
J. Hofmann
H. Schmutz

Performance Analysis of Suspend Locks in Operating
Systems

Performance models of suspend locks in operating systems are developed and analyzed. Analytical expressions and
algorithms for numerical results have been obtained for an arbitrary number of processors, an arbitrary number of tasks, and
one suspend lock. The results are discussed and important dependencies among the major characteristic quantities such as
queue length, processor speed, number of processors, dispatching overhead, and processor degradation are shown. Expressions
are derived permitting the control program designer to estimate the system impact of locking during the early design phase.

1. Introduction
Locks are used in operating systems to synchronize concur-
rent logical processes, referred to as tasks. A task which
intends to modify a global object (a control block or a set of
control blocks) must ensure that no other task tries to access
and/or modify this object at the same time. The part of a
task which modifies the object is known as the critical
section. The task acquires a lock at the beginning of the
critical section via a LOCK operation and releases the lock
immediately before it leaves the critical section via an
UNLOCK operation. The implementation must ensure that
a t any time at most one task may hold the lock. This type of
lock is known as an “exclusive” lock; other, less restrictive
types of locks may be employed in real systems but are not
investigated in this paper, since typical high frequency locks,
which are most likely to become bottlenecks in a system, are,
in general, of the type “exclusive.” If a task issues a LOCK
operation to a lock currently being held by another task, the
first task must enter a “wait state” at least until the current
holder of the lock issues the UNLOCK operation.

We distinguish between spin locks and suspend locks. If
task A issues a lock request to a spin lock currently held by
task B, task A executes the lock request in a loop until the
lock is released. Task A spins during its wait time, i.e., task
A remains busy. Efficiency requires that tasks are running
disabled for interrupts (and consequently may not cause a
paging exception) while holding a spin lock, and, of course,
that the lock hold time be very short.

The analysis of spin locks is contained in [1,2]. Spin locks
are, from a performance point of view, preferable to suspend
locks; however, due to the restrictions mentioned above,
suspend locks cannot generally be replaced by spin locks in
control programs.

If task A attempts to acquire a suspend lock currently
held by task B, the processor which interprets task A
enqueues the task and searches the dispatcher queue for a
third task, C, which is ready to continue execution. In this
case task A is suspended. When task B releases the lock, two
possibilities exist:

1 . The processor which interprets task B puts task B into the
dispatcher queue as a ready task and resumes the execu-
tion of task A. In this case the overhead for acquiring an
occupied lock includes two dispatches.

2. The processor associated with task B dequeues task A
and puts task A as a ready task into the dispatcher queue.
In this case only one dispatch is caused by the lock
request for an occupied lock.

If case (1) applies in a system, we talk of a “minimal
queue length” strategy. If case (2) applies in a system, we
talk of a “minimal dispatch” strategy. Mixed strategies are
likely in practice, for example, according to the following
rule: If task A has a priority greater than that of task B, case
(1) applies, otherwise case (2) applies. In analyzing suspend

Copyright 1982 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and

242
abstract may be used without further permission in computer-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor.

1. HOFMANN AND H. SCHMUTZ IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

locks we are primarily interested in the additional Zock-
forced dispatches and in the queue length of the queues in
front of locks. Dispatches represent an overhead which may
be significantly greater than the overhead of a LOCK/
UNLOCK sequence to a free suspend lock. Queues in front
of locks increase response time and are detrimental to the
system objectives of making optimal use of resources, since
a t most one of the tasks in the queue may be dispatched.
Alternatively, to achieve the same resource utilization with
large queues in front of locks, the number of tasks in the
system has to be increased correspondingly, with negative
impact on performance and response time. In addition,
suspend locks may cause processor degradation if no ready
tasks are found in the dispatcher queue.

Spin locks are only necessary in operating systems
supporting multiprocessors. If employed on a uniprocessor,
no processor degradation results. Suspend locks, on the other
hand, may show all three effects-queueing, forced
dispatching, and processor degradation-even on a unipro-
cessor.

Locks as logical devices have gotten considerable atten-
tion in the literature. Frequently [3] spin locks are referred
to as LOCKS and suspend locks as (binary) semaphores.
The use of the term “semaphore” for a suspend lock is due to
E. W. Dijkstra [4].

The danger of deadlocks resulting if a task which already
holds a lock tries to acquire additional locks has been the
subject of extensive research [5-71.

While the logical and semantical questions associated
, with locks have been thoroughly studied, little formal per-

formance analysis of locking situations can be found. Gilbert
[1 1 used queueing theory to study the impact of lock granu-
larity on the interference of spin locks in multiprocessor
systems. Reference [2] contains a generalization and
extended analysis of his model.

Kumar [8] uses analytical techniques to investigate the
cost of deadlock prevention in operating systems. Our model,
described in the next section, does not model costs for
deadlock prevention with the realistic assumption that dead-
locks are avoided by a proper lock use discipline.

Our research has been strongly motivated by observations
on suspend locks in MVS [9, 101 and in data base systems
[l 1 1 . The convoy phenomenon is the name for observed
stable queues in front of suspend locks. Ad hoc solutions
(corresponding to the strategies described above) have been
applied without formal analysis. Analysis in this paper is
restricted to cases which are expected to avoid the convoy
phenomenon.

Section 2 of this paper describes in detail the locking
model underlying our analysis. Section 3 contains the math-
ematics to derive the formulas for calculating dispatch rate,
queue length, and processor degradation. In Section 4 we
illustrate and discuss the results. Section 5 summarizes the
results and indicates areas for further research.

2. The suspend lock model

0 Global symbols
The symbols used in this paper are described here for
reference. This description is also a summary of model
parameters and symbols for primary results.

Model parameters
number of processors, i.e., level of multiprocessing.
number of tasks, i.e., level of multiprogramming.

CPU time consumed by a task between a lock release
and the next lock request.
CPU time consumed by a task between a lock request
and the lock release.

page wait time, i.e., time between a paging exception
and the availability of the page in main memory.
dispatch time, i.e., time between a lock release and the
first normal dispatch of a task waiting for the lock
while the lock is free.

Bernoulli variable (with values 0 or 1). If a task
releases a lock and other tasks are waiting for the lock
and if Do = 1 , then one of the waiting tasks is
immediately dispatched. If Do = 0, the processor
remains with the lock-releasing task.
Bernoulli variable (with values 0 or 1). If a task
obtains a lock and Bo = 0, the task causes a paging
exception immediately before the lock is released.

above described random variables actually occur in
sequences and are assumed to be within the sequence identi-
cally and independently distributed. Associated average
transfer rates and means are denoted by

X = 1/E [TA] lock request rate of an active task outside
the critical region.

p = 1 / E [TL] lock release rate of a lock-holding task.

7 = 1 / E [Tw] page transfer rate.
6 = M / E [T,] normal dispatch rate.
do = E [Do] probability of an immediate dispatch.

bo = E [B o] probability of no paging exception in a
critical region.

