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Signal  processing  is  a  data  processing  domain  that contains a  diversity  of  applications, including speech processing,  image 
processing,  radar, sonar, medical imaging, data  communications,  seismic  processing, and many others.  Despite the diversity of 
the applications, this  processing domain has a very structured set of  characteristics. These  include real-time  operation. 
dominance of  arithmetic  operations, and well-structured  data  flows. The Real-Time Signal  Processor (RSP) is  a microproces- 
sor architecture that  was  created to exploit these characteristics in order to  provide an expeditious and  economical way  to 
implement signal  processing applications. In this  paper,  the  organization and  architecture of the  RSP are described. Features 
of the RSP, such as the  instruction pipeline and the fractionalJixed-point  arithmetic, which exploit the  characteristics of signal 
processing to  provide  additional  computational  power, are emphasized. Other features, such as the powerful indexing,  the 
saturation  arithmetic, the  guard bits. and the double-word-width  accumulator, which add much to the processor’s  versatility 
and programmability. are also  highlighted. The performance  of  the  RSP  is  illustrated through examples. 

Introduction 
Digital  signal  processing is an  application  domain of com- 
puting that includes  a great diversity of applications. In the 
realm of man/machine  interfacing,  applications include 
speech  recognition, audio response, and  image compression/ 
expansion. In the realm of communications,  applications 
include data transmission and voice coding. In the medical 
area,  applications  include x-ray imaging,  ultrasonic  imaging, 
and  the processing of EEG (electroencephalograph)  and 
EKG (electrocardiograph) signals.  Defense applications 
include radar,  sonar,  and  other forms of electronic surveil- 
lance. There  are  many  other  areas where digital signal 
processing is also  applied, including oil exploration,  speech 
enhancement, television signal  improvement, audio  enhance- 
ment,  and  speaker verification. In [ 11, a  survey of the  major 
applications is presented, with a chapter devoted to  each. 

Despite the diversity of applications, however, there is a 
common  set of processing characteristics associated  with  this 
application  domain.  Let us consider an example,  Adaptive 
Transform  Coding  (ATC) of speech [2], in order  to focus on 
these characteristics.  ATC is a technique  that is used to 
reduce  the  number of bits required to express the information 
content of speech.  For  normal  telephone transmission, speech 
is coded a t  rates of 56 or 64 kilobits per second (kbps). 

However, ATC, with modifications, has been successfully 
used to encode speech at  rates  from 12 kbps to 16 kbps  with 
good quality [ 3 ,  41. Thus, in storing speech for later play- 
back,  ATC reduces the  storage  requirement by more than a 
factor of three.  Similarly, a digital  channel  dedicated  to 
speech could exploit ATC  to  transmit  three  times  the  number 
of conversations. 

A block diagram of the processing that  takes place in ATC 
is shown in Fig. 1. Let us first examine  the  coder.  It is seen 
that  the  analog speech waveform is first  filtered by an  analog 
low-pass filter (LPF)  and  then sampled by an  analog-to 
digital  converter  (ADC)  to  form  the  input  data  stream. For 
error-free  reconstruction,  the  sampling  rate must be at  least 
twice the highest frequency present in the incoming  signal. 
Typically, the  analog filter is chosen to filter out frequencies 
above 3 .2  kHz,  and  the speech is sampled at  an  8-kHz  rate. 
Following digitization by the  ADC,  the speech is passed 
through a  “window,” which selects  a  finite block from the 
continuous  signal and  shapes  it. Usually, the selected blocks 
of data overlap and  the window tapers  the  data  at  the  ends of 
the blocks in such  a way that  the windowed blocks sum to  the 
input  stream.  The  output points of the window are  then  input 
to a  Discrete  Fourier Transform  (DFT) or other  fast  trans- 
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Figure 1 An adaptive transform coder (a) and decoder (b). 
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Figure 2 Computational requirements of a selected set of applica- 
tions. (Note: @Touch-Tone is a registered  trademark of AT&T.) 

form, which computes  the  spectrum of the windowed block. 
The  DFT  output points are  then  quantized.  Those regions of 
the  DFT  that have more  energy,  as  determined by spectral 
averaging or smoothing, are  allocated more  bits. Those 
regions of the  DFT  that have less energy are  allocated fewer 
bits or no bits a t  all.  Finally, the  quantized  DFT  output 
points and  the bit-allocation information  are combined and 
serialized,  forming an  output  bit  stream. 

The  ATC decoder performs essentially the inverse opera- 
tion. First,  the bit-allocation information is extracted  and  the 
DFT points are  reconstructed.  Then  an inverse DFT  (IDFT) 
operation is performed.  The  output blocks of the  IDFT  are 
then overlapped and  added  to  reconstruct  the  input  data 
stream. If the  transmitter window is properly  chosen, no 
audible discontinuities at  the block boundaries will be pres- 
ent. Analog  speech is reconstructed by passing the  output 
data  through a digital-to-analog converter (DAC)  and  an 
analog low-pass filter. 

Let us now examine  some of the  characteristics of this 
processing. 

1. The processing has a real-time speed requirement. For the 
ATC example, if the processor cannot process the  input 
data  as  fast  as  the  ADC supplies it,  the coder will not 
operate  correctly. 

2. The processing is essentially arithmetic.  There  are few 
data-dependent branches. A large  percentage of the cal- 
culations is devoted to filtering and  DFT calculations. In 
the  ATC  coder, for example,  the windowing, the  DFT, 
and  the  spectral smoothing dominate  the processing load. 
Yet  there is not one  data-dependent  branch in all of this 
processing. 

