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A Microprocessor for Signal Processing, the RSP

Signal processing is a data processing domain that contains a diversity of applications, including speech processing, image
processing, radar, sonar, medical imaging, data communications, seismic processing, and many others. Despite the diversity of
the applications, this processing domain has a very structured set of characteristics. These include real-time operation,
dominance of arithmetic operations, and well-structured data flows. The Real-Time Signal Processor (RSP) is a microproces-
sor architecture that was created to exploit these characteristics in order to provide an expeditious and economical way to
implement signal processing applications. In this paper, the organization and architecture of the RSP are described. Features
of the RSP, such as the instruction pipeline and the fractional fixed-point arithmetic, which exploit the characteristics of signal
processing to provide additional computational power, are emphasized. Other features, such as the powerful indexing, the
saturation arithmetic, the guard bits, and the double-word-width accumulator, which add much to the processor’s versatility

and programmability, are also highlighted. The performance of the RSP is illustrated through examples.

Introduction

Digital signal processing is an application domain of com-
puting that includes a great diversity of applications. In the
realm of man/machine interfacing, applications include
speech recognition, audio response, and image compression/
expansion. In the realm of communications, applications
include data transmission and voice coding. In the medical
area, applications include x-ray imaging, ultrasonic imaging,
and the processing of EEG (electroencephalograph) and
EKG (electrocardiograph) signals. Defense applications
include radar, sonar, and other forms of electronic surveil-
lance. There are many other areas where digital signal
processing is also applied, including oil exploration, speech
enhancement, television signal improvement, audio enhance-
ment, and speaker verification. In [1], a survey of the major
applications is presented, with a chapter devoted to each.

Despite the diversity of applications, however, there is a
common set of processing characteristics associated with this
application domain. Let us consider an example, Adaptive
Transform Coding (ATC) of speech [2], in order to focus on
these characteristics. ATC is a technique that is used to
reduce the number of bits required to express the information
content of speech. For normal telephone transmission, speech
is coded at rates of 56 or 64 kilobits per second (kbps).

However, ATC, with modifications, has been successfully
used to encode speech at rates from 12 kbps to 16 kbps with
good quality [3, 4]. Thus, in storing speech for later play-
back, ATC reduces the storage requirement by more than a
factor of three. Similarly, a digital channel dedicated to
speech could exploit ATC to transmit three times the number
of conversations.

A block diagram of the processing that takes place in ATC
is shown in Fig. 1. Let us first examine the coder. It is seen
that the analog speech waveform is first filtered by an analog
low-pass filter (LPF) and then sampled by an analog-to
digital converter (ADC) to form the input data stream. For
error-free reconstruction, the sampling rate must be at least
twice the highest frequency present in the incoming signal.
Typically, the analog filter is chosen to filter out frequencies
above 3.2 kHz, and the speech is sampled at an 8-kHz rate.
Following digitization by the ADC, the speech is passed
through a “window,” which selects a finite block from the
continuous signal and shapes it. Usually, the selected blocks
of data overlap and the window tapers the data at the ends of
the blocks in such a way that the windowed blocks sum to the
input stream. The output points of the window are then input
to a Discrete Fourier Transform (DFT) or other fast trans-
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Figure 1 An adaptive transform coder (a) and decoder (b).
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Figure 2 Computational requirements of a selected set of applica-
tions. (Note: ®Touch-Tone is a registered trademark of AT&T.)

form, which computes the spectrum of the windowed block.
The DFT output points are then quantized. Those regions of
the DFT that have more energy, as determined by spectral
averaging or smoothing, are allocated more bits. Those
regions of the DFT that have less energy are allocated fewer
bits or no bits at all. Finally, the quantized DFT output
points and the bit-allocation information are combined and
serialized, forming an output bit stream.

The ATC decoder performs essentially the inverse opera-
tion. First, the bit-allocation information is extracted and the
DFT points are reconstructed. Then an inverse DFT (IDFT)
operation is performed. The output blocks of the IDFT are
then overlapped and added to reconstruct the input data
stream. If the transmitter window is properly chosen, no
audible discontinuities at the block boundaries will be pres-
ent. Analog speech is reconstructed by passing the output
data through a digital-to-analog converter (DAC) and an
analog low-pass filter.
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Let us now examine some of the characteristics of this
processing.

1. The processing has a real-time speed requirement. For the
ATC example, if the processor cannot process the input
data as fast as the ADC supplies it, the coder will not
operate correctly.

2. The processing is essentially arithmetic. There are few
data-dependent branches. A large percentage of the cal-
culations is devoted to filtering and DFT calculations. In
the ATC coder, for example, the windowing, the DFT,
and the spectral smoothing dominate the processing load.
Yet there is not one data-dependent branch in all of this
processing.