Further, the abbreviations

J. 1

243

3OFMANN AND H. SCHMUTZ IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

programming. This implies, in particular, that the lock-
holding task is, with ignorably low probability, preempted
deliberately by the dispatcher.

Figure 1 Basic structure of the suspend lock model. The service
rates at the two queues are dependent on the system state S .

are used, where m is the number of processors outside a
critical region.

Results
X , number of delayed tasks, Le., number of tasks waiting

for or holding lock.

q L = E [X ,] , the mean number of delayed tasks.

uL the lock utilization, i.e., the expected fraction of time
during which the lock is occupied.

rD relative dispatch rate, i.e., expected number of
dispatches forced by locking per lock request. The
value of r , may be any value between 0 (the lock is
always free) and 2 (the lock is always occupied and Do
is always 1).

d , processor degradation, Le., the expected fraction of
time each processor is idle due to synchronization of
locks.

Basic structure of the model
Our main objective is the development of a model of queue-
ing phenomena in front of high frequency suspend locks.
Although the model should be as simple as possible, it has to
reflect system events such as paging exceptions in the critical
section and certain dispatching decisions.

The basic structure of the model is shown in Fig. 1. It is a
cyclic queueing model consisting of a CPU queue and a lock
queue. The processing rates a t each of these queues are
dependent on a system state S, which contains the length of
the individual queues in addition to state information result-
ing from dispatching decisions and paging exceptions. The
dynamic behavior of the model is discussed in detail subse-
quently.

The dispatcher is an important system process affecting
suspend locks, although many dispatching decisions need be
of no concern to us. Suspend locks are service stations rather
than servers and depend on the dispatcher for actual process-
ing. We assume that one of the strategies (“minimal queue
length,” “minimal dispatch,” or a mixture thereof) is
observed by the dispatcher. As known from [10, 111, a
deviation from such a strategy for high frequency locks

244 causes performance collapse even with low levels of multi-

J. HOFMANN AND H. SCHMUTZ

The major dispatcher decisions remaining are related to
the dispatching of tasks which have enqueued for the lock
while the lock was held by some other task. Whenever a lock
is returned and the lock queue is not empty, the dispatcher
has the choice of either continuing with the task which
returned the lock or dispatching one of the tasks waiting for
the lock. This decision is modeled as a Bernoulli variable Do
with mean do = E [Do] . With probability do the dispatcher
switches tasks a t lock release time, and with probability
1 - do the processor remains with the task which releases
the lock.

In general, if do < 1 , there are system states in which the
lock is free and n tasks are waiting for the lock, i.e., in a state
immediately preceding the LOCK instructions. Consider,
for example, the case M = 3 and N = 5 with tasks A, B, C,
D, and E. Assume that task A is enqueued for the lock while
task B was holding the lock. Now let task B leave the critical
section and let its processor stay with task B, Le., Do = 0. All
five tasks are now ready, and the three processors are
assigned to task B and to, say, C and D. Task A’s next
instruction would be a LOCK request. We say task A is
waiting for the lock, although it is ready as long as the lock
remains free. In general, we have n ready tasks “waiting” for
the lock while the lock is free. We assume that the dispatcher
is aware of such tasks and selects one of them at the time of a
normal dispatch. This normal dispatching is modeled to
happen at time T , after the last lock release, provided the
lock is still free. Note that normal dispatching is modeled as
an additional process running in parallel with CPU process- a

ing. In the example above, the lock may become busy as a
consequence of a normal dispatching decision selecting task
A (at a rate depending on dispatcher parameters such as
time slice length) or as a consequence of a lock request
generated by any of the tasks B, C, D, or E while
dispatched.

A second important system process, which has to be
reflected in the model, is forced preemption (above we have
excluded only deliberate preemption). For suspend locks,
preemption is, in principle, permitted. Nevertheless, the
design objective is to preempt lock-holding tasks as seldom
as possible. A typical example of a forced preemption, which
cannot be excluded, is a paging exception. Other types of
preemption can be mapped to the same mechanism. Forced
preemption is modeled as a Bernoulli variable Bo with mean
bo. For simplicity, we assume paging exceptions to occur only
immediately before the UNLOCK instructions. A compari-
son of our model with a more general model has shown that
this simplification has ignorable impact on the numeric

IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

results, since we must assume bo, the probability for no
preemption in the critical section, to be very close to 1 . A
paging exception causes the lock-holding task to be delayed
for a time T,. During this time the processor of the lock
holder is dispatched to some other task and thus increases
the arrival rate of lock requests. Consider again the example
system above. When task B entered the critical section, it
had a processor assigned to it and only two processors were
remaining to generate lock requests. However, after task B
has caused a paging exception in the critical section, its
processor is redispatched to some other task, say A. Now we
have three processors generating lock requests. After the
time T , has elapsed, the lock holder returns the lock and a
dispatching decision as described above takes place.

We assume the workload to consist of N tasks, each with
statistically identical, independent internal behavior. Of
course, tasks interact via the suspend lock. A task consists of
a sequence of transactions. Each transaction consumes a
CPU time T , outside the critical section and a CPU time T ,
within the critical section.

Extension of the model
A significant simplification in our model results from the
absence of queues for devices and, of course, queues for other
locks than the one considered.

This is certainly justified for our objective of demonstrat-
ing the queueing phenomena at suspend locks. To use our
model for complete real systems, one would have to consider
a complex network which, with the current state of the art,
would have to be solved approximately by replacing the
subnetwork containing all queues except the queue in front
of the lock of interest by one "effective" CPU queue with M
"effective" processors. The effective M processors would
reflect the degree of parallelism in the subnetwork. The
effective processing rates Am at the CPU queue and the
effective dispatching rates 6 (n) would be obtained iteratively
by solving the suspend lock model and the subnetwork model
individually. This technique is standard [12, 131 in solving
approximate queueing network problems which do not
satisfy the criteria for product form solution.

Definition of the model
Figure 2 illustrates the states of a task and the decisions
affecting the states as the task performs transactions. Figure
3 illustrates the model as a cyclic queueing network of two
queues and a stage for tasks waiting for the completion of a
paging exception. Figure 3 also shows the flow of processors
between the service stations for normal processing and for
critical section processing. Note, however, that Fig. 3 is not a
complete formal definition of the model, since not all depen-
dencies between the different flows have been expressed.

'I
I request

Normal dispatch (6)
Forced dispatch (do' p)

section

"c) JNLOCK 1

Page exception

Figure 2 States and state transitions of a task in the suspend lock
model.

(X , + S) . (l - J - W) I"""_"""- I

: I
I

I I I

Figure 3 Flow of tasks (solid lines) and processors (dashed lines)
in the suspend lock model, where J € {O, 1 }, W E (0, 11, J + W 5 1;
X, = 0 implies J + W = 0; and M - I = min (M - J , N - XD).

