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Real-Time Signal Processor Software Support

The Real-Time Signal Processor (RSP) is a microprocessor optimized to provide fast, cost-efficient processing for signal
processing applications. In order for the RSP to become fully useful, a complete set of software support tools needed to be
developed. The hardware design and software development, which took place between 1978 and 1980, resulted in many
architectural features which minimized hardware complexity at the expense of programmability. This paper describes the
tools that were developed and the decisions that were involved, and includes hindsight comments on what was done. Particular
emphasis is placed on the most interesting aspects of the software development, i.e., how the special architectural features of

the RSP were handled to make the overall hardware/software system more programmable.

Introduction

The architecture for the RSP was developed from a few key
concepts concerning common functions involved in signal
processing [1]. Concurrent with the development of these
ideas was Winograd’s work on reducing the arithmetic
complexity of the Discrete Fourier Transform (DFT) [2],
and the work of Agarwal and Cooley on digital convolutions
[3]. The architecture and organization of this processor and
its subsequent evolution are described in the paper by
Mintzer and Peled in this issue [4].

It is important to note, at this point, that the hardware
design for the chip version of the RSP was begun in 1978,
with a view to fabricating production-level chips two to three
years later. This resulted in a design which would require
approximately 10 000 equivalent gates of logic (30 000 tran-
sistors). The aim was to satisfy the computing requirements
of a wide spectrum of signal processing applications. In order
to achieve this, a 16-bit fixed-point processor was designed
with the capability of performing extended-precision compu-
tations without undue stress. In view of the 10 000-gate
target, it was decided that a fast multiplier, a key element of
most signal processors, would occupy too much chip area.
The RSP was thus designed with a slow multiplier but with
features which would take advantage of the work in
reduced-complexity algorithms to achieve good perform-

ance. The advantages of the use of rectangular transforms
for reduced computational complexity are discussed in the
paper by Cooley in this issue [5].

There are a number of features, of both the architecture
and its implementation, which, though they contribute to the
cost-efficiency of the processor, cause programming difficul-
ties. These include the following features:

® The addressing mechanisms of the RSP, although allowing
great flexibility in accessing data from a signal processing
viewpoint, do not allow multiple data areas/objects to be
accessed concurrently. This causes a problem with param-
eter passing. Also, in order to take advantage of the
circular addressing mechanism, data objects must be
located on power-of-two boundaries.

® In order to make multiplication by constants as fast as
possible, sequences of “shift-and-add/subtract” instruc-
tions must be constructed to perform the desired multipli-
cation.

® A four-phase pipeline, with no interlocks, is operational in
the RSP to achieve a much faster cycle time for the
processor. This requires instruction sequences to be correc-
ted for the effect of the pipeline, so that results are not used
before they are computed.
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e The implementation of the architecture was to use a
4K-word program (instruction) store and a 4K-word data
store. This does not allow room for an operating system;
thus, all programs are stand-alone and must have all
operating system services performed before they are
loaded into the processor and executed.

The underlying principle was to design a fast microproces-
sor whose hardware component contained the basic functions
and whose software made the composite system easy to
program for signal processing. We emphasize the latter
because, once a processor exists, there is a temptation to use
it for functions for which it was not intended. We should also
stress, at this point, that signal processing consists of very
standardized components, configured and parameterized in
different ways for different applications. Thus, the RSP is a
composite of hardware (single chip plus storage) and soft-
ware which can be coupled to perform efficiently over a wide
range of signal processing applications, as described in [4].
The software was, therefore, a key component of the RSP
design.

Programming considerations

At the time the software support effort was initiated, the
hardware prototypes were still under construction and it was
clear that a considerable amount of software assistance
would be required for testing and debugging the processors.
As an additional requirement, when the processors became
operational we would wish to code applications to verify and
demonstrate the success or deficiencies of the processor
design. These two requirements pointed to the need for
developing an early programming capability with a low-level
language for exercising the hardware and an application
programming facility to develop real programs reasonably
quickly.

