424

JAMES W. COOLEY

James W. Cooley

Rectangular Transforms for Digital Convolution on the
Research Signal Processor

The Rectangular Transform (RT) method for computing convolutions belongs to a family of Reduced Computational
Complexity (RCC) algorithms. Convolution calculations by the RT method were programmed for the Research Signal
Processor (RSP) and run on the RSP simulator, giving tabulations of numbers of RSP machine cycles. One of the original
objectives was to see how well the original RSP architecture was suited to the RCC algorithms and to be able to make
suggestions for possible changes. The results are also intended to demonstrate the efficiency of the RT convolution algorithms
on a microprocessor with a limited instruction set and to show how to construct efficient RT programs for digital convolution.
All results are given for the original RSP, as it was before the modification which resulted in the Real-time Signal Processor

described in another paper in this issue [1].

Introduction and background

Considerable theoretical advances have been made in
Reduced Computational Complexity (RCC) algorithms for
some basic calculations such as the computation of multi-
linear forms, convolutions, and the Discrete Fourier Trans-
form (DFT). (See [2-6]). From these have come what are
now known as the Rectangular Transform (RT) algorithms
and the Winograd Fourier Transform (WFT) algorithms. In
these algorithms, the theory deals with the reduction in the
number of multiplications which, unfortunately, is usually
achieved at the cost of an increase in program complexity
and, sometimes, in the number of additions. For these
reasons, and due to the fact that multiplication is almost as
fast as addition on many general-purpose computers, there
has been little use made of the powerful new computational
complexity theory and the algorithms resulting from it. It is
quite natural, therefore, to look about to see where RCC
algorithms can be used to advantage. One is led to consider
microprocessors in which multiplications are relatively slow
and where the machine typically is used in dedicated applica-
tions where it is worth the effort to reduce computing time.

Previous publications have shown how RT algorithms
were derived using the SCRATCHPAD system [7] for
algebraic manipulation and how PL/I programs were devel-

oped which order the operations so as to reduce the number
of required additions and automatically generate PL/I pro-
gram statements.

The Research Signal Processor

The RSP was designed particularly for digital signal process-
ing applications where long repetitive calculations must be
performed at high speeds. Typically, such calculations
involve matrix operations, moving averages, or convolution
calculations, and Discrete Fourier Transform (DFT) compu-
tations for spectral analysis or correlations. The RSP
machine operations are designed to make the calculation of
sums of products extremely fast.

The fact that the RCC algorithms are more complicated
and that the RSP must be programmed in machine language
with timing highly dependent on instruction sequencing
would, at first sight, discourage one from using the RCC
algorithms. However, the software support described in
another paper in this issue by Davies and Ris [8] provides an
excellent assembler, which relieves the programmer almost
entirely from pipelining considerations, and a simulator with
useful debugging facilities.

© Copyright 1982 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
editor.

IBM J. RES. DEVELOP. VOL. 26 » NO. 4 ¢ JULY 1982

Since the work to be described in this paper was done, an
improved architecture for the RSP, described elsewhere in
this issue by Mintzer and Peled [1], was developed for
implementation by the IBM Federal Systems Division. A few
of the improvements, including the addition of a guard bit on
the front of the Y and Z registers, would permit an improve-
ment in program efficiency. Some comments on these new
features and their anticipated effect on the present calcula-
tions are made later.

The Rectangular Transform algorithm

The Rectangular Transform (RT) method has been
described in detail elsewhere [9-12] with a list of RT
convolution algorithms [10]. For the present purposes, only a
very brief description of the RT algorithms is given.

The convolution which we consider here is defined by

1 N-1
y"=ﬁghf”‘x"’ (1)

where j = 0,1, ---, N — 1 and where N is the length of the
data sequence, it being understood that all indices are to be
taken mod N. Thus, the convolution is circular; i.e., when the
index j — nof h;_, is negative, it is replaced by N + j — n. An
RT algorithm for computing the convolution (1) may be
written

N-1
Hm = Z Am,nhn’ (2)
n=0
N-1
Xm = anxn’ (3)
n=0 ’
Y,=HX, 4)
where m = 0, 1, .-, M — 1, M being the number of
multiplications. Then,
1 M-1
Y= 5 2 Cin¥om)
where j = 0, 1, ..., M — 1. Unlike DFT methods, the

transform matrices 4, B, and C are rectangular rather than
square and the elements of two of them are simple, being
mostly zeros or small integers. One of them, which we let be
A, has simple rational numbers as elements. Herein lies the
simplicity and efficiency of the RT methods. Algorithms of
the form (2)—(5) are available or can be derived for relatively
small sequence lengths.

