P. W. Agnew
A. S. Kellerman

Microprocessor Implementation of Mainframe Processors
by Means of Architecture Partitioning

The benefits of Large-Scale Integration (LSI) implementations have applied quite naturally to processors with relatively low
performances and simple architectures, e.g., the one-chip microprocessors used in personal computers contain severai thousand
logic gates. Mainframe processors, however, have so far been limited 1o using logic chips that contain several hundred logic
gates. The best use of LSI logic employs microprocessors to keep critical paths on chip, thus keeping pin counts and power
dissipations within reasonable limits. Microprocessors have been extensively used to implement peripheral functions, such as
1/0 device control. However, as of this writing, a single state-of-the-art microprocessor cannot contain a mainframe processor
Sfunction. Therefore, new machine organizations are needed to use today’s state-of-the-art microprocessors to implement a
mainframe processor. This paper examines several methods for applying LST and microprocessors to the design of processors
of increasing performance and complexity, and describes a number of specific approaches to microprocessor-based LST
implementation of System/370 processors. The most successful approaches partition the System/370 instruction set into
subsets, each of which can be implemented by microcode on a special microprocessor or by programs written for an

off-the-shelf microprocessor.

introduction

One characteristic of the era of integrated circuits has been
that higher-performance computers use lower levels of inte-
gration. This is the result of individual optimizations across
the performance spectrum. In 1980, first customer shipments
of a microcomputer [1], a mainframe [2], and a supercom-
puter [3] used, respectively, a 68 000-transistor microproces-
sor chip, 2000-transistor LSI chips, and 500-transistor chips.
The price of a silicon chip is roughly independent of the level
of integration, so the price per gate is lower for microcomput-
ers than for supercomputers.

One result of this situation has been the repeal of Grosch’s
Law [4], which says that if one pays twice as much for a
computer, one obtains the square of that or four times as
much processing power. This implied that one obtained the
best cost/performance from the largest computer that could
be justified by sharing it among many unrelated users and
applications. In recent years, the exponent in that relation-
ship has dropped from two to less than one [5]. As a result,
one now obtains the best cost/performance from the smallest

computer that can perform one’s application in an acceptable
time. Note that the exponent in the relation between function
and cost is still greater than one for disk files [6], printers,
and some other peripheral devices. Therefore, it is still
economical to share these peripherals among several users
and applications.

LSI has been very effective in reducing the costs of
memory of all sizes, but has been much more effective in
reducing the costs of low-performance processors than in
reducing the costs of high-performance processors with com-
plex architectures. This favors the implementation of high-
performance computers using large numbers of low-perform-
ance processors and memories. However, this implementa-
tion is difficult to apply to existing complex architectures
intended mainly for uniprocessors which process a single
stream of instructions. Application to multiple-instruction
multiple-data architectures and single-instruction multiple-
data architectures [7] is more straightforward and will not
be treated here.

© Copyright 1982 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of

royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on

the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the 401
Editor.

P. W. AGNEW AND A. S. KELLERMAN

IBM J. RES. DEVELOP. ® VOL. 26 « NO. 4 » JULY 1982

402

This paper summarizes the ways in which LST has been
applied to low-performance digital systems and is being
applied to systems of increasing performance and complex-
ity. It then describes seven approaches to the partitioning
strategy that was developed for implementing the processor
portions of a complex architecture, specifically System/370,
using state-of-the-art microprocessors such as the Motorola
68000. The advantages and disadvantages of these
approaches are also discussed. Each of these approaches
might be the appropriate choice for a specific set of objec-
tives. Some of these trade-offs are also discussed.

Use of LSl in low-performance systems

Recent improvements in the cost/performance of digital
computer systems have been driven by the availability of
increasingly dense LSI chips. Denser LSI memory chips,
with reduced costs per bit stored, have direct and obvious
applicability to digital systems over the entire range from
hand-held calculators to supercomputers. However, denser
LST logic chips apply most naturally to digital systems near
the low end of the performance and complexity spectrum.

LSI applies very naturally to very small digital systems.
The logic portion of a hand calculator, microwave oven, or
wristwatch, including the necessary memory and I/0 device
interfaces, can be implemented on a single LSI microcom-
puter chip.

The processor of a small personal computer can be imple-
mented on a single microprocessor chip which implements
the instruction set of the computer, together with other LSI
chips which implement the interfaces between the micropro-
cessor and the memory, keyboard, display, disks, printers,
and communication lines. This is an example of partitioning
the function of a digital system for implementation by several
LSI chips.

The partitioning method is simple, well known, and
straightforward because the instruction-processing function
can be implemented entirely by a single chip.

Use of LSl in larger systems

Strategies of applying LSI technology to the implementation
of still more powerful digital systems, in which the state of
the LSI art does not permit implementing the entire instruc-
tion-processing function on a single LSI chip, are far less
obvious. Some strategies to be considered are as follows.

1. Procrastination

Wait until technology advances far enough to allow the
desired architecture to be contained within a single chip. For
example, the architecture of each generation’s state-of-
the-art microprocessor was determined by the then-current
capability of the technology, which explains why today’s

P. W. AGNEW AND A. S. KELLERMAN

leading microprocessors lack floating-point instructions. The
significant disadvantage of this method is that it precludes
implementing a predefined architecture that does not happen
to fit within one chip in the current technology. This has led
to the major software problems inherent in having each
generation of microprocessors implement an essentially new
architecture.

2. Off-chip microcode

The second method is to partition the instruction execution
function so that the data flow is on one chip and the
microcode that controls the data flow is on one or more
separate chips. This method is the obvious application of LSI
technology separately to the data flow and to the control
store.

