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Microprocessor  Implementation  of  Mainframe  Processors 
by Means  of  Architecture  Partitioning 

The benefits of Large-Scale Integration (LSI)  implementations have  applied quite  naturally to  processors with relatively  low 
performances and simple architectures; e.g., the one-chip microprocessors  used in personal computers contain several thousand 
logic  gates. Mainframe processors,  however,  have SO far  been limited  to using logic chips  that contain several hundred  logic 
gates. The best use of LSI logic employs microprocessors to  keep critical paths on chip,  thus keeping pin  counts and  power 
dissipations  within reasonable limits. Microprocessors  have been extensively used to  implement peripheral functions,  such as 
I10 device control.  However, as of this writing,  a  single  state-of-the-art  microprocessor cannot contain  a mainframe processor 
function.  Therefore, new machine organizations are needed to use today’s  state-of-the-art  microprocessors to  implement a 
mainframe processor. This  paper  examines several methods  for  applying  LSI and microprocessors to  the design of processors 
of increasing performance and complexity, and describes  a number of speciJic approaches to  microprocessor-based LSI  
implementation  of  System/370 processors. The  most  successful approaches partition  the  Systemf370  instruction set into 
subsets, each of which can be implemented  by microcode on a special microprocessor or by programs written for  an 
off-the-shelf  microprocessor. 

Introduction 
One  characteristic of the  era of integrated  circuits  has been 
that  higher-performance  computers use lower levels of inte- 
gration.  This is the  result of individual optimizations across 
the  performance  spectrum. In 1980, first customer  shipments 
of a microcomputer [ I ] ,  a mainframe [2], and a  supercom- 
puter  [3] used,  respectively,  a 68 000-transistor microproces- 
sor  chip, 2000-transistor LSI chips, and  500-transistor chips. 
The price of a silicon chip is roughly independent of the level 
of integration, so the price per gate is lower for  microcomput- 
ers  than for supercomputers. 

One result of this  situation  has been the  repeal of Grosch’s 
Law [4], which says  that if one pays  twice as  much for a 
computer,  one  obtains  the  square of that or four  times  as 
much processing power. This implied that  one  obtained  the 
best cost/performance  from  the  largest  computer  that could 
be justified by sharing  it  among  many  unrelated users and 
applications. In recent  years,  the exponent in that relation- 
ship  has dropped from two to less than  one [SI. As a result, 
one now obtains  the best cost/performance  from  the smallest 

computer  that  can perform one’s application in an  acceptable 
time. Note  that  the exponent  in the relation between function 
and cost is still greater  than  one for  disk files [ 6 ] ,  printers, 
and some other peripheral devices. Therefore,  it is still 
economical to  share  these  peripherals  among several  users 
and applications. 

LSI has been very effective in reducing  the costs of 
memory of all sizes, but  has been much  more effective in 
reducing the costs of low-performance processors than in 
reducing the costs of high-performance processors  with  com- 
plex architectures.  This favors the  implementation of high- 
performance  computers using large  numbers of low-perform- 
ance processors and memories.  However, this  implementa- 
tion is difficult to apply to existing  complex architectures 
intended mainly  for  uniprocessors which process a  single 
stream of instructions.  Application to multiple-instruction 
multiple-data  architectures  and single-instruction  multiple- 
data  architectures [7] is more  straightforward  and will not 
be  treated  here. 
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This  paper  summarizes  the ways in  which LSI  has been 
applied  to  low-performance  digital systems and is being 
applied to systems of increasing performance  and complex- 
ity. It  then describes seven approaches  to  the  partitioning 
strategy  that was developed for implementing  the processor 
portions of a  complex architecture, specifically System/370, 
using state-of-the-art microprocessors such  as  the Motorola 
68000.  The  advantages  and  disadvantages of these 
approaches  are also  discussed. Each of these approaches 
might  be  the  appropriate choice for a specific set of objec- 
tives. Some of these trade-offs are  also discussed. 

Use  of LSI in low-performance systems 
Recent improvements  in the  cost/performance of digital 
computer systems  have  been  driven by the availability of 
increasingly dense  LSI chips.  Denser LSI  memory chips, 
with reduced  costs  per bit  stored, have direct  and obvious 
applicability  to  digital  systems over the  entire  range  from 
hand-held calculators  to  supercomputers. However, denser 
LSI logic chips  apply most naturally  to  digital systems near 
the low end of the  performance  and complexity spectrum. 

LSI applies very naturally  to very  small digital systems. 
The logic portion of a hand  calculator, microwave oven, or 
wristwatch, including the necessary  memory and 1 / 0  device 
interfaces,  can  be  implemented on a  single LSI microcom- 
puter chip. 

The processor of a  small  personal computer  can be imple- 
mented on a  single  microprocessor chip which implements 
the instruction  set of the  computer,  together with other  LSI 
chips which implement  the  interfaces between the micropro- 
cessor and  the memory, keyboard, display,  disks, printers, 
and  communication lines. This is an  example of partitioning 
the function of a digital system for  implementation by several 
LSI chips. 

The  partitioning method is simple, well known, and 
straightforward because the instruction-processing function 
can be implemented  entirely by a  single  chip. 

Use of LSI in larger systems 
Strategies of applying  LSI technology to  the  implementation 
of still more powerful digital  systems, in which the  state of 
the  LSI  art does not  permit  implementing  the  entire  instruc- 
tion-processing function on a single  LSI  chip,  are  far less 
obvious. Some  strategies  to  be considered are  as follows. 