While Fig. 2 is self-explanatory, some discussion of Fig. 3
is in order. Consider first the CPU queue. It has M - Z
processors actively working, where Z depends on J and the
number of tasks in the CPU queue. If the number of tasks in
this queue is large enough, we can set I = J . The quantity J
is the number of processors assigned to processing the
lock-holding task (at most one, of course). 245

IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982 J. HOFMANN AND H. SCHMUTZ

Assume initially that X , = 0, i.e., the lock is free and no
task is waiting for the lock; then J = I = 0, M processors are
generating lock requests at rate X, = M X, and W = 0,
indicating that no lock-holding task waits for a page trans-
fer. If a lock request is generated, one task moves along the
solid line from the CPU queue to the lock queue and X ,
becomes 1; simultaneously, one processor moves along the
dashed line from the CPU service station to the lock service
station. With this move J becomes 1 (but W remains 0). In
this state, M - 1 processors continue to generate lock
requests a t a rate X, = (M - 1) X and one processor
interprets the task in its critical region.

Two possibilities exist for the next event:

1. A second lock request is generated before the first task
has terminated CPU processing. Then the task issuing
the second LOCK instruction moves to the lock queue, X ,
becomes 2, but the processor which has interpreted the
task remains at the CPU queue and assigns itself to some
other ready task at the CPU queue. The rate of the
processor moving along the dashed line contains a term
X, (1 - J - W) , which is zero as long as J or W is
different from zero.

2. The lock-holding task terminates CPU processing before
a second lock request is issued. The task and its processor
simultaneously enter a decision Bo, which determines
whether a paging exception occurs. If Bo = 1 (with
probability bo), no paging exception occurs, and both the
task and the processor return to the CPU queue. X , and J
become zero. The decision Do = 1 is implied in this case
(see below). If, instead, Bo = 0, the task generates a
paging exception, and W becomes 1. The processor,
however, becomes free and returns to CPU queue
processing [rate J - p (1 - Bo) , since Do = I]. J
becomes zero again. The system is now in a state in which
the lock is occupied and the lock-holding task is waiting
for the completion of a paging exception. Lock requests
are now generated again at a rate X, = M - X. As soon as
the page transfer is complete (rate W 7), the task also
returns to the CPU queue and Wagain becomes zero.

To illustrate the decision Do, assume that the system is in
the state after the first possibility above, i. e. , X , = 2, I =

J = 1 , W = 0. Assume the lock-holding task to terminate the
critical region without generating a page exception (i. e.,
Bo = 1). Then the task returns back to the CPU queue and
X , becomes 1, independent of the decision Do. The latter
decision correlates only to the dispatching strategy. The
processor, which was assigned to the lock-holding task, stays
at the lock queue if Do = 1 (with probability do) and
continues processing with the one remaining task in the lock

246 queue; alternatively, if Do = 0 (with probability 1 - do), the

processor accompanies the task which released the lock and
enters the CPU queue [rate J - p (1 - Do), since we
assumed Bo = 1 1.

Assume that the decision has been Do = 0 and that the
system then moves into a state in which M processors are
assigned to the CPU queue, X , = 1 , and J = W = 0. There
exist now two possibilities for J to become 1. The first is that
a lock request is generated (rate X, = M - X) as discussed
above. A second possibility is that in the course of normal
dispatching a processor is assigned to the task in the lock
queue. This happens with rate 6; however, this dispatching is
only meaningful while the lock is free (i. e., J = W = 0).
Therefore, processors flow with a rate 6 (1 - J - W) from
the CPU queue to the lock queue, in addition to the flow
along this path resulting from lock requests. Clearly, if a
processor changes to the lock queue as a result of a dispatch-
ing decision, X , remains unmodified until a new arrival to or
departure from the lock queue.

Unfortunately, many interdependencies exist among the
various states, the flow of tasks, and the flow of processors.
These dependencies are not completely reflected in Fig. 3.

To illustrate the model more formally, we describe subse-
quently a complete semi-Markov model, which is a special
case of the model solved in Section 3. While in Section 3 the
times TL, T,, and T , may be arbitrarily distributed, we
assume here, for the purpose of illustration, that these times
are exponentially distributed with rates p, 6 , and 7.

Let

(0, n) denote the states in which the lock is free and n tasks
are waiting for the lock, and N - n tasks are in the
CPU queue, 0 I n 5 N - M ,

(1 , n) denote the states in which one processor is assigned
to a lock-holding task, and n - 1 tasks are waiting
for the lock, 1 5 n 5 N , and

(2, n) denote the states in which the lock-holding task is
waiting for completion of a page transfer, and n - 1
tasks are waiting for the lock, 1 5 n 5 N .

Further, let doc denote the queue-length-dependent proba-
bility for an immediate dispatch, and 6, denote the queue-
length-dependent dispatching rate.

Then the transition rates are

6 , from (0, n) to (1 , n) , 1 5 n 5 N - M ,
X, from (0, n) to (1, n + I), o 5 n 5 N - M ,

X, from (1 , n) to (1, n + l), 1 5 n 5 N - M ,
X, from (1, N - M + m) to (1, N - M + m + I) ,
l s m < M ,

J. HOFMANN AND H. SCHMUTZ IBM J. RES DEVELOP. 0 VOL. 26 NO. 2 MARCH 1982

g - bo from (1, 1) to (0, 0),
g - bo do, from (I , n + 1) to (I , n), 1 cr n cr N - M ,
r . 6 , from (I , N - M + m + l) to (I , N - M - t m) ,
1 s m s M - I ,
g - bo (1 - do,") from (1, n + 1) to (0, n),
I s n s N - M ,
g - (1 - bo) from (1, n) to (2, n), 1 cr n cr N,

T from (2, 1) to (O,O),
T - do," from (2, n + 1) to (1, n), 1 s n 5 N - M ,
7 from (2 , N - M + m + 1) to (1, N - M + m) ,
l 5 m 5 M - 1,
7 (1 - do,n) from (2, n + 1) to (0, n). 1 s n cr N - M ,
X, from (2, n) to (2, n + I) , 1 cr n cr N - M ,
X,,, from (2 , N - M + m) to (2, N - M + m + I) ,
l c r m < M .

The transition diagrams of Figs. 4 and 5 illustrate the model
for the cases M = 1, N = 2 and M = 3, N = 5 . Note that
X, = X . (M - m) .

To analyze the transitions, consider the state (0,2) in Fig.
5. In terms of Fig. 3 this means X , = 2, J = W = Z = 0.
The lock is free; all three processors are engaged in CPU
queue processing. Two tasks are "waiting" for the lock and
ready for dispatching. Two types of events change the
system state:

1. A lock request. The three processors generate lock
requests a t a rate 3 - X. The consequence is a transition to
X, = 3 and J = 1, since the processor accompanies the
task which generated the lock request. The resulting state
is (1 ,3) .

2. A dispatching process. A normal dispatching decision
may select one of the two ready tasks waiting for the lock.
This happens with rate 6,. The resulting state is (1, 2),
i. e., X , remains 2, but J becomes 1.