At this point, it was clear that we should first develop an
assembler and loader, and therefore a basic cross-assembler
and loader were developed. What was not clear was whether
we should then build a high-level language (HLL) compiler.
There were a number of factors which influenced the deci-
sion on this:

® An important customer for the processor was the Defense
Department, which was at that time trying to define and
create as a standard the Ada programming language.
Unfortunately, Ada was neither fully defined nor accept-
ed. Also, Ada is a very large language with no subsets, by
definition.

® It is not clear that any HLL exists that satisfactorily
captures the primitives of signal processing in a manner
that allows a compiler to generate good code for a machine
suited to signal processing [6].

KEN DAVIES AND FRED RIS

There were a number of other factors, such as lack of
manpower and the fact that the applications programmers
were already very familiar with assembly languages for
signal processing. As a result of these factors, it was decided
not to build a compiler, but instead to extend the assembly
language so as to provide the functions of a HLL, and also to
provide in a high-level form the functions that were only
provided by the hardware in a very low-level manner.

Impact of RSP architecture on its software

The assembly language is, for the most part, a regular
assembly language, having a one-to-one mapping from state-
ment to machine instruction. It was modeled on the System/
370 Basic Assembly Language. This was done partly for
convenience, since the automatic assembler-generator, used
to construct the assembler, was designed for System/370-
style syntax, but mainly for familiarity to the programmers.
The interesting aspects of the language are, however, those
features that attempt to restore the facilities of a HLL and
those features that circumvent the programming problems,
previously mentioned, that are associated with the RSP.

® Addressing mechanisms

Although there are seven addressing modes in the RSP, there
is no general “base plus index” mechanism which allows easy
access to several data areas concurrently. There is only one
base register, and for most instructions this can be used only
in combination with one of the two index registers, and this
base register is inconvenient to load. This causes a problem
with passing parameters to subroutines, since indexing into a
parameter array requires the base register to point to that
array, whereas indexing into a work array requires that the
base register point to the base of that also (or to some known
offset from that base address). Thus, for array parameters,
passing by address is not convenient and therefore one of two
mechanisms is used instead. The parameter can either be
passed by value, or its name can be known globally. The
latter mechanism, although not esthetically pleasing, is far
more efficient. Even scalar parameters are not well passed by
address, since they then require one of the three addressing
registers to be set to point to them before being accessed.

The HLL concepts of procedures, arguments, and param-
eters were carried over into the assembly language. A
procedure is defined with a “PROC” statement, its parame-
ters are identified by “INPUT,” “INOUT,” and “OUT-
PUT” statements, and the invoking procedure identifies it by
the “XPROC” statement, which also names the arguments.
The following example shows how these statements are used
together to pass parameters by value from one procedure to
another:
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SUB PROC

INPUT BUF

INPUT VAL

OUTPUT ANS
BUF DATA 4
VAL DATA 1
ANS DATA 1

Another assembly language procedure can invoke this
procedure as follows:

SUB XPROC B,V,A
*Move data into Band V

BS SUB Branch and stack to SUB

* Answer is now in A

In this example, B and BUF are thus synonyms for the same
data object. This mechanism is, of course, provided in a
CALL macro:

CALL SUB,((MYB(INPUT),(MYV(INPUT),
(NEWV(OUTPUT)))

This moves the data from MYB into BUF, MYV into V,
branches to SUB, and on return moves ANS into NEWV.

In fact, this parameter-definition mechanism also inter-
faces with a PL/1 calling program. The PL/I-to-RSP inter-
face moves PL/I arguments into the RSP parameters and,
after execution, moves the OUTPUT parameters back to the
corresponding PL /I arguments.

In order to share data objects among many procedures, the
“XDATA” statement is an extension of the basic “DATA”
statement. It reserves data storage, allows initialization, and
makes the name known to all other procedures.

As another consequence of the addressing modes, not only
are parameters inconvenient to handle via addresses but so
also are any other data objects whose location is unknown at
program-load time. In particular, dynamic storage for tem-
porary use cannot be conveniently addressed if an operating
system function is used to acquire the storage at execution
time. Thus, for just this purpose another data statement was
defined: “ADATA,” which reserves storage in a shared pool
of temporary storage, to be allocated at load time by the
linkage loader. The implementation of this mechanism is
described in greater detail in a subsequent section on execu-
tion-time support.