1. Procrastination 
Wait until  technology advances  far  enough  to allow the 
desired architecture  to be contained within  a  single chip.  For 
example,  the  architecture of each generation’s state-of- 
the-art microprocessor was determined by the  then-current 
capability of the technology, which explains why today’s 402 
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leading  microprocessors  lack  floating-point  instructions. The 
significant disadvantage of this  method is that  it precludes 
implementing  a  predefined architecture  that does not happen 
to fit within one  chip in the  current technology. This  has led 
to  the  major  software problems inherent in having each 
generation of microprocessors implement an essentially new 
architecture. 

2. 08-chip microcode 
The second  method is to  partition  the  instruction execution 
function so that  the  data flow is on one  chip  and  the 
microcode that controls the  data flow is  on one or more 
separate chips. This  method is the obvious application of LSI 
technology separately  to  the  data flow and  to  the  control 
store. 

Unfortunately,  this relinquishes the main advantage of 
LSI implementations,  namely,  the  advantage of having  both 
the  control  store  and  the  data flow that  it controls on the 
same  chip so that  the  critical  path  remains on one chip. In 
most processors, the  critical  path  runs  from  the  control  store, 
to  the  data flow, to  the  arithmetic  result,  and  to  the  address 
of the next  control-store word. Its  length, in nanoseconds, 
determines  the microcycle time  and hence the  instruction- 
processing rate of the processor. For a given power dissipa- 
tion, a critical  path  that  remains within one  LSI  chip  means a 
shorter cycle time  than  one  that  must  traverse several  inches 
and several chip-to-card pins. 

This method  also requires  what  LSI technology is least 
adept  at, namely, large  numbers of pins. The data-flow chip 
needs at  least  a  dozen pins to tell the  control  store  what 
microword to give it next.  Worse, the data-flow chip needs 
from 16 to 100 pins to receive that control  word. A processor 
using this method is often  limited to roughly  16-bit control 
words (and  hence a vertical  microprogram  that  can  control 
only one operation at  a time),  whereas a processor with far 
higher  performance could be designed if a  100-bit control 
word were available  (to allow a horizontal  microprogram 
that  can  control several operations in each microcycle and 
thus perform  a given function in fewer  cycles). 

The off-chip  microcode partitioning method has been 
particularly successful when applied to bit-slice processors, 
in which the  data flow is not yet reduced  to a  single chip  but 
rather is a collection of chips, each of which implements a 
particular  group of bits  throughout  the  data flow. Bit-slice 
processors usually  employ  bipolar  technologies whose densi- 
ties are limited by the  number of gates available (or the 
ability  to cool them)  rather  than by the  numbers of pins on 
the chips. The off-chip partitioning method  applies to  FET 
implementations only in more  unusual cases where  many 
pins are  available  and  the  chip density  is  a good match  for  the 
number of gates needed to  implement  just  the  data flow  of a 
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desired processor. The Toshiba T88000 16-bit  microproces- 
sor [8] happens  to  meet  these conditions. Such  an implemen- 
tation  can  be best viewed as a  bit-slice  design  in which the 
implementable slice  width has widened to encompass the 
entire  desired  data flow. 

3. Instruction-set partitioning 
A third method of implementing  an  architecture  that is too 
complex to  implement on one  chip is to  partition  the  instruc- 
tion set of the  architecture itself, that is, select subsets of the 
instructions  and provide a microprocessor to  implement  each 
subset. This  method preserves the  main  advantage of a 
one-chip implementation,  namely, keeping each  critical  path 
on a single chip. For each  subset of the  instructions,  the 
corresponding  microprocessor chip  contains  the  data flow 
(including  the  registers) necessary  for the execution of that 
subset  and  also  contains  the microcode that  controls execu- 
tion. The  application of this  strategy  requires  the following: 

0 A partitioning  that  makes  each  subset fit on one micro- 
processor  in the  current  state of the technology. 

0 A way to  pass  control back and  forth between the micro- 
processors  quickly. 
A suitable way to pass data  back  and  forth between the 
microprocessors. 
A technology  in which it is economically feasible  to have 
several  copies of a  complex data flow and control-store 
mechanism. 

The  last  requirement implies that  instruction-set  partitioning 
never applied to low-performance or medium-performance 
processors  before the  current  generation of low-cost LSI 
technology. The  other  requirements imply that  instruction- 
set partitioning  was not  considered until  the  disadvantages of 
the  other two strategies  had become very clear. 

State of the  industry 
Each  major microprocessor manufacturer  has  faced  the need 
to  implement  an  architecture  more complex than  can  be  put 
onto a single LSI chip [9-111. Some needed to  implement 
pre-existing architectures  to  achieve  software  compatibility 
with  installed  machines. Others needed to  enhance  the 
functions of existing  successful one-chip microprocessors by 
adding  more  instructions.  Some examples  employing 16-bit 
microprocessors, and  the  methods used to  extend  their  archi- 
tectures, follow. 

Digital  Equipment  Corporation, having  identified the 
need for a low-end implementation of their  @PDP-l1 [ 121 
minicomputer  architecture, chose the off-chip  microcode 
method.  The  result was the @LSI 1 1  four-chip  set  manufac- 
tured first by Western  Digital  and  then by @DEC itself 
~ 3 1 .  

