratio like the  RSP  and  with flexible addressing  capability. 

Beyond all these, however, is a  yet  higher-level application 
development facility  that is possible for  signal processing 
applications. As mentioned  earlier,  these  applications  almost 
always  exist  in the  early  stages of development as a block 
diagram of such functions  as filters, transforms,  band shifts, 
integrators,  and  correlators.  Each of these  functions  takes a 
fixed amount of input  data,  performs a standardized func- 
tion, and produces  a fixed amount of output  data, which is 
then passed to  one or more of these  functions for further 
processing, etc.  This whole process can today be defined to 
the  computer  through  interactive  graphics. If to  this we 
append  information  about  input  and  output  data  and specify 
which standard  function is to  be performed in each box, 
entire  applications  can be automatically programmed. 
Thus,  while  the  type of support tools described in 

this  paper  are still  necessary  primitives, the  future of signal 
processing software  support  research lies in developing such 
sophisticated automatic  programming systems. 
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