As a result of the circular addressing mechanism available
on the RSP, it is necessary to ensure that data objects to be
accessed in this way are located on an appropriate power-
of-two boundary in data memory. Thus, if a 32-word
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buffer is used in this manner, it must be located on a 32-word
boundary. A final extension of the basic “DATA” statement
permits just this alignment. The “BDATA™ statement
reserves data storage, allows initialization, and also allows
specification of the boundary on which the object is to lie.

o Coefficient multiplication

The RSP does not, in the present implementation, contain a
fast multiplier. Instead, a 16-by-16-bit multiply yielding a
31-bit result is performed two bits at a time for eight cycles,
using a modified Booth’s algorithm [4]. Much of signal pro-
cessing, however, involves multiplications by constants, the
exceptions being adaptive processing and direct correlations.
The RSP utilizes this fact by providing “shift-and-add”-type
instructions to perform these multiplications in much less
than the eight cycles required for the full multiply. The
reduction can be seen in the foliowing example. If we take a
binary fractional number, e.g., 4 = 0.0001110 (eight bits
only, for convenience), we can represent this in canonical
signed-digit format as

A = 0.0010010 = 0.0010000 — 0.0000010.

Now to multiply any other number B by 4 we need only
compute

AxB = Bx27 — Bx2™",

i.e., B shifted right 3 places minus B shifted right 6 places.
This can be coded as [*“H” is a mnemonic letter for sHift
(*“S” for Subtract)]

LZ B Z=B
HY Z3 Y=Bx2"
HSY Z.6 Y=Y _-Bx27°

i.e., Ax B can be computed in only two cycles instead of four
for an 8-bit number, or eight for a 16-bit number. As can be
seen from this example, the technique can achieve significant
savings in computation time. In fact, typical uses of multipli-
cation by constants occur in “window” operations, in fixed
filters, and in transforms. In all these cases, the sum of the
constants, for one iteration of the algorithm, is typically one.
Thus, many of the constants are close to zero and require
very few “shift-and-. . .” operations to complete. As a result,
the multiplication by a constant typically averages only two
to four cycles. In order to allow easy use of this architectural
feature of the RSP, the assembly language provides an
“instruction” MCY (multiply by coefficient), which gener-
ates the appropriate sequence of machine instructions to
perform the multiplication.

The RSP architecture also has an extension of the above
technique; since only four bits of the instruction are actually
used to indicate which “shift-and-add/subtract” is intended
and another four to indicate the shift amount, it is only
necessary to store eight bits of the instruction. For this
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purpose, the RSP defines a section of instruction store to
have only eight bits, the remaining bits being provided to
satisfy the decoding process. This storage is used to hold the
“shift-and-. . .” sequences and they are executed by a corou-
tine linkage. There is a coroutine branch to initiate a
sequence; thereafter, the last “shift-and-...” instruction in
the sequence for one constant also performs a coroutine
branch back to the mainline sequence, which loads the next
data value to be multiplied and also performs a coroutine
branch back to the next shift sequence. Due to the operation
of the pipeline, this coroutine branching does not cause any
extra cycles to be taken over the basic operations being
performed. Since the “coefficient storage” is only eight bits
wide, compared to the regular instruction width of 24 bits,
this is a valuable coding technique when used.

The assembly language provides statements which take
lists of constants as arguments and generate the appropriate
“shift-and-. . .”” sequences, and designate these instructions
to be loaded into the coefficient storage by the linkage loader.
In this way, with a single statement, an entire vector of
multiplication instructions is stored away ready for use.
There are three types of coeflicient statement:

COEF A(..)) All results are added to Y register;

COEF S(...) First result loaded into Y register
and subsequent results are added;
and

COEF L(...) All results are loaded into Y regis-
ter.