@Intel [14] determined a  need for  additional  hardware 
computational power, particularly floating-point instruc- 

tions,  for its  8086 microprocessor  systems. They developed a 
“coprocessor,” the  8087 [ 151. A processor containing both an 
8086  chip  and  an  8087  chip  operates  as follows. The  chips 
fetch  each  instruction simultaneously. If the  instruction is 
one  that  the  8086  can execute, it executes the  instruction  and 
both  chips fetch  the next instruction. If the  instruction is one 
that  the  8087 executes, the  8087  starts  to  execute it. In  the 
usual  case  where a main store  address is required,  the  8086 
computes  the  address  and  puts  it on the  bus  shared with the 
8087.  The 8087 uses that  address  to  complete execution of 
the  instruction  and  then signals the  8086  that  it is ready for 
both of them  to  fetch  the next instruction.  Thus,  each  chip 
looks at  each  instruction  and executes its assigned subset,  but 
only the  8086  computes  addresses. 

@Zilog  similarly  identified  a need to  add floating-point 
instructions  to  its 28000 microprocessor [ 161, and  it devel- 
oped an  Extended Processing Unit or EPU [ 171. A system 
containing a 28000  and  one or more  EPUs works as follows. 
The 28000 fetches  an  instruction,  and if it  can  execute  the 
instruction,  it does so. Otherwise,  the  28000 issues a request 
for service by an  EPU  and supplies an identifier (ID) that  it 
determines by examining  the  instruction.  One  EPU recog- 
nizes that  ID  as  its own and begins  executing. The  EPU  can 
use  special  wires to  the  28000  to  instruct  the  28000  to move 
necessary data  back  and  forth between the  EPU  and  the 
main store. The 28000 proceeds to fetch and  execute more 
instructions while the  EPU is working, and only stops to wait 
for the  EPU if it needs to  request service by the  same  EPU 
while that  EPU is still busy. Thus,  it is the responsibility of 
the  28000  to  start  the  EPU  and respond to  commands  from 
the  EPU. A great  deal of execution  overlap is possible in such 
a system. 

National  Semiconductor  Corporation  had a similar 
requirement  to  add floating-point instructions  to  its NS- 
16000 microprocessor  systems. It called the  NS-16000 a 
“master”  and called the  computational processor a  “slave” 
[ 18, 191. In a  system containing a master  and a  slave, the 
master  fetches  instructions  and executes them if it can. 
When  the  master fetches an  instruction  it  cannot execute, it 
selects  a  slave to begin execution. The  master sends the 
instruction  and  any needed data  to  the slave,  waits  for the 
slave to signal  completion, receives the  result,  and proceeds 
to  fetch  the next instruction.  Thus,  the  master never overlaps 
its execution  with the slave’s execution and is responsible  for 
knowing what  the slave is doing and  what  the slave needs. 

Data  General  Corporation wanted an LSI implementation 
of its @Eclipse minicomputer  architecture  [20].  The resulting 
@MicroEclipse family [21]  employs  a  one-chip  processor that 
contains  the  data flow as well as  the  horizontal  (35-bit)  and 
vertical ( 1  8-bit) microcode for executing the most perform- 
ance-critical  instructions in the  architecture.  This proces- 403 
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Figure 1 Two overlapping subsets. 

sor can call for  vertical microwords from  an off-chip control 
store,  as necessary, to  execute  the  rest of the  instructions of 
the  architecture by making use of the  on-chip  horizontal 
microwords. This is a variant  containing  some of the  advan- 
tages of both the off-chip control  store method and  the 
instruction-set partitioning  method. 

Seven approaches for implementing a complex 
architecture 
Our  group  began  studying ways to use LSI logic to imple- 
ment complex  processor architectures in November 1977. At 
that  time, off-chip control  store designs  were common,  and 
designs that  partitioned off 1/0 functions for implementa- 
tion on dedicated microprocessors  were  becoming  common. 
None of the  advanced microprocessor partitioning  methods 
previously discussed had yet appeared.  Partitioning of func- 
tions  within  a central processing unit for implementation on 
separate processors had been  employed  in supercomputers. 
Their goal  was separate execution units for  fixed-point, 
floating-point, and  perhaps  decimal  instructions,  that could 
overlap execution to achieve maximum  throughput.  Our goal 
was  to  optimize  cost/performance  (not  performance) at  the 
low end of the  mainframe  spectrum.  Our investigations did 
not  consider  high-end processors. It  required a year of 
analysis of many different approaches  to using LSI for 
implementing a mainframe  architecture  to  determine  that 
one of the best approaches  to  the design of very low-cost 
mainframes  was  to  use a supercomputer  organization  such  as 
that exemplified by the  IBM  System/360 Model 91 [22] 
without execution  overlap. 

During  the second year of our investigation, we selected 
one specific mainframe  architecture,  the  System/370  [23] 
and  one specific microprocessor, the  @Motorola  [24]  68000 
[25, 261. This was shortly  after  the  68000 was  first  men- 
tioned  in the  trade press. We selected this microprocessor 
because it was heavily microcoded,  was intended  to be 
general-purpose, and  had 17 32-bit general registers. 

Before launching  an investigation of partitioning, we 
estimated how long it would take  for  advances in  technology 
to allow implementation of all of System/370  architecture on 
one microprocessor; Le., we looked at   the technology repre- 

sented by the  68000,  and  at  the silicon requirements of 
System/370, which required  about  four  times  as  much 
on-chip microcode space  as  the  68000 provides. We projected 
where HMOs  and comparable  FET technologies would be 
over time.  The  result of the  analysis  was  that we would have 
to wait at  leait a few years. 

Our  group subsequently developed several approaches  to 
partitioning  the  System/370  architecture for implementa- 
tion using 68000 ihicroprocessors. We  determined  that  the 
resultant  cost/performance of many of the  approaches was of 
more than  academic  interest.  The following is a  description 
of some of these approaches, selected  for discussion either 
because of their good cost/performance with the  System/ 
370  architecture  or  because of their applicability to  other 
complex architectures. 