Unfortunately, this relinquishes the main advantage of
LSI implementations, namely, the advantage of having both
the control store and the data flow that it controls on the
same chip so that the critical path remains on one chip. In
most processors, the critical path runs from the control store,
to the data flow, to the arithmetic result, and to the address
of the next control-store word. Its length, in nanoseconds,
determines the microcycle time and hence the instruction-
processing rate of the processor. For a given power dissipa-
tion, a critical path that remains within one LSI chip means a
shorter cycle time than one that must traverse several inches
and several chip-to-card pins.

This method also requires what LSI technology is least
adept at, namely, large numbers of pins. The data-flow chip
needs at least a dozen pins to tell the control store what
microword to give it next. Worse, the data-flow chip needs
from 16 to 100 pins to receive that control word. A processor
using this method is often limited to roughly 16-bit control
words (and hence a vertical microprogram that can control
only one operation at a time), whereas a processor with far
higher performance could be designed if a 100-bit control
word were available (to allow a horizontal microprogram
that can control several operations in each microcycle and
thus perform a given function in fewer cycles).

The off-chip microcode partitioning method has been
particularly successful when applied to bit-slice processors,
in which the data flow is not yet reduced to a single chip but
rather is a collection of chips, each of which implements a
particular group of bits throughout the data flow. Bit-slice
processors usually employ bipolar technologies whose densi-
ties are limited by the number of gates available (or the
ability to cool them) rather than by the numbers of pins on
the chips. The off-chip partitioning method applies to FET
implementations only in more unusual cases where many
pins are available and the chip density is a good match for the
number of gates needed to implement just the data flow of a

IBM J. RES. DEVELOP. e VOL. 26 « NO. 4 ¢ JULY 1982

desired processor. The Toshiba T88000 16-bit microproces-
sor [8] happens to meet these conditions. Such an implemen-
tation can be best viewed as a bit-slice design in which the
implementable slice width has widened to encompass the
entire desired data flow.

3. Instruction-set partitioning

A third method of implementing an architecture that is too
complex to implement on one chip is to partition the instruc-
tion set of the architecture itself, that is, select subsets of the
instructions and provide a microprocessor to implement each
subset. This method preserves the main advantage of a
one-chip implementation, namely, keeping each critical path
on a single chip. For each subset of the instructions, the
corresponding microprocessor chip contains the data flow
(including the registers) necessary for the execution of that
subset and also contains the microcode that controls execu-
tion. The application of this strategy requires the following:

® A partitioning that makes each subset fit on one micro-
processor in the current state of the technology.

e A way to pass control back and forth between the micro-
processors quickly.

® A suitable way to pass data back and forth between the
MiCroprocessors.

® A technology in which it is economically feasible to have
several copies of a complex data flow and control-store
mechanism.

The last requirement implies that instruction-set partitioning
never applied to low-performance or medium-performance
processors before the current generation of low-cost LSI
technology. The other requirements imply that instruction-
set partitioning was not considered until the disadvantages of
the other two strategies had become very clear.

State of the industry

Each major microprocessor manufacturer has faced the need
to implement an architecture more complex than can be put
onto a single LSI chip [9-11]. Some needed to implement
pre-existing architectures to achieve software compatibility
with installed machines. Others needed to enhance the
functions of existing successful one-chip microprocessors by
adding more instructions. Some examples employing 16-bit
microprocessors, and the methods used to extend their archi-
tectures, follow.

Digital Equipment Corporation, having identified the
need for a low-end implementation of their ®PDP-11 [12]
minicomputer architecture, chose the off-chip microcode
method. The result was the ®LSI 11 four-chip set manufac-
tured first by Western Digital and then by ®DEC itself

[13].

®Intel [14] determined a need for additional hardware
computational power, particularly floating-point instruc-

IBM J. RES. DEVELOP. VOL. 26 ¢ NO. 4 » JULY 1982

tions, for its 8086 microprocessor systems. They developed a
“coprocessor,” the 8087 [15]. A processor containing both an
8086 chip and an 8087 chip operates as follows. The chips
fetch each instruction simultaneously. If the instruction is
one that the 8086 can execute, it executes the instruction and
both chips fetch the next instruction. If the instruction is one
that the 8087 executes, the 8087 starts to execute it. In the
usual case where a main store address is required, the 8086
computes the address and puts it on the bus shared with the
8087. The 8087 uses that address to complete execution of
the instruction and then signals the 8086 that it is ready for
both of them to fetch the next instruction. Thus, each chip
looks at each instruction and executes its assigned subset, but
only the 8086 computes addresses.

®Zilog similarly identified a need to add floating-point
instructions to its Z8000 microprocessor [16], and it devel-
oped an Extended Processing Unit or EPU [17]. A system
containing a Z8000 and one or more EPUs works as follows.
The Z8000 fetches an instruction, and if it can execute the
instruction, it does so. Otherwise, the Z8000 issues a request
for service by an EPU and supplies an identifier (ID) that it
determines by examining the instruction. One EPU recog-
nizes that ID as its own and begins executing. The EPU can
use special wires to the Z8000 to instruct the Z8000 to move
necessary data back and forth between the EPU and the
main store. The Z8000 proceeds to fetch and execute more
instructions while the EPU is working, and only stops to wait
for the EPU if it needs to request service by the same EPU
while that EPU is still busy. Thus, it is the responsibility of
the Z8000 to start the EPU and respond to commands from
the EPU. A great deal of execution overlap is possible in such
a system.

