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Rectangular  Transforms  for  Digital  Convolution  on the 
Research  Signal  Processor 

The Rectangular Transform (RT) method for computing convolutions belongs to a family of Reduced Computational 
Complexity (RCC) algorithms. Convolution calculations by  the RT method were programmed for the Research Signal 
Processor (RSP) and  run on the RSP simulator, giving tabulations of numbers of RSP machine cycles. One of the original 
objectives was to see how well the original RSP architecture was suited to the RCC algorithms and to be able to make 
suggestions for possible changes. The results are also intended to demonstrate the  efficiency of the RT convolution algorithms 
on a microprocessor with a  limited instruction set and to show  how to construct efficient RT programs for digital convolution. 
All results are given for the original RSP, as it was  before  the modijcation which resulted in  the Real-time Signal Processor 
described in another paper in this issue [ l ] .  

Introduction  and  background 
Considerable  theoretical  advances have been made in 
Reduced Computational  Complexity  (RCC)  algorithms  for 
some basic calculations such as  the  computation of multi- 
linear forms,  convolutions, and  the  Discrete  Fourier  Trans- 
form (DFT).  (See [2-61). From these  have come  what  are 
now known as  the  Rectangular  Transform  (RT)  algorithms 
and  the  Winograd  Fourier  Transform  (WFT)  algorithms. In 
these algorithms,  the  theory  deals with the reduction in the 
number of multiplications which, unfortunately, is usually 
achieved at  the cost of an increase in program complexity 
and, sometimes, in the  number of additions. For  these 
reasons, and  due  to  the  fact  that multiplication is almost  as 
fast  as  addition on many  general-purpose  computers,  there 
has been little use made of the powerful new computational 
complexity theory  and  the  algorithms  resulting  from it. It is 
quite  natural,  therefore,  to look about  to see where RCC 
algorithms  can be used to  advantage.  One is led to consider 
microprocessors in which multiplications  are relatively slow 
and where the  machine typically is used  in dedicated applica- 
tions where  it is worth the effort to  reduce  computing  time. 

Previous  publications  have  shown how R T  algorithms 
were  derived  using the  SCRATCHPAD  system [7] for 
algebraic  manipulation  and how PL/I  programs were devel- 

oped which order  the  operations so as  to  reduce  the  number 
of required additions  and  automatically  generate  PL/I pro- 
gram  statements. 

The Research Signal Processor 
The  RSP was designed particularly for digital signal process- 
ing applications where long repetitive calculations must be 
performed at  high speeds. Typically,  such calculations 
involve matrix  operations, moving averages, or convolution 
calculations,  and  Discrete  Fourier  Transform  (DFT) compu- 
tations for spectral analysis or correlations. The  RSP 
machine  operations  are designed to  make  the  calculation of 
sums of products extremely  fast. 

The  fact  that  the  RCC  algorithms  are more  complicated 
and  that  the  RSP  must be programmed in machine  language 
with timing highly dependent on instruction sequencing 
would, a t  first sight,  discourage  one  from using the  RCC 
algorithms. However, the  software  support described in 
another  paper in this issue by Davies and  Ris [SI provides an 
excellent assembler, which relieves the  programmer  almost 
entirely  from pipelining  considerations, and a simulator with 
useful debugging  facilities. 

@ Copyright 1982 by International Business Machines Corporation. Copying in  printed  form  for private use is permitted without payment of 
royalty provided that ( 1 )  each reproduction is done without alteration and ( 2 )  the Journal reference and IBM copyright notice are included on 
the first page. The  title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further  permission by 
computer-based and other information-service systems. Permission to republish any other portion of this paper  must  be obtained from the 
editor. 

2OOLEY IBM J.  RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



Since  the work to  be described  in this  paper was done,  an 
improved architecture for the  RSP, described  elsewhere  in 
this issue by Mintzer  and Peled [ l ] ,  was developed for 
implementation by the IBM Federal  Systems Division. A few 
of the improvements,  including the  addition of a guard  bit on 
the  front of the Y and Z registers, would permit an improve- 
ment in program efficiency. Some  comments on these new 
features  and  their  anticipated effect on the present calcula- 
tions are  made  later. 