These descriptions are limited to  the  instruction processor 
portion of a computer.  Each  approach provides a local bus 
within the processor on which one  or  more microprocessor 
chips  can  communicate with each  other  and with  a local 
store. Each  approach  assumes  that  the local bus can be 
connected to a  global  bus to allow the processor to  commu- 
nicate with 1 / 0  devices and main  memory. At  other times, 
the local  bus is disconnected from  the global bus so that 
separate  communications  can  occur over the two buses. 

Two overlapping subsets 
Our first approach  to  partitioning a mainframe  architecture 
employs  two  specially  microcoded  microprocessors that 
implement overlapping subsets of the  architecture.  Each of 
these microprocessors has on-chip  microcode that replaces 
the  microprograms on a normal  68000.  This  approach is 
implemented  as follows. Partition  the  mainframe  architec- 
ture  into  three  sets  named  P, Q, and R, where  most of the 
high-usage instructions  are in set P. Write microcode  for P 
and Q to reside in Processor  A and  write microcode for P and 
R to reside in Processor B, as shown  in  Fig. 1. At  any  one 
time,  one of the processors is “active” and  the  other processor 
is “passive.” Only  the  active processor fetches and  executes 
instructions  and controls the bus. There is no contention 
between the processors. 

Assume  that  the  last several instructions have all been 
either in set P or in set Q. Thus, Processor  A is active and 
Processor B is passive. Note  that  the  internal values of 
Processor A (I-counter,  general registers,  condition  code, 
etc.) are  up-to-date,  and  the  internal values of Processor B 
are not.  If the next instruction is in set R, Processor  A fetches 
this  instruction  and  performs  the following operations. 

1 .  It places into a  mailbox  in  a local store  all of its internal 
values that Processor B might need  in order  to  execute 
any  instructions in sets P or R. 404 
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2. Processor A then  signals Processor B telling it  to become 
the  active processor, that is, to  read new internal values 
from  the mailbox and  then  execute  instructions  as long as 
instructions  remain in set R or  set P. 

3. Processor A then becomes the passive processor until, 
sometime  later,  it receives a  signal from Processor B 
telling it  to  read  internal values, execute  an  instruction in 
set Q, and  then  continue  executing  all  instructions  up  to 
the  occurrence of the next instruction in set R. 

The  sets P, Q, and R are selected  on the basis of the 
following criteria.  First, having all of the  high-usage  instruc- 
tions  in set P, which is common to both processors, greatly 
reduces  the  frequency of swapping the  active  and passive 
processors. This is desirable because,  between  swaps, instruc- 
tions are executed as  fast  as if they were all  implemented in 
the microcode of a single processor. Second,  the  frequency of 
processor swaps is  reduced  still further if sets Q and R are 
selected  in such a  way that  instructions in these two sets 
seldom interleave with each  other. 

One  particularly  suitable  partition selection  for the  sets is 

0 P contains fixed-point, branch,  and  load/store  instruc- 

Q contains floating-point instructions;  and 
R contains  decimal  and privileged instructions. 

This selection  satisfies both criteria.  First,  the fixed-point, 
branch,  and  load/store  instructions  represent  about 75% of 
the execution time in a typical  instruction mix. Second, 
although  there is frequent  interleaving of floating-point, 
branch,  and  load/store  instructions with either fixed-point 
instructions or decimal  instructions,  there is much less fre- 
quent interleaving of floating-point instructions with decimal 
instructions. Therefore,  there is  relatively little  performance 
lost to swapping active  and passive processors if this selection 
of P, Q, and R is made. In fact,  the need  for  both  floating- 
point and  decimal  instructions in the  same  application is 
sufficiently rare  that special-purpose systems  containing only 
one of Processor  A or Processor B could be attractive. 

tions; 

If a selection is made in which instructions in sets Q and R 
frequently  interleave  but have rather  independent  internal- 
value-modification characteristics,  then  an  additional tech- 
nique could be used to  shorten  the processor-swap  overhead 
time.  This would be  to have the passive processor actually 
executing  instructions in  set P along with the  active proces- 
sor,  listening to  the bus, and  updating  its  internal values but 
not  controlling the  bus  or affecting any  external values. Also, 
the passive processor would decode those instructions not 
implemented in its own microcode just  enough  to see whether 
each  such  instruction would affect its  internal values other 
than  the  I-counter  and  Condition Code (CC). If so, it would 
set a bit  indicating  that  it  must  read  internal values from  the 
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Figure 2 Four subsets, three microcoded. 

mailbox when it  again becomes the  active processor. If it 
becomes the  active processor when this  bit is still  reset, then 
it  reads in only the  I-counter  and CC values from  the 
mailbox. This often  reduces the  time  required  to  swap  the 
active  and passive processors, although  it does not reduce  the 
frequency of swapping. 

Four subsets, three microcoded 
The second approach  to  partitioning employs four micro- 
processors as shown  in  Fig. 2. Three of these  (the  Primary 
processor and  the first  two Secondary processors)  have 
special  on-chip microprograms  that  replace  the micropro- 
grams on  a normal 68000. These  three processors implement, 
respectively, the following functions: 

I-cycles (instruction  fetch  and decode and effective- 
address  calculation) for all instructions, and E-cycles 
(instruction execution)  for the fixed-point, load/store,  and 
branch  instructions.  The  register  space of this processor is 
used for  the  general  registers (GRS). Note  that  its on-chip 
microcode implements  all functions that  make heavy use 
of the  GRs, so the  critical  path is contained within one 
chip. 
E-cycles  for  floating-point  instructions. Half of the regis- 
ter  space in this microprocessor  is used for the Floating- 
Point Registers  (FPRs)  and  the  other half is used for  work 
space. Again,  the microcode is on the  same  chip  as  the 
registers  (and, of course,  the  data flow) that  it controls. An 
alternative design  employs  a  different  microprocessor chip 
that  can  execute floating-point instructions  faster because 
its  data flow is wide enough to process  most  common 
floating-point variables in  parallel. 
E-cycles  for decimal  instructions. All of the register space 
in  this  microprocessor is available  for work space, since 
decimal  instructions have the  storage-to-storage  format. 405 
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on the off-the-shelf Secondary  to  complete  an  instruction 
that  detected  an  error.  Thus  the  error-handling function, 
which is voluminous and not critical  to  performance, need 
not occupy valuable  control  store  space on the floating-point 
Secondary chip. 