3.  High  computation  rates  are  required. A  rough  sizing of 
the processing requirements, using a Fast  Fourier  Trans- 
form  (FFT)  algorithm  to  implement  the  DFT [5], a 
21-tap  spectral-smoothing filter, and a block size of 256 
points with 20% overlap,  reveals that  the  ATC coder 
requires  approximately 100 000 multiplications  and 
150 000 additions per second. Even for fairly simple 
signal processing, millions of multiplications  per second 
are  often  required. 

4. Most operations  are  linear, plus or minus  truncation 
error.  For these operations,  each  output point is a linear 
combination of the  input points. This is true of the 
windowing, the  DFT,  the  IDFT,  and  the  spectral  smooth- 
ing of the  ATC coder and decoder.  Because of this,  the 
dynamic  range of the  data does  not greatly  change. 

5. The  data flows are periodic. Most processing blocks 
consist of a  single input  stream  and a  single output 
stream.  This is certainly  true of the processing blocks of 
the  ATC coder and decoder. 

6. The processing decomposes nicely into  sequential  and 
parallel subprocesses. The block diagram of the process- 
ing demonstrates  this a t  a certain level of detail.  The 
processing blocks could also be similarly  decomposed, if 
necessary [6]. 

There  are  certain  aspects in which signal processing 
applications differ, however. Perhaps  the most important of 
these is in the  range of the  computational  requirements. 
Although  it is difficult to specify  exactly what  the  computa- 
tional requirements  are for any  application, because this 
differs according  to  the  algorithms used,  it is possible to size 
the  application well enough to find what  order of magnitude 
of computation is required. In Fig. 2, sizings are shown for  a 
small  set of signal  processing  applications. Commercial 
applications  form  the  top row, and defense applications  form 
the  bottom row. For both  categories,  the  computational 
requirements  vary by a factor of 10 000 to l !  

The precision required of the  computations also  varies 
with the application. While for some  applications 8 bits of 
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output precision are sufficient, for others 20 bits  are insuffi- 
cient. The system  complexity of the  implementation also 
varies. Some of the least demanding applications, computa- 
tionally, will undoubtedly  require only a  single-processor 
solution, the simplest  system possible. Others, with multipli- 
cation  requirements in the billions-per-second range, will 
undoubtedly  require multiprocessor implementations, inde- 
pendent of the processor chosen. These systems will have 
inherently  greater complexity. 

The  interested  reader will find that several good texts on 
digital signal  processing are  currently available;  [7] provides 
a good description of the field, with particular  emphasis on 
practical problems and  hardware; [8] is intended  as  an 
undergraduate  text;  [9] is intended as a senior/graduate 
level text; [ lo]  is also suitable  as a graduate  text, but is 
perhaps a  more complete reference. 

There were several  pioneering  efforts in the  late sixties and 
early seventies aimed at  building  signal  processing hardware 
for digital filters and  FFTs, for example [ 11-14]. These 
developments  were  inspired by the  appearance of commer- 
cially available SSI and  MSI  digital  hardware,  but  they were 
also  limited by its capabilities.  The devices constructed were 
essentially  single-purpose boxes of considerable  size, and 
they  required considerable effort to produce each replicate. 
The  appearance of LSI technologies in the seventies offered 
special opportunities for signal processing implementations 
that  are economical  with  respect to cost, space,  and power 
consumption. The  Real-Time  Signal Processor was devel- 
oped to  capitalize on LSI technology to provide expeditious 
and economical implementations for  signal processing appli- 
cations. 

Also during  the seventies, new algorithms for Fourier 
Transforms  and convolutions  (filtering)  were discovered by 
Winograd, Cooley, and  Agarwal  at  the  IBM  Thomas J. 
Watson  Research  Center [ 15, 161. The new algorithms 
reduce  the  number of multiplications  required for these 
operations  dramatically,  although  they do require a  more 
complicated program flow. In Table 1, a  comparison is given 
of the  computational  requirements for the previously known 
Fast  Fourier  Transform  (FFT)  algorithm  and  the Fourier 
Transform  algorithm discovered by Winograd  (WFT).  It 
was hoped that  the  RSP would be able  to exploit the new 
algorithms, in addition  to  the  characteristics of signal 
processing, to achieve  increased performance. In another 
paper in this issue [ 171, Cooley demonstrates  the  advantages 
of the  rectangular  transforms for the  RSP. 

Capitalizing on LSI technology has two  implications. The 
most obvious is limiting the  hardware complexity to  the 
capabilities of the technology. Many  features were  excluded 
from the  RSP, not  because they were undesirable, but 

Table 1 Computational  requirements of Fourier  Transform  algo- 
rithms. 

Fast Fourier  Transform  Winograd  Fourier  Transform 
(FFT) I WFT) 

N Mult.  Add. N Mult.  Add. 

128 1152 2368 120 288 2016 
256 2304 5248 240 648 5016 

1024 12288 26624 1008 4212 25224 

because their inclusion would have  required exclusion of 
other more important  features.  The  other implication of LSI 
technology is that,  to  capitalize on LSI, a large enough 
volume of chips  must be produced so that  the per-chip 
contribution  to  the development cost is small.  This  requires 
that  the  RSP have the flexibility to satisfy  a  broad range of 
applications exhibiting the diversity of signal processing. To 
do this  it had  to be fully programmable, economically 
connectable  into systems, and  able  to provide the precision 
required. 