The Rectangular Transform algorithm 
The  Rectangular  Transform  (RT)  method  has been 
described in detail elsewhere [9-121 with  a list of R T  
convolution algorithms [ lo] .  For the present  purposes, only a 
very brief description of the  RT  algorithms is given. 

The convolution which we consider here is defined by 

where j = 0, 1, . . . , N - 1 and  where N is the length of the 
data sequence, it being  understood that  all indices are  to be 
taken mod N.  Thus,  the convolution is circular; i.e., when the 
index j - n of hJ-" is negative, it is replaced by N + j - n. An 
RT algorithm for computing  the convolution (1)  may  be 
written 

N- I 

H m  E A m . n h n *  (2) 
" = O  

" = O  

Y, = HmXm. (4) 

where m = 0, 1, . -, M - 1, M being the  number of 
multiplications. Then, 

1 "I 

N m=O 
Yj = - E Cj,,Y,> (5) 

where j = 0, 1, -, M - 1. Unlike  DFT methods, the 
transform  matrices A,  B, and C are  rectangular  rather  than 
square  and  the  elements of two of them  are simple,  being 
mostly  zeros or small integers. One of them, which we let be 
A,  has simple rational  numbers  as elements. Herein lies the 
simplicity and efficiency of the R T  methods. Algorithms of 
the  form (2)-(5) are  available  or  can  be derived  for  relatively 
small  sequence  lengths. 

For large  N-values  one  can  perform a mapping of the 
arrays  into multidimensional arrays  and  do convolutions  in 
each of the dimensions  using the  algorithms discussed above. 
Agarwal  and Burrus [9] first suggested this idea and showed 
that  this would reduce  the  number of multiplications.  How- 
ever, the cyclic property of the convolution algorithms  made 
it  necessary to  pad  out  the  array with  zeros when using their 
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method.  Ref. [ 101 shows a  different mapping of the indices 
which avoids the necessity  for padding with zeros. For  this, 
however, one  must  require  that  the  factors of N be mutually 
prime. Assume, for the  sake of the following discussion, that 
we use three  factors of N and  let 

N = r I r , r 3 ,  

and let the  mapping of the single  index j onto  the  triple of 
indices j , ,   j 2 ,  and j ,  be defined by the  equation 

j = j 171  + j272 + j37, mod N ,  (6) 

where 7" = N/rv. If we define the  same  mapping for the 
index n, the convolution (1) can  be  written  as a three- 
dimensional convolution 

After  mapping  the one-dimensional arrays h, and x, into  the 
three-dimensional arrays h,, , and x,, one  may oper- 
ate with algorithms of the  form (2)-(5)  on each of the  three 
dimensions in turn.  This  may be described in operator 
notation, with subscripts on the  operators A ,  B, and C 
corresponding to  the  operations in (2), (3), and  (5) for the 
respective  sequence lengths  r", u = 1, 2, and 3 as follows: 

' 2* 3 1'  2' 3 '  

H = A3A2Alh, (8) 

X = B,B2BIn, (9) 

Y = H x X ,  (10) 

y = N" C ,  C2 C3Y. (11) 

In ( 8 )  h may  be  thought of as  the three-dimensional r, x r2 
x r3 array of elements hjl,j2,j3 resulting from  the  mapping of 
the original sequence h, according  to (6). The result of the 
operation, Alh,  is the three-dimensional array  obtained by 
applying theA,-transform  (2)  to  the first  index j ,  of h. It is to 
be noted that, since A,,," in (2) is a rectangular  matrix with 
MI rows, M I  being the  number of multiplications  for the 
rl-point  algorithm,  the length of the result A l h  in the first 
dimension is increased to MI. A ,  and A,  have  a  similar effect 
on the second and  third dimensions.  A similar  transformation 
is performed on x. The  transformed  arrays  are multiplied 
element-by-element in (lo),  and in (1  1)  the result is trans- 
formed  back, one dimension at  a time,  to yield the  three- 
dimensional array y .  This final array is permuted according 
to (6) into  the one-dimensional array of values of the 
convolution (1).  The  total  number of elements in each of the 
arrays H .  X ,  and Y is 

M = MlM2M,,  (12) 

which is the  total  number of multiplications  required by the 
algorithm,  where Mu is the  number of multiplications 
required  for the r#-point algorithms. 425 
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Table 1 Number of multiplications and additions for convolution. 