3. High computation rates are required. A rough sizing of
the processing requirements, using a Fast Fourier Trans-
form (FFT) algorithm to implement the DFT [5], a
21-tap spectral-smoothing filter, and a block size of 256
points with 20% overlap, reveals that the ATC coder
requires approximately 100000 multiplications and
150 000 additions per second. Even for fairly simple
signal processing, millions of multiplications per second
are often required.

4. Most operations are linear, plus or minus truncation
error. For these operations, each output point is a linear
combination of the input points. This is true of the
windowing, the DFT, the IDFT, and the spectral smooth-
ing of the ATC coder and decoder. Because of this, the
dynamic range of the data does not greatly change.

5. The data flows are periodic. Most processing blocks
consist of a single input stream and a single output
stream. This is certainly true of the processing blocks of
the ATC coder and decoder.

6. The processing decomposes nicely into sequential and
parallel subprocesses. The block diagram of the process-
ing demonstrates this at a certain level of detail. The
processing blocks could also be similarly decomposed, if
necessary [6].

There are certain aspects in which signal processing
applications differ, however. Perhaps the most important of
these is in the range of the computational requirements.
Although it is difficult to specify exactly what the computa-
tional requirements are for any application, because this
differs according to the algorithms used, it is possible to size
the application well enough to find what order of magnitude
of computation is required. In Fig. 2, sizings are shown for a
small set of signal processing applications. Commercial
applications form the top row, and defense applications form
the bottom row. For both categories, the computational
requirements vary by a factor of 10 000 to 1!

The precision required of the computations also varies
with the application. While for some applications 8 bits of
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output precision are sufficient, for others 20 bits are insuffi-
cient. The system complexity of the implementation also
varies. Some of the least demanding applications, computa-
tionally, will undoubtedly require only a single-processor
solution, the simplest system possible. Others, with multipli-
cation requirements in the billions-per-second range, will
undoubtedly require multiprocessor implementations, inde-
pendent of the processor chosen. These systems will have
inherently greater complexity.

The interested reader will find that several good texts on
digital signal processing are currently available; [7] provides
a good description of the field, with particular emphasis on
practical problems and hardware; [8] is intended as an
undergraduate text; [9] is intended as a senior/graduate
level text; [10] is also suitable as a graduate text, but is
perhaps a more complete reference.

There were several pioneering efforts in the late sixties and
early seventies aimed at building signal processing hardware
for digital filters and FFTs, for example [11-14]. These
developments were inspired by the appearance of commer-
cially available SSI and MSI digital hardware, but they were
also limited by its capabilities. The devices constructed were
essentially single-purpose boxes of considerable size, and
they required considerable effort to produce each replicate.
The appearance of LSI technologies in the seventies offered
special opportunities for signal processing implementations
that are economical with respect to cost, space, and power
consumption. The Real-Time Signal Processor was devel-
oped to capitalize on LSI technology to provide expeditious
and economical implementations for signal processing appli-
cations.

Also during the seventies, new algorithms for Fourier
Transforms and convolutions (filtering) were discovered by
Winograd, Cooley, and Agarwal at the IBM Thomas J.
Watson Research Center [15,16]. The new algorithms
reduce the number of multiplications required for these
operations dramatically, although they do require a more
complicated program flow. In Table 1, a comparison is given
of the computational requirements for the previously known
Fast Fourier Transform (FFT) algorithm and the Fourier
Transform algorithm discovered by Winograd (WFT). It
was hoped that the RSP would be able to exploit the new
algorithms, in addition to the characteristics of signal
processing, to achieve increased performance. In another
paper in this issue [17], Cooley demonstrates the advantages
of the rectangular transforms for the RSP.

Capitalizing on LSI technology has two implications. The
most obvious is limiting the hardware complexity to the
capabilities of the technology. Many features were excluded
from the RSP, not because they were undesirable, but
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Table 1 Computational requirements of Fourier Transform algo-
rithms.

Fast Fourier Transform Winograd Fourier Transform

(FFT) (WFT)

N Mult. Add. N Mult, Add.
128 1152 2368 120 288 2076
256 2304 5248 240 648 5016
1024 12288 26624 1008 4212 25224

because their inclusion would have required exclusion of
other more important features. The other implication of LSI
technology is that, to capitalize on LSI, a large enough
volume of chips must be produced so that the per-chip
contribution to the development cost is small. This requires
that the RSP have the flexibility to satisfy a broad range of
applications exhibiting the diversity of signal processing. To
do this it had to be fully programmable, economically
connectable into systems, and able to provide the precision
required.

