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Performance  Analysis  of  Suspend  Locks  in  Operating 
Systems 

Performance models of suspend locks in operating systems are developed and analyzed.  Analytical expressions and 
algorithms for numerical results have  been obtained for an arbitrary number of processors, an arbitrary number of tasks, and 
one  suspend lock. The results are discussed and important dependencies among the major characteristic quantities such as 
queue length, processor speed, number of processors, dispatching overhead, and processor degradation are shown. Expressions 
are derived permitting the control program designer to estimate the system impact of locking during the early design phase. 

1. Introduction 
Locks are used  in operating systems to  synchronize  concur- 
rent logical processes, referred  to  as tasks. A task which 
intends  to modify a  global object  (a  control block or a set of 
control  blocks) must  ensure  that no other  task  tries  to access 
and/or modify this  object at  the  same  time.  The  part of a 
task which modifies the  object is known as the critical 
section. The  task  acquires a  lock at  the beginning of the 
critical section via a LOCK  operation  and releases the lock 
immediately before  it  leaves the  critical section via an 
UNLOCK  operation.  The  implementation  must  ensure  that 
a t  any  time  at most one  task  may hold the lock. This  type of 
lock is known as  an “exclusive” lock; other, less restrictive 
types of locks may  be employed  in real systems but  are not 
investigated  in this  paper, since  typical high  frequency locks, 
which are most likely to become  bottlenecks  in a system, are, 
in general, of the  type “exclusive.” If  a task issues  a LOCK 
operation  to a lock currently being  held by another  task,  the 
first task  must  enter a “wait  state”  at  least  until  the  current 
holder of the lock issues the  UNLOCK  operation. 

We  distinguish between spin locks and suspend locks. If 
task A issues a lock request  to a  spin  lock currently held by 
task B, task A executes  the lock request in  a loop until  the 
lock is released. Task A spins  during  its wait time, i.e., task 
A remains busy. Efficiency requires  that  tasks  are  running 
disabled  for interrupts  (and consequently may not cause a 
paging  exception)  while  holding a spin lock, and, of course, 
that  the lock hold time be very short. 

The  analysis of spin locks is contained in [ 1,2]. Spin locks 
are,  from a performance point of view, preferable  to  suspend 
locks; however, due  to  the  restrictions  mentioned above, 
suspend locks cannot  generally  be replaced by spin locks in 
control  programs. 

If task A attempts  to  acquire a  suspend lock currently 
held by task B, the processor  which interprets  task A 
enqueues  the  task  and  searches  the  dispatcher  queue for a 
third  task,  C, which is ready  to  continue execution. In  this 
case  task A is suspended. When  task B releases the lock, two 
possibilities exist: 

1 .  The processor which interprets  task B puts  task B into  the 
dispatcher  queue  as a ready  task  and  resumes  the execu- 
tion of task A. In  this  case  the overhead  for acquiring  an 
occupied lock includes two dispatches. 

2. The processor associated  with task B dequeues  task A 
and  puts  task A as a ready  task  into  the  dispatcher queue. 
In  this  case only one  dispatch is caused by the lock 
request for an occupied lock. 

If case (1) applies in  a system, we talk of a “minimal 
queue  length”  strategy. If case (2) applies  in  a  system, we 
talk of a “minimal  dispatch”  strategy.  Mixed  strategies  are 
likely in practice,  for  example,  according  to  the following 
rule: If task A has a priority  greater  than  that of task B, case 
(1) applies,  otherwise case (2) applies. In  analyzing  suspend 
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locks we are  primarily  interested in the  additional Zock- 
forced  dispatches and in the queue  length of the  queues in 
front of locks. Dispatches  represent  an  overhead which may 
be significantly greater  than  the overhead of a LOCK/ 
UNLOCK  sequence  to a free suspend lock. Queues in front 
of locks increase response time  and  are  detrimental  to  the 
system  objectives of making  optimal  use of resources, since 
a t  most one of the  tasks in the  queue  may  be  dispatched. 
Alternatively,  to  achieve  the  same resource utilization with 
large  queues in front of locks, the  number of tasks in the 
system has  to  be  increased correspondingly,  with  negative 
impact on performance  and response time.  In  addition, 
suspend locks may  cause processor degradation if no ready 
tasks  are found in the  dispatcher  queue. 

Spin locks are only  necessary  in operating  systems 
supporting multiprocessors. If employed  on  a  uniprocessor, 
no  processor degradation results. Suspend locks, on the  other 
hand,  may show all  three effects-queueing, forced 
dispatching,  and processor degradation-even on a  unipro- 
cessor. 

Locks as logical  devices  have gotten  considerable  atten- 
tion in the  literature.  Frequently [3] spin locks are  referred 
to  as  LOCKS  and  suspend locks as  (binary)  semaphores. 
The use of the  term  “semaphore” for  a  suspend lock is due  to 
E. W.  Dijkstra [4]. 

The  danger of deadlocks resulting if a task which already 
holds a lock tries  to  acquire  additional locks has been the 
subject of extensive research [5-71. 

While  the logical and  semantical questions  associated 
, with locks have  been thoroughly  studied,  little  formal per- 

formance  analysis of locking situations  can  be  found.  Gilbert 
[ 1 1  used queueing  theory  to  study  the  impact of lock granu- 
larity on the  interference of spin locks in  multiprocessor 
systems.  Reference [2] contains a generalization  and 
extended  analysis of his model. 

Kumar [8] uses analytical  techniques  to  investigate  the 
cost of deadlock prevention in operating systems. Our model, 
described in the next  section,  does  not  model  costs  for 
deadlock  prevention  with the  realistic  assumption  that  dead- 
locks are avoided by a  proper lock use discipline. 

Our research  has been strongly motivated by observations 
on suspend locks in MVS [9, 101 and in data  base  systems 
[l 1 1 .  The convoy phenomenon is the  name  for observed 
stable  queues in front of suspend locks. Ad hoc solutions 
(corresponding to  the  strategies  described above)  have  been 
applied  without formal analysis. Analysis in this  paper is 
restricted  to  cases which are expected to avoid the convoy 
phenomenon. 

Section 2 of this  paper describes in detail  the locking 
model underlying our analysis. Section 3 contains  the  math- 
ematics  to  derive  the  formulas  for  calculating  dispatch  rate, 
queue  length,  and processor degradation.  In  Section 4 we 
illustrate  and discuss the results. Section 5 summarizes  the 
results  and  indicates  areas  for  further  research. 

2. The suspend lock model 

0 Global symbols 
The symbols used in this  paper  are described here  for 
reference. This description is also a summary of model 
parameters  and symbols for  primary results. 

Model  parameters 
number of processors, i.e., level of multiprocessing. 
number of tasks, i.e., level of multiprogramming. 

CPU  time consumed by a task between  a lock release 
and  the next lock request. 
CPU  time consumed by a task between a lock request 
and  the lock release. 

page  wait  time, i.e., time between  a  paging  exception 
and  the  availability of the  page in main memory. 
dispatch  time, i.e., time between  a lock release  and  the 
first normal  dispatch of a task  waiting  for  the lock 
while the lock is free. 

Bernoulli variable  (with values 0 or 1). If  a task 
releases  a lock and  other  tasks  are  waiting for the lock 
and if Do = 1 ,  then  one of the  waiting  tasks is 
immediately  dispatched. If Do = 0, the processor 
remains with the lock-releasing task. 
Bernoulli variable  (with values 0 or 1). If  a task 
obtains a lock and Bo = 0, the  task  causes a paging 
exception immediately  before  the lock is released. 

above  described random  variables  actually occur  in 
sequences and  are  assumed  to  be within the  sequence identi- 
cally  and  independently  distributed. Associated average 
transfer  rates  and  means  are denoted by 

X = 1/E [ TA] lock request  rate of an  active  task  outside 
the  critical region. 

p = 1 / E  [ TL] lock release  rate of a  lock-holding task. 