National Semiconductor Corporation had a similar
requirement to add floating-point instructions to its NS-
16000 microprocessor systems. It called the NS-16000 a
“master” and called the computational processor a “slave”
[18, 19]. In a system containing a master and a slave, the
master fetches instructions and executes them if it can.
When the master fetches an instruction it cannot execute, it
selects a slave to begin execution. The master sends the
instruction and any needed data to the slave, waits for the
slave to signal completion, receives the result, and proceeds
to fetch the next instruction. Thus, the master never overlaps
its execution with the slave’s execution and is responsible for
knowing what the slave is doing and what the slave needs.

Data General Corporation wanted an LSI implementation
of its ®Eclipse minicomputer architecture [20]. The resulting
®MicroEclipse family [21] employs a one-chip processor that
contains the data flow as well as the horizontal (35-bit) and
vertical (18-bit) microcode for executing the most perform-
ance-critical instructions in the architecture. This proces-

403

P. W. AGNEW AND A. S. KELLERMAN

404

Local
Processor A Processor B store
(for P and Q) (for P and R)

! [[A

System/370
instructions

Bus y

Figure 1 Two overlapping subsets.

sor can call for vertical microwords from an off-chip control
store, as necessary, to execute the rest of the instructions of
the architecture by making use of the on-chip horizontal
microwords. This is a variant containing some of the advan-
tages of both the off-chip control store method and the
instruction-set partitioning method.

Seven approaches for implementing a complex
architecture

Our group began studying ways to use LSI logic to imple-
ment complex processor architectures in November 1977. At
that time, off-chip control store designs were common, and
designs that partitioned off I/O functions for implementa-
tion on dedicated microprocessors were becoming common.
None of the advanced microprocessor partitioning methods
previously discussed had yet appeared. Partitioning of func-
tions within a central processing unit for implementation on
separate processors had been employed in supercomputers.
Their goal was separate execution units for fixed-point,
floating-point, and perhaps decimal instructions, that could
overlap execution to achieve maximum throughput. Our goal
was to optimize cost/performance (not performance) at the
low end of the mainframe spectrum. Our investigations did
not consider high-end processors. It required a year of
analysis of many different approaches to using LSI for
implementing 2 mainframe architecture to determine that
one of the best approaches to the design of very low-cost
mainframes was to use a supercomputer organization such as
that exemplified by the IBM System/360 Model 91 [22]
without execution overlap.

During the second year of our investigation, we selected
one specific mainframe architecture, the System/370 [23]
and one specific microprocessor, the ®Motorola [24] 68000
[25, 26]. This was shortly after the 68000 was first men-
tioned in the trade press. We selected this microprocessor
because it was heavily microcoded, was intended to be
general-purpose, and had 17 32-bit general registers.

Before launching an investigation of partitioning, we
estimated how long it would take for advances in technology
to allow implementation of all of System/370 architecture on
one microprocessor; i.e., we looked at the technology repre-

P. W. AGNEW AND A. S. KELLERMAN

sented by the 68000, and at the silicon requirements of
System/370, which required about four times as much
on-chip microcode space as the 68000 provides. We projected
where HMOS and comparable FET technologies would be
over time. The result of the analysis was that we would have
to wait at least a few years.

"Our group subsequently developed several approaches to
partitioning thé System/370 architecture for implementa-
tion using 68000 thicroprocessors. We determined that the
resultant cost/performance of many of the approaches was of
more than academic interest. The following is a description
of some of these approaches, selected for discussion either
because of their good cost/performance with the System/
370 architecture or because of their applicability to other
complex architectures.

These descriptions are limited to the instruction processor
portion of a computer. Each approach provides a local bus
within the processor on which one or more microprocessor
chips can communicate with each other and with a local
store. Each approach assumes that the local bus can be
connected to a global bus to allow the processor to commu-
nicate with I/O devices and main memory. At other times,
the local bus is disconnected from the global bus so that
separate communications can occur over the two buses.

® Two overlapping subsets

Our first approach to partitioning a mainframe architecture
employs two specially microcoded microprocessors that
implement overlapping subsets of the architecture. Each of
these microprocessors has on-chip microcode that replaces
the microprograms on a normal 68000. This approach is
implemented as follows. Partition the mainframe architec-
ture into three sets named P, Q, and R, where most of the
high-usage instructions are in set P. Write microcode for P
and Q to reside in Processor A and write microcode for P and
R to reside in Processor B, as shown in Fig. 1. At any one
time, one of the processors is “active” and the other processor
is “passive.” Only the active processor fetches and executes
instructions and controls the bus. There is no contention
between the processors.

Assume that the last several instructions have all been
either in set P or in set Q. Thus, Processor A is active and
Processor B is passive. Note that the internal values of
Processor A (I-counter, general registers, condition code,
etc.) are up-to-date, and the internal values of Processor B
are not. If the next instruction is in set R, Processor A fetches
this instruction and performs the following operations.

1. It places into a mailbox in a local store all of its internal
values that Processor B might need in order to execute
any instructions in sets P or R.

IBM J. RES. DEVELOP. e VOL. 26 & NO. 4 e« JULY 1982

2. Processor A then signals Processor B telling it to become
the active processor, that is, to read new internal values
from the mailbox and then execute instructions as long as
instructions remain in set R or set P.

3. Processor A then becomes the passive processor until,
sometime later, it receives a signal from Processor B
telling it to read internal values, execute an instruction in
set Q, and then continue executing all instructions up to
the occurrence of the next instruction in set R.