® Instruction format

Apart from specifying the operation to be performed, the
op-code for the machine instruction also contains the specifi-
cation of the source and target registers for the instruction
and the addressing mode of the “real” operand. The instruc-
tion length is 24 bits, 8 bits for the op-code and 16 bits for the
operand. This format yields 244 different instructions, with
an overload of information in the operation name. This is
replaced in the assembly language by a two-operand format
with the target register specified in the operation mnemonic,
the source register and the “real” operand specified as the
two operands, and the addressing mode specified as a “tag”
on the “real” operand.

The addressing modes are

I = Immediate,

N = Nonindexed (absolute),

X1 = Indexed using Index Register 1,

X2 = Indexed using Index Register 2,

M1 = Masked (circular) using Index Register 1,
M2 = Masked (circular) using Index Register 2,
B = Offset + Base Register with no indexing.
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The tag is optional, with an appropriate default being
taken. Some examples are

AY Z,29(D) Y=7Z+29

AZ Z,INCR(N) Add the value of the data
item INCR, addressed
with absolute addressing,
to Register Z and put the

result in Z.

MY Z,INPUT(M1) Multiply Register Z by the
circularly addressed vector
INPUT, indexed by XI,

and put theresultin Y.

® Miscellaneous features
For application development ease, a large number of arith-
metic functions were provided in the assembly language and
evaluated by the assembler. This enriched the language
considerably, and was particularly useful in the area of
coefficient definition, e.g.,

Cl COEF S(COS(PIx1/32)~SIN(PIx1/32),...)

which is part of the coefficient sequence used in the FFT.

The assembler generator that was used incorporates the
OS/VS Assembler H macro processor {7]. Thus, this fairly
powerful macro facility is available as an extension to the
basic language.

® Optimization for pipeline execution

As previously mentioned, the RSP achieves increased
performance through the use of a noninterlocking, pipelined
execution unit [4]. This creates sequencing problems for the
programmer which can in most cases be overcome by reor-
dering the instructions to perform useful noninteracting
instructions in the “dead space” while other instructions in
the pipeline are completing. If the simple technique of
inserting no-operation (NOP) instructions is used, about
20-25% execution overhead can be expected. This falls to
less than 5% in almost all cases when reordering is
performed, and in many cases to less than 1%.

In order to free the programmer from this error-prone
activity, the assembler incorporates a reordering algorithm.
The algorithm operates from a table listing the data-flow
characteristics and dependencies for each instruction. It
performs label-to-label data-flow analysis and optimizes the
code by reordering the sequence to maintain the same data
flow with the minimum number of pipeline dependencies still
exposed. Even though it operates only label-to-label with
worst-case assumptions at each end-point, the algorithm still
reduces the NOP overhead to less than 5%.

IBM J. RES. DEVELOP. e YOL. 26 ¢ NO. 4 e« JULY 1982



Code scheduling in a compiler is a common practice, but in
assembly languages it is rare and has an interesting side
issue. There is a problem with presenting the assembled code
to the programmer: In which sequence should it be listed, as
reordered or as written? The compromise chosen was to leave
the written sequence on the listing with any deviation from
this highlighted in the “OBJECT TEXT" section. In Table 1
(taken from a real program listing), the “LOCATION” field
lists the offset from the beginning of the program in decimal
and hexadecimal, and is not important. The “OBJECT
TEXT? lists the location of the “real” operand (D indicates
data storage), the hexadecimal op-code, the operand in
decimal and hexadecimal, and finally any difference between
the instruction at that location and the one coded in the
“SOURCE STATEMENT” field for that line. The
“STMT” field is a statement number count only. The
“SOURCE STATEMENT” records the line from the source
program. As can be seen from the example, the instruction at
statement 464 has been moved down to 466 and statements
465 and 466 have moved up. The second reordering is
similar.

Programming methodology

The approach chosen for programming the RSP was to
develop as much as possible on the System/370, and only as
the last step to actually run programs on the RSP hardware.
This general approach is illustrated in Fig. 1. PL/I was
chosen as the high-level development language because it is
possible to define data types exactly matching those sup-
ported by the RSP architecture.