Next consider the state (I , 2), where J is one and two
processors are assigned to CPU queue processing. These two
processors are responsible for the transition rate 2 h from
(1, 2) to (1, 3). One processor interprets the lock-holding
task which finishes its CPU processing with rate p and enters
the Bernoulli stage Bo. For Bo = 0, a paging exception is
modeled and the transition is to (2, 2) [combined rate
p - (1 - bo)]. For Bo = 1 , a second Bernoulli stage, Dol, is
entered to model the dispatching strategy. For Dol = 1, an
immediate dispatch decision is modeled, resulting in a tran-
sition to the state (1, 1); i. e., the processor remains a t the
lock service station. The combined transition rate is g bo
dol. For Do, = 0, the processor remains with the task, thus
returning to CPU queue processing. The transition is to the
state (0, 1) with a combined rate p bo (1 - do,).

Figure 4 Complete state transition diagram for a suspend lock
with M = 1, N = 2.

Figure 5 Complete state transition diagram for a suspend lock
with M = 3, N = 5.

Finally, consider the state (2, 2), where X , = 2, J = 0,
and W = 1. The lock is occupied; the lock-holding task is
waiting for the completion of a page transfer. All three
processors are assigned to CPU processing, thus generating
lock requests a t a rate 3 X and causing transitions to the
state (2, 3). The paging device completes the page transfer
a t a rate r , causing a Bernoulli decision Dol, as above. In
fact, with the completion of the page transfer, the lock-
holding task again obtains a processor; however, its next
instruction is UNLOCK. The Bernoulli stage Do, decides
whether the processor resides with this task [combined
transition rate T (1 - dol) to (0, I)] or continues lock
processing [combined transition rate 7 do, to (1, l)] . 247

IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982 J. HOFMANN AND H. SCHMUTZ

The above discussion illustrates the transitions within the
inner part of the chain of states. At the two ends of the chain
slight modifications are necessary due to the unavailability
of tasks waiting for the lock (if X , becomes zero) or due to
the unavailability of tasks for CPU processing (if X , exceeds
N - M) . The verification of the transitions at the ends of the
chain is left to the reader.

The Bernoulli stages Bo and Do complicate the state
transition diagram. This complication can be removed in the
general model in Section 3, as we will see. Instead of
modeling no paging exception within the critical section with
probability bo, we model the paging exceptions to always
appear but to cause, with a probability bo, a zero delay.
Similarly, we can combine DO with the time TD for normal
dispatches. The alternative is mathematically equivalent to
the model above, but easier to handle. However, the combi-
nation is only valid if we permit general distributions for T,
and T,, since the combinations are, in general, not exponen-
tially distributed, eien if TD and T , were originally expo-
nentially distributed. A complete formal definition of the
general model is implicitly contained in the state transition
diagrams and the derived balance equations of the next
section.

Dependency of the dispatching strategy on the queue
length
The described model permits arbitrary dependency of the
dispatch rate and the immediate dispatch decisions on the
queue length. Only two types of functions have actually been
used:

1. No dependence,
2. 6 (n) = 6(m) n / (n + 3) ,

do, = 1 - (1 - do,)".

The rationale behind the function 6 (n) is the observation
that in a balanced system with good reponse time no queue
becomes very large. An average CPU queue length of three
is approximately adequate for the type of system considered
with little dependence on the actual configuration.

For dol = 0.5 the expression for don approximately models
the situation in which, a t lock release time, a task may keep
the CPU only if no tasks with a higher priority are waiting
for the lock. For do, = 1 we have the minimal queue length
strategy and for do, = 0 the minimal dispatch strategy.

3. Derivation of results

The method of phases and generalized Laplace trans-
forms
Usually, the method of imbedded Markov chains is applied

248 to queueing systems with general service time distributions

J. HOFMANN AND H. SCHMUTZ

like the M/G/ 1 queueing system [141. For lock queues, the
arrival rate is dependent on the internal state of the lock. For
example, if a task owning a suspend lock causes a paging
exception, the lock-holding task is put into a wait state and
its processor is redispatched to a task which may then
execute a lock instruction involving the same lock. In other
words, a paging exception in a critical region increases the
arrival rate of tasks to the queue of the lock. Although the
points of departure from the critical region still form a
Markov chain, the probabilities of these events are not
representative for the average behavior of the system. The
method of imbedded Markov chains is therefore not directly
applicable. In order to include general distributions of the
lock hold time in the results we use a method which is
equivalent to the technique of Coxian stages [141.

Let X be the random variable, f (e) its density function,
and 4 (a) the Laplace transform off (.). Then we assume
without loss of generality that

i = O

m

f (x) = x g, - wi exp (- m i x).

z g i = 1

i = O

for some m. g,, and wi.

Note that the gi are not restricted to positive values. Any
real values are permitted under the constraint f (x) 2 0 for
all x 2 0. The gi have no interpretation as probabilities
although the process can be thought of as a set of parallel
stages (Fig. 6)

We refer to this special case of parallel stages as phases.
The technique of phases is analytically equivalent to the
technique of Coxian stages, but easier to handle [2]. In fact,
the phase representation serves only as an intermediate step
to derive results involving only the Laplace transform of
f (-). The application of the method of phases to queueing
systems yields expressions of the following form:

i = O , = I

Here (p'"'(-) is an abbreviation for the expression on the
right-hand side of the equal sign.

It is easily seen from (1) that

4(s) = 4%)

4%], . . ,SJ

and that the relation

= L = d x , . . L - d x , , f @xj) exp (- Z x j s ,) (2)

IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

holds. Equation (2) shows den)(.) to be a generalization of
the Laplace transform. Fortunately, it is possible to calculate
the d'"'(.) from #J(.) recursively. To show this we make use
of the inverse Laplace transform

f (x) = (1/27ri) - L,zm d s @ (s) exp (s x)

in (2) and integrate over the x i to obtain

d(")(sl, * * - 7 S")

Because &(s) is the Laplace transform of a probability
distribution, all its poles are on the negative real axis.
Therefore (3) can easily be evaluated by summing over the
poles sj on the positive real axis. We apply the fraction
expansion

to (3) and integrate over s in a loop closed within the positive
real half plane by applying Cauchy's theorem to obtain

" n

d n) (. Y 1 , - -, 3.1 = t: d@j I / n (SI, - sj).
j = 1 k f j

The general form needed for solution of the suspend lock
model contains k times the argument 0, k E (0, 1,2}, n times
the argument so (0 5 n 5 N), and m distinct arguments sI to
s, (0 5 rn 5 M) . We use

r (k , n , m) = d (0,. . , O , s o , . . s I , s 2 , . - . s m)

to denote this expression with implied parameters si and use
the following notation to substitute arguments xi for param-
eters si:

r(k, n, m I si = x i) .