The cost of the  hardware in a  signal processing system 
may be only a  small  fraction of the cost, especially if few 
versions are  constructed;  the cost of generating  the applica- 
tion software  can  dominate both the system cost and  the 
system  development time.  To provide both  a  quick and 
economical  solution, the  RSP had to be made easy to 
program.  Many  features were  included in the  RSP  hardware 
to  make  it easy to  program, even though they  added  little  to 
the raw performance of the processor. 

In the following sections, the  organization,  architecture, 
implementation,  and  performance  characteristics of the  RSP 
are described. The  emphasis is on those features of the  RSP 
that  make it powerful for the signal processing application 
domain, versatile  enough to satisfy  a  broad  application 
domain,  and easy to  program.  Due  to  the limits of technolo- 
gy, not all of the desired features could be included on the 
RSP  chip.  The  rationale for the inclusion of those RSP 
features  that were  chosen is also given. 

Basic architecture 
The  organization of the  RSP,  as shown in Fig. 3, interfaces 
the  external world through a  parallel 1 / 0  interface.  This 
interface provides data,  address,  and control lines. Normally, 
two data ports and  one control  port are  attached  to  the  RSP 
at  this  interface.  The  data ports manage  the normal flow of 
data  into  and  out of the  RSP, while the  control port is used 
for  loading programs  into  the  RSP, receiving commands 
from  the system  controller, and debugging. If fewer data or 415 
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Figure 3 Organization of the RSP. 

control  ports are needed, the  RSP is equipped with only those 
required.  Scan lines are  available for  use  in debugging,  and a 
vectored maskable  interrupt  capability is also  provided. 

The  RSP is a  fully programmable signal processing 
machine,  with external  data  and  instruction  storage.  The 
separate  external  data  and  instruction  stores  each have 
sixteen  bits of addressing.  This provides the  RSP with much 
flexibility. Since  the  RSP  can access up  to 64K words 
( K  = 1024, word length = 16) of data  and 64K instruc- 
tions, it is not severely storage limited and  can achieve  its full 
performance without  bending to  storage  constraints.  The 
RSP also has  the flexibility of using either  RAM or ROM 
storage, or combinations of the two. 

The  RSP  instructions  are 24 bits wide, with 8 bits of 
op-code and 16 bits of operand. A total of 244 op-codes form 
the  RSP  instruction set. The single-op-code, single-operand 
format was  chosen to simplify the  RSP  programming.  It was 
felt that  the increased performance offered by horizontal 
microcode  was not worth the increased programming com- 
plexity that  it  entails.  The single operand  format  also  makes 
the  RSP code  a suitable  target for  a  compiler. 

As shown in Fig. 3, the  RSP is structured  into five 
functional subunits.  They  are (1) the  instruction  fetch  and 
sequence control unit, (2) the  data-store  address-generation 
unit, (3) the  data-store access unit, (4) the  arithmetic  and 
logic unit,  and (5) the 1 / 0  and  control unit. 

Instruction pipelining 
An “instruction pipeline”  is  used to  increase  the  performance 
of the  RSP. Most RSP instructions  use  each of the first four 416 
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functional units  once, but only one of them is used during  any 
processor cycle. In the first cycle of execution of an  instruc- 
tion, that  instruction is fetched.  In  the second cycle, the 
data-store  address is computed. In the  third,  the  data  store is 
accessed, and in the  fourth,  arithmetic or logical operations 
take place. Thus,  this is a load-preferred  architecture.  The 
four  cycles that it takes  each  instruction  to  execute  are called 
the  four phases of that  instruction,  phase one through phase 
four, respectively, and  the  hardware  units  that  execute  them 
are called stage  one  through  stage four. During  each cycle,  a 
new RSP instruction is initiated. However, while the newest 
instruction is using the stage-one hardware, previous instruc- 
tions are using the  stage-two,  -three  and  -four  hardware,  as is 
shown in Fig. 4. To  execute n instructions,  as is seen from  the 
figure, n + 3 cycles are  required.  Although  each individual 
RSP  instruction  takes  four cycles to complete, the effective 
throughput of the processor is one  instruction per cycle. 

The presence of the  instruction pipeline creates  certain 
“pipeline hazards” for the  RSP.  One of these  can be observed 
in the following example.  Suppose we wish to  calculate 

a = max (u, b) .  ( 1 )  

Coding this for the  RSP, while assuming  that  each  instruc- 
tion completes  before the next begins, yields 

LZ b  Load contents of b into Z 
register 

minus contents of a 
SY Z,a Y equals  the  contents of Z 

BN  NEXT If the result is negative, 

S T Z  a Store  the  contents of Z in 
branch  to  NEXT 

memory  location  a 
NEXT Proceed  with the rest of the 

program 

The  operation of the  instruction pipeline in executing the 
first three  instructions of this  code is shown in Fig. 5,  where 
e.a. refers to  the  data-store effective address calculated.  It is 
seen that  the  stage  one unit  must decide whether to  take  the 
conditional jump  during  time interval 3. But the  subtraction 
upon which we intend  that  jump  to be conditioned is not 
computed until time interval 5 !  If that code  were  executed as 
written,  the  jump would actually be conditioned on the  state 
of the  accumulator  at  the end of time interval 3, and  results 
other  than those  intended would occur. 