The sets P, Q, and R are selected on the basis of the
following criteria. First, having all of the high-usage instruc-
tions in set P, which is common to both processors, greatly
reduces the frequency of swapping the active and passive
processors. This is desirable because, between swaps, instruc-
tions are executed as fast as if they were all implemented in
the microcode of a single processor. Second, the frequency of
processor swaps is reduced still further if sets Q and R are
selected in such a way that instructions in these two sets
seldom interleave with each other.

One particularly suitable partition selection for the sets is

® P contains fixed-point, branch, and load/store instruc-
tions;

® Q) contains fioating-point instructions; and

® R contains decimal and privileged instructions.

This selection satisfies both criteria. First, the fixed-point,
branch, and load/store instructions represent about 75% of
the execution time in a typical instruction mix. Second,
although there is frequent interleaving of floating-point,
branch, and load/store instructions with either fixed-point
instructions or decimal instructions, there is much less fre-
quent interleaving of floating-point instructions with decimal
instructions. Therefore, there is relatively little performance
lost to swapping active and passive processors if this selection
of P, Q, and R is made. In fact, the need for both floating-
point and decimal instructions in the same application is
sufficiently rare that special-purpose systems containing only
one of Processor A or Processor B could be attractive.

If a selection is made in which instructions in sets Q and R
frequently interleave but have rather independent internal-
value-modification characteristics, then an additional tech-
nique could be used to shorten the processor-swap overhead
time. This would be to have the passive processor actually
executing instructions in set P along with the active proces-
sor, listening to the bus, and updating its internal values but
not controlling the bus or affecting any external values. Also,
the passive processor would decode those instructions not
implemented in its own microcode just enough to see whether
each such instruction would affect its internal values other
than the I-counter and Condition Code (CC). If so, it would
set a bit indicating that it must read internal values from the

IBM J. RES. DEVELOP. & VOL. 26 & NO. 4 & JULY 1982

| Processor selection logic (Quatch)]
Primary Secondary Secondary Off-the- Local
processor processor processor shelf store
(I-cyles (floating (decimal) secondary
and fixed point) processor
point)
Bus

Figure 2 Four subsets, three microcoded.

mailbox when it again becomes the active processor. If it
becomes the active processor when this bit is still reset, then
it reads in only the I-counter and CC values from the
mailbox. This often reduces the time required to swap the
active and passive processors, although it does not reduce the
frequency of swapping.

® Four subsets, three microcoded

The second approach to partitioning employs four micro-
processors as shown in Fig. 2. Three of these (the Primary
processor and the first two Secondary processors) have
special on-chip microprograms that replace the micropro-
grams on a normal 68000. These three processors implement,
respectively, the following functions:

® I-cycles (instruction fetch and decode and effective-
address calculation) for all instructions, and E-cycles
(instruction execution) for the fixed-point, load/store, and
branch instructions. The register space of this processor is
used for the general registers (GRs). Note that its on-chip
microcode implements all functions that make heavy use
of the GRs, so the critical path is contained within one
chip. '

o E-cycles for floating-point instructions. Half of the regis-
ter space in this microprocessor is used for the Floating-
Point Registers (FPRs) and the other half is used for work
space. Again, the microcode is on the same chip as the
registers (and, of course, the data flow) that it controls. An
alternative design employs a different microprocessor chip
that can execute floating-point instructions faster because
its data flow is wide enough to process most common
floating-point variables in parallel.

® E-cycles for decimal instructions. All of the register space
in this microprocessor is available for work space, since
decimal instructions have the storage-to-storage format.

405

P. W. AGNEW AND A. S. KELLERMAN

406

Latch
Local store
Primary Off-the-shelf . Code
processor secondgr Y - Registers
processor + Mailboxes

Bus '

Figure 3 Two subsets, one microcoded.

The fourth microprocessor is “off-the-shelf.” That is, it
contains the ordinary Motorola microcode that implements
the instruction set of the 68000. The part of the System /370
architecture that is not implemented by microcode, namely,
the privileged instructions and such functions as interrupt
handling, are simulated by sequences of 68000 instructions
that are stored in a separate local store rather than on a
microprocessor chip. This is appropriate because these
instructions and functions are used infrequently (so maxi-
mum speed is not required), are error-prone (so early models
should have them in easily changed PROMs), and are
voluminous (so they can be written more economically in the
relatively high-level 68000 machine language rather than in
the very low-level 68000 horizontal microcode language).

A system containing these four microprocessors operates
as follows. The first (“Primary”) microprocessor fetches an
instruction. If it can execute the instruction, it does so. If not,
the Primary hands off control to one of the other (“Second-
ary”’) microprocessors. This involves, first, passing necessary
data such as the operation code and effective address and,
second, setting a new value into a four-state circuit
(“‘Quatch™) whose state determines which microprocessor
has control of the local bus that connects all four micro-
processors and their local store, in parallel, to the rest of the
system. The selected Secondary runs, with full control of the
local bus and full access to the main store and I/O system,
until it has completed execution of the instruction it was
given. Then it sets the original value back into the Quatch,
handing control back to the Primary. At this point the
Primary fetches the next instruction, and execution pro-
ceeds.

Note that this mechanism for passing control allows the
Secondary responsible for floating-point instructions to call

P. W. AGNEW AND A. S. KELLERMAN

on the off-the-shelf Secondary to complete an instruction
that detected an error. Thus the error-handling function,
which is voluminous and not critical to performance, need
not occupy valuable control store space on the floating-point
Secondary chip.

The desirability of this approach to partitioning of the
System/370 architecture can be appreciated by noting that
the Primary runs more than 75% of the time when executing
typical job mixes and has to hand only one instruction in
twenty over to a Secondary.