Lr’ 
The  desirability of this  approach  to  partitioning of the 

System/370  architecture  can  be  appreciated by noting  that 
the  Primary  runs  more  than 75% of the  time when executing 
typical job mixes and  has  to  hand only one  instruction in 
twenty over to a Secondary. 

Figure 3 Two subsets, one microcoded. 

The  fourth microprocessor is “off-the-shelf.” That is, it 
contains  the  ordinary  Motorola microcode that  implements 
the  instruction  set of the 68000. The  part of the  System/370 
architecture  that is not implemented by microcode,  namely, 
the privileged instructions  and  such  functions  as  interrupt 
handling,  are  simulated by sequences of 68000 instructions 
that  are  stored in a separate local store  rather  than on a 
microprocessor chip.  This is appropriate  because  these 
instructions  and  functions  are used infrequently (so maxi- 
mum speed is not  required),  are  error-prone (so early models 
should  have them in  easily changed  PROMS),  and  are 
voluminous (so they  can be written  more economically  in the 
relatively high-level 68000 machine  language  rather  than in 
the very low-level 68000 horizontal microcode language). 

Two subsets, one microcoded 
Our  third  approach  to  partitioning is similar  to  the second, 
but employs only a  single  specially  microcoded  microproces- 
sor and a coded microprocessor. This  approach combines the 
excellent cost/performance of on-chip  microcode  for the 
most critical  functions with the flexibility, extendibility, and 
low development  cost of off-chip microprocessor  code for less 
critical functions. It uses the  structure shown in Fig. 3 and 
operates  as follows. One processor,  called the  “Primary” 
processor, contains  the  general  registers (GRs) and  contains 
the microcode  for all  functions  that  make heavy use of GRs. 
It  performs I-cycles for  all instructions. It also performs 
E-cycles  for the most-used  instructions, i.e., for almost  all 
instructions except  floating-point, decimal,  and privileged 
instructions. In a typical  instruction mix, the  instructions 
that  the  Primary processor executes  constitute  about 95% of 
the  instructions by frequency of occurrence  and  about 50% of 
the  instructions by execution time. Because the  Primary 
processor also  performs I-cycles for all instructions, it  actu- 
ally runs more than 50% of the  time. 

A  system containing  these  four microprocessors operates 
as follows. The first (“Primary”) microprocessor  fetches an 
instruction. If  it can  execute  the  instruction,  it does so. If not, 
the  Primary  hands off control  to  one of the  other (“Second- 
ary”) microprocessors. This involves, first,  passing  necessary 
data such as  the  operation code and effective address  and, 
second, setting a new value  into a four-state  circuit 
(“Quatch’’) whose state  determines which  microprocessor 
has control of the local bus  that connects all  four micro- 
processors and  their local store,  in parallel, to  the  rest of the 
system.  The selected Secondary  runs, with full  control of the 
local bus  and full  access to  the  main  store  and 1/0 system, 
until  it  has  completed execution of the  instruction it  was 
given. Then it sets  the original value  back  into  the  Quatch, 
handing  control  back  to  the  Primary.  At  this point the 
Primary  fetches  the next instruction,  and execution  pro- 
ceeds. 

Note  that  this  mechanism  for passing control allows the 
406 Secondary responsible for floating-point instructions  to  call 
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The  Primary processor is also  responsible  for detecting 
instructions for which it does not contain  the execution 
microcode. It  hands over control  to  the  other or “Secondary” 
processor to complete such instructions.  Most of the  decimal, 
floating-point, and privileged instructions  do a  relatively 
large  amount of data processing or are used very infrequently 
in typical instruction mixes. Therefore,  the  time  to pass 
control  from  the  Primary processor to  the  Secondary proces- 
sor and back is relatively  small. The  Secondary processor 
carries  out  the necessary  processing under  control of code 
contained in the local store.  The  same local store  contains 
other registers,  such as  the floating-point  registers, and  the 
mailboxes  in which the processors leave instruction codes, 
operand addresses,  condition codes, and  other necessary data 
as  they  pass  control  back  and  forth.  Control of the two 
processors is simple  because only one of them is ever running 
at  any  one  time.  There is no  overlap and no bus contention. 
Either processor can  pass  control  to  the  other by inverting the 
state of the  two-state  latch  that  determines which of them is 
granted  use of the  bus. 
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Note  that a state-of-the-art microprocessor implements a 
reasonably high-level machine  language.  This is the  lan- 
guage in which most of the  mainframe  architecture is coded, 
when using  this approach  to  partitioning. Development of 
this  code is rapid  and inexpensive in comparison to writing in 
a low-level microcode language. Moreover, the code  resides 
in local store,  where it is easy to  change in comparison to 
microcode  residing  on  a  microprocessor  chip. The  corre- 
sponding disadvantage is that code implementing  instruc- 
tions tends  to run longer than microcode implementing  the 
same instructions. Therefore,  there is a performance  imbal- 
ance between the high-usage  instructions, which are imple- 
mented in microcode, and  the low-usage instructions, which 
are  implemented in code. 