The cost of the hardware in a signal processing system
may be only a small fraction of the cost, especially if few
versions are constructed; the cost of generating the applica-
tion software can dominate both the system cost and the
system development time. To provide both a quick and
economical solution, the RSP had to be made easy to
program. Many features were included in the RSP hardware
to make it easy to program, even though they added little to
the raw performance of the processor.

In the following sections, the organization, architecture,
implementation, and performance characteristics of the RSP
are described. The emphasis is on those features of the RSP
that make it powerful for the signal processing application
domain, versatile enough to satisfy a broad application
domain, and easy to program. Due to the limits of technolo-
gy, not all of the desired features could be included on the
RSP chip. The rationale for the inclusion of those RSP
features that were chosen is also given.

Basic architecture

The organization of the RSP, as shown in Fig. 3, interfaces
the external world through a parallel I/O interface. This
interface provides data, address, and control lines. Normally,
two data ports and one control port are attached to the RSP
at this interface. The data ports manage the normal flow of
data into and out of the RSP, while the control port is used
for loading programs into the RSP, receiving commands
from the system controller, and debugging. If fewer data or
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Figure 3 Organization of the RSP.

control ports are needed, the RSP is equipped with only those
required. Scan lines are available for use in debugging, and a
vectored maskable interrupt capability is also provided.

The RSP is a fully programmable signal processing
machine, with external data and instruction storage. The
separate external data and instruction stores each have
sixteen bits of addressing. This provides the RSP with much
flexibility. Since the RSP can access up to 64K words
(K = 1024, word length = 16) of data and 64K instruc-
tions, it is not severely storage limited and can achieve its full
performance without bending to storage constraints. The
RSP also has the flexibility of using either RAM or ROM
storage, or combinations of the two.

The RSP instructions are 24 bits wide, with 8 bits of
op-code and 16 bits of operand. A total of 244 op-codes form
the RSP instruction set. The single-op-code, single-operand
format was chosen to simplify the RSP programming. It was
felt that the increased performance offered by horizontal
microcode was not worth the increased programming com-
plexity that it entails. The single operand format also makes
the RSP code a suitable target for a compiler.

As shown in Fig. 3, the RSP is structured into five
functional subunits. They are (1) the instruction fetch and
sequence control unit, (2) the data-store address-generation
unit, (3) the data-store access unit, (4) the arithmetic and
logic unit, and (5) the 1/0 and control unit.

Instruction pipelining
An “instruction pipeline” is used to increase the performance
of the RSP. Most RSP instructions use each of the first four

FRED MINTZER AND ABRAHAM PELED

functional units once, but only one of them is used during any
processor cycle. In the first cycle of execution of an instruc-
tion, that instruction is fetched. In the second cycle, the
data-store address is computed. In the third, the data store is
accessed, and in the fourth, arithmetic or logical operations
take place. Thus, this is a load-preferred architecture. The
four cycles that it takes each instruction to execute are called
the four phases of that instruction, phase one through phase
four, respectively, and the hardware units that execute them
are called stage one through stage four. During each cycle, a
new RSP instruction is initiated. However, while the newest
instruction is using the stage-one hardware, previous instruc-
tions are using the stage-two, -three and -four hardware, as is
shown in Fig. 4. To execute n instructions, as is seen from the
figure, n + 3 cycles are required. Although each individual
RSP instruction takes four cycles to complete, the effective
throughput of the processor is one instruction per cycle.

The presence of the instruction pipeline creates certain
“pipeline hazards” for the RSP. One of these can be observed
in the following example. Suppose we wish to calculate

a = max (a, b). (1

Coding this for the RSP, while assuming that each instruc-
tion completes before the next begins, yields

LZ b Load contents of b into Z
register

Y equals the contents of Z
minus contents of a

If the result is negative,
branch to NEXT

Store the contents of Z in
memory location a

NEXT Proceed with the rest of the

program

SY Za
BN NEXT

STZ a

The operation of the instruction pipeline in executing the
first three instructions of this code is shown in Fig. S, where
e.a. refers to the data-store effective address calculated. It is
seen that the stage one unit must decide whether to take the
conditional jump during time interval 3. But the subtraction
upon which we intend that jump to be conditioned is not
computed until time interval 5! If that code were executed as
written, the jump would actually be conditioned on the state
of the accumulator at the end of time interval 3, and results
other than those intended would occur.