For large N-values one can perform a mapping of the
arrays into multidimensional arrays and do convolutions in
each of the dimensions using the algorithms discussed above.
Agarwal and Burrus [9] first suggested this idea and showed
that this would reduce the number of multiplications. How-
ever, the cyclic property of the convolution algorithms made
it necessary to pad out the array with zeros when using their

IBM J. RES. DEVELOP. e VOL. 26 ¢ NO. 4 ¢ JULY 1982

method. Ref. [10] shows a different mapping of the indices
which avoids the necessity for padding with zeros. For this,
however, one must require that the factors of N be mutually
prime. Assume, for the sake of the following discussion, that
we use three factors of /V and let

N=rrr,,

and let the mapping of the single index j onto the triple of
indices j, j,, and j, be defined by the equation

Jj=Jj7m +j7,+ j;7;mod N, 6)

where 7, = N/r . If we define the same mapping for the
index n, the convolution (1) can be written as a three-
dimensional convolution

n=1r-1r-1

1

yjlyjz,j} - Nlé j;z=(:> j;Z=(:) hfl"‘lvfz"‘z'fs"'a x"l”'Z"':i' (7)
After mapping the one-dimensional arrays &, and x_ into the
three-dimensional arrays A, , ayand x, ., onemay oper-
ate with algorithms of the form (2)—(5) on each of the three
dimensions in turn. This may be described in operator
notation, with subscripts on the operators 4, B, and C
corresponding to the operations in (2), (3), and (5) for the
respective sequence lengths 7., » = 1, 2, and 3 as follows:

H = A,A,Ah, (8)
X = B,B,Bx,)
Y=HxX, (10)
y=N'CC,CY. (11)

In (8) £ may be thought of as the three-dimensional r, x r,
x r, array of elements h 1ol resulting from the mapping of
the original sequence #; according to (6). The result of the
operation, 4 A4, is the three-dimensional array obtained by
applying the A -transform (2) to the first index j, of k. It is to
be noted that, since 4, , in (2) is a rectangular matrix with
M, rows, M, being the number of multiplications for the
r,-point algorithm, the length of the result 4,4 in the first
dimension is increased to M. 4, and A, have a similar effect
on the second and third dimensions. A similar transformation
is performed on x. The transformed arrays are multiplied
element-by-element in (10), and in (11) the result is trans-
formed back, one dimension at a time, to yield the three-
dimensional array y. This final array is permuted according
to (6) into the one-dimensional array of values of the
convolution (1). The total number of elements in each of the
arrays H, X, and Yis

M=MMM, (12)
1 2473

which is the total number of multiplications required by the
algorithm, where M, is the number of multiplications
required for the -point algorithms.

425

JAMES W. COOLEY

426

Table 1 Number of multiplications and additions for convolution.

N= 20 60 180
RT Multiplications 50 200 950
Additions 230 1120 6990
Totals 280 1220 7940
FFT Multiplications 152 928 1808
Additions 356 1544 7028
Totals 508 2472 8836
Direct Multiplications 400 3600 32400
Additions 380 3540 32220
Totals 780 7140 64620

Table 2 Timing for convolution on the IBM 370/168 VM (in
milliseconds).