7 = 1 / E  [ Tw] page  transfer  rate. 
6 = M / E  [ T,] normal  dispatch  rate. 
do = E [Do] probability of an immediate  dispatch. 

bo = E [ B o ]  probability of no  paging  exception  in  a 
critical region. 

Further,  the  abbreviations 
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programming.  This implies,  in particular,  that  the lock- 
holding task is, with  ignorably low probability,  preempted 
deliberately by the  dispatcher. 

Figure 1 Basic  structure of the suspend lock model. The service 
rates at the two queues are  dependent on the system state S .  

are used, where m is the  number of processors outside a 
critical region. 

Results 
X ,  number of delayed  tasks, Le., number of tasks waiting 

for or holding lock. 

q L  = E [ X , ] ,  the  mean  number of delayed  tasks. 

uL the lock utilization, i.e., the expected fraction of time 
during which the lock is  occupied. 

rD relative  dispatch  rate, i.e., expected  number of 
dispatches forced by locking per lock request.  The 
value of r ,  may  be  any  value between 0 (the lock is 
always free)  and 2 (the lock is always occupied and Do 
is always 1). 

d ,  processor degradation, Le., the expected fraction of 
time  each processor is idle  due  to  synchronization of 
locks. 

Basic  structure of the model 
Our main  objective  is the development of a  model of queue- 
ing  phenomena  in front of high frequency suspend locks. 
Although  the model  should be  as  simple  as possible, it  has  to 
reflect system events such  as  paging exceptions  in the  critical 
section and  certain  dispatching decisions. 

The basic structure of the model is shown  in  Fig. 1. It is a 
cyclic queueing model  consisting of a CPU  queue  and a lock 
queue.  The processing rates a t  each of these  queues  are 
dependent on a  system state S,  which contains  the  length of 
the individual queues in addition  to  state  information  result- 
ing from  dispatching decisions and paging  exceptions. The 
dynamic behavior of the model  is  discussed in  detail subse- 
quently. 

The  dispatcher is an  important  system process  affecting 
suspend locks, although  many  dispatching decisions  need be 
of no concern  to us. Suspend locks are service stations  rather 
than servers and depend on the  dispatcher  for  actual process- 
ing. We  assume  that  one of the  strategies  (“minimal  queue 
length,”  “minimal  dispatch,” or a mixture  thereof) is 
observed by the  dispatcher.  As known from [ 10, 111, a 
deviation from  such a strategy for high  frequency locks 
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The  major  dispatcher decisions remaining  are  related  to 
the  dispatching of tasks which have  enqueued  for  the lock 
while the lock was  held by some other  task.  Whenever a lock 
is returned  and  the lock queue is not empty,  the  dispatcher 
has  the choice of either  continuing with the  task which 
returned  the lock or dispatching  one of the  tasks  waiting for 
the lock. This decision is  modeled as a  Bernoulli variable Do 
with mean do = E [Do] .  With  probability do the  dispatcher 
switches tasks a t  lock release time,  and  with  probability 
1 - do the processor remains  with  the  task which  releases 
the lock. 

In  general, if do < 1 ,  there  are  system  states in  which the 
lock is free  and n tasks  are waiting  for the lock, i.e., in a state 
immediately preceding the  LOCK instructions. Consider, 
for  example,  the  case M = 3 and N = 5 with tasks A, B, C, 
D, and E. Assume  that  task A is enqueued for the lock while 
task B  was  holding the lock. Now let  task B  leave the  critical 
section and let its processor stay  with  task B, Le., Do = 0. All 
five tasks  are now ready,  and  the  three processors are 
assigned to task B and  to,  say, C and D. Task A’s next 
instruction would be a LOCK  request.  We  say  task A  is 
waiting for the lock, although  it is ready  as long as  the lock 
remains free. In general, we have n ready  tasks  “waiting”  for 
the lock while the lock is free.  We  assume  that  the  dispatcher 
is aware of such  tasks  and selects one of them  at  the  time of a 
normal  dispatch.  This  normal  dispatching is modeled to 
happen at  time T ,  after  the  last lock  release, provided the 
lock is still  free. Note  that  normal  dispatching is modeled as 
an  additional process running in parallel with CPU process- a 

ing. In  the  example above, the lock may become  busy as a 
consequence of a normal  dispatching decision selecting  task 
A (at a rate  depending on dispatcher  parameters  such  as 
time slice length) or as a  consequence of a  lock request 
generated by any of the  tasks B, C, D, or E while 
dispatched. 

A  second important system  process, which has  to  be 
reflected  in the model,  is  forced  preemption (above we have 
excluded only deliberate  preemption). For  suspend locks, 
preemption is, in principle, permitted.  Nevertheless,  the 
design  objective is to  preempt lock-holding tasks  as seldom 
as possible. A typical  example of a  forced preemption, which 
cannot be excluded, is a  paging  exception. Other  types of 
preemption  can  be  mapped  to  the  same mechanism.  Forced 
preemption is modeled as a  Bernoulli variable Bo with mean 
bo. For simplicity, we assume  paging exceptions to  occur only 
immediately before the  UNLOCK  instructions. A compari- 
son of our model  with  a more  general model has shown that 
this simplification has  ignorable  impact on the  numeric 
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results, since we must  assume bo, the  probability for  no 
preemption in the  critical section, to  be very  close to 1 .  A 
paging  exception causes  the lock-holding task  to  be  delayed 
for  a time T,. During  this  time  the processor of the lock 
holder is dispatched  to  some  other  task  and  thus increases 
the  arrival  rate of lock requests. Consider  again  the  example 
system  above. When  task B entered  the  critical section, it 
had a  processor  assigned to  it  and only  two  processors  were 
remaining  to  generate lock requests.  However, after  task B 
has  caused a  paging  exception  in the  critical section, its 
processor is redispatched  to  some  other  task,  say A. Now we 
have three processors generating lock requests.  After  the 
time T ,  has elapsed, the lock holder returns  the lock and a 
dispatching decision as described  above takes place. 

We  assume  the workload to consist of N tasks,  each  with 
statistically  identical,  independent  internal behavior. Of 
course, tasks  interact via the suspend lock. A task consists of 
a sequence of transactions.  Each  transaction consumes  a 
CPU  time T ,  outside  the  critical section and a CPU  time T ,  
within the  critical section. 

Extension of the  model 
A significant simplification in our model results  from  the 
absence of queues for devices and, of course, queues  for  other 
locks than  the  one considered. 

This is certainly justified for our objective of demonstrat- 
ing the  queueing phenomena at  suspend locks. To use our 
model for  complete real  systems, one would have to consider 
a  complex  network  which, with the  current  state of the  art, 
would have to  be solved approximately by replacing  the 
subnetwork  containing  all  queues  except  the  queue in front 
of the lock of interest by one "effective" CPU  queue with M 
"effective" processors. The effective M processors would 
reflect the  degree of parallelism  in the  subnetwork.  The 
effective processing rates Am at  the  CPU  queue  and  the 
effective dispatching  rates 6 ( n )  would be  obtained  iteratively 
by solving the suspend lock model and  the  subnetwork model 
individually. This  technique is standard [ 12, 131 in solving 
approximate  queueing network  problems which do not 
satisfy  the  criteria for product  form solution. 