Fortunately for the programmer, the RSP software sup-
port, which is the subject of the paper by Davies and Ris in
this issue [18], remedies this problem. The programmer can
write the code, as previously discussed, assuming that each
instruction completes before the subsequent instruction
begins. The assembler then transforms this code to accom-
modate the RSP instruction pipeline by either adding NOP

1BM J. RES. DEVELOP. & VOL. 26 « NO. 4 & JULY 1982




(no op) instructions and/or reordering the code. For the
subject example, the code produced is

LZ b Load contents of b into Z
register

Sy Za Y equals the contents of Z
minus contents of a

NOP No operation instruction

NOP No operation instruction

BN NEXT If the result is negative,
branch to NEXT

STZ a Store the contents of Z in

memory location a
Proceed with the rest of the
program

NEXT

The operation of the beginning of this code sequence is
illustrated in Fig. 6. The jump decision is now made at the
end of time interval 5, by which time the difference has been
computed. Since the jump is conditioned on the proper result,
the RSP code computes as intended.

However, the pipeline hazard has caused some inefficiency
(some do not). As we noted in the introduction, however,
signal processing is predominantly arithmetic; for signal
processing, few pipeline hazards occur. Typically, inserted
NOPs account for less than 5% of the executed cycles. Thus
the instruction pipeline capitalizes on the nature of signal
processing to increase performance. The increase in perform-
ance is by a factor equal to the ratio of the sum of the stage
execution times to the maximum of the stage execution
times, a factor of about 3 to 1! In general, other types of
computing, especially those with abundant data dependen-
cies, are not able to capitalize on this instruction pipelining
due to the number of NOPs that must be inserted.

We note that separate instruction and data stores are
necessary for the instruction pipeline to function as
described. Because of this connection, they are important
architectural features of the RSP.

RSP arithmetic/logic unit

Since the purpose of the RSP is to perform calculations, we
begin our look at the five major subunits of the RSP by
examining the arithmetic/logical unit, stage four. The RSP
represents all data as pure fractions in two’s-complement
fixed-point arithmetic with 16 bits of precision. Thus, the
datum d is expressed as

15
d=—by+ 2 b2 )

Fixed-point arithmetic has its limitations for computing in
general and it does require more complicated code genera-
tion than floating-point arithmetic. However, it is adequate
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Figure 7 The RSP arithmetic/logic unit.

for most signal processing applications because of the limited
dynamic range requirements noted in the introduction. The
ability to use fixed-point arithmetic, as opposed to floating-
point arithmetic, permits much simpler hardware and much
greater processing speed. Thus the RSP’s fixed-point arith-
metic exploits the characteristics of signal processing to
achieve increased performance.

The arithmetic/logic unit of the RSP is illustrated in Fig.
7. This unit has two main arithmetic registers, the Z register
and the Y register. Multiplications in the RSP are mecha-
nized by right-shifting the contents of the Z register and
accumulating the partial sums in the Y register.

Thus the RSP executes multiplications as a series of shifts
and adds rather than in a fast parallel multiplier. This is a
highly controversial feature of the RSP, since many consider
a fast parallel multiplier a necessity for a signal processor.
This does entail some reduction of raw performance for the
RSP and it does encourage the use of the RCC algorithms,
which are unfamiliar to many and may be more difficult to
program.

However, there were several reasons for this choice. Per-
haps the most important is that a full-word parallel multi-
plier (16 x 16 bits with 31-bit result) would occupy consider-
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able chip acreage. Presence of such a multiplier would have
undoubtedly required the RSP to exclude many of the
features that make it versatile and easy to program. It was
also felt that the Reduced Computational Complexity
(RCCQC) algorithms discovered by Winograd, Cooley, and
Agarwal relieved the architecture of the necessity of provid-
ing a fast parallel multiplier. With these algorithms, the
addition-to-multiplication ratio is usually in the range of 8:1
to 10:1. Their performance benefits only marginally from the
presence of a fast multiplier. For example, a 1008-point
complex Fourier Transform that has been coded for the RSP
would require only about 10% fewer cycles if the RSP had a
one-cycle multiplier. In practice, the RSP utilizes the RCC
algorithms to capture some of the performance that might
otherwise be provided by a fast multiplier. Lastly, a fast
parallel multiplier could easily be added to the architecture,
in a more advanced technology, to improve performance
without requiring the application code to be rewritten. (This
would require modifying the assembler to generate multiply
instructions instead of shift/add sequences and re-assem-
bling the application code.) The addition of other features to
the architecture would not be nearly so forgiving.