The hardware testing configuration is illustrated in Fig. 2.
Most applications developed were one-dimensional, using
speech, music, or telephone as the source of the signal. For
those cases where the signal was originally digital, the IBM
Series/1 minicomputer was used to provide data and to
collect results for later analysis.

Tools

In order to support development using this methodology and
configuration, a relatively complete set of software support
tools were written. These were mainly for application devel-
opment but also for testing and debugging the hardware.
They initially consisted of the

Cross-assembler,

PL/I-to-RSP interface,

Linkage loader,

Simulators,

System/370-to-RSP interface, and
Debug package.

The cross-assembler executed on the System /370 and gener-
ated a System/370 object module which could be processed
by the linkage loader and then simulated. It could also be
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Block diagram and specification

Code in PL/I floating point <——————Test on System/370

Code in PL/I fixed point <——————————— Test on System/370

Recode in RSP assembler <#——————————— Test on RSP simulator

Timing estimates

Algorithm plus I/O code <#——————————— Test on simulator

in RSP assembler \
Test on RSP hardware

Figure 1 General approach used for programming the RSP.

System/370
¥ ¥
- AD || RSPl p+»{ RSP2 | RSP3 |+ D/A >
t 4
y

Series/1

Figure 2 Configuration for hardware testing.

Table 1 Sample assembler listing illustrating code reordering.

Location

Object text

STMT  Source statement

56/0038 D 75
57/0039 D 5D
58/003A BO
59/003B  CO
60/003C D 41
61/003D D 75
62/003E D 7D
63/003F D 25
64/0040 CO
65/0041 D 41
66/0042 D75
67/0043 D 79

2056,/0808
2056,/0808 LZ
1/0001 HZ
16/0010 LR
2056,/0808
2056,/0808
2056/0808 LX2
2057/0809 AZ
8/0008 LR
2054/0806
2054/0806
2057/0809 LX1

463
464
465
466
467
468
468
470
471
472
473
474

LV
LR
LZ
HZ
STZ
Lv
LR
LX2
AZ
STZ
LV
LR

WIHALF
WI(R),V
WIHALF

Z,1

WIHALF
WIHALF
B(R),V
WIHALF

Z DATADDR
UR

UR

W2(R),V
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PLAI RSP program
program / stub

RSP code,
data, and
tables

Linkage loader Related
PL/I-to-RSP —
interface ‘

Simulator/
hardware RSP memory
interface image

Debug ﬁ
package

RSP prototype

Figure 3 Operation flow for execution-time tools.

down-loaded into the RSP prototypes and executed there
through the System/370-to-RSP interface. In either case,
the debug package could be used to interrogate the state of
the RSP (either simulated or real). The PL/I-to-RSP inter-
face allowed the substitution of RSP assembler programs for
PL/I subroutines, without the necessity of changing any of
the PL/I programs. The design and implementation of these
tools have several novel aspects; these are described in the
following sections.

Execution-time support

Traditionally, simulators for machines under development
have been stand-alone processors, interfacing with a user at a
terminal. Commands are usually provided to load a program
image file into the simulator’s storage, to start simulation,
and for a host of display and change facilities to examine and
control the state of the simulated machine during and after
the program execution. This same set of interfaces is often
used to execute programs on the hardware model of the
machine being developed. The approach taken for the RSP
was entirely different. It was, rather, to make the RSP
(simulator or hardware model) a black-box computational
resource that was activated when necessary, with no detailed
specification or commands from the user. Full traditional
monitoring and debugging facilities were also provided. This
approach was chosen to make application development as
easy as possible, though it was less convenient for debugging
the hardware. The most novel aspects of the execution-time
tools are those which support this black-box concept and
those facilities of the linkage loader which support the HLL
features of the RSP assembly language.

The operation of the execution-time tools is illustrated in
Fig. 3. The output of the assembler is an object module,
suitable for loading into the System/370 storage by the
linkage editor. The first portion of this is a System/370
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program “stub,” which receives control when the RSP
program is invoked from a HLL. This small program invokes
the RSP linkage loader, passing as parameters the several
tables and data areas which comprise the rest of the assem-
bled RSP program. One of these tables contains the informa-
tion about parameters from the INPUT, INOUT, and
OUTPUT statements. When the RSP program is loaded into
the RSP storage image, the PL/I-to-RSP interface uses this
table to move parameters between the invoking PL/I pro-
gram and the RSP program, and after execution it moves the
values in the INOUT and OQUTPUT data objects back to the
PL/T arguments.