(k t n + m)

For example r(O,O, 2 I s , = x , s2 = y) denotes 4 (x , y) . (2)

By applying partial fraction expansion and L'H6pital's
rule to (3) the following relations can easily be derived:

r(o, 0, m) = F d(s j) n (sk - s,), m 2 0

r(l,O, m) = r(o, 0, m + I = o), rn L 0

I= I / k:l

r(0, n, 0) = ___ . - 4(s0), n 2 1
(- 1) n - l d""
(n - I)! ds:"

IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

Figure 6 Phases as a set of parallel stages.

r (k , n, 0) = (r (k , n - 1,O) - I'(k - 1 , n, O)) /so, n 2 1

r (k , n, m) = (I'(k, n, m - 1) - r (k , n - 1 , rn)) / (s , - so)

m, n 2 1 . (4)

Equations (4) permit the recursive calculation of each
I'(k, n, m) for a given set of parameters. The computational
effort (Le., the number of arithmetic operations) to obtain
the expressions I?(k , n, m) is proportional to M N . For most
situations, the calculations are computationally stable. If
instabilities arise, we still may resort to the phase expansion
as a linear combination of exponential distributions and
calculate the r (k , n, m) as

r (k , n, m) = x gi - q / (w i + so)'' n (mi + sj). (5)

Relation (5) is computationally stable for distributions with-
out peaks (e.g., for hyperexponential distributions where for
all i, gi L 0).

rn

I-k

I j = 1

One suspend lock, N = m

We assume the model as described in Section 2 with an
infinitely long CPU queue. For this case we are able to
derive closed form expressions similar to those for the
M/G/l queue. The times TA are exponentially distributed
with mean 1/X. The times TL, T,, and T, are arbitrarily
distributed and assumed to be given by their Laplace trans-
forms &(.), q5,(-), and $J-) with respect means I/p, 1/6,
and 1 / ~ . The Bernoulli variables Bo and Do are given by their 249

J. HOFMANN AND H. SCHMUTZ

Figure 7 State transition diagram for the suspend lock model,
initial part. Each node represents a set of states; each arc represents
a set of transitions as indicated by the indices of the states and
transition rates.

means bo and do. Mean do and 6 are assumed to be indepen-
dent of the number n of delayed tasks. Further we use the
abbreviations

p i = A i / p = (M - i) p,

CY = (1 - bo) p/T,

A(Z) = 4 L (A l (1 - Z)) ,

N Z) = bo + (1 - bo) * 4JAO * (1 - z)) ,
d = do + (1 - do) * 4,(A0). (6)

Let p, be the probability that n tasks are delayed (i.e.,
holding or waiting for the lock), and let

be the associated generating function. Further, we denote by
C,, CD, and C, the respective coefficients of variation and
use the abbreviation

c;, = (1 + C;l.)/(l - bo) - 1. (8)

We obtain for the equilibrium state

J. HOFMANN AND H. s c n M u r z

Apparently, for the existence of an equilibrium state

d - (P I + “ Po)

must be greater than zero. As this expression approaches
zero, infinite queueing in front of the lock builds up. Since
we assumed an infinite CPU queue, there is always work
available for the M CPUs, and no processor degradation
results.

The derivation of (9) to (12) makes use of the method of
phases described earlier.

To simplify the derivation, we combine the variables Bo
and Do with the times T, and T, as described in Section 2
to

x (l - D O) * TD,

TI, = (1 - Bo) - T,.

The corresponding Laplace transforms are

Let + L (*) , and 4iw(.) be given in phase expan-
sion:

Y

4L(S) = j = E I aj * PJ/ (PJ + s),

= E dj * Sj / (6 , + s),
j=O

f

4 1 W (~) = E bj T,/(T~ + s). (15)
J=o

Phases with index 0 in (15) are responsible for immediate
dispatches and “no paging exception.” They represent
instantaneous transitions, i.e., T ~ , 6, = to.

The following states span the state space:

0 lock is free, no task is delayed.

(0, n, i) n 2 1,0 5 i 5 r, lock is free, n tasks are delayed,
the dispatcher is in phase i with rate iji.

(1, n, j) n 2 1, 1 s- j 5 q, lock is occupied, lock holder is
processing in phase j with rate pj, n tasks are
delayed.

IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

(2, n, k) n z 1, 1 5 k 5 t , lock is occupied, lock holder is in
page wait in phase k with completion rate 7k.

The initial part of the state transition diagram is shown in
Fig. 7. The transition rates for 0 5 i 5 r, 1 5 j 5 q, and 0 5 k
5 t are

ai - X, from 0 to (1, 1,j)
a, 6, from (0, n, i) to (1, n, j) for n 2 1
a, - X, from (0, n, i) to (1 , n + 1 , j) for n z 1
X, from (1, n,j) to (1, n + 1 , j) for n z 1
bk - p, from (1, n, j) to (2, n, k) for n z 1
T~ from (2 , 1, k) to 0
di - T~ from (2, n, k) to (0, n - 1, i) for n z 2
X, from (2, n, k) to (2, n + 1, k) for n z 1.

We introduce some abbreviations for probabilities and
average flows:

14, = P (o) , umi = P (O , n, i), u, = x u,.,

u = X U " ,

U",j = P (1 , 4 j) , un = X U",i , U = U n ,

m i = O

"-0
9 m

j = I " = I
1 m

Wn,k = P (2 , n, k) , w,, = x wn,k7 w = x w,, (16)
k=O " = I

U" = 6, - u",i,

V" = x Fj U", j ,

i = O

4

j = I

t

w n = x .k' wn,k. (17)
k=O

With these symbols, the equilibrium equations may be
written, for n z 1, 0 5 i 5 r, as

X, * u, = w,,
(Si + &) * unTi = d, - W,, ; (1 8)

for 0 5 j 5 q, n 5 2, as

(pj + A,) - v ~ , ~ = ai - X, u, + uj U , ,

(pj + X,) v ~ , ~ = aj. X, - un-l + uj - U,,

+ X I * u ~ - ~ . ~ ; (19)

for 0 5 k 5 t , n z 2, as

(Tk + * W] , k = bk '

(7k + ' wn,k = b k ' Vn f X, * wn-] ,k7 (20)

We recall the definitions of A(z) , B(z) , and d in (6) ; now
with the phase expansions of (1 S),

IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

and we define

~ * (z) = f aj/ (pj + X, (1 - z))
j - 1

= (1 - A(z)) /X, - (1 - z),

B*(z) = x b,/(., + x, (1 - z))

= (1 - B(z))/X, - (1 - z) ,

1

k - 0

d* = 2 di/(6, + X,) = (1 - d)/X,. (22)
i-0

The generating functions for the probabilities and flows of
(1 6) and (1 7) are denoted by

D m

With definitions (21) to (23) it is a straightforward
matter to derive the following three pairs of equations from
the original balance equations (1 8) to (20):

Gu(z) = A*(z) * Iz - x, - CJZ) + C J Z) + z * X, - u,},

A(z) * Cu(z) = A*(z) - C,(z), (2 5)

We now show how to derive (25) from (19). Multiply each
of the equations for ~ , , ~ (n z 1) by Z" and sum up over n to
obtain

J. HOFMANN AND H. SCHMUTZ

Resolving for Gu,,(z) and summing over j leads to the first
line of (25). The second, as all other relations in (24) to (26),
is derived in a similar manner. Equations (24) to (26) form a
system of simultaneous linear equations for the G, (.), which
is easy to solve by elimination.