N =  20 60 I80 

RT Multiplications 
Additions 
Totals 

FFT Multiplications 
Additions 
Totals 

Direct Multiplications 
Additions 
Totals 

50 200 
230  1120 
280  1220 

152 928 
356 1544 
508 2472 

400  3600 
380 3540 
780  7140 

950 
6990 
7940 

1808 
7028 
8836 

32400 
32220 
64620 

Table 2 Timing for convolution on the IBM 370/168 VM (in 
milliseconds). 

Method N = 20 60 180 

RT 0.5  1.4 7.5 
FFT 1.9  4.2 11.3 
370 Assembly Language 0.7  5.2 44.6 
Direct PL/I 3.1 26.1 234.3 

It is seen that, by using the  algorithms for the  factors of N 
in this  manner,  one  can  construct a program by first  writing 
convolution algorithms for each of the  factors of N,  r”, v = 1, 
2,3,  and  then  inserting  each of them in  a program with loops 
for repeating  the  calculation for all values of the  other two 
indices. As  described in [lo], the  number of additions 
depends upon the  ordering of the  factors, because each 
application of the  operatorstl”  and B, enlarges  the  array.  It is 
also  shown  in [lo] that if A”, v = 1, 2, 3, is the  number of 
additions  required for the rn-point algorithm,  then  the whole 
calculation should take 

A,,, = Alr2r, + MlA2r, + M,M2A,  (13) 

additions.  One  can derive from  this  the  rule  that  the  factors 
should be placed in the  order with increasing  values of the 
quotient 

It  can be seen here  that  reducing  one  M, reduces the  total 
number of multiplications, (1  2), by the  factor by which M, is 
reduced. On  the  other  hand, a change in the  number of 
additions in one of the  algorithms  makes a less significant 
change in the  total  number of operations since it  appears in 
only one of the  terms of the  sum in (13).  This is the reason 
that in the multidimensional  method one  reduces  computa- 
tion by reducing the  number of multiplications even at  the 
expense of increasing the  number of additions in the  short 426 

JAMES W. COOLEY 

convolutions. Therefore,  as we shall see, the  multidimen- 
sional rectangular  transform method yields faster  algorithms 
even in machines where multiplication is as  fast  as  addition. 

Results on the IBM System/370  Model 168 
For the  sake of comparison, we first cite some  results 
obtained by timing  the R T  algorithms on  a  general-purpose 
computer. Convolution programs for N = 20 = 4 x 5 ,  N = 

60 = 4 x 3 x 5 ,  and N = 180 = 4 x 9 x 5 were written in 
the  PL/I  programming  language  and  run on the  IBM 
System/370 Model 168 in a time-sharing system. The  fac- 
tors were  put in the  optimal  order  according  to  the size of 
T(rJ in (14)  to yield the  numbers of operations  listed in 
Table  1.  The timings for  the  calculation of the cyclic 
convolution  on the  IBM  System/370 Model 168 with the  RT 
method and  the  FFT  method, in  floating-point arithmetic, 
are given in Table 2 in milliseconds. Here,  and in what 
follows, we consider  a situation  where a  single  set of weights 
h, is to  be convolved with  many xn sequences. Therefore,  the 
transform of 6 is pre-computed  and used repeatedly so that 
we do not  include the  time for the  transforms of 6. For all 
three values of N with the  RT method,  the  permutations  (6) 
were  done  without loops, i.e., by stringing  out  the list of load 
and  store operations. In  addition,  the  programs were written 
so that  the  PL/I pre-processor sets  up  program  parameters, 
producing very efficient object programs,  each for a specific 
value of N.  The  FFT  program used  was an  early version of 
Singleton’s FORTRAN  program, now available in the IEEE 
Digital  Signal Processing Program Book [ 131. For  compari- 
son, the  timing  for a very efficient machine-language pro- 
gram by the  direct method  with N 2  multiplications and N ( N  
- 1 )  additions is given. The  last  line of Table 2 gives the  time 
taken by a  simple PL/I  program with two “DO” loops to 
show how much can be gained by the various degrees of 
programming effort. 