Variable multiplications in the RSP are mechanized by
the hardware two bits at a time by using a modified Booth’s
algorithm (pp. 182183 of [7]). They require one cycle of
throughput for each two bits of precision. The precision of
the multiplication is set by a PRECISION instruction, and is
thus under program control. Obviously, reduced precision
requirements can thus be used to increase throughput. Co-
efficient multiplications, in the RSP, exploit the canoni-
cal signed-digit representation of filter coefficients to im-
prove the RSP’s performance. This is illustrated in the
following example. The binary representation of the coeffi-
cient 0.4375,, is 0.011100000000000,. This representation
requires three shift/add instructions to execute the multipli-
cation, one for each 1 in the representation. The canonical
signed-digit representation is 0.100100000000000,, where T
is —1. This representation requires only two shift/add or
shift/subtract instructions. On the average, the canonical
signed-digit representation reduces the number of shift/add
and shift/subtract operations by about one-third. Our expe-
rience has been that for most finite-impulse-response (FIR)
filters of interest, an average of only two to four shift/add or
shift/subtract operations per coefficient is needed. More
details of this technique are given in [19].

The generation of shift/add sequences would be a horrible
burden if placed on the programmer. However, the RSP
assembler automatically generates the optimal sequences
from COEFFICIENT statements in the application code
and relieves the programmer of this burden. This feature of
the RSP software support is more adequately described in
[18].
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In general, there are two main problems with fractional
fixed-point arithmetic. One is the overflow problem. Nor-
mally, with fractional fixed-point arithmetic, additions are
performed modulo 2. The result of the addition of a and b
then is (g + b) modulo 2. This operation is error-free if the
result falls within the range from 1.0 exclusive to —1.0
inclusive. However, an error occurs when one attempts to add
two numbers whose sum equals or exceeds 1 or is less than
—1, and the magnitude of that error is 2.0—a catastrophic
error. The other problem is the underflow problem. This
occurs when a datum has such small magnitude that insuffi-
cient bits of precision remain. The RSP has means for
handling both of these problems in ways such that the
programmier is not unduly burdened.

The RSP arithmetic unit has several features intended to
deal with the overflow problem. One of these is the presence
of guard bits in the Z and Y registers. The Z register, with 16
bits plus one guard bit, can represent numbers from —2
inclusive to + 2 exclusive. Thus any two 16-bit numbers from
the data store can be added in the Z register without fear of
overflow. The Y register also has a single guard bit and can
represent data in the same range, although with greater
precision.

The RSP also features saturation-mode arithmetic, of
both internal and external varieties. With internal saturation
on, any sum in the Z or Y registers which would equal or
exceed +2 or be less than —2 is saturated to +1.9997 or —2,
respectively. With external saturation on, if the contents of
the Y or Z registers equals or exceeds + 1 or is less than —1,
a data transfer to memory transfers the quantities 0.9997 or
—1, respectively.

Let us now consider a simple example, to illustrate the
benefit. Suppose we wish to calculate the output of the filter
Vo=hx,_ +hx, +h_x,.,, 3)

where h, = h_, = 0.50, and h, = 1.00. Assuming that the
value of n has been already loaded into index register X1, the
code for computing this sum is

LZ x—1(X1) Load the contents of x,_, into

the Z reg

AZ Zx+1(X1) Zequals Z plus the contents of
xn+1

HPZY 1 Y equals the contents of Z
shifted by 1 bit

LZ x(X1) Load the contents of x, into Z

HAZY 0 Y equals Y plus the contents of
Z shifted 0 bits

STY y(X1) Store the result in y,

Let us now assume that x, | = 0.5, x, = 0.625, and x,_
= 0.5. The intended result is then 1.125. If the RSP had
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neither saturation arithmetic nor guard bits, the result of the
addition x,__, plus x,, ,, which is computed in the Z register,
would be 1.0 mod 2, = —1.0. Then the sum computed in the
Y register would be 0.125, which is assigned to y,. However,
with the guard bit in the Z register, the sum computed in the
Z register is 1.0, and the result computed in Y is 1.125. With
external saturation on, the result assigned to y, is 0.99997.
As the example illustrates, these features do not entirely
prevent errors, but they do make them less severe.

The arithmetic left shifter of the RSP helps the applica-
tion programmer deal with the underflow problem by per-
mitting the programmer to upscale a number, while in the
saturation mode. Thus, upscaling can be performed without
fear of the catastrophic errors that upscaling might otherwise
create, and there is no need to test each number individually
to determine when an overflow might occur. Such an individ-
ual test would be both tedious to the programmer and
wasteful of processing time. This instruction requires b + 1
cycles of throughput for b bits of upscaling.