G,, of (9) can now be computed as

G,D(z) == '0 + c u (z) + + c,(z)'

Since GxD(l) = 1, we obtain for u, by applying I'H6pi-
tal's rule

uo = (d - PI - a - Po) /d * (1 + p) . (27)

Note that

A'(1) = X, E [T L] = p , ,

B'(1) = X, * E [T , ,] X, (1 - b ,) / ~ = CY - P,. (28)

Here the prime sign indicates derivation with respect to z.
We have obtained (9). To derive (10) from (9) we make use
of

q L = C X D (l)

and (28).

To derive t he lock utilization, we make use of

u + u + w = l (29)

and two global balance equations. The first is

lock request rate = lock release rate, Le.,

U * X , + ~ ~ X , + W * X , = V * ~ , (30)

and

lock release rate = page-in rate, Le.,

u ' /A = w T / (1 - bo). (31)

Note that a page transfer requires with a probability bo a
zero time, while T is the average transfer rate for true paging
exceptions.

From (29) to (31) follows

24 = 1 - Po * (1 + a) / (l + p) ,u = P , / (l + P I .

w = a - p o / (l + p) . (32)

From (32) we obtain the lock utilization uL = 1 - u as
shown in (1 1). From the derivation of (1 1) it follows that
(1 1) is valid for any distribution of TA and an infinite level of
multiprogramming.

The relative "lock-forced'' dispatch rate is given by the
252 lock request rate while the lock is occupied (u . X, + w . X,)

plus the rate of immediate dispatches at lock release time
((W - W ,) - d o) divided by the total lock request rate

(U X, + w X, + do (W - W ,))
(X, - u + X, u + X, * W)

rD =

With (26), (27), (32), and the first equation of (28) we
obtain (1 2).

This completes the derivation of the results (9) to (12).

One suspend lock, finite N
In this section we develop an algorithm to compute the queue
length distributions for given levels N and M of multipro-
gramming and multiprocessing. Again, we assume the vari-
able TA to be exponentially distributed with mean 1/X. The
lock hold time TL and the page wait time T , are generally
distributed. Now we permit the dispatch time TD to be
dependent on the queue length n, and we indicate this
dependence with the notation TDn. Similarly, we permit the
Bernoulli variable Do, which determines immediate
dispatches, to be a function Don of the queue length. To ease
the subsequent computation we combine the variables Bo
and Do, with T , and TDn to

TI, = (1 - Bo) T,,

T[D, = (l - TD,'

For the Laplace transforms of TL and T I , we assume the
phase expansion of (15). In analogy, T,,,, is assumed to be
given by

r

4IDn(') = dj,n . ' , ,n/(' j , , $- (15a)
j = O

States are characterized as above. The initial part of the
state transition diagram is shown in Fig. 7. Due to the finite
level of multiprogramming we obtain now a finite transition
diagram with a tail, as shown in Figs. 8 and 9.

The complete set of transitions can easily be inferred from
the transition rules given in Section 2 for exponentially
distributed times and from the transition rules for infinite N
specified above. The only difference for the case of infinite N
is in the tail at the time when fewer tasks are in the CPU
queue than there are processors available for CPU queue
processing. Within the tail no immediate dispatch is neces-
sary since an idle processor immediately picks up one of the
tasks waiting for the lock.

The transitions are implicitly contained in the balance
equations for the u , ,~ (18a), un,j (19a), and w , , ~ (20a) below.
Probabilities and flows are defined as in (16) and (1 7).

U, . X, = W, ,

%,i * (X, + Si,,) = di,n * w,,,,

J. HOFMANN AND H. SCHMUTZ LBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

From (1 8a) and (1) to (5) we derive

uo * X, = w , .

F o r I s n s N - M ,

U, = d,* W,+, ,

U, = d , - W,,+,,

with d, = d: = (1 - d,)/X,.

To eliminate the phase expansion from (1 9a) we introduce
the abbreviations

It is straightforward to eliminate recursively references to
and Vn,, on the right-hand side of the equations (19a).

Making use of (36) to (39) we obtain, for 1 5 n 5 N - M ,

IBM J. RES DEVELOP. VOL. 26 NO. 2 0 MARCH 1982

[O,N-", iJ

Figure 8 State transition diagram for M - N 5 n < N.

Figure 9 State transition diagram for N - 1 5 n 5 N .

form = M ,

uN = Q (2 , M - 1, M - I),

VN = Q(1, M - 1 , M - 1).

(44)

(45)

Equations (40) to (45) represent the balance equations
(19a) in a form which is independent of the phase expansion.
With the abbreviations

B(k, i, m) = X i . ($ X j) - rlw(k, i , m 1 si = X i) , (46)

253

J. HOFMANN AND H. SCHMUTZ

I I I u,: = 1 ,

w,: = u, * X,. (33)

For n = 1 to N - M compute

V, using (51)
w, using (50)
U, using (41)
u, using (40)
W,+, using (35)
u, using (34)
end n

Form = 1 to M - 1 compute

VN-M+m using (53)
w ~ - ~ + ~ using (52)
WN"+,+l using (43)
u N . M + , using (42)
end m.

Compute
VN using (45)
wN using (54)
uN using (44).

Notes: 1. Equation (5 5) may be used to cross check the
computations.

2. For M = 1 we have X, = 0. The above
algorithm needs some minor modifications to
remain applicable to this special case.

4. Multiply all obtained probabilities and flows with a
factor to satisfy Bun + u, + w, = 1 ,

5 . The results of interest are obtained as
N

uL = n u , + W,),
"-1

I Processor speed, MIPS

Figure 10 Queue length of a suspend lock with minimal queue
length strategy and minimal dispatch strategy (dotted line) as a
function of the processor speed in a uniprocessor; M = 1, N = 3
times processor speed in MIPS, TL = 50, T, = 1000, TD = 10 000
instructions, T , = 10 milliseconds, and bo = 0.9995.

i= I

Equations (33) to (3 9 , (40) to (45), and (50) to (55)
together with the normalization condition

2(un + u, + w,) = 1

represent a system of homogeneous linear equations which
may be solved numerically as indicated in the following
scheme:

1. Compute arrays A(k, i, m), g(k, r, m), B(k, i, m), and
h(k, r, m) making use of Eqs. (4), (36), (37), (46), and
(47). Note: There is a danger of computational instabili-
ty, in which case one may have to resort to an actual
phase expansion. Then Eq. (5) has to be applied instead
of Eq. (4).