Fortunately for the  programmer,  the  RSP  software sup- 
port, which is the  subject of the  paper by Davies and  Ris in 
this  issue [ 181, remedies this problem. The  programmer  can 
write the code, as previously discussed, assuming  that  each 
instruction completes  before the  subsequent  instruction 
begins. The assembler then  transforms  this code to  accom- 
modate  the  RSP instruction  pipeline by either  adding N O P  
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(no op) instructions  and/or  reordering  the code. For  the 
subject example,  the code  produced is 

L Z  b Load contents of b into Z 

SY Z,a Y equals  the  contents of Z 

NOP No operation  instruction 
NOP No operation  instruction 
BN NEXT If the result is negative, 

STZ a Store  the  contents of Z in 

register 

minus contents of a 

branch  to  NEXT 

memory location a 
NEXT Proceed  with the  rest of the 

program 

The operation of the beginning of this code  sequence is 
illustrated in Fig. 6 .  The  jump decision is now made  at  the 
end of time interval 5 ,  by which time  the difference has been 
computed.  Since  the  jump is conditioned on the proper result, 
the RSP code computes  as  intended. 

However, the pipeline hazard  has  caused some inefficiency 
(some do  not). As we noted in the  introduction, however, 
signal processing is predominantly  arithmetic; for signal 
processing, few pipeline hazards  occur. Typically,  inserted 
NOPs  account for less than 5% of the executed cycles. Thus 
the instruction  pipeline capitalizes on the  nature of signal 
processing to  increase  performance.  The  increase in  perform- 
ance is by a factor  equal  to  the  ratio of the  sum of the  stage 
execution times  to  the  maximum of the  stage execution 
times,  a factor of about 3 to l! In general,  other types of 
computing, especially  those with abundant  data  dependen- 
cies, are not able  to  capitalize on this instruction pipelining 
due  to  the  number of NOPs  that  must be inserted. 

We note that  separate  instruction  and  data  stores  are 
necessary for  the  instruction pipeline to  function as 
described.  Because of this connection, they  are  important 
architectural  features of the RSP. 

RSP arithmeticAogic unit 
Since  the purpose of the RSP is to perform calculations, we 
begin our look at  the five major  subunits of the RSP by 
examining  the  arithmetic/logical  unit,  stage four. The RSP 
represents all data  as  pure  fractions in two's-complement 
fixed-point arithmetic with 16 bits of precision. Thus,  the 
datum d is  expressed as 

I <  

d = -bo + x bi2". 
._ 

i=l 

Fixed-point arithmetic  has its limitations for computing in 
general  and it  does require more  complicated  code genera- 
tion than floating-point arithmetic. However,  it is adequate 
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for most signal processing applications because of the limited 
dynamic  range  requirements noted in the  introduction.  The 
ability to use fixed-point arithmetic,  as opposed to floating- 
point arithmetic,  permits much  simpler hardware  and much 
greater processing speed. Thus  the  RSP's fixed-point arith- 
metic  exploits the  characteristics of signal  processing to 
achieve  increased performance. 

The  arithmetic/logic  unit of the  RSP is illustrated in Fig. 
7. This unit has two main arithmetic registers, the Z register 
and  the Y register.  Multiplications in the  RSP  are  mecha- 
nized by right-shifting the  contents of the Z register  and 
accumulating  the  partial sums in the Y register. 

Thus  the  RSP executes  multiplications as a  series of shifts 
and  adds  rather  than in a fast parallel multiplier.  This is a 
highly  controversial feature of the  RSP, since many consider 
a fast parallel  multiplier  a  necessity  for  a  signal  processor. 
This does entail  some reduction of raw  performance for the 
RSP  and it  does encourage  the  use of the  RCC  algorithms, 
which are  unfamiliar  to  many  and  may be more difficult to 
program. 

able  chip  acreage.  Presence of such  a  multiplier would have 
undoubtedly  required the  RSP  to exclude many of the 
features  that  make  it versatile and easy to  program.  It was 
also felt  that  the  Reduced  Computational Complexity 
(RCC)  algorithms discovered by Winograd, Cooley, and 
Agarwal relieved the  architecture of the necessity of provid- 
ing a fast parallel  multiplier. With these algorithms,  the 
addition-to-multiplication ratio is usually in the  range of 8:1 
to 10: 1. Their  performance benefits only marginally  from  the 
presence of a fast  multiplier. For example,  a  1008-point 
complex Fourier  Transform  that  has been coded for  the  RSP 
would require only about 10% fewer  cycles if the  RSP  had a 
one-cycle multiplier.  In  practice,  the RSP utilizes the  RCC 
algorithms  to  capture  some of the  performance  that  might 
otherwise be provided by a fast  multiplier.  Lastly, a fast 
parallel  multiplier  could easily be added  to  the  architecture, 
in a  more  advanced  technology, to improve performance 
without requiring  the application  code to be rewritten. (This 
would require modifying the  assembler  to  generate multiply 
instructions instead of shift/add sequences and re-assem- 
bling the application code.) The  addition of other  features  to 
the  architecture would not be nearly so forgiving. 

Variable multiplications in the  RSP  are mechanized by 
the  hardware two bits a t  a time by using  a modified Booth's 
algorithm  (pp. 182-183 of [7]).  They  require  one cycle of 
throughput  for  each two bits of precision. The precision of 
the multiplication is set by a PRECISION  instruction,  and is 
thus  under  program control. Obviously, reduced precision 
requirements  can  thus be used to  increase  throughput. Co- 
efficient multiplications, in the  RSP, exploit the canoni- 
cal  signed-digit representation of filter coefficients to im- 
prove the RSP's performance.  This is illustrated in the 
following example. The  binary  representation of the coeffi- 
cient  0.4375,, is 0.01 1 100000000000,. This  representation 
requires  three  shift/add  instructions  to  execute  the multipli- 
cation,  one for each 1 in the  representation.  The canonical 
signed-digit representation is 0.100~00000000000,, where 
is - 1. This  representation  requires only two shift/add  or 
shift/subtract instructions. On the  average,  the canonical 
signed-digit representation reduces the  number of shift/add 
and  shift/subtract operations by about  one-third.  Our expe- 
rience has been that for  most  finite-impulse-response (FIR) 
filters of interest,  an  average of only two to four shift/add or 
shift/subtract  operations per coefficient is needed. More 
details of this  technique  are given in [ 191. 