® Two subsets, one microcoded

Qur third approach to partitioning is similar to the second,
but employs only a single specially microcoded microproces-
sor and a coded microprocessor. This approach combines the
excellent cost/performance of on-chip microcode for the
most critical functions with the flexibility, extendibility, and
low development cost of off-chip microprocessor code for less
critical functions. It uses the structure shown in Fig. 3 and
operates as follows. One processor, called the “Primary”
processor, contains the general registers (GRs) and contains
the microcode for all functions that make heavy use of GRs.
It performs I-cycles for all instructions. It also performs
E-cycles for the most-used instructions, i.e., for almost all
instructions except floating-point, decimal, and privileged
instructions. In a typical instruction mix, the instructions
that the Primary processor executes constitute about 95% of
the instructions by frequency of occurrence and about 50% of
the instructions by execution time. Because the Primary
processor also performs I-cycles for all instructions, it actu-
ally runs more than 50% of the time.

The Primary processor is also responsible for detecting
instructions for which it does not contain the execution
microcode. It hands over control to the other or “Secondary”
processor to complete such instructions. Most of the decimal,
floating-point, and privileged instructions do a relatively
large amount of data processing or are used very infrequently
in typical instruction mixes. Therefore, the time to pass
control from the Primary processor to the Secondary proces-
sor and back is relatively small. The Secondary processor
carries out the necessary processing under control of code
contained in the local store. The same local store contains
other registers, such as the floating-point registers, and the
mailboxes in which the processors leave instruction codes,
operand addresses, condition codes, and other necessary data
as they pass control back and forth. Control of the two
processors is simple because only one of them is ever running
at any one time. There is no overlap and no bus contention.
Either processor can pass control to the other by inverting the
state of the two-state latch that determines which of them is
granted use of the bus.

IBM J. RES. DEVELOP. « VOL. 26 » NO. 4 o JULY 1982

Note that a state-of-the-art microprocessor implements a
reasonably high-level machine language. This is the lan-
guage in which most of the mainframe architecture is coded,
when using this approach to partitioning. Development of
this code is rapid and inexpensive in comparison to writing in
a low-level microcode language. Moreover, the code resides
in local store, where it is easy to change in comparison to
microcode residing on a microprocessor chip. The corre-
sponding disadvantage is that code implementing instruc-
tions tends to run longer than microcode implementing the
same instructions. Therefore, there is a performance imbal-
ance between the high-usage instructions, which are imple-
mented in microcode, and the low-usage instructions, which
are implemented in code.

® Subset with emulation

Our fourth approach relies heavily on software to implement
parts of the architecture that cannot be placed on a single
microprocessor chip, as illustrated in Fig. 4. In using this
approach, the steps are to define a suitable subset of the
mainframe architecture, to implement this subset as the
“machine” architecture of the microprocessor chip, and to
write a first layer of software to raise the level of the subset to
the level of full mainframe architecture. The subset must
include sufficient instructions and functions to enable the
first layer of software to simulate the rest of the mainframe
architecture, including preservation of system integrity.

In some applications, no such first software layer is
necessary. It might be possible to run some System/360
software (which does not use new functions introduced in
System/370) directly on the machine interface of the micro-
processor chip. The selected subset might suffice for many
OEM-type applications, such as intelligent terminals, intelli-
gent printers, and test-equipment control. Applications in
turnkey “applications machines” could be written for the
subset with customers never knowing that the subset was
there. In other applications, missing instructions can be
replaced by subroutine calls at compile time. In the remain-
ing applications, the operating system, viewed as a many-
layered entity, as depicted in Fig. 4, can have a first layer
that handles “invalid operation” program interruptions by
simulating the missing instructions instead of passing these
interruptions up to the next-higher layer.

This solution to the problem of insufficient control-store
space has the advantages of minimal hardware development
cost, risk, and time, as well as excellent product cost/
performance for applications that employ only the selected
subset. However, it has the disadvantages of a large mix
imbalance, in any sort of software simulation of missing
instructions, and an increased maximum interrupt latency
time.

IBM J. RES. DEVELOP. ¢ VOL. 26 e NO. 4 e JULY 1982

———r e e
Rl _'

System/370
architecture

Processor

Applications

Operating systems

——
- .

- ~

/o . N
¢ Software simulating \

rest of System/370

Micro-
coded
subsct of
System/370

Figure 4 Subset with emulation.

® Off-chip vertical microcode

Our three remaining approaches employ two levels of micro-
code. The fifth approach, shown in Fig. 5, has the advantages
of two levels of microcode with different widths.

Current microprocessors achieve excellent cost/perform-
ance by allowing a single chip to contain both the control
store and the data flow that it controls. Their cost/
performance is further improved if the control store is wide,
or “horizontal,” rather than narrow or “vertical.” A wide
control store eliminates most decoding, so it reduces both
complexity and propagation delay. A wide control store can
control several simultaneous operations, so it improves per-
formance. However, a wide control store usually needs to
contain more bits than a narrow one in order to implement a
given function.

One common solution to the problem of a large, wide
control store has been described [27] with reference to the

407

P. W. AGNEW AND A. S. KELLERMAN

408

Vertical
microword
sequencer
Next-address
Address field
Status
Vertical
Processor microword

store

Vertical

microword

Bus

Figure 5 Off-chip vertical microcode.

Motorola 68000 microprocessor. The solution is based on
noting that the information in a wide control store is highly
redundant; many control words have bits that are identical.
The solution is to have both a wide horizontal store and a
narrow vertical store. The horizontal store contains the few
(nonredundant) control bit patterns required by the data
flow. The vertical store contains the many bit patterns that
are necessary for sequencing through many machine instruc-
tions. Such an approach is said to reduce the total control
store size by about a factor of two in the Motorola 68000
microprocessor.