Apart from the basic operations of any linkage loader, the
RSP linkage loader also performs the processing to support
the pseudo-dynamic storage mechanism in the assembly
language. It does this by constructing a “call-tree” as it
resolves the external references. (Note, this implies that
recursive programs are rejected, though this is not a problem
for signal processing applications.) For each RSP program,
there is a table containing a list of the ADATA objects for
that program. These tables are then used, together with the
“call-tree,” to determine at each invocation level the maxi-
mum ADATA requirements, i.e., the program at each level
which requires the most ADATA space. The maximum at
each level is then reserved by the linkage loader and all
programs -at that level have their ADATA objects mapped
into this area. Also, as the linkage loader is creating the
“call-tree,” the parameter table description is checked for
agreement with the external reference table of the invoking
RSP program. This catches gross interface errors very
quickly.

After the linkage loader has processed all the necessary
RSP programs and created load images for the instruction
and data stores of the RSP, it invokes the simulator/
hardware interface to execute the RSP program. This inter-
face uses an external option to determine whether to down-
load the memory images into the hardware and start execu-
tion there, or to invoke the simulator. When a “STOP”
statement is executed, the simulator returns control to the
interface. When the hardware option is used, the interface
awaits a signal from the RSP processor indicating that a
“STOP” has been executed and then up-loads the stores into
the storage image. In either case, the PL/I-interface portion
of the linkage loader then moves the values of any OUTPUT
parameters to the PL /I argument variables and PL/I execu-
tion continues. Owing to this movement of parameter values
back and forth from PL/I to the RSP program, the RSP
program can be invoked in exactly the same manner as a
functionally equivalent PL/I subroutine would be. Also,
whether the RSP program is executed on the simulator or the
hardware prototype is not reflected at all in the invoking
PL/I program.
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e Simulator design

Owing to the stage of hardware development at the time the
simulator was designed, it was expected, correctly, that the
simulator would be the main application development pro-
cessor during the hardware implementation. Thus, it was
decided to make the simulator operate as fast as possible, so
as to simulate entire applications within a reasonable amount
of time. In order to achieve this, all monitoring, debugging,
and I/O functions were implemented outside the simulator
kernel, which was written in a systems programming lan-
guage. As a result, the simulator operates at approximately
50 KIPS on a System/370 Model 168. While this is 100
times slower than the real processor, it still allows most
one-dimensional signal processing algorithms to be executed
within a reasonable time. This is because most such algo-
rithms are designed to run in 10 to 50 ms before repeating on
fresh data. ‘

An interesting aspect of the design of the simulator is the
way in which it is constructed. The RSP is a four-phase
pipelined machine with each phase performing a certain
function. The simulator is built from two components: a
framework and a multi-level macro definition of the instruc-
tions. The framework contains the support routines which
perform the more complex functions such as ALU operation
and address computation, and the housckeeping routines of
the simulator. For the instruction definition, a macro-level
interface was designed to allow easy specification of each
phase, and each instruction was then defined as a sequence of
four macros. So the simulator was constructed by a program
which matched the instruction definitions already created
with the op-code, using the mnemonic as the link, and which
then inserted these definitions into the simulator framework
before compilation. This allowed the simulator to be always
in synchronism with the assembler, and permitted both to
track changes in the RSP definition/implementation very
quickly. This process is illustrated in Fig. 4.