Definition of the model 
Figure 2 illustrates  the  states of a task  and  the decisions 
affecting the  states  as  the  task  performs  transactions.  Figure 
3 illustrates  the model as a  cyclic queueing network of two 
queues  and a stage  for  tasks waiting  for the completion of a 
paging  exception. Figure 3 also  shows the flow of processors 
between the service stations for normal processing and for 
critical section processing. Note, however, that Fig. 3 is not  a 
complete  formal definition of the model, since not all  depen- 
dencies  between the different flows have been expressed. 

'I 
I request 

Normal dispatch ( 6 ) 
Forced dispatch (do' p ) 

section 

"c) JNLOCK 1 

Page exception 

Figure 2 States  and  state  transitions of a task in the suspend lock 
model. 

( X , + S ) . ( l - J - W )  I"""_"""- I 

: I 
I 

I I I 

Figure 3 Flow of tasks (solid lines) and processors (dashed lines) 
in the suspend lock model, where J € {O,  1 }, W E  (0, 11, J + W 5 1; 
X, = 0 implies J + W = 0; and M - I = min ( M  - J ,  N - XD). 

While Fig. 2 is  self-explanatory,  some  discussion of Fig. 3 
is in order.  Consider first the  CPU  queue.  It  has M - Z 
processors  actively  working, where Z depends on J and  the 
number of tasks in the  CPU  queue. If the  number of tasks in 
this  queue is large  enough, we can  set I = J .  The  quantity J 
is the  number of processors  assigned to processing the 
lock-holding task  (at most  one, of course). 245 
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Assume initially that X ,  = 0, i.e., the lock is free  and no 
task is waiting  for  the lock; then J = I = 0, M processors are 
generating lock requests at   rate X, = M X, and W = 0, 
indicating  that no lock-holding task waits for a page  trans- 
fer.  If  a  lock request is generated,  one  task moves along  the 
solid line  from  the  CPU  queue  to  the lock queue  and X ,  
becomes 1;  simultaneously,  one processor moves along  the 
dashed  line  from  the  CPU service station  to  the lock  service 
station.  With  this move J becomes 1 (but W remains 0). In 
this  state, M - 1  processors continue  to  generate lock 
requests a t  a rate X, = ( M  - 1)  X and  one processor 
interprets  the  task in its  critical region. 

Two possibilities  exist  for the next  event: 

1. A  second lock request is generated before the first task 
has  terminated  CPU processing. Then  the  task issuing 
the second LOCK instruction moves to  the lock queue, X ,  
becomes 2, but  the processor  which has  interpreted  the 
task  remains at  the  CPU  queue  and assigns itself to  some 
other  ready  task at   the  CPU queue.  The  rate of the 
processor moving along  the  dashed line contains a term 
X, (1 - J - W ) ,  which is zero  as long as J or W is 
different from zero. 

2. The lock-holding task  terminates  CPU processing before 
a  second lock request is issued. The  task  and  its processor 
simultaneously  enter a decision Bo, which determines 
whether a  paging  exception  occurs. If Bo = 1 (with 
probability bo), no paging exception occurs,  and  both  the 
task  and  the processor return  to  the  CPU  queue. X ,  and J 
become  zero. The decision Do = 1 is implied  in this  case 
(see below). If,  instead, Bo = 0, the  task  generates a 
paging  exception, and W becomes 1. The processor, 
however, becomes free  and  returns  to  CPU  queue 
processing [rate J - p (1 - Bo) ,  since Do = I]. J 
becomes zero  again.  The system is  now in  a state in  which 
the lock is  occupied and  the lock-holding task is waiting 
for the completion of a  paging  exception.  Lock requests 
are now generated  again at  a rate X, = M - X. As soon as 
the  page  transfer is complete  (rate W 7), the  task also 
returns  to  the  CPU  queue  and  Wagain becomes  zero. 

To  illustrate  the decision Do, assume  that  the system is in 
the  state  after  the first possibility above, i. e. ,  X ,  = 2, I = 

J = 1 ,  W = 0. Assume  the lock-holding task  to  terminate  the 
critical region  without generating a page exception (i. e., 
Bo = 1).  Then  the  task  returns  back  to  the  CPU  queue  and 
X ,  becomes 1, independent of the decision Do. The  latter 
decision correlates only to  the  dispatching  strategy.  The 
processor, which was  assigned to  the lock-holding task,  stays 
at   the lock queue if Do = 1 (with  probability do) and 
continues processing  with the  one  remaining  task in the lock 

246 queue;  alternatively, if Do = 0 (with  probability 1 - do), the 

processor accompanies  the  task which  released the lock and 
enters  the  CPU  queue  [rate J - p (1 - Do), since we 
assumed Bo = 1 1. 

Assume  that  the decision has been Do = 0 and  that  the 
system  then moves into a state in which M processors are 
assigned to  the  CPU  queue, X ,  = 1 ,  and J = W = 0. There 
exist now two possibilities for J to become 1. The first  is that 
a lock request is generated  (rate X, = M - X) as discussed 
above. A second  possibility is  that  in  the  course of normal 
dispatching a  processor  is  assigned to  the  task  in  the lock 
queue.  This  happens with rate 6;  however, this  dispatching is 
only meaningful while the lock is free (i. e., J = W = 0). 
Therefore, processors flow with  a rate 6 (1 - J - W )  from 
the  CPU  queue  to  the lock queue,  in  addition  to  the flow 
along  this  path  resulting  from lock requests. Clearly, if a 
processor changes  to  the lock queue  as a result of a dispatch- 
ing  decision, X ,  remains unmodified until a new arrival  to or 
departure  from  the lock queue. 

Unfortunately,  many  interdependencies exist among  the 
various states,  the flow of tasks, and  the flow of processors. 
These dependencies are  not completely  reflected  in  Fig. 3. 

To  illustrate  the model more formally, we describe subse- 
quently a complete  semi-Markov model, which is a  special 
case of the model solved in Section 3. While in Section 3 the 
times TL, T,, and T ,  may  be  arbitrarily  distributed, we 
assume  here,  for  the purpose of illustration,  that  these  times 
are exponentially distributed with rates p, 6 ,  and 7. 

Let 

(0,  n )  denote  the  states in  which the lock is free  and n tasks 
are waiting  for the lock, and N - n tasks  are in the 
CPU queue, 0 I n 5 N - M ,  

( 1 ,  n )  denote  the  states in  which one processor is assigned 
to a  lock-holding task,  and n - 1 tasks  are  waiting 
for the lock, 1 5 n 5 N ,  and 

(2, n )  denote  the  states in which the lock-holding task is 
waiting for completion of a page  transfer,  and n - 1 
tasks  are waiting  for the lock, 1 5 n 5 N .  

Further,  let doc denote  the  queue-length-dependent proba- 
bility  for an  immediate  dispatch,  and 6,  denote  the  queue- 
length-dependent  dispatching  rate. 

Then  the  transition  rates  are 

6 ,  from (0, n )  to ( 1 ,  n ) ,  1 5 n 5 N - M ,  
X, from (0, n) to (1, n + I), o 5 n 5 N - M ,  

X, from ( 1 ,  n )  to  (1, n + l),  1 5 n 5 N - M ,  
X, from  (1, N - M + m )  to (1, N - M + m + I) ,  
l s m < M ,  
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g - bo from (1, 1) to (0, 0), 
g - bo do, from ( I ,  n + 1) to ( I ,  n), 1 cr n cr N - M ,  
r . 6 ,  from ( I ,  N - M + m + l )  to ( I ,  N - M - t m ) ,  
1 s m s M - I ,  
g - bo (1  - do,") from (1, n + 1) to (0, n),  
I s n s N - M ,  
g - (1  - bo) from (1, n) to (2, n), 1 cr n cr N, 

T from (2, 1) to (O,O), 
T - do," from (2, n + 1) to (1, n), 1 s n 5 N - M ,  
7 from ( 2 ,  N - M + m + 1) to (1, N - M + m ) ,  
l 5 m 5 M -  1, 
7 (1 - do,n) from (2, n + 1) to (0, n). 1 s n cr N - M ,  
X, from (2, n) to (2, n + I ) ,  1 cr n cr N - M ,  
X,,, from (2 ,  N - M + m )  to (2,  N - M + m + I ) ,  
l c r m < M .  