The results in Table 2, of course, show an enormous 
improvement, i.e., by a factor of 21 for N = 180, in going 
from a PL/I  program using the  direct method to  an  FFT 
method.  Then, going from  the  FFT method to  the  RT 
method yields an improvement by the  factors  4,3,  and 1.5 for 
N = 20, 60,  and 180,  respectively. In most numerical 
calculations, one is not very enthusiastic  about  the  last- 
mentioned increase in the speed of calculation.  In  fact,  one 
finds changes of this  magnitude by doing the  same  calcu- 
lation  with  different  compilers and optimization levels within 
compilers.  However,  in digital signal processing, the  factor of 
1.5 in the speed of doing the 180-point convolution may 
produce  something close to  the  same improvement  in the 
total  calculation, which,  for  speech, radar,  sonar,  and seismic 
applications  may  make  an improvement  in performance.  It 
may even make  the difference  between  being able  to  do  the 
calculation in  real time or not, or  it  may  reduce  the  number 
of signal processing devices by this  factor. Of  course,  for  a 
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factorizable N less than 180, the  RT method is definitely 
superior. A further  advantage of the  RT method is that, for 
some  range of low N-values, the  total  program is much 
shorter  and  simpler  than  one using an FFT subroutine. 

When  the  RCC  algorithms were  first  proposed, it was 
anticipated  that  their most important  applications would be 
in microprocessors where multiplication takes  more  time 
than  addition. However, as described  above,  when  used with 
multidimensional  convolution methods,  the  number of addi- 
tions as well as  multiplications is reduced. Furthermore,  one 
can see, in Tables 1 and  2,  that  the  improvement of RT over 
FFT  methods is more  than  one would predict  from  the 
numbers of multiplications  and additions. This is due  to  the 
fact  that  the  RT  algorithms  also  require less logic and 
“clerical” operations. 

Results with the RSP 
A meaningful  comparison of the  advantages of one  algorithm 
over another is complicated by the  fact  that  there  are  large 
tradeoffs  in  speed versus program complexity, program size, 
and  the  number of constants or tables which one  must  store. 
One  can  also have  variations in the size of the  programs 
depending upon the  number of bits of accuracy which must 
be preserved. 

For the present RSP programs,  small modules  were  writ- 
ten  for each of the  factors of N.  These were put  into  programs 
for N = 9, 12, 20,  36, 60, and 180. In  all  cases,  the calling 
program,  written in PL/I,  computed  the  transform of h,  and 
the  number of cycles given are  for  the  RSP  subroutine which 
did  the  rest of the  calculation.  The  permutation of input  and 
output  data was performed by stringing  out  the load and 
store  operations. A permutation  routine with three nested 
loops, taking 55 instructions, including NOPs  generated by 
the  assembler, was written  and tried but not used for the 
timing given here. If  used with the 180-point transform, for 
example,  it would have taken 38  cycles  per output point 
versus 4 for the  strung-out  routine, while the  number of 
instructions would have been 55  versus 720. 

Table 3 gives the  number of RSP cycles per output point 
counted by the  simulator.  The multiplication of the  trans- 
forms  was done in these  programs in a loop using the built-in 
multiply, MPY, which takes 8  cycles,  which,  with the load, 
store, and indexing operations,  results in 13 cycles  for each 
multiplication. This would be appropriate for  a situation 
where  the hs are  to  be  parameters of the  program.  If, on the 
other  hand,  the hs were to be built into  the  program in the 
form of lists of shift  and  add  operations (coefficient store), 
they would have taken, on the  average,  about 6.5 cycles each. 
The figures in the  third  column of Table 3 are for this 
situation. 

Table 3 Number of RSP cycles per output point for convolution. 