The RSP arithmetic unit also has many other features
which simplify programming. One such feature is the dou-
ble-word width (32 bits) of the Y register. Since the Y
register is a functional accumulator, it is desirable to have
more than 16 bits, so that arithmetic truncation errors are
reduced. The double-word length is more than sufficient for
that. Just as importantly, the double-word length also per-
mits a convenient mechanism for double-precision arith-
metic. Instructions that operate selectively on the upper and
lower bits of the Y register facilitate the programming of
double-precision arithmetic.

The RSP also has a DIVIDE instruction which requires 17
cycles of throughput. This also operates in a saturating
fashion. The MULTIPLY, DIVIDE, and arithmetic-left-
shift instructions are the only RSP instructions which require
more than one cycle of throughput.

The RSP ALU also provides a variety of logical instruc-
tions. Although seldom used, they provide a great conve-
nience to the programmer, when their function is required.

Instruction fetch and sequencing

A variety of instruction sequencing possibilities are provided
by the RSP architecture in order to simplify programming.
The stage-one unit of the RSP performs the RSP instruction
sequencing, as well as the instruction fetch.

Normally, the processor accesses the instruction store
sequentially. However, other sequencing may be executed in
response to either the program or an external interrupt.
Unconditional and conditional jump statements are pro-
vided. The conditional jumps may be conditioned on either
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index conditions supplied by the stage-two hardware or ALU
conditions supplied by the stage-four hardware.

The stage-one hardware also mechanizes subroutine
branching. When a branch-to-subroutine (BS) instruction is
executed, the current address plus 1 is pushed onto the
subroutine stack. When the associated return-from-subrou-
tine is executed, this address is popped from the stack and
becomes the address of the next instruction fetched. The
subroutine stack is 64 words deep, a depth that prevents
stack overflow, and is maintained in the data store. The
mechanization of subroutine stacking is a valuable aid to the
programmer.

PROCEED sequencing is used so that the RSP can
conveniently access coefficient subroutines in a sequential
manner. The first coefficient subroutine is accessed through
a branch-to-subroutine instruction. When the subroutine
terminates with a return statement, the address following the
return is loaded into the SAVE register. Let us consider how
this aids our prior example, the calculation of (3). The code
for our convolution can also be written

LZ x— 1(X1)
AZ Zx+1(X1)

Load x,_, into the Z reg
Z equals Z plus x,,, |

BS HO Jump to coefficient sub-
routine at location HO

LZP x(X1) Load x, into Z reg, pro-
ceed to next coefficient

STY y(X1) Store the result in y,

HO HPZR 1 Y equals Z shifted 1 bit,

return

HAZR 0 Y equals Y plus Z shifted

0 bits, return

This code gives the same result as the code given earlier for
the same example, and one might wonder what its advan-
tages are. In a complete signal processing program, perhaps
one-half of the instructions would be shift/add type instruc-
tions associated with coefficients. Shift and add instructions
in the RSP require only 8 bits of storage, since the other 16
bits of the instruction are always 0s. Thus, writing the code,
as just discussed, allows one to populate a part of the RSP’s
instruction store with only 8 bits of memory. This section of
the memory, which we call the coefficient store, is of
arbitrary length and placement in the instruction store. The
savings in memory due to using this technique can be
considerable, as discussed in [19].

The RSP may also alter its instruction sequencing in
response to an interrupt. An RSP interrupt is executed much
like a jump-to-subroutine. In this case, the RSP jumps to the
address provided by the interrupt logic, and a return address
is pushed onto the stack. After the interrupt processing has
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completed, the state of the RSP internal registers is restored
(as part of the interrupt subroutine), and a return statement
is executed to return the RSP to its prior processing.

Data-store address-generation unit

Data-store address-generation is performed by the stage-two
hardware. Four different modes of addressing are permitted by
the RSP instruction set. They are (1) direct addressing, (2)
offset addressing, (3) indexed addressing, and (4) masked
addressing. Let us denote the operand of an RSP instruction
that involves a memory access by a, and the address of memory
to be accessed as the effective address. In the various address-
ing modes, the effective address is computed as

a Direct, indicated in the
program by (N),
a+ B Offset, indicated in the
program by (O),
a+ Xi Indexed, indicated in the
instruction by (Xi),
and
Masked, indicated in the
instruction by (Mi),

B+ (a+ Xi)&M +a& M

where B is the contents of the BASE register, X1 and X2 are
the two index registers, M is the contents of the MASK
register, M is the complement of the contents of the MASK
register, and & is the logical and. The masked mode is
extremely useful in implementing the circular buffering
associated with FIR filtering. Normally, when using this
addressing mode, the BASE register is set to zero, the upper
bits of the MASK register are set to 0, and the lower bits are
set to 1. Then, as can be seen by examining the equation, the
lower bits of the effective address are the lower bits of a
+ Xi, and the upper bits are the upper bits of a.