The  transition  diagrams of Figs. 4 and 5 illustrate  the model 
for  the  cases M = 1, N = 2 and M = 3, N = 5 .  Note  that 
X, = X .  ( M  - m ) .  

To  analyze  the  transitions, consider the  state (0,2) in  Fig. 
5. In terms of Fig. 3 this  means X ,  = 2, J = W = Z = 0. 
The lock is free; all  three processors are  engaged in CPU 
queue processing. Two  tasks  are "waiting" for the lock and 
ready for dispatching. Two  types of events change  the 
system state: 

1. A lock request. The  three processors generate lock 
requests a t  a rate 3 - X. The consequence is a transition  to 
X, = 3 and J = 1, since  the processor accompanies  the 
task which generated  the lock request.  The  resulting  state 
is (1 ,3 ) .  

2. A dispatching process. A normal  dispatching decision 
may select one of the two ready  tasks waiting  for the lock. 
This  happens with rate 6,. The  resulting  state is (1, 2), 
i. e., X ,  remains 2, but J becomes 1. 

Next consider the  state ( I ,  2), where J is one  and two 
processors are assigned to  CPU  queue processing. These two 
processors are responsible  for the  transition  rate 2 h from 
(1, 2) to (1, 3). One processor interprets  the lock-holding 
task which finishes its  CPU processing with  rate p and  enters 
the Bernoulli stage Bo. For Bo = 0, a  paging  exception is 
modeled and  the  transition is to (2,  2) [combined rate 
p - (1 - bo)]. For Bo = 1 ,  a  second  Bernoulli stage, Dol, is 
entered  to model the  dispatching  strategy.  For  Dol = 1, an 
immediate  dispatch decision is modeled, resulting in a tran- 
sition to  the  state (1, 1); i. e., the processor remains a t  the 
lock service station.  The combined transition  rate is g bo 
dol. For Do, = 0, the processor remains  with  the  task,  thus 
returning  to CPU  queue processing. The  transition is to  the 
state (0, 1) with a combined  rate p bo (1 - do,). 

Figure 4 Complete  state  transition  diagram for a suspend lock 
with M = 1, N = 2. 

Figure 5 Complete  state  transition  diagram for a suspend lock 
with M = 3, N = 5. 

Finally,  consider the  state (2,  2), where X ,  = 2, J = 0, 
and W = 1. The lock is occupied; the lock-holding task is 
waiting  for the completion of a page transfer. All three 
processors are assigned to CPU processing, thus  generating 
lock requests a t  a rate 3 X and  causing  transitions  to  the 
state (2, 3). The  paging device  completes the  page  transfer 
a t  a rate r ,  causing a  Bernoulli  decision Dol, as above. In 
fact, with the completion of the  page  transfer,  the lock- 
holding task  again  obtains a  processor; however, its next 
instruction is UNLOCK.  The Bernoulli stage Do, decides 
whether  the processor resides  with this  task [combined 
transition  rate T (1 - dol) to (0, I ) ]  or continues lock 
processing  [combined transition  rate 7 do, to (1, l ) ] .  247 

IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982 J. HOFMANN  AND H. SCHMUTZ 



The above  discussion illustrates  the  transitions within the 
inner  part of the  chain of states.  At  the two ends of the  chain 
slight modifications are necessary due  to  the  unavailability 
of tasks  waiting for the lock (if X ,  becomes zero) or due  to 
the  unavailability of tasks for CPU processing (if X ,  exceeds 
N - M ) .  The verification of the  transitions  at  the  ends of the 
chain is left  to  the  reader. 

The Bernoulli stages Bo and Do complicate  the  state 
transition  diagram.  This complication can  be removed  in the 
general model in Section 3, as we will see. Instead of 
modeling no paging exception  within the  critical section  with 
probability bo, we model the paging  exceptions to  always 
appear  but  to  cause,  with a probability bo, a zero delay. 
Similarly, we can  combine DO with the  time TD for normal 
dispatches.  The  alternative is mathematically  equivalent  to 
the model above, but  easier  to  handle. However, the combi- 
nation is only valid if  we permit  general  distributions  for T,  
and T,, since  the  combinations  are, in general,  not exponen- 
tially distributed,  eien if TD and T ,  were  originally expo- 
nentially distributed. A complete  formal definition of the 
general model is implicitly contained in the  state  transition 
diagrams  and  the derived balance  equations of the next 
section. 

Dependency of the  dispatching strategy on the queue 
length 
The  described model permits  arbitrary dependency of the 
dispatch  rate  and  the  immediate  dispatch decisions  on the 
queue  length.  Only two types of functions have actually been 
used: 

1. No  dependence, 
2. 6 ( n )  = 6(m) n / ( n  + 3 ) ,  

do, = 1 - ( 1  - do,)". 

The  rationale behind the  function 6 ( n )  is the observation 
that in a balanced system with good reponse  time no queue 
becomes very large.  An  average  CPU  queue  length of three 
is approximately  adequate for the  type of system  considered 
with little  dependence on the  actual configuration. 

For dol = 0.5 the expression  for don approximately models 
the  situation in  which, a t  lock release  time, a task  may  keep 
the  CPU only if no tasks  with a higher  priority  are waiting 
for the lock. For do, = 1 we have the  minimal  queue  length 
strategy  and  for do, = 0 the  minimal  dispatch  strategy. 

3. Derivation of results 

The  method of phases and generalized  Laplace trans- 
forms 
Usually, the  method of imbedded  Markov  chains is applied 

248 to  queueing  systems  with  general service time  distributions 
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like the  M/G/ 1 queueing  system [ 141. For lock queues,  the 
arrival  rate is dependent  on  the  internal state of the lock. For 
example, if a task owning  a  suspend lock causes a  paging 
exception, the lock-holding task is put  into a wait state  and 
its processor is redispatched  to a task which may  then 
execute a lock instruction involving the  same lock. In  other 
words,  a  paging  exception  in a critical region  increases the 
arrival  rate of tasks  to  the  queue of the lock. Although  the 
points of departure  from  the  critical region still  form a 
Markov  chain,  the probabilities of these events are not 
representative  for  the  average behavior of the  system.  The 
method of imbedded  Markov  chains is therefore not directly 
applicable.  In  order  to  include  general  distributions of the 
lock hold time in the  results we use a  method which is 
equivalent  to  the  technique of Coxian  stages [ 141. 

Let X be  the  random variable, f ( e )  its  density  function, 
and 4 ( a )  the  Laplace  transform  off (.). Then we assume 
without loss of generality  that 

i = O  

m 

f ( x )  = x g, - wi exp ( - m i  x). 

z g i  = 1 

i = O  

for some m. g,, and wi. 