Method N= 20 60 180
RT 0.5 1.4 7.5
FFT 1.9 4.2 11.3
370 Assembly Language 0.7 5.2 44.6
Direct PL/1 3.1 26.1 2343

It is seen that, by using the algorithms for the factors of N
in this manner, one can construct a program by first writing
convolution algorithms for each of the factors of N, r,, v = 1,
2, 3, and then inserting each of them in a program with loops
for repeating the calculation for all values of the other two
indices. As described in [10], the number of additions
depends upon the ordering of the factors, because each
application of the operators 4, and B, enlarges the array. It is
also shown in [10] that if 4, v = 1, 2, 3, is the number of
additions required for the r -point algorithm, then the whole
calculation should take

Ay = Ar,yry ¥ MAy, + MM,A, (13)

additions. One can derive from this the rule that the factors
should be placed in the order with increasing values of the
quotient

M —r

T(r) = VA o (14)

v

It can be seen here that reducing one M, reduces the total
number of multiplications, (12), by the factor by which M is
reduced. On the other hand, a change in the number of
additions in one of the algorithms makes a less significant
change in the total number of operations since it appears in
only one of the terms of the sum in (13). This is the reason
that in the multidimensional method one reduces computa-
tion by reducing the number of multiplications even at the
expense of increasing the number of additions in the short

JAMES W. COOLEY

convolutions. Therefore, as we shall see, the multidimen-
sional rectangular transform method yields faster algorithms
even in machines where multiplication is as fast as addition.

Results on the IBM System/370 Model 168

For the sake of comparison, we first cite some results
obtained by timing the RT algorithms on a general-purpose
computer. Convolution programs for N = 20 =4 x 5, N =
60 =4 x 3 x 5,and N = 180 = 4 x 9 x 5 were written in
the PL/I programming language and run on the IBM
System/370 Model 168 in a time-sharing system. The fac-
tors were put in the optimal order according to the size of
T(r,) in (14) to yield the numbers of operations listed in
Table 1. The timings for the calculation of the cyclic
convolution on the IBM System/370 Model 168 with the RT
method and the FFT method, in floating-point arithmetic,
are given in Table 2 in milliseconds. Here, and in what
follows, we consider a situation where a single set of weights
h, is to be convolved with many x, sequences. Therefore, the
transform of A is pre-computed and used repeatedly so that
we do not include the time for the transforms of k. For all
three values of IV with the RT method, the permutations (6)
were done without loops, i.e., by stringing out the list of load
and store operations. In addition, the programs were written
so that the PL/I pre-processor sets up program parameters,
producing very efficient object programs, each for a specific
value of V. The FFT program used was an early version of
Singleton’s FORTRAN program, now available in the IEEE
Digital Signal Processing Program Book [13]. For compari-
son, the timing for a very efficient machine-language pro-
gram by the direct method with NV * multiplications and N (V
— 1) additions is given. The last line of Table 2 gives the time
taken by a simple PL/I program with two “DO” loops to
show how much can be gained by the various degrees of
programming effort.

The results in Table 2, of course, show an enormous
improvement, i.e., by a factor of 21 for N = 180, in going
from a PL/I program using the direct method to an FFT
method. Then, going from the FFT method to the RT
method yields an improvement by the factors 4, 3, and 1.5 for
N = 20, 60, and 180, respectively. In most numerical
calculations, one is not very enthusiastic about the last-
mentioned increase in the speed of calculation. In fact, one
finds changes of this magnitude by doing the same calcu-
lation with different compilers and optimization levels within
compilers. However, in digital signal processing, the factor of
1.5 in the speed of doing the 180-point convolution may
produce something close to the same improvement in the
total calculation, which, for speech, radar, sonar, and seismic
applications may make an improvement in performance. It
may even make the difference between being able to do the
calculation in real time or not, or it may reduce the number
of signal processing devices by this factor. Of course, for a

IBM J. RES. DEVELOP. e VOL. 26 s NO. 4 ¢ JULY 1982

factorizable NV less than 180, the RT method is definitely
superior. A further advantage of the RT method is that, for
some range of low N-values, the total program is much
shorter and simpler than one using an FFT subroutine.

When the RCC algorithms were first proposed, it was
anticipated that their most important applications would be
in microprocessors where mulitiplication takes more time
than addition. However, as described above, when used with
multidimensional convolution methods, the number of addi-
tions as well as multiplications is reduced. Furthermore, one
can see, in Tables | and 2, that the improvement of RT over
FFT methods is more than one would predict from the
numbers of multiplications and additions. This is due to the
fact that the RT algorithms also require less logic and
“clerical” operations.