The  generation of shift/add sequences would be a  horrible 
burden if placed on the  programmer. However, the  RSP 
assembler automatically  generates  the  optimal sequences 
from  COEFFICIENT  statements in the  application code 
and relieves the  programmer of this  burden.  This  feature of 
the  RSP  software  support is more adequately described  in 
[181. 
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In general,  there  are two  main  problems  with fractional 
fixed-point arithmetic.  One is the overflow problem. Nor- 
mally,  with fractional fixed-point arithmetic,  additions  are 
performed  modulo 2. The result of the  addition of a and 6 
then is (a  + b )  modulo  2. This  operation is error-free if the 
result  falls  within the  range  from 1.0 exclusive to - 1.0 
inclusive. However, an  error occurs when one  attempts  to  add 
two numbers whose sum  equals or exceeds 1 or is less than 
- 1, and  the  magnitude of that  error is 2.0-a catastrophic 
error.  The  other problem is the underflow problem. This 
occurs  when  a datum  has such small  magnitude  that insuffi- 
cient bits of precision remain.  The  RSP  has  means for 
handling both of these problems in ways such  that  the 
programmer is not unduly  burdened. 

The  RSP  arithmetic unit has several features  intended  to 
deal with the overflow problem. One of these is the presence 
of guard  bits in the Z and Y  registers. The Z  register,  with  16 
bits  plus one  guard bit, can  represent  numbers  from -2 
inclusive to + 2  exclusive. Thus  any two 16-bit  numbers from 
the  data  store  can  be  added in the Z register  without fear of 
overflow. The Y register also has a  single guard  bit  and  can 
represent data in the  same  range,  although with greater 
precision. 

The  RSP  also  features  saturation-mode  arithmetic, of 
both internal  and  external varieties. With  internal  saturation 
on, any  sum in the Z or Y registers which would equal or 
exceed + 2 or be less than - 2 is saturated  to + 1.9997 or - 2, 
respectively. With  external  saturation on, if the  contents of 
the Y or Z  registers equals or exceeds + 1 or is less than - 1 ,  
a data  transfer  to memory transfers  the  quantities 0.9997 or 
- 1, respectively. 

Let us now consider  a  simple example,  to  illustrate  the 
benefit. Suppose we wish to  calculate  the  output of the filter 

y .  = h , q ,  + h,x, + k , x , + ,  1 (3) 

where h,  = h - ,  = 0.50, and h, = 1.00. Assuming that  the 
value  of n has been already loaded into index register X 1, the 
code for computing  this  sum is 

L Z  x-  l(X1) Load the  contents of into 

AZ  Z,x+  l(X1) Z equals Z plus the  contents of 

HPZY 1 

the Z reg 

X"+ 1 

shifted by 1  bit 
Y equals  the  contents of Z 

L Z  x(X1) Load the  contents of x, into Z 
HAZY 0 Y equals Y plus the  contents of 

STY  y(X1) Store  the  result in y ,  
Z shifted 0 bits 

Let us now assume  that x,_, = 0.5, x, = 0.625, and x"+, 
= 0.5. The  intended result is then 1.125. If the  RSP  had 
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neither  saturation  arithmetic nor guard bits, the result of the 
addition plus x,+I, which is computed in the Z register, 
would be 1 .O mod 2, = - 1 .O. Then  the  sum  computed in the 
Y register would be  0.125, which is assigned.toyn. However, 
with the  guard  bit in the Z register,  the  sum  computed in the 
Z register is 1 .O, and  the result computed in Y is 1.125. With 
external  saturation on, the  result assigned to y ,  is 0.99997. 
As the  example  illustrates,  these  features  do not entirely 
prevent errors,  but  they  do  make  them less severe. 

The  arithmetic  left  shifter of the  RSP helps the  applica- 
tion programmer  deal with the underflow problem by per- 
mitting  the  programmer  to upscale  a number, while in the 
saturation mode. Thus, upscaling can  be performed  without 
fear of the  catastrophic  errors  that upscaling might otherwise 
create,  and  there is no need to  test  each  number individually 
to  determine when an overflow might  occur.  Such  an individ- 
ual test would be both  tedious to  the  programmer  and 
wasteful of processing time.  This  instruction  requires 6 + 1 
cycles of throughput for 6 bits of upscaling. 

The  RSP  arithmetic  unit  also  has  many  other  features 
which simplify programming.  One such feature is the dou- 
ble-word width (32  bits) of the Y  register. Since  the Y 
register is a functional  accumulator,  it is desirable  to have 
more  than 16  bits, so that  arithmetic  truncation  errors  are 
reduced. The double-word length is more  than sufficient for 
that.  Just  as  importantly,  the double-word  length also per- 
mits  a  convenient mechanism for  double-precision arith- 
metic.  Instructions  that  operate selectively on the  upper  and 
lower bits of the Y  register facilitate  the  programming of 
double-precision arithmetic. 