N RT RT Fourier Loop Strung Coeff. Coeff 
MPY coeff transform MPA  MPA store store 
13 cy.  6.5  cy.  13cy.  9cy. 6 . 5 ~ ~ .   3 . 5 ~ ~ .  

9  54  40 117 81 
12 53  42 156 108 
20  70  54  260 180 
32 277 416  288 
36 85 68  468 324 
60  96  74  780  540 
64  314  832  576 

128 353 1664 1152 
180 164 130 2340  1620 
240* 139 3120  2160 
256 390 3328 2304 

‘Uses a WFT algorithm. All others use a radix-2 FFT algorithm. 

59 32 
78 42 

130 70 
208 112 
234 126 
390 150 
416 224 
832 448 

1170 630 
1560 840 
1664 896 

For  a  comparison  with  a Fourier  transform  method, a 
radix-2  FFT  program supplied by Norman Brenner  was 
used, giving the results in the  fourth column  except  where N 
= 240. For the  latter  case, a program using a modified form 
of the  WFT  algorithm, provided by the  members of the  RSP 
project, was used.  Before comparing with “direct” methods, 
it  must be pointed out  that  the  RT  and  Fourier  methods 
compute cyclic convolutions, while the figures about  to be 
discussed for the  “direct”  methods  are for either cyclic or 
noncyclic convolutions. Since  the  former  methods  may 
require  padding  out with  zeros when noncyclic convolutions 
are  wanted,  one  may have to  double  the value of N being used 
in the comparison. We now consider four different ways of 
computing a convolution from  the defining formula.  The 
fifth  column of Table 3 is for  a loop of multiply and  add 
(MPYA)  instructions  taking  13 cycles per multiplication. In 
the sixth column, it is assumed  that  the loop is unstrung. If 
coefficient store is used with random  numbers,  one should get 
the results  listed in the seventh  column, while for the usual 
impulse-response  functions, which trail off exponentially,  it 
would really take only about 3.5 cycles per  multiplication, 
giving the  estimates in the  last column. 

A  comparison of the  RT method with the  FFT method 
shows it to be from 3.5 to 2 times  as  fast for the  range N = 20 
to N = 180. The  Fourier  transform method  using the  WFT, 
however, is about  the  same  as  an  extrapolated value of the 
better of the two RT methods. The value N = 240 is, 
however, a particularly good one for the  WFT  and such 
superior performance  cannot  be expected  for many  other 
values of N. If we go now to a  comparison  with the  last  four 
columns of Table 3, we should first observe that  the  last 
column gives timing for  a program for which the designers of 
the  RSP built the  machine for  highest performance. For this 
column, we see  a cross-over, where R T  and  Fourier  trans- 
form method are  better only for  higher N-values. The  RT 
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Figure 1 Number of RSP cycles  per  output  point for cyclic 
convolution by  using coefficient store,  the  FFT  method,  the  WFT 
method  (circle),  and  the RT method. 

Table 4 Comparison of RSP storage*  requirements for RT and 
FFT programs. 

Method N Instructions NOPs Tot. inst.  Data Coeff 

9 237 7  244 110 0 
20 226 2 228 158 0 
60 438 9  447 608 0 

180 1133 10 1143 2912 0 

32 438 68  502 77 828 
64 

FFT 128 
438 68  502 141 828 
438 68  502 269 828 

256 438 68  502 525 828 

WFT 240 378 19 397 321  355 

RT 

‘Instructions: 20 bits; data: I6 bits; coefficient store: 7 bits. 

and  Fourier  methods  are  better  than  the  other  three  “direct” 
methods, so one would have to weigh the tradeoff  in program 
size  versus  speed in deciding which to use. 

To give a graphic description of the relative timing,  some 
of the  data of Table 3 are plotted in Fig. 1, where  small 
circles  have been placed at  points  corresponding to  data in 
Table 3. Smooth curves are  drawn between them for the  sake 
of comparison,  although no such curves can exist. 