Results with the RSP

A meaningful comparison of the advantages of one algorithm
over another is complicated by the fact that there are large
tradeoffs in speed versus program complexity, program size,
and the number of constants or tables which one must store.
One can also have variations in the size of the programs
depending upon the number of bits of accuracy which must
be preserved.

For the present RSP programs, small modules were writ-
ten for each of the factors of N. These were put into programs
for N = 9, 12, 20, 36, 60, and 180. In all cases, the calling
program, written in PL/I, computed the transform of 4, and
the number of cycles given are for the RSP subroutine which
did the rest of the calculation. The permutation of input and
output data was performed by stringing out the load and
store operations. A permutation routine with three nested
loops, taking 55 instructions, including NOPs generated by
the assembler, was written and tried but not used for the
timing given here. If used with the 180-point transform, for
example, it would have taken 38 cycles per output point
versus 4 for the strung-out routine, while the number of
instructions would have been 55 versus 720.

Table 3 gives the number of RSP cycles per output point
counted by the simulator. The multiplication of the trans-
forms was done in these programs in a loop using the built-in
multiply, MPY, which takes 8 cycles, which, with the load,
store, and indexing operations, results in 13 cycles for each
multiplication. This would be appropriate for a situation
where the s are to be parameters of the program. If, on the
other hand, the As were to be built into the program in the
form of lists of shift and add operations (coefficient store),
they would have taken, on the average, about 6.5 cycles each.
The figures in the third column of Table 3 are for this
situation.

IBM J. RES. DEVELOP. @ VOL. 26 ¢ NO. 4 ¢ JULY 1982

Table 3 Number of RSP cycles per output point for convolution.

N RT RT Fourier Loop Strung Coeff. Coeff
MPY coeff. transform MPA MPA store store

13cy. 6.5¢y. 13¢cy. 9¢cy. 6.5¢cy. 35¢y.

9 54 40 117 81 59 32
12 53 42 156 108 78 42
20 70 54 260 180 130 70
32 277 416 288 208 112
36 85 68 468 324 234 126
60 96 74 780 540 390 150
64 314 832 576 416 224
128 353 1664 1152 832 448
180 164 130 2340 1620 1170 630
240* 139 3120 2160 1560 840
256 390 3328 2304 1664 896

*Uses a WFT algorithm. All others use a radix-2 FFT algorithm.

For a comparison with a Fourier transform method, a
radix-2 FFT program supplied by Norman Brenner was
used, giving the results in the fourth column except where N
= 240. For the latter case, a program using a modified form
of the WFT algorithm, provided by the members of the RSP
project, was used. Before comparing with “direct” methods,
it must be pointed out that the RT and Fourier methods
compute cyclic convolutions, while the figures about to be
discussed for the “direct” methods are for either cyclic or
noncyclic convolutions. Since the former methods may
require padding out with zeros when noncyclic convolutions
are wanted, one may have to double the value of N being used
in the comparison. We now consider four different ways of
computing a convolution from the defining formula. The
fifth column of Table 3 is for a loop of multiply and add
(MPYA) instructions taking 13 cycles per multiplication. In
the sixth column, it is assumed that the loop is unstrung. If
coefficient store is used with random numbers, one should get
the results listed in the seventh column, while for the usual
impulse-response functions, which trail off exponentially, it
would really take only about 3.5 cycles per multiplication,
giving the estimates in the last column.

A comparison of the RT method with the FFT method
shows it to be from 3.5 to 2 times as fast for the range N = 20
to N = 180. The Fourier transform method using the WFT,
however, is about the same as an extrapolated value of the
better of the two RT methods. The value N = 240 is,
however, a particularly good one for the WFT and such
superior performance cannot be expected for many other
values of V. If we go now to a comparison with the last four
columns of Table 3, we should first observe that the last
column gives timing for a program for which the designers of
the RSP built the machine for highest performance. For this
column, we see a cross-over, where RT and Fourier trans-
form method are better only for higher N-values. The RT

427

JAMES W. COOLEY

428

400 Coeff. store Coeff. store 3.5 cycles _ — ——— q
6.5 cycles o————"T"""
£ = "FFT method
- o -
3001 _F
- o
=
E_ -
=
<
§_ 200 RT method 13 cycles per multiplication
K
o
z B o
z WET
100
)
'é RT method 6.5 cycles per multiplication
=
Z 0 1 i 1 1 1 I ! I I 1
0 50 100 150 200 250
N

Figure 1 Number of RSP cycles per output point for cyclic
convolution by using coefficient store, the FFT method, the WFT
method (circle), and the RT method.