The  RSP also has a DIVIDE instruction which requires  17 
cycles of throughput.  This also operates in a saturating 
fashion. The  MULTIPLY, DIVIDE, and  arithmetic-left- 
shift  instructions  are  the only RSP instructions which require 
more than  one cycle of throughput. 

The  RSP  ALU also provides a  variety of logical instruc- 
tions. Although seldom  used, they provide a great conve- 
nience to  the  programmer, when their function is required. 

Instruction fetch and sequencing 
A  variety of instruction sequencing possibilities are provided 
by the  RSP  architecture in order  to simplify programming. 
The stage-one unit of the  RSP performs the  RSP  instruction 
sequencing, as well as  the  instruction  fetch. 

Normally,  the processor accesses the instruction store 
sequentially.  However, other sequencing may  be executed  in 
response to  either  the  program  or  an  external  interrupt. 
Unconditional and conditional jump  statements  are pro- 
vided. The conditional jumps  may  be conditioned on either 
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index  conditions  supplied by the  stage-two  hardware or ALU 
conditions  supplied by the  stage-four  hardware. 

The  stage-one  hardware  also  mechanizes  subroutine 
branching.  When a branch-to-subroutine  (BS)  instruction is 
executed, the  current  address plus 1 is pushed onto  the 
subroutine  stack.  When  the associated return-from-subrou- 
tine is executed,  this  address is popped from  the  stack  and 
becomes the  address of the next instruction  fetched.  The 
subroutine  stack is 64 words deep, a depth  that prevents 
stack overflow, and is maintained in the  data  store.  The 
mechanization of subroutine  stacking is a valuable  aid  to  the 
programmer. 

PROCEED sequencing is used so that  the  RSP  can 
conveniently  access coefficient subroutines in a sequential 
manner.  The first Coefficient subroutine is accessed through 
a branch-to-subroutine  instruction.  When  the  subroutine 
terminates with  a return  statement,  the  address following the 
return is loaded into  the  SAVE  register.  Let us consider how 
this  aids our prior example,  the  calculation of (3). The code 
for our convolution can  also be written 

LZ  x-l(X1) Load xn- ,  into  the Z reg 
AZ Z,x + 1 (X 1 ) Z equals Z plus x,+, 
BS HO Jump  to coefficient sub- 

routine at  location HO 
LZP  x(X1)  Load x, into Z reg, pro- 

ceed to next coefficient 
STY  y(X1) Store  the result in y ,  

HO HPZR 1 Y equals Z shifted 1 bit, 
return 

HAZR 0 Y equals Y plus Z shifted 
0 bits, return 

This code gives the  same result as  the code given earlier for 
the  same  example,  and  one  might wonder what its advan- 
tages  are. In a complete signal processing program,  perhaps 
one-half of the  instructions would be shift/add  type  instruc- 
tions  associated  with coefficients. Shift  and  add  instructions 
in the  RSP  require only 8 bits of storage, since the  other 16 
bits of the  instruction  are always Os. Thus,  writing  the code, 
as just discussed, allows one to  populate a part of the  RSP's 
instruction  store with only 8 bits of memory. This section of 
the  memory, which we call  the coefficient store, is of 
arbitrary length and  placement in the  instruction  store.  The 
savings in memory due  to using  this technique  can be 
considerable, as discussed in [ 191. 

The  RSP  may also alter  its  instruction  sequencing in 
response to  an  interrupt.  An  RSP  interrupt is executed  much 
like a jump-to-subroutine.  In this case,  the  RSP  jumps  to  the 
address provided by the  interrupt logic, and a return  address 

420 is pushed onto  the  stack.  After  the  interrupt processing has 

completed, the  state of the  RSP  internal registers is restored 
(as  part of the  interrupt  subroutine),  and a return  statement 
is executed to  return  the  RSP  to its  prior processing. 

Data-store address-generation unit 
Data-store address-generation is performed by the stage-two 
hardware. Four different modes of addressing are permitted by 
the  RSP instruction set. They  are  (1) direct addressing, (2) 
offset addressing, (3) indexed addressing, and (4) masked 
addressing. Let us denote the operand of an RSP instruction 
that involves a memory access by a, and  the address of memory 
to be accessed as the effective address. In the various address- 
ing  modes,  the effective address is  computed  as 

U Direct,  indicated in the 

a + B  Offset, indicated in the 

a + Xi Indexed, indicated in the 

program by (N), 

program by (01, 

instruction by (Xi), 
and 

B + ( a  + Xi)&M + a& M Masked,  indicated in the 
instruction by (Mi), 

where B is the  contents of the  BASE register, X1  and X2 are 
the two  index  registers,  M is the  contents of the  MASK 
register, M is the complement of the  contents of the  MASK 
register, and & is the logical and.  The masked  mode is 
extremely useful  in implementing  the  circular buffering 
associated with FIR filtering. Normally, when using this 
addressing  mode, the  BASE  register is set to zero, the  upper 
bits of the  MASK register are set to 0, and  the lower bits  are 
set to 1. Then,  as  can be seen by examining  the  equation,  the 
lower bits of the effective address  are  the lower bits of a 
+ Xi, and  the upper  bits are  the  upper bits of a.  