Table 4 gives the  amount of RSP storage required for  the 
programs used  for Table 3. The fifth column of Table 4 gives 
the  total  number of instructions in each  program, including 
the NOPs listed in the  fourth  column.  The  data  storage 
requirements listed in the sixth column  include  the  input- 
output  arrays  as well as  temporary  intermediate  quantities, 
and  the coefficient storage in the  last  column is for the 
special  seven-bit shift  and  add  instructions used for  doing the 
RSP “coefficient store” multiplications. 

Comparing  the R T  method with the FFT radix-2  method, 
the  former is done  with  a  simpler program which takes fewer 
instructions for N less than  and  equal  to 60. The FFT 
program  takes  828 cells of coefficient store for the sines and 
cosines while the  RT  method  takes none. The N = 180 R T  
program  takes more than twice as  much  instruction  store  due 
to  the r = 9 algorithm. However, the  program is quite 
simple, with three loops for the  transform of x, a  small 
six-instruction loop for  the multiplication of the  transforms, 
and  three loops for the  C-transform.  The  input  and  output 
mappings  take 4 x 180 = 720  instructions which, as 
mentioned  above,  could  have  been done with 55 instructions. 
This would have made  the  program  take 34 more cycles per 
point, in which case  the R T  method would still be superior  to 
direct methods. The  large  amount of data  store is caused by 
the  large  (950)  RTs of h and x. In  the  RT  method,  there is a 
different program for each N while the  FFT works with any 
power of 2. However, the  RT method is about  three  times  as 
fast in this  range of N values. One  must  remember  that  the 
RT  and  radix-2  FFT work  for  different Ns,  and if N is 
constrained,  that  fact  may  determine  the method of choice. 

Scaling  and  accuracy 
Any transform method  for computing convolutions in fixed- 
point arithmetic will have  scaling and  accuracy problems, 
since each  transform value is a  weighted sum of all of the 
data  and  must be scaled down to  the  range allowed  for the 
data.  For  maximum  accuracy,  one should program with 
down-scaling during  the  accumulation of sums. In  the  RSP 
instruction  set,  this  can be done  with the  “transfer  to register 
Z” instruction followed by “shift and  add”  instructions since 
the  accumulator  contains  guard bits a t  its low-order end.  One 
can  do  the  calculation  faster by using the  “add memory to Z” 
operations.  However, this  requires  the pre-scaling of data, 
with  consequent loss of significant  bits. Scaling is particu- 
larly convenient  in the radix-2 FFT  algorithm  since  it  can be 
done by scaling down by the  factor 2 a t  each  stage, or 
“butterfly.” In  the  RT  algorithm,  there is a greater  growth of 
numbers  during  the  transforms,  and a little more  scaling is 
often  required. 

Given sufficiently large registers, the  RT method can  be 
made  to  compute convolutions of sequences of integers, 
giving exact integer  results.  However, this is not practical 
since it  requires very large registers, and  such precision is of 
no value when the  input  data  are  subject  to  error. 

Two  practical  methods of error  control  are possible. The 
conservative approach is to  scale down so that no overflow is 
possible, while a more  radical  approach is to  do less scaling 
and  permit a  small  probability of overflow. In  the  latter  case, 
the  RSP, in saturation mode, sets  the  arithmetic  register  to 
its  highest or lowest value, depending on whether  the result  is 
positive or negative,  respectively. Complete prevention of 
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overflow is necessary  in applications  where a  single  result has 
great  importance,  such  as in setting off an  alarm. However, 
there  are  many  cases where the  output is a graph or an 
audible  tone in which an occasional error would not be 
noticed. 

The  RT programs were run with random  number  data 
evenly distributed in the  range - 1 to + 1. Starting with the 
fact  that  sums of random  numbers quickly assume a Gaus- 
sian distribution,  it  can be shown that  the  probability of 
overflow can be made small  with somewhat less than full 
scaling. For  example,  the row of the  B-matrix for the 
nine-point RT with the  largest  sum of magnitudes gives 

b, = (1  1 1 1 1 1 2 2 2 ) x .  (15) 

If the  elements of x are in the  range ( - p ,  p ) ,  the  maximum 
magnitude of b,  is 12p, while its variance is 

8 

a, = x b;,i a, = ma, = &p. 
i=O 

Assuming  a Gaussian  distribution for the  elements of x, one 
obtains  the probabilities of b,  being in the  range ( -  1, 1)  for 
the various  scale factors p (see Table 5). Since  the  maximum 
magnitude of b,  is 12p, one would have to  use p = 1 / 16 for 
full  scaling.  However, it is seen that using p = 1/8 would 
produce an  error, in this worst case, only  once in a thousand 
times. 