Table 4 Comparison of RSP storage* requirements for RT and
FFT programs.

Method N Instructions NOPs Tot. inst. Data Coeff.

9 237 7 244 110 0

RT 20 226 2 228 158 0
60 438 9 447 608 0

180 1133 10 1143 2912 0

32 438 68 502 77 828

FFT 64 438 68 502 141 828
128 438 68 502 269 828

256 438 68 502 525 828

WFT 240 378 19 397 321 355

*Instructions: 20 bits; data: 16 bits; coefficient store: 7 bits.

and Fourier methods are better than the other three “direct”
methods, so one would have to weigh the tradeoff in program
size versus speed in deciding which to use.

To give a graphic description of the relative timing, some
of the data of Table 3 are plotted in Fig. 1, where small
circles have been placed at points corresponding to data in
Table 3. Smooth curves are drawn between them for the sake
of comparison, although no such curves can exist.

Table 4 gives the amount of RSP storage required for the
programs used for Table 3. The fifth column of Table 4 gives
the total number of instructions in each program, including
the NOPs listed in the fourth column. The data storage
requirements listed in the sixth column include the input-
output arrays as well as temporary intermediate quantities,
and the coefficient storage in the last column is for the
special seven-bit shift and add instructions used for doing the
RSP “coefficient store” multiplications.

JAMES W. COOLEY

Comparing the RT method with the FFT radix-2 method,
the former is done with a simpler program which takes fewer
instructions for N less than and equal to 60. The FFT
program takes 828 cells of coefficient store for the sines and
cosines while the RT method takes none. The V = 180 RT
program takes more than twice as much instruction store due
to the r = 9 algorithm. However, the program is quite
simple, with three loops for the transform of x, a small
six-instruction loop for the multiplication of the transforms,
and three loops for the C-transform. The input and output
mappings take 4 x 180 = 720 instructions which, as
mentioned above, could have been done with 55 instructions.
This would have made the program take 34 more cycles per
point, in which case the RT method would still be superior to
direct methods. The large amount of data store is caused by
the large (950) RTs of /2 and x. In the RT method, there is a
different program for each NV while the FFT works with any
power of 2. However, the RT method is about three times as
fast in this range of /V values. One must remember that the
RT and radix-2 FFT work for different Ns, and if N is
constrained, that fact may determine the method of choice.

Scaling and accuracy

Any transform method for computing convolutions in fixed-
point arithmetic will have scaling and accuracy problems,
since each transform value is a weighted sum of all of the
data and must be scaled down to the range allowed for the
data. For maximum accuracy, one should program with
down-scaling during the accumulation of sums. In the RSP
instruction set, this can be done with the “transfer to register
Z” instruction followed by “shift and add” instructions since
the accumulator contains guard bits at its low-order end. One
can do the calculation faster by using the “add memory to Z”
operations. However, this requires the pre-scaling of data,
with consequent loss of significant bits. Scaling is particu-
larly convenient in the radix-2 FFT algorithm since it can be
done by scaling down by the factor 2 at each stage, or
“butterfly.” In the RT algorithm, there is a greater growth of
numbers during the transforms, and a little more scaling is
often required.

Given sufficiently large registers, the RT method can be
made to compute convolutions of sequences of integers,
giving exact integer results. However, this is not practical
since it requires very large registers, and such precision is of
no value when the input data are subject to error.

Two practical methods of error control are possible. The
conservative approach is to scale down so that no overflow is
possible, while a more radical approach is to do less scaling
and permit a small probability of overflow. In the latter case,
the RSP, in saturation mode, sets the arithmetic register to
its highest or lowest value, depending on whether the result is
positive or negative, respectively. Complete prevention of

IBM J. RES. DEVELOP. e VOL. 26 & NO. 4 o JULY 1982

overflow is necessary in applications where a single result has
great importance, such as in setting off an alarm. However,
there are many cases where the output is a graph or an
audible tone in which an occasional error would not be
noticed.