2. Define functions E (k , r, n), Q (k , m, n), F(k, r, n), and
254 R(k, m, n) according to Eqs. (38), (39), (48), and (49).

n=l
M- I

m= I

4. Discussion of results
From a performance point of view, high frequency suspend
locks are dangerous. This is already apparent from the

J. HOFMANN AND H. SCHMUTZ IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

1 I I I I
10 20

rocessor speed, MIPS

Figure 11 Relative dispatch rate as a function of the processor
speed. The parameters are identical to those of Fig. 10.

phenomenon of convoys in front of such locks. Nevertheless,
there are situations in which suspend locks cannot be avoid-
ed. The subsequent discussion points to conditions under
which suspend locks contribute to the degradation of
throughput and/or to the increase of response time.

Unlike spin locks, suspend locks do not directly cause
processor degradation. However, the additional dispatching
overhead caused by suspend locks may already outweigh this
advantage. In addition, tasks which are queueing in front of
a suspend lock are not available to utilize the real resources
of the system (e.g., devices, processors). Queueing in front of
suspend locks either requires an increase in the level of
multiprogramming, with the consequence of increased
response time, or it causes reduced utilization of the system
resources. The amount of queueing (Le., the queue length) in
front of suspend locks is therefore as important with respect
to performance as the relative dispatch rate (Le., the number
of dispatches per lock request).

IBM .I. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

1

/
i

/
I

/
I

/
/

/

/
/

/
/

/
/

do, =0.01//
/

/

/
/

/
/

/
/

/
/

/
/

/

/ /

(Number of processors, M

Figure 12 Queue length of a suspend lock as a function of the level
of multiprocessing. The parameters correspond to those of Fig. 10,
except that processing power is increased by increasing the number
of processors; each processor has a power of 3 MIPS.

A brief discussion of the parameters selected for the
illustrations is in order. A high frequency lock is assumed
with 1000 instructions outside the critical section and 50
instructions within the critical section if no paging exception
occurs. These values are in the range of values observed in
real systems [I I] . We assume that no paging exception
occurs in a critical section with probability 0.9995. This
corresponds to one paging exception per 100 000 instruc-
tions. For the page transfer time we assume 10 milliseconds.
Further, we assume a normal dispatching process to occur
every 10 000 instructions and, unless explicitly stated, the
minimal queue length strategy. A multiprogramming level
of 3 per MIPS is used.

Large system effects
Figures 10 to 13 illustrate the impact of processor perform-
ance increases. In the case of spin locks, the increase in the
performance of a processor has no impact since only the
ratios of processor times are effective. In contrast, suspend 255

J. HOFMANN AND H. SCHMUTZ

‘lumber of processors, M

Figure 13 Relative dispatch rate of a suspend lock as a function of
the number of processors. The parameters are identical to those of
Fig. 12.

locks show an increase of queueing (Fig. 10) and dispatching
overhead (Fig. 11) even for a uniprocessor. While the
performance of the processor increases from 3 to 30 MIPS,
the suspend lock queue contains a growing fraction of the
available system tasks. Figure 10 shows clearly that the
minimal queue length strategy remains superior to the
minimal dispatch strategy, even though, as shown in Fig. 11,
the minima1 dispatch strategy causes less dispatching over-
head.

W.e refer to effects illustrated in Figs. 10 and 11 as “large
system effects” since within the 3-MIPS system the suspend
lock is no problem at all, while it becomes more and more of
a performance bottleneck with increased processor speed.

Figures 12 and 13 illustrate the large system effects if
performance is increased by increasing the number of
processors. The situation is very similar to that of Figs. 10
and 11. Each processor has 3 MIPS power, and the number

256 of processors grows from 1 to 10.

I I I I 1 I I I I
0.00002 0.00004 0.00006 0.00008 0.0001

age exception rate

Figure 14 Queue length of a suspend lock as a function of the
paging rate for a uniprocessor and for a four-way multiprocessor
(dotted line); N = 90, processing power is 30 MIPS, TA = 1000,
TL = 50, TD = 10000 instructions, mixed dispatching strategy
(do, = O S) , T, = 10 milliseconds.

A comparison of the multiprocessor case with the unipro-
cessor case shows that the right kind of dispatching strategy
is more important in the multiprocessor situation. The
phenomenon is not easy to explain. The expression for the
queue length qL (1 6) for infinite N contains as third term a
factor p, proportional to (1 - d) / (d - (p , + 01 p J) . If
d = 1 or if M = 1 this part of the term is zero. Here p1 is
proportional to M - 1 and independent of the speed of a
single processor. For low values of d, the whole term
becomes quickly dominating and increasing with the level of
multiprocessing.

0 High paging activity
Figure 14 shows the dependence of the queue length on the
paging activity. The processor performance is 30 MIPS and
the multiprogramming level is 90. The left end of the graph
corresponds to a paging exception per 100 000 instructions,
the right end to a paging exception per 10 000 instructions.
While the paging rate has a strong influence on the queue
length, the level of multiprocessing has only a small impact.

J . HOFMANN AND H. SCHMUTZ IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

”
0 0 I I I I I I I I I

0 0.2 0.4 0.6 0.8 1

s

1 Immediate dispatch probability do

Figure 15 Queue length of a suspend lock as a function of the
probability of an “immediate dispatch” for a uniprocessor and a
four-way multiprocessor (dotted line); N = 90, processing power is
30 MIPS, TA = 1000, TL = 50, TD = 10 000 instructions,
bo = 0.9995, and Tw = 10 milliseconds.

An increase of the page transfer time has an effect similar
to an increase of the paging rate. Both effects show up in
thrashing situations.

Dispatching strategy
Figures 15 and 16 show the impact of the dispatching
strategy on queueing and relative dispatch rate. Unlike
previous figures, do has here been taken to be constant, i.e.,
independent of the queue size; do = 0 corresponds to the
exact minimal dispatch strategy, do = 1 to the exact
minimal queue length strategy. Figure 16 shows that the
minimal dispatch strategy causes considerably less dispatch-
ing, however, at the expense of excessive queueing. We draw
the conclusion that a mixed or pure minimal queue length
strategy is preferable.

Distributions
Figure 17 shows the impact of the distribution of TL on the
queue length. The coefficient of variation has little impact.
Even in situations with four processors, each capable of 7.5

I
I

I
I

I
I

I
I

I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I I I I I I I I I

0.2 0.4 0.6 0.8 I

nmediate dispatch probability do

Figure 16 Relative dispatch rate of a suspend lock as a function of
the probability of an “immediate dispatch.” The parameters are
identical to those of Fig. 15.

MIPS, and a multiprogramming level of 90, the queue
length only doubles from 1.5 to 3 if the coefficient of
variation of the lock hold time increases from 0 to the
extreme value of 100. In situations with more queueing, the
impact of the distribution is reduced further.