Note  that  the gi are not restricted  to positive values. Any 
real  values are  permitted  under  the  constraint f ( x )  2 0 for 
all x 2 0. The gi have no  interpretation as probabilities 
although  the process can  be  thought of as a set of parallel 
stages  (Fig. 6) 

We  refer  to  this special case of parallel  stages  as phases. 
The  technique of phases is analytically  equivalent  to  the 
technique of Coxian  stages,  but  easier  to  handle  [2].  In  fact, 
the  phase  representation serves only as  an  intermediate  step 
to derive  results involving only the  Laplace  transform of 
f (-). The  application of the  method of phases to  queueing 
systems yields expressions of the following form: 

i = O  , = I  

Here (p'"'( - ) is an  abbreviation for the expression  on the 
right-hand side of the  equal sign. 

It is easily  seen from (1) that 

4(s) = 4%) 

4%], . . ,SJ  

and  that  the relation 

= L = d x ,  . . L - d x , ,  f @xj) exp ( - Z x j s , )  (2) 
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holds. Equation (2) shows den)( .) to  be a generalization of 
the  Laplace  transform.  Fortunately,  it is possible to  calculate 
the d'"'( .) from #J( .) recursively. To show this we make  use 
of the inverse Laplace  transform 

f ( x )  = (1/27ri) - L,zm d s @ ( s )  exp ( s x )  

in (2) and  integrate over the x i  to  obtain 

d(")(sl, * * - 7  S")  

Because &(s) is the  Laplace  transform of a probability 
distribution, all its poles are on the negative real axis. 
Therefore (3) can easily be evaluated by summing over the 
poles sj on the positive real axis. We  apply  the  fraction 
expansion 

to (3) and  integrate over s in  a loop closed within the positive 
real half plane by applying  Cauchy's  theorem  to  obtain 

" n 

d n ) ( . Y 1 ,  - -, 3.1 = t: d@j I /  n (SI, - sj ). 
j =  1 k f j  

The  general  form needed for solution of the  suspend lock 
model contains k times  the  argument 0, k E (0, 1,2}, n times 
the  argument so (0 5 n 5 N),  and m distinct  arguments sI to 
s, (0 5 rn 5 M ) .  We  use 

r ( k , n , m ) = d  (0,. . , O , s o , .  . s I , s 2 , .  - . s m )  

to  denote  this expression  with  implied parameters si and  use 
the following notation to substitute  arguments xi for param- 
eters si: 

r(k, n, m I si = x i ) .  

( k t n + m )  

For example r(O,O, 2 I s ,  = x ,  s2 = y )  denotes 4 ( x ,  y ) .  (2) 

By applying  partial  fraction expansion and L'H6pital's 
rule  to (3) the following relations  can easily be derived: 

r(o, 0, m )  = F d(s j )  n (sk  - s,), m 2 0 

r(l,O, m )  = r(o, 0, m + I = o), rn L 0 

I= I / k:l 

r(0, n, 0) = ___ . - 4(s0), n 2 1 
(- 1 ) n - l  d"" 
( n  - I)! ds:" 
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Figure 6 Phases as a set of parallel stages. 

r ( k ,  n, 0) = ( r ( k ,  n - 1,O) - I'(k - 1 ,  n, O)) /so,  n 2 1 

r ( k ,  n, m )  = (I'(k, n, m - 1) - r ( k ,  n - 1 ,  rn)) / (s ,  - so) 

m, n 2 1 .  (4) 

Equations (4) permit  the recursive calculation of each 
I'( k,  n, m) for a given set of parameters.  The  computational 
effort (Le., the  number of arithmetic  operations)  to  obtain 
the expressions I?( k ,  n, m )  is proportional to M N .  For most 
situations,  the  calculations  are  computationally  stable. If 
instabilities  arise, we still may  resort  to  the  phase expansion 
as a linear  combination of exponential  distributions  and 
calculate  the r ( k ,  n, m )  as 

r (k ,  n, m )  = x gi - q / ( w i  + so)'' n (mi + sj ). ( 5 )  

Relation (5) is computationally  stable for distributions with- 
out peaks (e.g., for hyperexponential  distributions  where for 
all i, gi L 0). 

rn 

I-k 

I j =  1 

One suspend lock, N = m 

We assume  the model as  described in Section 2 with  an 
infinitely  long CPU  queue. For this case we are  able  to 
derive closed form expressions similar  to  those for the 
M/G/l  queue.  The  times TA are exponentially distributed 
with mean 1/X. The  times TL, T,, and T,  are  arbitrarily 
distributed  and  assumed  to  be given by their  Laplace  trans- 
forms &(.), q5,(-), and $J-) with  respect means I/p, 1/6, 
and 1 / ~ .  The Bernoulli variables Bo and Do are given by their 249 
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Figure 7 State transition  diagram for the suspend  lock model, 
initial  part.  Each  node  represents  a set of states; each arc  represents 
a set of transitions as indicated by the indices of the states and 
transition rates. 

means bo and do. Mean do and 6 are  assumed  to  be  indepen- 
dent of the  number n of delayed  tasks. Further we use  the 
abbreviations 

p i  = A i / p  = ( M  - i )  p, 

CY = (1 - bo) p/T, 

A(Z) = 4 L ( A l  (1 - Z)) ,  

N Z )  = bo + (1 - bo) * 4JAO * (1 - z ) ) ,  
d = do + (1 - do)  * 4,(A0). ( 6 )  

Let p, be  the  probability  that n tasks  are delayed (i.e., 
holding or waiting for the lock), and  let 

be the associated generating  function.  Further, we denote by 
C,, CD, and  C,  the respective coefficients of variation  and 
use the  abbreviation 

c;, = (1 + C;l.)/(l - bo) - 1. (8) 

We  obtain for the  equilibrium  state 

J.  HOFMANN AND H.  s c n M u r z  

Apparently, for the existence of an  equilibrium  state 

d - ( P I  + “ Po) 

must be greater  than zero. As this expression approaches 
zero,  infinite queueing in front of the lock builds  up. Since 
we assumed  an infinite CPU queue,  there is always work 
available for the M CPUs, and no  processor degradation 
results. 

The  derivation of (9) to  (12)  makes use of the  method of 
phases described  earlier. 

To simplify the  derivation,  we  combine  the  variables Bo 
and Do with  the  times T, and T,  as  described in Section 2 
to 

x (l - D O )  * TD, 

TI, = ( 1  - Bo) - T,. 

The  corresponding  Laplace  transforms  are 

Let + L ( * ) ,  and 4iw(.)  be given in phase expan- 
sion: 

Y 

4L(S) = j =  E I aj * PJ/ (PJ  + s), 

= E dj * Sj / (6 ,  + s), 
j=O 

f 

4 1 W ( ~ )  = E bj T,/(T~ + s). (15) 
J=o 

Phases with  index 0 in (15) are responsible  for immediate 
dispatches  and  “no paging  exception.” They  represent 
instantaneous  transitions, i.e., T ~ ,  6, = to. 

The following states  span  the  state  space: 

0 lock is free,  no  task is delayed. 

(0, n, i) n 2 1,0 5 i 5 r, lock is free, n tasks  are  delayed, 
the  dispatcher is in phase i with  rate iji. 

(1, n, j )  n 2 1, 1 s- j 5 q, lock  is  occupied,  lock  holder  is 
processing in phase j with  rate pj, n tasks  are 
delayed. 
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(2,  n, k )  n z 1, 1 5 k 5 t ,  lock is occupied, lock holder  is  in 
page wait in phase k with  completion rate 7k. 