Subset wilh emulation 
Our fourth  approach relies heavily on software  to  implement 
parts of the  architecture  that  cannot  be placed on a  single 
microprocessor chip,  as  illustrated in Fig. 4. In using  this 
approach,  the  steps  are  to define  a suitable subset of the 
mainframe  architecture,  to  implement this subset  as  the 
“machine”  architecture of the microprocessor chip,  and  to 
write a  first  layer of software  to  raise  the level of the  subset  to 
the level of full mainframe  architecture.  The subset  must 
include sufficient instructions  and  functions  to  enable  the 
first layer of software  to  simulate  the rest of the  mainframe 
architecture,  including preservation of system integrity. 

In some  applications, no such first software layer is 
necessary. It  might  be possible to  run  some  System/360 
software (which  does  not use new functions  introduced in 
System/370)  directly on the  machine  interface of the micro- 
processor chip.  The selected subset  might suffice for many 
OEM-type  applications, such as intelligent terminals, intelli- 
gent  printers,  and  test-equipment control.  Applications in 
turnkey “applications machines” could be written for the 
subset  with customers never knowing that  the  subset was 
there. In other applications, missing instructions  can be 
replaced by subroutine calls a t  compile time. In the  remain- 
ing applications,  the  operating  system, viewed as a many- 
layered entity,  as  depicted in Fig. 4, can have  a first layer 
that  handles “invalid operation”  program  interruptions by 
simulating  the missing instructions instead of passing these 
interruptions  up  to  the next-higher  layer. 

This solution to  the problem of insufficient control-store 
space  has  the  advantages of minimal  hardware development 
cost,  risk, and  time,  as well as excellent product  cost/ 
performance  for  applications  that employ only  the selected 
subset.  However,  it has  the  disadvantages of a large mix 
imbalance, in any  sort of software  simulation of missing 
instructions,  and  an increased maximum  interrupt  latency 
time. 

r“””“””“””“”“ 1 
Full  
Systemi370 
architecture 

I 

I 

Figure 4 Subset with emulation. 

Of-chip vertical microcode 
Our three  remaining  approaches employ two levels of micro- 
code. The fifth approach, shown in Fig. 5 ,  has  the  advantages 
of two levels of microcode  with  different  widths. 

Current microprocessors  achieve  excellent cost/perform- 
ance by allowing  a  single chip  to  contain both the control 
store  and  the  data flow that  it controls. Their  cost/ 
performance is further improved if the  control  store is wide, 
or “horizontal,”  rather  than  narrow or “vertical.” A wide 
control  store  eliminates most  decoding, so it reduces  both 
complexity and propagation delay. A wide control store  can 
control  several simultaneous  operations, so it  improves  per- 
formance. However, a wide control store usually needs to 
contain  more bits than a narrow  one in order  to  implement a 
given function. 

One common  solution to  the problem of a large, wide 
control store  has been described [27] with reference to  the 407 
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Figure 5 Off-chip  vertical  microcode. 

Motorola 68000 microprocessor. The solution is based on 
noting that  the  information in a  wide  control store is highly 
redundant;  many  control words have  bits that  are  identical. 
The solution is to have  both  a  wide horizontal  store  and a 
narrow  vertical  store.  The  horizontal  store  contains  the few 
(nonredundant)  control bit patterns  required by the  data 
flow. The vertical store  contains  the  many bit patterns  that 
are necessary  for  sequencing through  many  machine  instruc- 
tions. Such  an  approach is said to  reduce  the  total  control 
store size by about a factor of two in the Motorola 68000 
microprocessor. 

Even with this  approach,  current microprocessors  have 
insufficient on-chip  control  store  to  implement  all of the 
microcode that is necessary to  implement  System/370  archi- 
tecture.  Yet  there is a major  cost/performance  advantage in 
having  all of the horizontal  microcode on the  same  chip  as 
the  data flow (to avoid the  many pins or bus  cycles required 
to  bring a  wide control word onto  the  chip),  and  there is a 
cost/performance  advantage in  having the most-frequently- 
used vertical  microwords on the  same  chip  as  the  data flow 
(to avoid any accesses to  the off-chip  bus  in  most  microcy- 
cles). This leaves  only the  infrequently used vertical micro- 
words to be stored off the microprocessor chip in  a  micro- 
processor-based implementation of a large system or main- 
frame  architecture. 

Implementing  this fifth approach  requires solutions to two 
major problems. These problems and  their solutions are  as 
follows. First,  branch  from on-chip to off-chip vertical micro- 
code by 408 
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setting a latch  attached  to a  microprocessor output pin, or 
restricting  on-chip  vertical micro  read-only  memory 
(ROM), for example  to 512 words, and  branching  to a 
word whose address exceeds 5 1 1, or 
branching  to  the highest valid on-chip  vertical  microword 
address  after  setting  the off-chip  vertical  microword 
branch  address  onto  the  data bus. 

Second, allow conditional branches  to depend on status  bits 
by 

bringing up  to 16 raw  status bits off the chip, by way of the 
data bus or dedicated pins, just before the  data  bus or other 
dedicated pins are used to  bring  the next  vertical  micro- 
word on chip, or 
using the  branch control fields of the horizontal  micro- 
words to select just  the desired status information and 
bring off chip  just  the low two bits of the  address of the 
next  off-chip  microword. 