Even with this approach, current microprocessors have
insufficient on-chip control store to implement all of the
microcode that is necessary to implement System/370 archi-
tecture. Yet there is a major cost/performance advantage in
having all of the horizontal microcode on the same chip as
the data flow (to avoid the many pins or bus cycles required
to bring a wide control word onto the chip), and there is a
cost/performance advantage in having the most-frequently-
used vertical microwords on the same chip as the data flow
(to avoid any accesses to the off-chip bus in most microcy-
cles). This leaves only the infrequently used vertical micro-
words to be stored off the microprocessor chip in a micro-
processor-based implementation of a large system or main-
frame architecture.

Implementing this fifth approach requires solutions to two
major problems. These problems and their solutions are as
follows. First, branch from on-chip to off-chip vertical micro-
code by

P. W. AGNEW AND A. S. KELLERMAN

@ setting a latch attached to a microprocessor output pin, or

® restricting on-chip vertical micro read-only memory
(ROM), for example to 512 words, and branching to a
word whose address exceeds 511, or

® branching to the highest valid on-chip vertical microword
address after setting the off-chip vertical microword
branch address onto the data bus.

Second, allow conditional branches to depend on status bits
by

® bringing up to 16 raw status bits off the chip, by way of the
data bus or dedicated pins, just before the data bus or other
dedicated pins are used to bring the next vertical micro-
word on chip, or

® using the branch control fields of the horizontal micro-
words to select just the desired status information and
bring off chip just the low two bits of the address of the
next off-chip microword.

Note that most horizontal microwords will probably be
used by both on-chip and off-chip vertical microwords.
However, some specially written horizontal microwords will
have to be put onto the chip just for the use of the off-chip
vertical microcode. That is, the microprocessor, as seen by
the off-chip vertical control store, should interpret a thor-
oughly general and flexible vertical microcode language.
This provides the ability to implement a complex mainframe
architecture. The on-chip vertical microcode provides very
high performance for the most-frequently-used portions of
that architecture.

Other advantages of this method of partitioning microcode
are that

e it allows microcoding for high speed, since coding for
smallest size is not necessary;

¢ it allows off-chip vertical microcode, written for a first
product, to be put in the on-chip vertical microstore in
subsequent products whose microprocessors have larger
ROM; and

® it encourages a microprogramming methodology of first
selecting a set of useful horizontal microwords and then
stringing them together with vertical microwords, which
increases microprogrammer productivity.

® Off-chip horizontal microcode

Our sixth approach, shown in Fig. 6, employs two sets of
microwords that have the same width. One set is on the
microprocessor chip and executes very rapidly. The other set
is in an external store and can be very large. In a typical
instruction mix, fixed-point, branch, and load/store instruc-
tions account for 95% of the instructions by frequency of
occurrence, and for 60% to 75% of the instructions by
execution time. Thus, these instructions are suitable candi-

IBM J. RES. DEVELOP. & VOL. 26 @ NO. 4 ¢ JULY 1982

dates for this partitioning scheme to have on-chip. The
remaining microwords, kept in an off-chip control store, are
brought onto the chip one by one for execution. This could be
done in several cycles using existing address and/or data pins
for microword bits, or it could be done using dedicated pins.
The off-chip control store must be wide enough for both the
microword bits required by the data flow and the microword-
selection bits required by the sequencer. The off-chip micro-
word sequencer must have access to on-chip status informa-
tion in order to perform conditional microprogram branches
and in order to pass control back and forth between on-chip
and off-chip functions and instructions.

This method of partitioning the microcode has the follow-
ing advantages:

® an architecture of unlimited complexity can be imple-
mented by a sufficiently large off-chip control store;

e difficult parts of the architecture can be placed off chip,
where they can be corrected without altering the micro-
processor chip itself;

e off-chip microcode may be placed on chip, with minimal
modifications, if a subsequent product uses a microproces-
sor chip with larger on-chip control store;

e with care, patches to the on-chip microcode can be imple-
mented in the off-chip microcode if errors are found;

e since off-chip instructions are executed in the same engine
as on-chip instructions, they have full access to registers,
condition code, and other facilities of the machine; and

® all accesses to main storage and channels are made by the
same microprocessor.

The arrangement for partitioning microcode between on-
chip and off-chip control stores allows the most-frequently-
used instructions to run with the cost/performance of micro-
processors (due to the short critical path produced by on-chip
microcode). Unfortunately, this arrangement runs the rest of
the instructions and functions with the cost/performance
characteristic of bit slices (with the longer critical path
produced by off-chip microcode).

® Subset with primitives

Our last approach, shown in Fig. 7, could produce a very
economical processor at the expense of a difficult and
prolonged development process. The difficulty is defining
suitable “primitive” operations.

In principle, 2 microprocessor that contains on-chip micro-
code for a mainframe system’s fixed-point, branch, and
load/store instructions can be programmed to emulate the
remainder of that system’s architecture, as described under
“Subset with Emulation.” In practice, that design produces
relatively poor performance for the instructions and func-
tions that are emuiated by off-chip code rather than micro-
coded on the microprocessor chip.

IBM J. RES. DEVELOP. o VOL. 26 « NO. 4 ¢ JULY 1982

Microword
sequencer
Address Next-address
Status field
Processor Cycle control Microword
store
3
9 Bus
Figure 6 Off-chip horizontal microcode.
Private
Processor (A, B) “instruction”
store (C)

Bus
System/370 programs
C
Micro-
code A B < Primit
- mitives
Hardware

Figure 7 Subset with primitives.