Let us apply this technique to the calculation (3), our prior
example. With x on a four-word boundary, and the MASK
register set to 3, the code for our FIR filtering becomes

LZ INPUT(N) Load the contents of IN-
PUT into Z

Store Z into x,, |

Z equals Zplus x_,

Jump to coefficient subrou-
tine at location HO

Load x, into Z and proceed
to next coefficient

Store the contents of Y in
OUTPUT

STZ  x+2(Ml)
AZ  Zx+0(M1)
BS HO

LPZ  x+1(M1)

STY OUTPUT(N)

AX1 Xl1,1 Increment index reg X1 by
1
HO HPZR 1| Y equals Z shifted 1 bit, re-
turn
HAZR 0 Y equals Y plus Z shifted 0

bits, return
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It is easily seen that the upper bits of all of the operands,
x+2, x+1, and x+0, equal x, since X is on a four-word
boundary; and the respective effective addresses then are
x+((j+X1))4, where ((n))m is n modulo m. A careful
examination of the addresses generated reveals that circular
buffering indeed takes place. To accept the next input point
and compute the next output point, we need only increment
X1 by 1, as is done in the AX1 instruction, and re-execute the
same code. We note that a data buffer of only four words, for
the four prior values of x, is now sufficient for these
calculations, and no buffer overflow checking is required.
The code given in the preceding section would have required
buffer overflow checking, a nuisance and a hazard to the
programmer.

In addition to two index registers, the RSP address
generation unit also has two work registers. Either work
register may be used to increment either index register, and
either work register may be compared against either index
register for index control.

The presence of two index registers and two work registers
in the RSP is extremely useful. The two index registers
provide convenient means to mechanize the double-loop
indexing that is commonly required for FFT, WFT, and
correlation calculations. With the two work registers, “DO
LOOPS” of the form DO 1 = J TO K BY L are conveniently
implemented.

The RSP address-generation unit provides the RSP with a
powerful addressing capability, but it also spends a sizable
part of the RSP hardware budget. It was felt that powerful
addressing capability was necessary, however, so that the
RSP would truly be easy to program. It also provides an
architecture that has the ability to improve performance with
increased technology without substantially changing the
instruction set. A technology upgrade that enhanced index-
ing capabilities would require major changes to the instruc-
tion set.

Data-store access

Data-store interfacing to the RSP is handled by the stage-
three unit. The effective address is latched into the Data-
Store Address Register (DSAR) by the address-generation
unit. One data-store access per instruction is permitted;
however, instructions may instead have immediate data, that
is, data that form the operand of the instruction.

Data to or from the I/O unit interface the data store
through the stage-three unit. This is done on a cycle steal
basis. The stage-one, -two and -four units of the RSP are
delayed for one cycle, while the stage-three unit makes the
appropriate transfer. With this operation, only one cycle of
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throughput is lost for each word transferred, and the opera-
tion of the entire pipeline appears merely retarded by one
cycle.

1/0 and control unit

As was discussed in the introduction, the computational
requirements of signal processing applications vary greatly.
Although many applications can be satisfied by single-
processor implementations, many cannot. In order to provide
the versatility to cover a broad application range, it was felt
that the RSP must have the ability to be easily connected into
systems.

An examination of many applications was undertaken,
and it was found that for most applications, one of the three
system architectures, listed below, was adequate.

1. Single-processor systems.

2. Systems configured according to the application data
flow. These systems are configured in the serial/parallel
manner in which the applications decompose.

3. Systems configured around a central bulk storage. These
systems, due to mode changes, need flexibility beyond
that provided by a simple data flow clustering. Configur-
ing around a central storage for the cluster provides this
flexibility.

This collection of system architectures lacks the generality of
distributed computing architectures, in general, but is ade-
quate for most signal processing applications. An 1/O archi-
tecture that would support all of these systems was defined.
It was decided to implement it off-chip to conserve RSP chip
resources. This architecture is called the SPIO. (Other I/O
architectures could instead be connected to the RSP, when
advantageous.)

Perhaps the greatest /O requirements derive from some
of the more sophisticated distributed systems. The ability to
IPL and to re-TIPL with mode changes is often required. A
means of system synchronization is needed. Means for
performing preventive maintenance and fault location are
also required. It is also often necessary that block-data
transfers be executed with minimum impact on the perform-
ance of the processor. For the RSP to be sufficiently versatile
to implement distributed systems, it must contain features
that allow these requirements to be satisfied.