Note  that most horizontal microwords will probably be 
used by both  on-chip and off-chip vertical microwords. 
However, some specially written  horizontal microwords will 
have to be put onto  the  chip  just for the use of the off-chip 
vertical  microcode. That is, the microprocessor, as seen by 
the off-chip vertical  control  store, should interpret a thor- 
oughly general  and flexible vertical  microcode language. 
This provides the  ability  to  implement a  complex mainframe 
architecture.  The on-chip vertical microcode provides very 
high performance for the most-frequently-used  portions of 
that  architecture. 

Other  advantages of this method of partitioning microcode 
are  that 

0 it  allows  microcoding  for  high  speed,  since  coding  for 
smallest size is not  necessary; 

0 it allows off-chip vertical  microcode, written for  a first 
product,  to  be  put in the on-chip vertical microstore  in 
subsequent  products whose microprocessors have larger 
ROM;  and 
it  encourages a microprogramming methodology of first 
selecting  a  set of useful horizontal microwords and  then 
stringing  them  together with vertical microwords, which 
increases microprogrammer productivity. 

OH-chip horizontal microcode 
Our sixth approach, shown in Fig. 6, employs  two sets of 
microwords that have the  same width. One set is on the 
microprocessor chip  and executes very rapidly. The  other  set 
is in an  external  store  and  can  be very large. In a typical 
instruction mix,  fixed-point, branch,  and  load/store  instruc- 
tions account for 95% of the  instructions by frequency of 
occurrence,  and for 60% to 75% of the  instructions by 
execution time.  Thus,  these  instructions  are  suitable  candi- 
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dates for this  partitioning  scheme  to have on-chip. The 
remaining microwords,  kept in an off-chip  control store,  are 
brought  onto  the  chip  one by one for  execution. This could be 
done in  several  cycles  using  existing address  and/or  data pins 
for  microword  bits, or it could be  done using dedicated pins. 
The  off-chip  control  store must be wide  enough  for  both the 
microword bits  required by the  data flow and  the microword- 
selection bits required by the sequencer. The off-chip  micro- 
word sequencer must have  access to  on-chip  status  informa- 
tion in order  to perform  conditional microprogram  branches 
and in order  to  pass control back  and  forth between  on-chip 
and off-chip  functions and instructions. 

This method of partitioning  the microcode has  the follow- 
ing advantages: 

an  architecture of unlimited  complexity can  be imple- 
mented by a sufficiently large off-chip control  store; 

0 difficult parts of the  architecture  can  be placed off chip, 
where they  can be corrected without altering  the micro- 
processor chip itself; 
off-chip  microcode may be placed on chip, with minimal 
modifications, if a subsequent  product uses a  microproces- 
sor chip with larger  on-chip  control  store; 

0 with care,  patches  to  the on-chip  microcode can be imple- 
mented in the off-chip  microcode if errors  are found; 

0 since off-chip instructions  are executed  in the  same  engine 
as on-chip instructions,  they have  full  access to registers, 
condition  code, and  other facilities of the  machine;  and 
all accesses to main storage  and  channels  are  made by the 
same microprocessor. 

The  arrangement  for  partitioning microcode  between  on- 
chip  and off-chip control  stores allows the  most-frequently- 
used instructions  to  run with the  cost/performance of micro- 
processors (due  to  the  short  critical  path produced by on-chip 
microcode). Unfortunately, this arrangement  runs  the  rest of 
the  instructions  and functions with the  cost/performance 
characteristic of bit slices (with  the longer critical  path 
produced by off-chip  microcode). 

Subset with primitives 
Our last  approach, shown  in  Fig. 7, could  produce  a very 
economical processor at  the expense of a difficult and 
prolonged  development process. The difficulty is defining 
suitable “primitive”  operations. 

In principle,  a  microprocessor that  contains  on-chip micro- 
code for a mainframe system’s  fixed-point, branch,  and 
load/store  instructions can be  programmed  to  emulate  the 
remainder of that system’s architecture,  as described under 
“Subset with Emulation.” In practice,  that design  produces 
relatively poor performance for the  instructions  and  func- 
tions that  are  emulated by off-chip  code rather  than micro- 
coded on the microprocessor  chip. 
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Figure 7 Subset with primitives. 

Microcoding  some  “primitives” (instead of some  instruc- 
tions that could occupy the  same on-chip control  store  space) 
can produce  significantly higher  performance on a complete 
instruction mix. A primitive is not itself a  system instruction, 
but  rather it executes a  simple  function that is useful in the 
emulation of more  complicated  instructions or functions. An 
emulation  program  can achieve  higher performance if it has 
primitives available  as well as  the basic  instructions. Exam- 409 
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ples of primitives are “load  registers with contents of instruc- 
tion fields,” “set  condition  code according  to  arithmetic 
result,” and  “compute effective address.” 

This  method of implementing a large system architecture 
on  a  microprocessor is implemented by subdividing the 
microprocessor’s operation code space  into  the following 
three sets: 

A. codes of high-usage  instructions,  each of which  is  imple- 
mented by a sequence of on-chip microcode; 

B. codes  assigned to primitives  which are useful  for emulat- 
ing  instructions,  each of which is implemented by a 
sequence of on-chip microcode; and 

C. codes of the  remaining low-usage instructions,  each of 
which is implemented by a sequence of high-usage 
instructions  (A)  and primitives (B). 