The RT programs were run with random number data
evenly distributed in the range —1 to + 1. Starting with the
fact that sums of random numbers quickly assume a Gaus-
sian distribution, it can be shown that the probability of
overflow can be made small with somewhat less than full
scaling. For example, the row of the B-matrix for the
nine-point RT with the largest sum of magnitudes gives

b,=(111111222)x (15)

If the elements of x are in the range (—p, p), the maximum
magnitude of b, is 12p, while its variance is

8
g, = Zb:idx = \[Eax = /6p. (16)

Assuming a Gaussian distribution for the elements of x, one
obtains the probabilities of b, being in the range (-1, 1) for
the various scale factors p (see Table 5). Since the maximum
magnitude of b, is 12p, one would have to use p = 1/16 for
full scaling. However, it is seen that using p = 1/8 would
produce an error, in this worst case, only once in a thousand
times.

In the 180-point convolution, the PL/I program in the host
computer computed and scaled the RT of & so that the
maximum scaled &, was 1. Then, various scaling parameters
were used at the start of each stage, with the results given in
Table 6. The columns headed by S _,, S, and S give the
scale divisors for the » = 4,9, and 5 algorithms, respectively.
It can be seen how the error and its variance are directly
proportional to the product of the scale divisors except for the
data on the last line. The last line was put in to show how the
lack of scaling at the first stage increases the chances of
overflow. Obviously, reducing the divisors at later rather
than earlier stages reduces the chances of overflow. The next
to the last line has a smaller overall scale divisor than the last
line but has apparently not suffered any serious overflow
problem. The variance may be compared with the variance of
o = 0.025 for the 180-point convolution, showing that for the
best case in Table 6 one gets about nine significant bits.
These empirical results should give some incentive to derive
some rigorous formulas for optimal internal scaling for the
RT, the FFT, and the WFT for general signal processing.

Suitability of the RSP instruction set

The RT algorithms, unlike the FFT and WFT algorithms,
would not benefit very much by the availability of more than
the one index register in the RSP. The only situation where
more index registers would be of use would be where one

IBM J. RES. DEVELOP. ¢ VOL. 26 e NO. 4 o JULY 1982

Table 5 Probabilities that b, will not overflow as a function of the
scale parameter p.

p P(-1l<x<l)
1 0.316
1/2 0.585
1/4 0.897
1/8 0.999
1/16 1.000

Table 6 Maximum error and RMS error for various scaling
divisors used with the 180-point RT algorithm.

S, S, S S, Maximum error RMS error
4 16 8 512 0.01714 0.00324
4 16 4 256 0.00817 0.00160
4 8 4 128 0.00417 0.00080
4 4 4 64 0.00209 0.00042
4 4 2 32 0.00106 0.00022
2 8 4 64 0.00793 0.00310

wanted to save some instruction store and do the permutation
in nested loops, and this would not be a very great saving.
Due to the strung-out nature of the sequence of additions,
almost no NOPs were needed, so that RT algorithms work
well with the pipeline architecture. In order to avoid pre-
scaling and retain signficant bits, it was necessary to add
numbers by loading the Z register and shifting while adding.
If a leading guard bit were present, as it is on the new version
of the RSP, it would have been possible to add first and then
shift, saving roughly one out of four operations in the
addition portions of the program.

Conclusions

Results show that when speed of processing is important, it
may be worthwhile doing convolutions by the RT method
instead of the FFT method for sequence lengths of moderate
size. Just what “moderate” is can be judged from the
execution times listed in Table 3 and graphically illustrated
in Fig. 1. Since these are very roughly proportional to the
numbers of operations, the tables in Ref. [10] can be used to
determine which method is preferable by simply adding the
numbers of multiply and add operations for the sequence
lengths under consideration. The RT methods involve scaling
and accuracy problems which are described and tested
empirically, with the conclusion that less than full scaling,
which results in a small probability of overflow error, is the
most practical approach for the use of the RT algorithms on
the RSP.

429

JAMES W. COOLEY

References

1.

430

JAMES W. COOLEY

Fred Mintzer and Abraham Peled, “A Microprocessor for
Signal Processing, the RSP,” IBM J. Res. Develop. 26, 413—
423 (1982, this issue).