The  initial  part of the  state  transition  diagram is shown  in 
Fig. 7. The  transition  rates  for 0 5 i 5 r, 1 5 j 5 q, and 0 5 k 
5 t are 

ai - X, from 0 to (1, 1,j) 
a, 6,  from (0, n, i) to  (1, n, j )  for n 2 1 
a, - X, from (0, n, i) to ( 1 ,  n + 1 , j )  for n z 1 
X, from (1, n,j) to (1, n + 1 , j )  for n z 1 
bk - p, from  (1, n, j )  to (2, n, k )  for n z 1 
T~ from (2 ,  1, k )  to 0 
di - T~ from (2, n, k )  to (0, n - 1, i) for n z 2 
X, from (2, n, k )  to (2, n + 1, k )  for n z 1. 

We  introduce  some  abbreviations for  probabilities and 
average flows: 

14, = P ( o ) ,  umi = P ( O ,  n, i), u, = x u,., 

u = X U " ,  

U",j = P ( 1 , 4 j ) ,  un = X U",i ,  U = U n ,  

m i = O  

"-0 
9 m 

j =  I " = I  
1 m 

Wn,k  = P ( 2 ,  n, k ) ,  w,, = x wn,k7 w = x w,, (16) 
k=O " = I  

U" = 6, - u",i, 

V" = x Fj U", j ,  

i = O  

4 

j =  I 

t 

w n  = x .k' wn,k.  (17) 
k=O 

With  these symbols, the  equilibrium  equations  may  be 
written, for n z 1, 0 5 i 5 r, as 

X, * u, = w,, 
(Si + &) * unTi = d, - W,,  ; (1 8) 

for 0 5 j 5 q, n 5 2, as 

(pj  + A,) - v ~ , ~  = ai - X, u, + uj U , ,  

(pj + X,)  v ~ , ~  = aj. X, - un-l + uj - U,, 

+ X I  * u ~ - ~ . ~ ;  (19) 

for 0 5 k 5 t ,  n z 2, as 

(Tk  + * W ] , k  = bk ' 

(7k + ' wn,k = b k  ' Vn f X, * wn-] ,k7 (20) 

We recall the definitions of A(z ) ,  B(z) ,  and d in (6) ;  now 
with the  phase expansions of (1 S), 
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and we define 

~ * ( z )  = f aj/ (pj  + X, (1 - z) )  
j -  1 

= (1 - A(z)) /X,  - (1 - z), 

B*(z) = x b,/(., + x, (1 - z ) )  

= (1 - B(z))/X, - (1 - z ) ,  

1 

k - 0  

d* = 2 di/(6, + X,) = ( 1  - d)/X,. (22) 
i-0 

The  generating  functions  for  the probabilities and flows of 
(1 6 )  and  (1 7) are denoted by 

D m 

With definitions (21)  to (23) it is a straightforward 
matter  to derive the following three  pairs of equations  from 
the original balance  equations ( 1  8) to (20): 

Gu(z) = A*(z)  * Iz - x, - CJZ) + C J Z )  + z * X, - u,}, 

A(z )  * Cu(z) = A*(z) - C,(z), ( 2 5 )  

We now show how to  derive (25) from  (19).  Multiply  each 
of the  equations for ~ , , ~ ( n  z 1) by Z" and  sum  up over n to 
obtain 
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Resolving for Gu,,(z) and  summing over j leads  to  the first 
line of (25).  The second, as  all  other  relations  in (24) to  (26), 
is derived in a similar  manner.  Equations  (24)  to  (26)  form a 
system of simultaneous  linear  equations for the G, ( . ), which 
is easy to solve by elimination. 

G,, of (9)  can now be  computed  as 

G,D(z) == '0 + c u ( z )  + + c,(z)' 

Since  GxD(l) = 1, we obtain for u, by applying I'H6pi- 
tal's rule 

uo = (d  - PI - a - Po) /d  * (1 + p) .  (27) 

Note  that 

A'(1) = X, E [ T L ]  = p , ,  

B'(1 )  = X, * E [ T , , ]  X, (1 - b , ) / ~  = CY - P,. (28) 

Here  the  prime sign indicates derivation with respect to z. 
We have obtained  (9).  To derive (10) from  (9) we make use 
of 

q L  = C X D ( l )  

and  (28). 

To derive t he lock utilization,  we  make  use of 

u + u + w = l  (29) 

and two global  balance  equations.  The first is 

lock request  rate = lock release  rate, Le., 

U * X , + ~ ~ X , + W * X , = V * ~ ,  (30) 

and 

lock release rate = page-in rate, Le., 

u ' /A = w T / ( 1  - bo). (31) 

Note  that a page  transfer  requires  with a probability bo a 
zero  time, while T is the  average  transfer  rate  for  true  paging 
exceptions. 

From  (29)  to  (31) follows 

24 = 1 - Po * (1  + a ) / ( l  + p) ,u  = P , / ( l  + P I .  

w = a - p o / ( l  + p ) .  (32) 

From  (32) we obtain  the lock utilization uL = 1 - u as 
shown in (1 1). From  the derivation of (1 1) it follows that 
(1 1) is valid for any  distribution of TA and  an infinite level of 
multiprogramming. 

The relative "lock-forced'' dispatch  rate is given by the 
252 lock request  rate while the lock is occupied (u  . X, + w . X,) 

plus the  rate of immediate  dispatches at  lock release  time 
(( W - W , )  - d o )  divided by the  total lock request  rate 

( U  X, + w X, + do ( W -  W , ) )  
(X, - u + X, u + X, * W )  

rD = 

With  (26),  (27),  (32),  and  the first equation of (28) we 
obtain (1 2). 

This completes the  derivation of the  results  (9)  to  (12). 

One suspend lock, finite N 
In  this section we develop an  algorithm  to  compute  the  queue 
length  distributions for given levels N and M of multipro- 
gramming  and multiprocessing. Again,  we  assume  the vari- 
able TA to be exponentially distributed with mean 1/X. The 
lock hold time TL and  the  page wait time T ,  are  generally 
distributed. Now we permit  the  dispatch  time TD to  be 
dependent on the  queue  length n, and we indicate  this 
dependence with the  notation TDn. Similarly, we permit  the 
Bernoulli  variable Do, which  determines  immediate 
dispatches,  to be a function Don of the  queue  length. To ease 
the  subsequent  computation we combine  the  variables Bo 
and Do, with T ,  and TDn to 

TI, = (1  - Bo) T,, 

T[D,  = ( l  - TD,' 

For the  Laplace  transforms of TL and T I ,  we assume  the 
phase expansion of (15). In  analogy, T,,,, is assumed  to be 
given by 

r 

4IDn(') = dj,n . ' , ,n/( ' j , ,  $- (15a) 
j = O  

States  are  characterized  as above. The  initial  part of the 
state  transition  diagram is  shown  in Fig. 7. Due  to  the finite 
level of multiprogramming we obtain now a finite transition 
diagram with  a tail,  as shown  in  Figs. 8 and  9. 

The  complete  set of transitions  can easily be inferred  from 
the  transition  rules given in Section 2 for exponentially 
distributed  times  and  from  the  transition  rules for infinite N 
specified above. The only  difference for the  case of infinite N 
is in the  tail  at  the  time when  fewer tasks  are in the  CPU 
queue  than  there  are processors available  for  CPU  queue 
processing. Within  the  tail no immediate  dispatch is neces- 
sary since an idle processor immediately picks up  one of the 
tasks waiting for the lock. 

The  transitions  are implicitly contained in the  balance 
equations  for  the u , ,~  (18a), un,j (19a),  and w , , ~  (20a) below. 
Probabilities  and flows are defined as in ( 16) and  (1  7). 

U, . X, = W, , 

%,i * (X, + Si,,) = di,n * w,,,, 
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From (1  8a)  and  (1)  to (5) we derive 

uo * X, = w , .  