Microcoding some “primitives” (instead of some instruc-
tions that could occupy the same on-chip control store space)
can produce significantly higher performance on a complete
instruction mix. A primitive is not itself a system instruction,
but rather it executes a simple function that is useful in the
emulation of more complicated instructions or functions. An
emulation program can achieve higher performance if it has
primitives available as well as the basic instructions. Exam-

409

P. W. AGNEW AND A. S. KELLERMAN

410

ples of primitives are “load registers with contents of instruc-
tion fields,” “set condition code according to arithmetic
result,” and “compute effective address.”

This method of implementing a large system architecture
on a microprocessor is implemented by subdividing the
microprocessor’s operation code space into the following
three sets:

A. codes of high-usage instructions, each of which is imple-
mented by a sequence of on-chip microcode;

B. codes assigned to primitives which are useful for emulat-
ing instructions, each of which is implemented by a
sequence of on-chip microcode; and

C. codes of the remaining low-usage instructions, each of

‘which is implemented by a sequence of high-usage
instructions (A) and primitives (B).

In operation, an instruction stream is being fetched from
store. As long as instruction codes are found to be in set A,
execution is controlled by on-chip microcode. Any codes in
set B are illegal in this mode. When an instruction code is
found to be in set C, direct execution of on-chip microcode is
terminated after completion of that instruction’s I-cycles
(which can include effective address generation). The
instruction code selects a starting address in a private
program store, and the microprocessor fetches its next “in-
struction” from this address. That “instruction” code will be
in set A or B, so it initiates a sequence of on-chip microcode.
This sequence ends by fetching another “instruction” which
initiates another sequence of on-chip microcode, and so on,
until the instruction whose code was in set C has been
completely emulated. Then the next instruction is fetched
from store, not from the private program store. That instruc-
tion, too, is either executed directly by a sequence of on-chip
microcode, or simulated by “instructions” in the private
program store, which are in turn executed by sequences of
on-chip microcode.

Note that the emulation mode used to program a low-
usage instruction, whose code is in set C, has the following
special characteristics:

® “Instructions” are fetched from the private program store,
not from main store.

e The instruction counter is not incremented.

e Codes in both sets A and B are legal while emulating an
instruction in set C.

® Interrupts must be held pending until all of the “instruc-
tions™ that emulated one instruction in set C are com-
pleted.

® Any instructions in set A that are used along with primi-
tives in set B to simulate an instruction in set C must be
prevented from changing the condition code or taking their
ordinary exceptions.

P. W. AGNEW AND A. S. KELLERMAN

Some advantages of this method of partitioning the archi-
tecture between on-chip microcode and off-chip emulation
code are as follows.

® An instruction in set C can be simulated with relatively
few bus cycles. An “instruction” brought in from the
private instruction store (by one or two bus cycles) initiates
a sequence of many microwords which do not require bus
cycles.

e Constant data needed by difficult instructions or by inter-
rupts (such as the implied register of the Translate and
Test instruction or the many implied storage addresses for
interrupts) can be brought in easily as immediate fields of
“instructions” fetched from the private program store.
Such constants may be difficult to introduce by way of
on-chip microcode.

® An architecture of unlimited complexity can be emulated
by a sufficiently large private program store if the codes in
sets A and B supply functions of sufficient generality.

® The private program store can be relatively small, because
it stores relatively powerful “instructions,” each of which
is interpreted by many microwords. This is especially true
if powerful branch and subroutine call “instructions” are
used to save space.

Note that the transfer of control from on-chip microcode
to an off-chip emulation program need not be limited to the
time when an I-cycle completes. On-chip microcode should
be allowed to call for simulation of the rest of an instruction
whenever it detects an unusual condition (so it does not
require high performance) that is difficult to handle (so it
would otherwise consume many valuable on-chip micro-
words). For example, the on-chip microcode for the Move
Characters instruction should be able to call an off-chip
program if it detects operand overlap.

Conclusion

Fach successive generation of computers has achieved
improved cost/performance by using denser technologies
and machine organizations that are appropriate to those
technologies. The introduction of LSI allowed immediate
spectacular improvements in the cost/performance of com-
puters whose architectures can be implemented entirely
within a single LSI chip. The application of LSI to high-
performance processors with complex uniprocessor architec-
tures has proceeded more slowly and with less spectacular
results. This is because application of LSI to such processors
requires use of new machine organizations for which the
existing architectures were not originally intended. We have
described several approaches to using LSI to implement
processors with complex architectures at the low end of the
traditional mainframe processor spectrum. Appropriate
approaches can be selected to achieve particular perform-
ance goals, as listed in Table 1.

IBM J. RES. DEVELOP. ¢ VOL. 26 e NO. 4 ¢ JULY 1982

Table 1 Comparison of approaches.

Number Approach Rank* Main Main
name advantage disadvantage
P B
1 Two 7 7 Low build Cannot
overlapping cost, good implement rich
subsets balance architecture
2 Four subsets, 6 2 High High build
three microcoded performance cost
. 3 Two subsets, 4 6 Good cost Unbalanced
one microcoded performance performance
4 Subset with 1 6 Low cost Low and
emulation unbalanced
performance
5 Off-chip 3 5 — Need complete
vertical set of horizon-
microcode tal microwords
6 Off-chip 2 1 Can imple- Low
-horizontal ment rich performance
microcode architecture
7 Subset with 5 6 Good cost/ Need complete
primitives performance set of
System/370 primitives
*Key (7 is best):
P = Performance
B = Build cost

D = Development cost
R = Richness of implementable architecture

There are two aspects of these partitioning approaches
that should be especially noted. First, they do not apply to the
high end of the mainframe processor spectrum. It still
remains true that higher-performance processors must use
lower levels of integration. Second, development of increas-
ingly sophisticated ways to apply LSI technology to imple-
mentation of existing uniprocessor architectures should not
dampen enthusiasm for developing new architectures that fit
LSI more naturally. All multiple-instruction multiple-data
architectures fit LSI better than uniprocessors do; and the
ten-year trend of implementing successively higher-level
architectures within a single microprocessor chip should be
continued to and then beyond the architecture levels imple-
mented by today’s mainframes.