In an RSP/SPIO combination, the RSP performs the
processing and the SPIO manages the flow of data and
control into and out of the RSP. Each SPIO provides one
control port and one data port. A fully configured RSP can
support two SPIOs (with one of the control ports disabled).
The control port is used for IPL, system synchronization,
preventive maintenance, and fault location. It also provides a
port through which to debug operation of the RSP without
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interrupting the normal progress of data transactions. The
data port is used to mechanize the data transfers occurring
during normal operation of the system.

All communication with the RSP occurs across the RSP’s
parallel I/O interface. This interface has parallel address,
data, control, scan, and interrupt lines. The RSP can be
notified of a pending data transfer or of a system reconfigu-
ration through its interrupts. The parallel interface then
permits a control port or data port to read data from or write
data into the RSP on a cycle-steal basis. It also enables an
external controller to read or write instruction store, through
the control port, when the processor is in the stop mode.
Through the control port, a system controller can also read
the status registers of the RSP or change the state of the
processor to run, reset, or start. While in the stopped state the
scan lines can be used to scan out the internal state of the
RSP.

Other debugging functions are also supported. The RSP
has a real-time clock, which can be used to generate an
interrupt at some specified time. This permits the RSP to
“time out” if a given processing task takes unexpectedly
long, a convenient preventive maintenance feature.

Although the RSP 1/0 unit does not provide the RSP with
the versatile stand-alone function desired, it does permit the
RSP to attach to an external I/O which can provide the
function desired. The parallel organization of the I/O inter-
face also permits sufficient throughput so that the RSP can
support the data-transfer requirements of most applications
without being I/O bound.

RSP performance

A 15 000-gate version of the RSP has been developed by the
IBM Federal Systems Division in Manassas, Virginia [20].
This 7.6-mm (300-mil)-square chip uses 2-um NMOS poly-
silicon-gate technology and provides 171 off-chip pads. It has
a 200-ns cycle time and requires approximately 2.5 watts of
power.

It is difficult to quantify the processing power of a signal
processor with any one statistic, such as cycle time. Perhaps
the best measure is its ability to perform typical signal
processing algorithms and applications. A few are given
herein to demonstrate the power of the RSP.

A 1008-point complex Fourier Transform, based on a
Winograd algorithm, has been programmed on the RSP.
This calculation takes 200 915 cycles, or 40 ms of computing
time, to complete.

A 9600-bps modem, with 5 bits per baud (1920 baud) and
with quadrature amplitude modulation (QAM), has been
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sized on the RSP. With a 32-tap complex adaptive equalizer,
adapted every third baud, the modem is estimated to require
94% of one RSP’s real-time computational power.

Voice-Excited Predictive Coding (VEPC) [21] is another
technique used for speech compression. An 8500-bps coder
and decoder, using this technique, were sized for the RSP. To
implement both the coder and decoder, about 90% of the
processing power of one RSP is required.

Other signal processing microprocessors

There are a number of other signal processing microproces-
sors that have been announced and described in the litera-
ture. A good survey of these is provided in [22] which is
current to its June 1981 publication date. The features of
four of these chips, well known at that time, are tabulated.
Two other signal processing microprocessors were more
recently announced [23, 24].

These six chips differ in a variety of ways. However, they
all rely on on-chip memory for storage. Most of them have
ROM instruction stores, and their programs must be added
to the chip masks. The largest instruction store provided by
any of these chips is 1536 words. One has a 194-word
EPROM instruction store. All six have RAM data stores,
with the maximum provided being 192 words.

They also have very different 1/O capabilities. One of
them has on-chip A/D and D/A converters, while the others
rely on serial and parallel digital ports for input and output
data. The widths of the parallel ports range from four bits to
sixteen bits.

These signal processors also differ greatly in their multi-
plication capabilities. Some mechanize multiplications as
shifts/adds, some accumulate partial products, and others
have parallel multipliers. Their precision of multiplication
ranges from 12 x 12 bits with 16 bits of precision to 16 x 24
bits with 40 bits of precision; and their multiplication times
range from 400 ns per shift/add instruction to 200 ns for a
complete multiplication.

They also differ in the programming conveniences pro-
vided. One of the chips has neither indexed addressing nor
subroutine capabilities, while the others support both. How-
ever, only two have subroutine stacks more than one level
deep.

Although the RSP does not have the most powerful
multiplication rate, it currently has the most powerful 1/O
interface, and it is not as limited by storage. These qualities
make it especially suitable in distributed system applications.
Also, we believe that the presence of the powerful indexing,
saturation arithmetic, subroutine capabilities, arithmetic
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left-shift, double-word-width accumulator, and DIVIDE
instruction make it the easiest to program.
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