In operation,  an  instruction  stream is being fetched  from 
store.  As long as  instruction codes are found to be in set  A, 
execution is controlled by on-chip microcode. Any codes  in 
set B are illegal  in  this  mode. When an instruction code is 
found to be in set C, direct execution of on-chip microcode is 
terminated  after completion of that instruction’s  I-cycles 
(which can  include effective address  generation).  The 
instruction code  selects  a starting  address in a private 
program  store,  and  the microprocessor fetches  its next  “in- 
struction”  from  this  address.  That  “instruction” code will be 
in set A or B, so it initiates a sequence of on-chip microcode. 
This  sequence  ends by fetching  another  “instruction” which 
initiates  another  sequence of on-chip  microcode, and so on, 
until the  instruction whose code was in set C has been 
completely emulated.  Then  the next instruction is fetched 
from  store, not from  the  private  program  store.  That  instruc- 
tion, too, is either executed directly by a sequence of on-chip 
microcode, or simulated by “instructions” in the  private 
program  store, which are in turn  executed by sequences of 
on-chip  microcode. 

Note  that  the  emulation mode used to  program a low- 
usage  instruction, whose code is in set C, has  the following 
special characteristics: 

“Instructions”  are  fetched  from  the  private  program  store, 

The  instruction  counter is not incremented. 
Codes in both sets A and B are legal while emulating  an 

Interrupts  must  be held pending until  all of the  “instruc- 
tions” that  emulated  one  instruction in set C are com- 
pleted. 
Any  instructions in  set  A that  are used along with  primi- 
tives in set B to  simulate  an  instruction in set C must be 
prevented from  changing  the condition  code or taking  their 

not from  main  store. 

instruction in set C. 
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Some  advantages of this method of partitioning  the  archi- 
tecture between  on-chip  microcode and off-chip emulation 
code are  as follows. 

An  instruction in set C can  be  simulated  with relatively 
few bus cycles. An  “instruction”  brought in from  the 
private  instruction  store  (by  one or two bus cycles) initiates 
a sequence of many microwords  which do not require  bus 
cycles. 
Constant  data needed by difficult instructions or by inter- 
rupts  (such  as  the implied register of the  Translate  and 
Test instruction or the  many implied storage addresses  for 
interrupts)  can be brought in  easily as  immediate fields of 
“instructions”  fetched  from  the  private  program  store. 
Such  constants  may be difficult to  introduce by way of 
on-chip microcode. 

0 An  architecture of unlimited  complexity can be emulated 
by a sufficiently large  private  program  store if the codes  in 
sets A and B supply functions of sufficient generality. 

0 The  private  program  store  can  be relatively small, because 
it stores relatively  powerful “instructions,”  each of which 
is interpreted by many microwords. This is especially true 
if powerful branch  and  subroutine call “instructions”  are 
used to save  space. 

Note  that  the  transfer of control  from  on-chip microcode 
to  an off-chip emulation  program need not  be limited to  the 
time when an I-cycle  completes. On-chip microcode  should 
be allowed to  call for simulation of the  rest of an  instruction 
whenever it  detects  an  unusual condition (so it does not 
require high performance)  that is difficult to  handle (so it 
would otherwise consume  many  valuable on-chip micro- 
words). For example,  the on-chip  microcode  for the Move 
Characters  instruction should be able  to call an off-chip 
program if it detects  operand overlap. 

Conclusion 
Each successive generation of computers  has achieved 
improved cost/performance by using denser technologies 
and  machine  organizations  that  are  appropriate  to those 
technologies. The introduction of LSI allowed immediate 
spectacular improvements  in the  cost/performance of com- 
puters whose architectures  can be implemented entirely 
within  a  single LSI chip.  The  application of LSI to high- 
performance processors with  complex  uniprocessor architec- 
tures  has proceeded more slowly and with less spectacular 
results. This is because  application of LSI to  such processors 
requires  use of new machine  organizations for  which the 
existing architectures were not originally intended.  We have 
described  several approaches to using LSI to  implement 
processors  with  complex architectures at  the low end of the 
traditional  mainframe processor spectrum.  Appropriate 
approaches  can be selected to achieve particular  perform- 
ance goals, as listed  in Table 1. 
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Table 1 Comparison of approaches. 

Number  Approach Rank* Main  Main 

P B D R 
name advantage  disadvantage 

1 Two 
overlapping 
subsets 

7  7  2 1 Low  build 
cost, good 
balance 

Cannot 
implement rich 
architecture 

2 Four subsets, 6  2  4  7  High High build 
three microcoded performance cost 

. 3  Two subsets, 4  6  6  7 Good cost Unbalanced 
one microcoded performance performance 

4  Subset with 1 6 7  6 Low cost 
emulation 

Low and 
unbalanced 
performance 

3  5 

2  1 

5  5 

3  7 

5 Off-chip - Need complete 
vertical set of horizon- 
microcode tal microwords 

6 Off-chip Can imple- Low 
horizontal ment rich performance 
microcode architecture 

7  Subset with 5  6  1  5 Good cost/ Need complete 
primitives performance set of 

System/370 primitives 

‘Key (7 is best): 
P = Performance 
B = Build cost 
D = Development mt 
R = Richness of implementable architecture 

There  are two aspects of these partitioning  approaches 
that should be especially  noted. First,  they do not apply to  the 
high end of the  mainframe processor spectrum. It still 
remains  true  that  higher-performance processors must use 
lower levels of integration.  Second, development of increas- 
ingly sophisticated ways to  apply LSI technology to imple- 
mentation of existing  uniprocessor architectures should not 
dampen  enthusiasm for  developing new architectures  that fit 
LSI more  naturally. All  multiple-instruction multiple-data 
architectures fit LSI  better  than uniprocessors  do; and  the 
ten-year  trend of implementing successively higher-level 
architectures within  a  single  microprocessor chip should be 
continued  to  and  then beyond the  architecture levels imple- 
mented by today’s mainframes. 
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