In  the 180-point  convolution, the  PL/I  program in the host 
computer  computed  and scaled the  RT of h so that  the 
maximum scaled h, was 1. Then, various  scaling parameters 
were used at  the  start of each  stage, with the results given in 
Table 6. The  columns headed by S,,, S,, and S,, give the 
scale divisors for the r = 4,9, and 5 algorithms, respectively. 
It  can  be seen how the  error  and  its  variance  are  directly 
proportional to  the  product of the  scale divisors except  for the 
data on the  last line. The  last  line was put in to show how the 
lack of scaling at  the first stage increases the  chances of 
overflow. Obviously, reducing  the divisors at  later  rather 
than  earlier  stages reduces the  chances of overflow. The next 
to  the  last line has a smaller overall scale divisor than  the  last 
line but  has  apparently not suffered any serious overflow 
problem. The  variance  may be compared with the  variance of 
(r = 0.025 for the 180-point  convolution,  showing that for the 
best case in Table 6 one  gets  about nine  significant  bits. 
These  empirical  results should give some incentive to derive 
some  rigorous formulas for optimal  internal scaling  for the 
RT,  the  FFT,  and  the  WFT for general signal processing. 

Suitability of the RSP instruction set 
The  RT algorithms, unlike the FFT and  WFT  algorithms, 
would not benefit very much by the availability of more  than 
the  one index register in the  RSP.  The only situation where 
more index registers would be of use would be  where  one 

Table 5 Probabilities that b, will  not  overflow as a function of the 
scale parameter p. 

P P(-1 < x <  1) 

1 0.316 
112 0.585 

118 0.999 
114 0.897 

1/16 1.000 

Table 6 Maximum error and kMS error for various scaling 
divisors used with the 180-point RT algorithm. 

S,, S,, S,, S ,  Maximum error RMSerror 

4 16 8 512 0.01714 0.00324 
4 16 4 256 0.008 17 0.00160 
4  8 4 128 0.004 17 0.00080 
4  4 4 64 0.00209 0.00042 
4 4 2 32 0.00106 0.00022 
2 8 4 64 0.00793 0.00310 

wanted to save some  instruction  store  and  do  the  permutation 
in  nested loops, and  this would not be a very great saving. 
Due  to  the  strung-out  nature of the  sequence of additions, 
almost no NOPs were  needed, so that  RT  algorithms work 
well with the pipeline architecture.  In  order  to avoid pre- 
scaling and  retain signficant  bits,  it was necessary to  add 
numbers by loading the Z register and  shifting while adding. 
If  a  leading guard  bit were present,  as  it is on the new version 
of the  RSP,  it would have  been possible to  add first and  then 
shift, saving  roughly one  out of four  operations in the 
addition portions of the  program. 

Conclusions 
Results show that when speed of processing is important,  it 
may be worthwhile  doing  convolutions by the  RT method 
instead of the FFT method  for sequence  lengths of moderate 
size. Just  what  “moderate” is can be judged  from  the 
execution times listed  in Table 3 and  graphically  illustrated 
in  Fig. 1. Since  these  are very roughly  proportional to  the 
numbers of operations,  the  tables in Ref. [ 101 can be used to 
determine which method is preferable by simply adding  the 
numbers of multiply  and  add  operations  for  the  sequence 
lengths  under  consideration.  The R T  methods involve scaling 
and  accuracy problems which are described and tested 
empirically,  with the conclusion that less than full  scaling, 
which  results in a  small probability of overflow error, is the 
most practical  approach for the use of the  RT algorithms on 
the  RSP. 
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