F o r I s n s N - M ,  

U, = d,* W,+, ,  

U, = d ,  - W,,+,, 

with d, = d: = (1 - d,)/X,. 

To eliminate  the  phase expansion from (1 9a) we introduce 
the  abbreviations 

It is straightforward  to  eliminate recursively  references to 
and Vn,, on the  right-hand  side of the  equations (19a). 

Making  use of (36) to (39) we obtain,  for 1 5 n 5 N - M ,  
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Figure 8 State transition diagram for M - N 5 n < N. 

Figure 9 State transition diagram for N - 1 5 n 5 N .  

form = M ,  

uN = Q ( 2 ,  M - 1, M - I), 

VN = Q(1, M - 1 ,  M - 1). 

(44) 

(45) 

Equations (40) to (45) represent  the  balance  equations 
(19a) in a form which is independent of the  phase expansion. 
With  the  abbreviations 

B(k,  i, m) = X i  . ($ X j ) -  rlw(k, i ,  m 1 si = X i ) ,  (46) 

253 
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I I I u,: = 1 ,  

w,: = u, * X,. (33) 

For n = 1 to N - M compute 

V, using (51) 
w, using (50) 
U, using (41) 
u, using (40) 
W,+, using (35) 
u, using (34) 
end n 

Form = 1 to M - 1 compute 

VN-M+m using (53) 
w ~ - ~ + ~  using (52) 
WN"+,+l using (43) 
u N . M + ,  using (42) 
end m. 

Compute 
VN using (45) 
wN using (54) 
uN using (44). 

Notes: 1.  Equation ( 5 5 )  may be  used to cross check the 
computations. 

2. For M = 1 we have X, = 0. The above 
algorithm needs some minor modifications to 
remain applicable to  this special case. 

4. Multiply all obtained probabilities and flows with a 
factor to satisfy Bun + u, + w, = 1 ,  

5 .  The results of interest are obtained as 
N 

uL = n u ,  + W,), 
"-1 

I Processor speed, MIPS 

Figure  10 Queue length of a  suspend  lock  with  minimal  queue 
length strategy and  minimal dispatch strategy (dotted line) as a 
function of the processor speed in  a  uniprocessor; M = 1,  N = 3 
times processor  speed  in MIPS, TL = 50, T,  = 1000, TD = 10 000 
instructions, T ,  = 10 milliseconds, and bo = 0.9995. 

i= I 

Equations (33) to ( 3 9 ,  (40) to (45), and (50) to  (55) 
together with the normalization condition 

2(un  + u, + w,) = 1 

represent a system of homogeneous linear equations which 
may be solved numerically as indicated in the following 
scheme: 

1. Compute arrays A(k,  i, m), g(k, r, m), B(k, i, m),  and 
h(k, r, m) making use of Eqs. (4),  (36),  (37),  (46), and 
(47). Note: There is a  danger of computational instabili- 
ty, in  which case one may have to resort to an  actual 
phase expansion. Then Eq.  ( 5 )  has  to be applied instead 
of Eq. (4). 

2. Define functions E ( k ,  r, n), Q ( k ,  m, n), F(k,  r, n), and 
254 R(k,  m, n) according to Eqs. (38),  (39),  (48), and (49). 

n=l  
M- I 

m= I 

4. Discussion of results 
From a  performance point of  view, high frequency suspend 
locks are dangerous. This is already  apparent from the 
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Figure 11 Relative dispatch  rate  as  a function of the processor 
speed. The  parameters  are identical to those of Fig. 10. 

phenomenon of convoys in front of such locks. Nevertheless, 
there  are  situations in which suspend locks cannot be avoid- 
ed. The  subsequent discussion  points to conditions under 
which suspend locks contribute  to  the  degradation of 
throughput  and/or  to  the  increase of response time. 

Unlike spin locks, suspend locks do not directly  cause 
processor degradation. However, the  additional  dispatching 
overhead caused by suspend locks may  already outweigh  this 
advantage.  In  addition,  tasks which are  queueing in front of 
a  suspend lock are not available  to  utilize  the  real resources 
of the system (e.g., devices, processors). Queueing in front of 
suspend locks either  requires  an  increase in the level of 
multiprogramming,  with  the  consequence of increased 
response time, or it  causes reduced utilization of the system 
resources. The  amount of queueing (Le., the  queue  length) in 
front of suspend locks is therefore  as  important  with respect 
to  performance  as  the  relative  dispatch  rate (Le., the  number 
of dispatches per lock request). 
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Figure 12 Queue length of a suspend lock as  a function of the level 
of multiprocessing. The  parameters correspond to those of Fig. 10, 
except that processing power  is increased by increasing the number 
of processors; each processor has a power of 3 MIPS. 

A brief discussion of the  parameters selected for  the 
illustrations is in order. A high frequency lock is assumed 
with 1000 instructions  outside  the  critical section and 50 
instructions within the  critical section if no paging exception 
occurs. These values are in the  range of values  observed  in 
real systems [ I   I ] .  We  assume  that no paging exception 
occurs in a critical section  with  probability  0.9995. This 
corresponds  to  one paging  exception  per 100 000 instruc- 
tions.  For the  page  transfer  time we assume 10 milliseconds. 
Further, we assume a normal  dispatching process to  occur 
every 10 000 instructions  and, unless  explicitly stated,  the 
minimal  queue  length  strategy. A multiprogramming level 
of 3 per MIPS is used. 

Large system effects 
Figures 10 to 13 illustrate  the  impact of processor perform- 
ance increases. In  the  case of spin locks, the  increase in the 
performance of a processor has no impact since  only the 
ratios of processor times  are effective. In  contrast,  suspend 255 
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Figure 13 Relative  dispatch rate of a suspend  lock as a function of 
the number of processors. The parameters are identical to those of 
Fig. 12. 

locks show an  increase of queueing  (Fig. 10) and  dispatching 
overhead (Fig.  11) even for a uniprocessor. While  the 
performance of the processor increases from 3 to 30 MIPS, 
the suspend lock queue  contains a  growing fraction of the 
available  system tasks. Figure  10 shows clearly  that  the 
minimal  queue  length  strategy  remains  superior  to  the 
minimal  dispatch  strategy, even though,  as shown  in Fig. 11, 
the minima1 dispatch  strategy  causes less dispatching over- 
head. 

W.e refer  to effects illustrated in Figs. 10  and 11 as  “large 
system effects” since within the  3-MIPS system the suspend 
lock  is no  problem at  all,  while it becomes more  and  more of 
a performance bottleneck with  increased processor  speed. 

Figures 12 and 13 illustrate  the  large  system effects if 
performance is increased by increasing  the  number of 
processors. The  situation is  very similar  to  that of Figs. 10 
and 11. Each processor has 3 MIPS power, and  the  number 

256 of processors  grows from 1 to 10. 

I I I I 1 I I I I 
0.00002  0.00004  0.00006  0.00008  0.0001 

age exception rate 

Figure 14 Queue  length of a suspend  lock as a function of the 
paging rate for a uniprocessor  and for a four-way  multiprocessor 
(dotted line); N = 90, processing  power is 30 MIPS, TA = 1000, 
TL = 50, TD = 10000 instructions, mixed dispatching strategy 
(do, = O S ) ,  T, = 10 milliseconds. 