Similarly, the coefficient of variation of the page wait
time Tw has very little impact. However, as the expressions
for N - m show, the value of d in (6) depends strongly on
the distribution of T,. Interestingly, a larger coefficient of
variation of TD decreases the queue length in the expression
(1 0) for qL. This is also confirmed by numerical evaluations
for the finite case.

Our results for the suspend lock are in contradiction to the
sometimes expressed opinion that large coefficients of varia-
tion cause large increases of queue lengths and response
times. That is, in general, not true for the suspend lock in a
closed queueing network. 257

J. HOFMANN AND H. SCHMUTZ IBM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

-1
D

I I I
50 10

)efficient of variation of lock hold time, C,

Figure 17 Queue length of a suspend lock as a function of the
coefficient of variation of the lock hold time; M = 4, N = 90,
processing power is 30 MIPS, TA = 5000, T , = 50, T , = 1000,
mixed dispatch strategy (do , = 0.5), and T , = 10 milliseconds.

Approximations
A theory which permits the analysis of systems with many
suspend locks is the subject of current research. We are
therefore currently unable to derive an approximation for
large systems similar to the formula for spin locks in [2]. The
only analytical result in closed form is for systems with one
lock and an infinite level of multiprogramming (Section 3).
The expression for the queue length (10) shows a queue
explosion as the expression

d - (PI + a Po) (5 6)

approaches 0. The value of d is defined in (6) and is
258 determined by the dispatching strategy and the rate of

normal dispatching. If we assume minimal queue length
strategy or a mixed strategy, then d has a value close to 1. A
sufficient condition for the queue length to be small is

pl + * po << d.

If both quantities pI and a po are small, it is easily seen
from (IO) and (12) that both queue length and relative
dispatch rate remain small compared to 1. The meaning of
(5 7) for multiprocessors is apparent: The time a task spends
on average in a critical section should be small compared to
the time the task spends in non-critical sections divided by
the number of processors.

It should, however, be noted that (5 7) is a strong condi-
tion. A violation of (5 7) by no means implies excessive
queueing. For example, with minimal queue length strategy
in the configuration of Fig. 15 with four processors we have
pI + (Y . po = 0.3 and approximately 12% queueing in front
of the suspend lock. The average contention of 12% of the
available tasks for logical resources is undesirable, but
certainly not catastrophic.

5. Summary
Probabilistic models of suspend locks have been developed
and solved analytically or by algorithms to obtain numerical
results. The applied methods are essentially those of queue-
ing theory; however, the method of embedded Markov
chains failed for locks, because the probabilities of states of
the recurrence points are not representative for the average
system behavior. An equally powerful and convenient meth-
od, referred to as the “method of phases,” has been devel-
oped and successfully applied.

The analysis confirmed the experience that high fre-
quency suspend locks ar0 dangerous from a performance
point of view. It is known that such locks require a specific
dispatching strategy to avoid the disastrous convoy phenom-
enon. The models show that even with such strategies any of
the following events may cause a drastic increase of queues
in front of suspend locks:

1. Increase of processor speed,
2. Increase in the number of processors,
3. Increase of the paging rate,
4. Increase of the page transfer time.

Conditiqns (3) and (4) arise typically in thrashing situations.
Conditions (1) and (2) lead to what we call “large systems
effects.” The slope of increases with any of the above events
has a strong dependence on the dispatching strategy. The
general conclusion to be drawn from our model with respect
to this strategy is as follows: Whenever a lock is released for
which another task is waiting, the waiting task should
immediately be dispatched.

J. HOFMANN AND H. SCHMUTZ ISM J. RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

The lock models developed and applied in this paper suffer
a drawback. Locks are considered in isolation with the
environment of locks being represented by a single queue. It
would be desirable to obtain solutions for models of the
complete system, i .e., models representing device queues,
processor queues, and lock queues as a single queueing
network. We have little hope of being able to solve such
models exactly for finite networks. However, we see a chance
that the models for infinite systems [151 may be accessible a t
least for numerical solutions. Currently, one would have to
resort to the iterative approximations described in [12, 131.

The models developed in this paper show that queues
formed internally by control programs are important objects
for performance analysis. The problems which may be
caused by such queues grow with the processing power or,
equivalently, the level of multiprogramming. Current and
anticipated advances in hardware technology increase the
importance of a theory of computer system models which
encompasses the internal queues caused by software as well
as the queues in front of real resources.

References
1 . D. C. Gilbert, private communication, IBM Corporation,

Poughkeepsie, NY.
2. .I. Hofmann and H. Schmutz, “Performance Analysis of Lock-

ing in Operating Systems,” Technical Report TR 81.03.003,
IBM Scientific Center, Heidelberg, W. Germany, March 1981.

3. A. N. Habermann, Introduction to Operating System Design,
Science Research Associates, Chicago, 1976.

4. E. W. Dijkstra, “Cooperating Sequential Processes,” Program-
ming Languages, F. Genuys, Ed., Academic Press, London,
1968.

5. E. G. Coffmann, M. J. Elphick, and H. Shoshani, “System
Deadlocks,” ComputingSurv. 3,67-78 (1971).

IBM I . RES DEVELOP. VOL. 26 NO. 2 MARCH 1982

6. A. N. Habermann, “Prevention of System Deadlocks,”
Commun. ACM 12,373-377 (1969).

7 . J. W. Havender, “Avoiding Deadlocks in Multi-Tasking
Systems,” IBMSyst. J. 7,74-84 (1968).

8. B. Kumar, “Modelling and Analysis of Distributed Software
Systems,” Proceedings of the 7th Symposium on Operating
System Principles. Pacific Grove, CA, December 1979, pp.
2-8, ACM Order No. 534790.

9. OSlVSZ System Logic Library. VoI. 4, Order No. SY28-0716,
available through IBM branch offices.

10. D. C. Gilbert, private communication. IBM Corporation,
Poughkeepsie, NY.

1 1 . M. Blasgen, J. Gray, M. Mitoma, and T. Price, “The Convoy
Phenomenon.” ACM Omr. Svst. Rev. 13.2&25 (1979).

1

1

1 ,

. .
2. K. M. Chandy, U. Herzog, and L. Woo, “Approximate Analy-

sis of General Queuing Networks,” IBM J. Res. Develop. 19,
4 3 4 9 (1975).

3. C. H. Sauer and K. M. Chandy, “Approximate Solution of
Queuing Models,” ZEEE Computer 13,25-32 (1980).

4. H. Kobayashi, Modelling and Analysis, Addison-Wesley
Publishing Co., Inc., Reading, MA, 1978.

. .

15. H. Stenzel and H. Schmutz, “Approximate Performance
Models of Large Computer Systems,” Technical Report TR
81.04.004. IBM Scientific Center, Heidelberg, W. Germany,
April 1981.

Received January 28,1981; revised June 23, 1981

J. Hofmann is located at Eachhochschule ffeilbronn. West
Germany, and H. Schmutz is located at the IBM Scientific
Center, Heidelberg, West Germany.

J. 1

259

3OFMANN AND H. SCHMUTZ