Let us apply this  technique  to  the  calculation (3) ,  our prior 
example.  With x on a  four-word boundary,  and  the  MASK 
register  set to 3 ,  the code  for our  FIR filtering becomes 

LZ  INPUT(N)  Load  the  contents of IN- 
PUT into Z 

STZ  x+2(M1) 
AZ  Z,x+O(Ml) 
BS HO 

L P Z   x t l ( M 1 )  

STY  OUTPUT(N) 

AX1  X1,l 

HO HPZR 1 

HAZR 0 

Store Z into x,+, 
Z equals Z plus x"-, 
Jump  to coefficient subrou- 

Load x" into Z and proceed 

Store  the  contents of Y in 

tine at  location HO 

to next coefficient 

OUTPUT 
Increment index reg X 1 by 

1 
Y equals Z shifted  1  bit,  re- 

Y equals Y plus Z shifted 0 
turn 

bits, return 
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It is easily  seen that  the  upper bits of all of the  operands, 
x+  2, x+ 1 ,  and x+O, equal x, since  x is on a four-word 
boundary;  and  the respective effective addresses  then  are 
x+(( j+X1))4,  where ( ( n ) ) m  is n modulo m. A careful 
examination of the  addresses  generated reveals that  circular 
buffering  indeed takes place. To  accept  the next input point 
and  compute  the next output point, we need only increment 
X 1 by 1 ,  as is done in the  AX 1 instruction,  and re-execute the 
same code. We note that a data buffer of only four words, for 
the four prior values of x,,, is  now sufficient for these 
calculations,  and no buffer overflow checking is required. 
The code given in the preceding  section would have  required 
buffer overflow checking, a nuisance  and a hazard  to  the 
programmer. 

In addition  to two  index  registers, the  RSP  address 
generation unit  also has two work registers. Either work 
register may be used to  increment  either index  register, and 
either work  register may be compared  against  either index 
register  for  index  control. 

The presence of two  index  registers and two work registers 
in the  RSP is extremely useful. The two index  registers 
provide convenient means  to  mechanize  the double-loop 
indexing that is commonly  required  for FFT,  WFT,  and 
correlation calculations. With  the two work registers, “DO 
LOOPS” of the  form  DO I = J TO K BY L are conveniently 
implemented. 

The  RSP  address-generation  unit provides the  RSP with  a 
powerful addressing  capability,  but  it also spends a  sizable 
part of the  RSP  hardware  budget.  It was felt that powerful 
addressing capability was  necessary, however, so that  the 
RSP would truly be easy to program.  It also provides an 
architecture  that has the ability to improve performance with 
increased  technology  without substantially  changing  the 
instruction set.  A  technology upgrade  that  enhanced index- 
ing capabilities would require  major  changes  to  the  instruc- 
tion set. 

Data-store  access 
Data-store  interfacing  to  the RSP is handled by the  stage- 
three unit. The effective address is latched  into  the  Data- 
Store  Address  Register  (DSAR) by the  address-generation 
unit.  One  data-store access per instruction is permitted; 
however, instructions  may instead  have immediate  data,  that 
is, data  that form the  operand of the  instruction. 

Data  to or from  the 1 / 0  unit  interface  the  data  store 
through  the  stage-three  unit.  This is done on a  cycle steal 
basis. The  stage-one,  -two  and -four  units of the  RSP  are 
delayed  for one cycle, while the  stage-three unit makes  the 
appropriate  transfer.  With this operation, only one cycle of 

throughput is lost for each word transferred,  and  the  opera- 
tion of the  entire pipeline appears merely retarded by one 
cycle. 

1/0 and control unit 
As was discussed in the  introduction,  the  computational 
requirements of signal  processing  applications  vary greatly. 
Although many applications  can be satisfied by single- 
processor implementations,  many  cannot. In order  to provide 
the versatility to cover a broad  application  range, it was felt 
that  the  RSP  must have the  ability  to be easily  connected into 
systems. 

An  examination of many  applications was undertaken, 
and it was found that for most applications,  one of the  three 
system architectures, listed below, was adequate. 

1. Single-processor  systems. 
2. Systems configured according  to  the application data 

flow. These systems are configured in the  serial/parallel 
manner in which the  applications decompose. 

3.  Systems configured around a central bulk storage.  These 
systems, due  to mode changes, need flexibility beyond 
that provided by a  simple data flow clustering. Configur- 
ing around a central  storage for the  cluster provides this 
flexibility. 

This collection of system architectures lacks the  generality of 
distributed  computing  architectures, in general, but is ade- 
quate for  most  signal processing applications. An 1 / 0  archi- 
tecture  that would support  all of these  systems  was defined. 
It was decided to  implement it off-chip to conserve RSP chip 
resources. This  architecture is called the  SPIO.  (Other 1 / 0  
architectures could instead be connected to  the  RSP, when 
advantageous.) 

Perhaps  the  greatest 1 / 0  requirements derive  from  some 
of the more  sophisticated distributed systems. The ability to 
IPL  and  to  re-IPL with mode changes is often required. A 
means of system  synchronization is needed. Means for 
performing  preventive maintenance  and  fault location are 
also required.  It is also  often  necessary that block-data 
transfers be executed with minimum  impact on the perform- 
ance of the processor. For the  RSP  to  be sufficiently versatile 
to implement distributed systems,  it must contain features 
that allow these requirements  to be satisfied. 

In an  RSP/SPIO  combination,  the  RSP performs the 
processing and  the  SPIO  manages  the flow  of data  and 
control  into  and  out of the  RSP.  Each  SPIO provides one 
control port and  one  data  port. A  fully configured RSP  can 
support two SPIOs  (with one of the control  ports disabled). 
The control  port is used for IPL, system synchronization, 
preventive maintenance,  and  fault location. It also provides a 
port through which to  debug operation of the  RSP without 42 1 
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interrupting  the  normal progress of data  transactions.  The 
data port is used to  mechanize  the  data  transfers  occurring 
during  normal  operation of the system. 