. S. Winograd, “On Multiplication of Polynomials Modulo a

Polynomial,” Research Report RC-6791, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, NY, 1977; also,
SIAM J. Computing 9, 225--229 (1980).

S. Winograd, “On Multiplication in Algebraic Extension
Fields,” Research Report RC-6642, IBM Thomas J. Watsori
Research Center, Yorktown Heights, NY, 1977; also, J. Theor.
Computer Sci. 8, 359-377 (1979).

S. Winograd, “Some Remarks on the Effect of a Field of
Constants on the Number of Multiplications,” Proceedings of
the Foundations of Computer Science Symposium, Berkeley,
CA, Oct. 13-15, 1975.

S. Winograd, “Some Bilinear Forms Whose Multiplicative
Complexity Depends on the Field of Constants,” (extended
version), Research Report RC-5669, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1976; also, Math.
Syst. Theory 10, 169-180 (1977).

. S. Winograd, “On Computing the Discrete Fourier Transform,”

Math. Comp. 32, 175-199 (1978).

. H. F. Silverman, “An Introduction to Programming the Wino-

grad Fourier Transform Algorithm (WFTA),” IEEE Trans.
Acoust., Speech, Signal Processing ASSP-25, 152-164
(1977).

. D.P. Kolba and T. W. Parks, “A Prime Factor FFT Algorithm

Using High-Speed Convolution,” IEEE Trans. Acoust.,
Speech, Signal Processing ASSP-25, 281294 (1977).

. J. H. McClellan and C. Rader, Number Theory in Digital

Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1979.

. J. H. Griesmer, R. D. Jenks, and D. Y. Y. Yun, “SCRATCH-

PAD User’s Manual,” Research Report RA-70, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, 1975; also,
SCRATCHPAD Technical Newsletter No. 1, Nov. 15, 1975.
See also J. H. Griesmer and R. D. Jenks, “Experience with an
On-Line Symbolic Mathematics System,” Proceedings of the
ONLINE 72 Conference, Vol. 1, Brunel University, Uxbridge,
Middlesex, England, Sept. 4—7, 1972, pp. 457-476.

10.

11.

12.

13.

. Ken Davies and Fred Ris, “Real-Time Signal Processor Soft-

ware Support,” IBM J. Res. Develop. 26, 431-439 (1982, this
issue).

. R. C. Agarwal and C. S. Burrus, “Fast One-Dimensional

Digital Convolution by Multidimensional Techniques,” IEEE
Trans. Acoust., Speech, Signal Processing ASSP-22, 1-10
(1974).

R. C. Agarwal and J. W. Cooley, “New Algorithms for Digital
Convolution,” IEEE Trans. Acoust., Speech, Signal Processing
ASSP-25, 392-410 (1977); also, Research Report RC-6446,
IBM Thomas J. Watson Research Center, Yorktown Heights,
NY, 1977; also, “New Algorithms for Digital Convolution,”
Addendum, Proceedings of 1977 International Conference on
Acoustics, Speech, and Signal Processing, Hartford, CT, 1977,
p- 360.

N. S. Reddy and V. U. Reddy, “High-Speed Computation of
Autocorrelation Using Rectangular Transforms,” JEEE Trans.
Acoust., Speech, Signal Processing ASSP-28, 481-483
(1980).

N. S. Reddy and V. U. Reddy, “Complex Rectangular Trans-
forms for Digital Convolution,” IEEE Trans. Acoust., Speech,
Signal Processing ASSP-28, 592-595 (1980).

J. W. Cooley, “Some Applications of Computational Complex-
ity Theory to Digital Signal Processing,” Proceedings, 1981
Joint Automatic Control Conference, University of Virginia,
Charlottesville, VA, June 17-19, 1981; also, Research Report
RC-8805, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1981.

Programs for Digital Signal Processing, Digital Signal Process-
ing Committee, IEEE ASSP Society, IEEE Press, 345 E. 47 St.,
New York, NY, 1979.

Received September 28, 1981, revised February 17, 1982

The author is located at the IBM Thomas J. Watson

Research Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELOP. @ VOL. 26 e NO. 4 JULY 1982