A comparison of the multiprocessor case with the unipro- 
cessor case shows that  the  right kind of dispatching  strategy 
is more  important  in  the multiprocessor situation.  The 
phenomenon is not easy  to explain. The expression for  the 
queue  length qL (1 6) for infinite N contains  as  third  term a 
factor p,  proportional to  (1 - d ) / ( d  - ( p ,  + 01 p J ) .  If 
d = 1 or if M = 1 this  part of the  term is zero. Here p1 is 
proportional  to M - 1 and  independent of the speed of a 
single  processor. For low values of d, the whole term 
becomes  quickly dominating  and  increasing with the level of 
multiprocessing. 

0 High  paging activity 
Figure  14 shows the  dependence of the  queue  length on the 
paging activity. The processor performance is 30 MIPS  and 
the  multiprogramming level is 90. The  left  end of the  graph 
corresponds  to a paging exception  per 100 000 instructions, 
the  right  end  to a paging  exception  per 10 000 instructions. 
While  the paging rate  has a strong influence on the  queue 
length,  the level of multiprocessing has only a small  impact. 
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Figure 15 Queue length of a suspend  lock  as a function of the 
probability of an  “immediate  dispatch” for a uniprocessor  and a 
four-way  multiprocessor  (dotted line); N = 90, processing  power is 
30 MIPS, TA = 1000, TL = 50, TD = 10 000 instructions, 
bo = 0.9995, and Tw = 10 milliseconds. 

An increase of the  page  transfer  time  has  an effect similar 
to  an  increase of the paging rate. Both  effects show up in 
thrashing  situations. 

Dispatching strategy 
Figures  15  and 16  show the  impact of the  dispatching 
strategy on queueing  and  relative  dispatch  rate.  Unlike 
previous figures, do has  here been taken  to be constant, i.e., 
independent of the  queue size; do = 0 corresponds  to  the 
exact  minimal  dispatch  strategy, do = 1 to  the  exact 
minimal  queue  length  strategy.  Figure  16 shows that  the 
minimal  dispatch  strategy  causes considerably less dispatch- 
ing, however, at  the  expense of excessive queueing.  We  draw 
the conclusion that a  mixed or pure  minimal  queue  length 
strategy is preferable. 

Distributions 
Figure  17 shows the  impact of the  distribution of TL on the 
queue  length.  The coefficient of variation  has  little  impact. 
Even in situations  with  four processors, each  capable of 7.5 
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Figure 16 Relative  dispatch rate of a suspend lock as a function of 
the probability of an “immediate dispatch.” The parameters are 
identical to those of Fig. 15. 

MIPS, and a multiprogramming level of 90, the  queue 
length only doubles  from 1.5 to 3 if the coefficient of 
variation of the lock hold time increases from 0 to  the 
extreme  value of 100. In situations with more  queueing,  the 
impact of the  distribution is reduced  further. 

Similarly,  the coefficient of variation of the  page wait 
time Tw has very little  impact. However, as  the expressions 
for N - m show, the value of d in (6)  depends strongly on 
the  distribution of T,. Interestingly, a larger coefficient of 
variation of TD decreases  the  queue  length in the expression 
( 1  0) for qL. This is also confirmed by numerical  evaluations 
for the finite case. 

Our results  for the suspend lock are in contradiction  to  the 
sometimes  expressed  opinion that  large coefficients of varia- 
tion cause  large increases of queue  lengths  and response 
times.  That is, in general, not true for the  suspend lock  in  a 
closed queueing network. 257 
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Figure 17 Queue length of a  suspend lock as a  function of the 
coefficient of variation of the lock  hold time; M = 4, N = 90, 
processing  power is 30 MIPS, TA = 5000, T ,  = 50, T ,  = 1000, 
mixed  dispatch strategy (do ,  = 0.5), and T ,  = 10 milliseconds. 

Approximations 
A theory which permits  the  analysis of systems with  many 
suspend locks is the  subject of current  research.  We  are 
therefore  currently  unable  to derive an  approximation  for 
large systems similar  to  the  formula for  spin locks in [2]. The 
only analytical  result in closed form is for  systems  with one 
lock and  an infinite level of multiprogramming  (Section 3). 
The expression for  the  queue  length  (10) shows  a queue 
explosion as  the expression 

d - (PI + a Po)  ( 5 6 )  

approaches 0. The  value of d is defined in ( 6 )  and is 
258 determined by the  dispatching  strategy  and  the  rate of 

normal  dispatching. If we assume  minimal  queue  length 
strategy or a mixed strategy,  then d has a  value close to 1. A 
sufficient condition  for the  queue  length  to  be  small is 

pl + * po << d. 

If  both quantities pI and a po are  small,  it is easily  seen 
from (IO) and (12) that both queue  length  and  relative 
dispatch  rate  remain  small  compared  to 1.  The  meaning of 
( 5 7 )  for multiprocessors is apparent:  The  time a task  spends 
on average in  a critical section  should be  small  compared  to 
the  time  the  task  spends in non-critical sections  divided by 
the  number of processors. 

It  should, however, be noted that ( 5 7 )  is a strong condi- 
tion. A violation of ( 5 7 )  by no means implies excessive 
queueing.  For  example, with minimal  queue  length  strategy 
in the configuration of Fig. 15 with  four processors we have 
pI + (Y . po = 0.3 and  approximately 12% queueing in front 
of the suspend lock. The  average  contention of 12% of the 
available  tasks for  logical  resources is undesirable,  but 
certainly not catastrophic. 

5. Summary 
Probabilistic models of suspend locks have been developed 
and solved analytically or by algorithms  to  obtain  numerical 
results. The applied methods  are essentially  those of queue- 
ing theory;  however, the  method of embedded  Markov 
chains failed for locks, because  the probabilities of states of 
the  recurrence points are not representative  for  the  average 
system  behavior. An equally powerful and convenient meth- 
od,  referred  to  as  the  “method of phases,” has been devel- 
oped and successfully applied. 

The  analysis confirmed the experience that high fre- 
quency  suspend locks ar0  dangerous  from a performance 
point of view. It is known that  such locks require a specific 
dispatching  strategy  to avoid the  disastrous convoy phenom- 
enon. The models show that even with  such  strategies  any of 
the following events may  cause a drastic  increase of queues 
in front of suspend locks: 

1. Increase of processor  speed, 
2. Increase in the  number of processors, 
3.  Increase of the paging rate, 
4. Increase of the  page  transfer  time. 

Conditiqns (3) and (4) arise typically  in thrashing  situations. 
Conditions (1)  and  (2) lead to  what we call  “large systems 
effects.” The slope of increases  with any of the above  events 
has a strong  dependence on the  dispatching  strategy.  The 
general conclusion to be drawn  from  our model  with  respect 
to  this  strategy is as follows: Whenever a lock is released  for 
which another  task is waiting, the waiting task should 
immediately  be  dispatched. 
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The lock models developed and  applied in this  paper  suffer 
a drawback. Locks are considered  in  isolation with  the 
environment of locks being  represented by a  single queue.  It 
would be  desirable  to  obtain solutions  for  models of the 
complete  system, i .e.,  models representing device queues, 
processor queues,  and lock queues  as a single  queueing 
network. We have little hope of being able  to solve such 
models exactly for  finite  networks.  However, we see  a chance 
that  the models for infinite  systems [ 151 may  be accessible a t  
least for numerical solutions. Currently,  one would have to 
resort to  the  iterative  approximations  described in [ 12, 131. 

The models developed in this  paper show that  queues 
formed  internally by control  programs  are  important objects 
for performance analysis. The  problems which may be 
caused by such  queues grow with  the processing power or, 
equivalently, the level of multiprogramming.  Current  and 
anticipated  advances in hardware technology increase  the 
importance of a theory of computer system  models  which 
encompasses the  internal  queues  caused by software  as well 
as  the  queues in front of real resources. 
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