All communication  with  the  RSP  occurs across the  RSP’s 
parallel 1 / 0  interface.  This  interface  has parallel address, 
data, control, scan,  and  interrupt lines. The  RSP  can  be 
notified of a  pending data  transfer or of a  system reconfigu- 
ration  through  its  interrupts.  The  parallel  interface  then 
permits a control  port  or  data port to  read  data  from or write 
data  into  the  RSP on a cycle-steal  basis. It  also  enables  an 
external  controller  to  read  or  write  instruction  store,  through 
the  control  port, when the processor is in the  stop mode. 
Through  the  control port,  a  system  controller can  also  read 
the  status  registers of the  RSP  or  change  the  state of the 
processor to run, reset,  or  start.  While in the stopped state  the 
scan lines can  be used to  scan  out  the  internal  state of the 
RSP. 

Other  debugging  functions  are also supported.  The  RSP 
has a real-time clock, which can  be used to  generate  an 
interrupt a t  some specified time.  This  permits  the RSP  to 
“time  out” if a given processing task  takes unexpectedly 
long,  a  convenient  preventive maintenance  feature. 

Although  the  RSP 1 / 0  unit does  not  provide the  RSP with 
the  versatile  stand-alone  function  desired,  it does permit  the 
RSP to  attach  to  an  external 1/0 which can provide the 
function desired.  The  parallel  organization of the 1/0 inter- 
face  also  permits sufficient throughput so that  the  RSP  can 
support  the  data-transfer  requirements of most applications 
without  being 1/0 bound. 

RSP performance 
A  15 000-gate version of the  RSP  has been developed by the 
IBM Federal  Systems Division in Manassas, Virginia [20]. 
This 7.6-mm (300-mil)-square  chip uses 2-pm NMOS poly- 
silicon-gate  technology and provides 17 1 off-chip  pads. It  has 
a 200-11s cycle time  and  requires  approximately 2.5 watts of 
power. 

It is difficult to  quantify  the processing power of a  signal 
processor with any  one  statistic,  such  as cycle time.  Perhaps 
the best measure is its ability  to  perform  typical signal 
processing algorithms  and applications.  A few are given 
herein to  demonstrate  the power of the  RSP. 

A  1008-point  complex Fourier  Transform, based on a 
Winograd  algorithm,  has been programmed on the  RSP. 
This  calculation  takes  200 9 15 cycles, or 40  ms of computing 
time, to  complete. 

A 9600-bps modem,  with 5 bits per baud  (1920  baud)  and 
422 with quadrature  amplitude  modulation  (QAM), has been 

sized on the  RSP.  With a 32-tap complex adaptive  equalizer, 
adapted every third  baud,  the  modem is estimated  to  require 
94% of one  RSP’s  real-time  computational power. 

Voice-Excited  Predictive  Coding (VEPC)  [21] is another 
technique used for  speech  compression. An 8500-bps  coder 
and  decoder, using this  technique, were  sized  for the  RSP.  To 
implement both the  coder  and decoder, about 90% of the 
processing power of one RSP is required. 

Other signal processing microprocessors 
There  are a number of other signal processing microproces- 
sors that have been announced  and described in the  litera- 
ture. A good survey of these is provided in [22] which is 
current  to its June 1981  publication date.  The  features of 
four of these chips, well known at  that  time,  are  tabulated. 
Two other signal processing microprocessors  were  more 
recently announced  [23,24]. 

These six chips differ in a variety of ways. However,  they 
all rely on on-chip  memory  for storage. Most of them have 
ROM instruction stores, and  their  programs  must  be  added 
to  the  chip masks. The  largest  instruction  store provided by 
any of these chips is 1536 words. One  has a  194-word 
EPROM  instruction  store. All six have RAM  data stores, 
with the  maximum provided being 192 words. 

They also  have very different 1 / 0  capabilities. One of 
them  has  on-chip A/D  and  D/A converters, while the  others 
rely on serial  and parallel digital  ports for input  and  output 
data.  The widths of the parallel  ports range  from  four bits to 
sixteen  bits. 

These signal processors also differ greatly in their  multi- 
plication capabilities.  Some  mechanize multiplications as 
shifts/adds, some accumulate  partial products, and  others 
have parallel multipliers. Their precision of multiplication 
ranges  from  12 x 12 bits  with  16 bits of precision to 16 x 24 
bits  with 40 bits of precision; and  their multiplication  times 
range  from 400 ns per shift/add  instruction  to  200 ns for a 
complete  multiplication. 

They also differ in the  programming conveniences pro- 
vided. One of the  chips  has  neither indexed  addressing nor 
subroutine capabilities,  while the  others  support  both. How- 
ever, only two  have subroutine  stacks more than  one level 
deep. 

Although  the RSP does not  have the most powerful 
multiplication rate,  it  currently  has  the most powerful 1/0 
interface,  and it is not as limited by storage.  These  qualities 
make  it especially suitable in distributed system  applications. 
Also, we believe that  the presence of the powerful indexing, 
saturation  arithmetic,  subroutine capabilities, arithmetic 

FRED MINTZER AND ABRAHAM PELED IBM J.  RES. DEVELOP. VOL. 26 NO. 4 JULY 1982 



left-shift, double-word-width 
instruction make it the easiest 

accumulator, and DIVIDE 
to program. 
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