Acknowledgments

A significant fraction of both the ideas and analyses reported
in this paper are the work of Joseph P. Buonomo, Steven R.
Houghtalen, Raymond E. Losinger, James W. Valashinas,
A. James Albert, and R. C. Huang.

References and notes

1. “Color Graphics Computer Uses 68000 Central Processor,”
Electronics 53, 203 (New Products Section) (November 6,
1980).

IBM J. RES. DEVELOP. & VOL. 26 & NO. 4 & JULY 1982

2.

10.
11.

12.

A. Durniak, “VLSI Shakes the Foundations of Computer
Architecture,” Flectronics 52, 111 (May 24, 1979).

. Rita Shoor, “CDC 205 Runs 800 Million Operations/Sec,”

Computer World, pp. 1-2 (June 9, 1980).

. C. Gordon Bell and Alan Newell, “Grosch’s Law,” Computer

Structures—Readings and Examples, McGraw-Hill Book Co.,
Inc., New York, 1971, p. 561.

. “More Tumult for the Computer Industry,” Business Week, pp.

58-68 (May 30, 1977).

. Len Yencharis, “Micro/Mini Storage Peripherals Driven by

Disk, Tape Advances,” Electron. Design 27, 4264 (October
25,1979).

. David J. Kuck, “A Survey of Parallel Machine Organization

and Programming,” Computing Surv. 9, 29—57 (March 1977).

. Tsuneo Kinoshita, Tai Sato, Hiroyuki Tango, and Jun Iwamura,

“Sapphire Substrate Boosts Microprocessor Density,” Electron-
ics 54, 112-115 (October 6, 1981).

. “Special Report on Microprocessors,” Electron. Engineering

Times, pp. 64-70 (May 12, 1980).

Carol Ogdin, “Sixteen-bit Micros,” Mini-Micro Syst. 12, 64—
72 (January 1979).

Robert Sugarman, “Computers: Our ‘Microuniverse’ Ex-
pands,” IEEE Spectrum 16, 32-37 (January 1979).

®PDP-11, ®LSI 11, and ®DEC are registered trademarks of
Digital Equipment Corporation, Maynard, MA.

. D. Dickhut, B. Hashizume, and W. Johnson, “LSI Trio Calls

the Tunes in Microcomputer’s CPU,” FElectronics 53, 130-135
(July 17, 1980).

. ®Intel is a registered trademark of Intel Corporation, Santa

Clara, CA.

. “Co-processor Cooperates with 8 or 16-bit Microprocessors,”

Electron. Design 28, 19 (News & Technology) (March 1,
1980).

P. W. AGNEW AND A. S. KELLERMAN

411

16.
17.

18.

19.

20.

21.

22.
23.

24,

412

®Zilog is a registered trademark of Zilog Inc., Cupertino, CA.
F. Faggin, “How VLSI Impacts Computer Architecture,”
IEEE Spectrum 15, 28—31 (May 1978).

S. Bal, G. Chao, and Z. Soha, “Bilingual, 16-bit, Microproces-
sor Summons Large-Scale Computer Power,” Electron. Design
28, 6670 (January 18, 1980).

S. Bal, E. Burdick, R. Barth, and D. Bodine, “System Capabili-
ties Get a Boost From a High-Powered Dedicated Slave,”
Electron. Design 28, 7782 (March 1, 1980).

®Eclipse and ®MicroEclipse are registered trademarks of Data
General Corporation, Southborough, MA.

M. Druke, D. Carberry, R. Gusowski, and E. Buckley, “LSI
Processor Mirrors High-Performance Minicomputer,” Elec-
tronics 53, 119 (February 14, 1980).

The IBM System/360 Model 91, special issue, IBM J. Res.
Develop. 11, No. 1 (January 1967).

R. P. Case and A. Padegs, “Architecture of the IBM System/
370,” Commun. ACM 21, 13—-96 (January 1978).

®Motorola is a registered trademark of Motorola, Inc., Chicago,
IL.

P. W. AGNEW AND A. S. KELLERMAN

25.
26.

27.

I. LeMair, “Complex Systems Are Simple to Design with the
68000,” Electron. Design 26, 100—107 (September 1, 1978).
Edward Stritter and Tom Gunter, “A Microprocessor Architec-
ture for a Changing World: the Motorola 68000, Computer 12,
43-51 (February 1979).

E. Stritter and N. Tredennick, “Microprogrammed Implemen-
tation of a Single Chip Microprocessor,” ACM SIGMICRO
Newsletter (SIGMICRO is ACM’s Special Interest Group on
Microcode) 9, 43—51 (December 1978).

Recejved September 8, 1981 revised February 3, 1982 |

The authors are with the IBM System Products Division’s
Advanced Systems Department, located at the Endicott
laboratory, P.O. Box 6, Endicott, New York 13760.

IBM J. RES. DEVELOP. e VOL. 26 @ NO. 4 e JULY 1982