Program generators

So far we have been concerned with the more novel aspects of
the otherwise relatively standard software support tools for
any new machine. We now look at a different approach, one
that has been partially successful in the business world—that
of program generators. As stressed in the introduction, signal
processing is very standardized, with filters, transforms, and
correlators forming the bulk of the computational load.
Thus, with a processor specifically designed to solve these
particular problems, and with the only programming lan-
guage implemented being an assembly language, there is a
good opportunity for program generators. For almost any
analytical signal processing, the Fourier Transform consti-
tutes most of the processing. The RSP has an architecture in
which the Winograd Fourier Transform (WFT) is strongly
favored. Unfortunately, general WFTs are difficult to pro-
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Simulator Simulator
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Simulator program
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Figure 4 Illustrating method of construction of RSP stimulator.

gram and so, initially, the first program generator that was
constructed was a finite-impulse-response (FIR) band-pass-
filter generator.

& FIR filter generator

In order to automate the construction of FIR filter programs,
an interactive questionnaire was developed. (It should be
noted that the RSP is very well suited to symmetric FIR
filter programs, and can execute them with no cycles lost to
pipeline hazards.) The questionnaire seeks a specification of
the filter characteristics, such as sampling frequency, pass
bands, stop bands, attenuation, etc. These data are collected,
as illustrated in Table 2, and an annotated file is produced.

Having collected the specification, the Parks-McClellan-
Rabiner [8] program is used to derive a symmetric FIR using
floating-point arithmetic. This process is iterated upon,
usually increasing the filter length, until a filter is found that,
when implemented in the limited precision specified, still
meets requirements over the entire range. For more details
on the results obtained, see [9]. The impulse-response coeffi-
cients produced by the Parks-McClellan-Rabiner program
are used to build a very standardized, but efficient, symmet-
ric FIR filter program for the RSP. The resulting program is
an RSP subroutine that accepts signal input data and outputs
filtered data as RSP parameters (see previous description of
this mechanism).

As an option with the filter generator, the program can be
assembled and simulated, if input data are made available, or
even executed on the hardware configuration. A digital
mixer program is executed on one RSP to combine analog
input with a wide range of other signals. The mixer program
can generate white noise and most of the standard signal-
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Table 2 Interactive questionnaire used in development of symmet-
ric finite-impulse-response (FIR) filter generator program.

Computer question User response

Type of filter? B (for band-pass)

Sampling frequency? 10,000 (10-kHz sampling)

Precision? 12 (12 bits)

Specify filter shape: B 010000
(band from 0 to 1 kHz
is to be a stop band)

B 2000 3000 1
(2-3 kHz is the pass band)
B 4000 5000 0

(4-5 kHz is also a stop band)
Sampling ratio? 1 : 1 (no decimation/interpolation)

Filter length or 0? 0 (Let the computer work out

an appropriate length)
Pass band ripple in dB? 0.2

Stop band attenuation 40
in dB?

End of specification.

generator waveforms, with any combination, at any frequen-
cy. These signals can be mixed with any analog input and the
resulting waveform fed digitally to the filter program under
test. The output from the filter is sent to a D/A converter and
can be displayed on an oscilloscope, frequency analyzer, or
distortion meter, to verify that it is performing as required. In
all, this technique was very successful, and in a few minutes
at a terminal, a digital filter satisfying most common require-
ments could be designed, built, and tested.

& DFT generator

In those cases where the power-of-two Fourier Transform is
not a suitable transform size, the Winograd Fourier Trans-
form is particularly attractive on the RSP. This is so because
the dynamic multiply takes eight machine cycles as opposed
to one cycle for almost all other operations, and the address-
ing modes of the RSP allow very irregular patterns with no
penalty. The algebraic manipulations required to construct a
general WFT are, however, sufficiently difficult to deter
most programmers. The computer can be a tireless manipu-
lator of algebra [10] and so all that is required for a WFT
generator is a set of decomposition rules to bring large
transforms down to reasonable size (e.g., a 420-point
becomes a 20x21-point), a base set of smaller transforms
already coded, and an escape mechanism into an algebra
manipulator for previously unencountered sizes. Agarwal
has already suggested a set of decompositions for many
transforms up to 2000 points [11]. A library of some of the
primitive WFT components has been generated, and the
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algebra manipulation is well understood. Unfortunately, no
package has been produced to automatically build a WFT of
a specified size for the RSP.

Summary and conclusions

The overall approach to the software support of a processor
so specialized, and therefore limited, as a signal processor
was to use a host System/370 computer wherever possible.
While obviously the RSP could never support a useful
assembler /compiler, this approach is more evident in the
lack of any bootstrap code to control loading and debugging.
The cross-assembler itself illustrates the approach: HLL
features wherever possible and extensive expression handling
to produce highly optimized multiplication sequences from
natural specifications. The execution-time support also illus-
trates this, with the RSP processor itself treated as a black
box and integrated into PL/I. Finally, even the programming
of some functions is automated on the host computer by use
of the program generators.

This, then, was the strategy as it evolved; how well did it
work?

® Programming experience

The first use of the programming tools was in the architec-
tural evaluation of the processor before and during its
construction. For this function, producing timing estimates
of common kernels or entire applications, the tools proved to
be very effective. Particularly useful also was the fast
tracking of architectural alternatives. This was due to the
multi-level macro construction and table-driven implementa-
tion.

The second use of the support tools was to load programs
into the RSP models to test and debug them. This worked
fairly well, though the engineers still preferred to load small
instruction sequences ‘“‘by hand,” either for assurance of
what was really in the machine or for faster turnaround. If a
truly interactive debugging facility had been available, even
via the host computer, it would have assisted this process.

After these two slightly unusual uses, the bulk of the
programming was in building applications or subsystems,
which was the envisioned role of the tools. In general the
experience was good; most signal processing programmers
had a strong hardware background and were comfortable
with assembly-language programming. In fact, as extra HLL
features were added, it was difficult to encourage their use at
first. All programmers tried to hand-optimize one program
for the pipeline; some even tried two programs, but all
quickly found that the assembler did a very good job and
produced correct code. Some programmers did not use the
PL/T interface, except as required; others used it heavily,
gradually converting a PL/I application to RSP code. All
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programmers, however, developed their code on the simula-
tor before trying it on the hardware models. Finally, despite
its potential time-saving appeal, the filter generator received
almost no real usage. The reason for this may have been that
in the applications developed, the filters were not simple
band-pass filters; usually extra shaping was required in the
pass-band or transition region.

® Missing functions and future support

There are three major areas of missing support: hardware
operation, HLL compiler, and WFT generator. Undoubted-
ly, the testing, debugging, and later development work on the
hardware models would have been assisted considerably had
there been support equivalent to that available in the micro-
programming development systems currently in use with the
popular microprocessors. This requires software to be devel-
oped on a mini- or microcomputer, at least the debugging
facilities and hardware interface. Also, it would be more
convenient if programs could be developed on the same
computer. Building a HLL compiler, however, is certainly
easier on a mainframe and is somewhat at odds with develop-
ing a microprogramming development system on a minicom-
puter. Already, however, some applications are developed
entirely in PL/I and then translated into RSP code. Thus, we
know that PL/I, at least, is not intolerable for coding signal
processing applications. In fact, it has proved much more
convenient than expected, and the choice not to build a
compiler, may, in retrospect, have been wrong, though the
choice of language is still as difficult as ever. For nondefense
applications, it now seems clear that a FORTRAN, PL/I, or
Pascal compiler would be very beneficial, though some
programmers would not wish to leave the comfort of an
assembly language.

The WFT generator is always useful, regardless of the
programming language or development technique. This is
particularly so for a machine with a multiply-to-add-time
ratio like the RSP and with flexible addressing capability.

Beyond all these, however, is a yet higher-level application
development facility that is possible for signal processing
applications. As mentioned earlier, these applications almost
always exist in the early stages of development as a block
diagram of such functions as filters, transforms, band shifts,
integrators, and correlators. Each of these functions takes a
fixed amount of input data, performs a standardized func-
tion, and produces a fixed amount of output data, which is
then passed to one or more of these functions for further
processing, etc. This whole process can today be defined to
the computer through interactive graphics. If to this we
append information about input and output data and specify
which standard function is to be performed in each box,
entire applications can be automatically programmed.
Thus, while the type of support tools described in
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this paper are still necessary primitives, the future of signal
processing software support research lies in developing such
sophisticated automatic programming systems.
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