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Boolean  Comparison of Hardware and  Flowcharts 

Boolean comparison is  a design verification technique in which two logic networks are compared for functional equivalence 
using analysis rather than simulation. Boolean comparison was used on the  IBM 3081 project to establish that hardwareflow- 
charts and the detailed hardware logic design were functionally equivalent. Hardware flowcharts are a graphic form of a 
hardware description language  which describes the logical behavior of the machine in terms of the inputs, outputs, and 
latches. The logical correctness of the hardware flowcharts was previously established via cycle simulation. The concepts and 
techniques of Boolean comparison as used on the IBM 3081 project are described. 

1. Introduction 
Boolean comparison is one  element of a new hardware design 
verification  methodology that was  used on the  IBM 3081 
project. The  entire methodology involves the use of hardware 
flowcharts,  cycle simulation,  and Boolean comparison for 
logic verification, as well as a timing  analysis  program for 
timing verification [ 1-41. The methodology has been 
created  to  meet  the need  for an effective, economical, and 
timely means of verifying the  correctness of clocked hard- 
ware in the LSI environment.  The need exists  because 
hardware  debugging is no longer  a  viable technique for 
locating  a large  number of design  problems;  both the  lack of 
probe points and  the  large  amount of time  required  to 
change a chip  make LSI hardware  debugging slow and 
difficult. This  paper describes the  concepts  and  techniques of 
Boolean comparison  as embodied  in this methodology. 

Boolean comparison programs  may  be found as  early  as 
1965 in  unpublished program  documentation of the  system 
described in [ 5 ] .  However, little was  published until 1976 
and  thereafter [6-lo]. During development of Boolean 
comparison  for the  IBM 308 1, four  algorithms were  imple- 
mented.  Three,  while  very  capable,  were  unable  to 
completely analyze  the 3081 logic because of the  amounts of 
time  and  storage  required.  Some of these  algorithms were 
influenced by work on test  generation  and logic synthesis 
[ll-141. The  algorithms finally adopted because they 
handled  the 3081 logic are  the  Differential Boolean 

Analyzer  (DBA),  written by R. J. Bahnsen,  and  DBA  with 
Equivalent  Sets of Partials  (DBA/ESP), suggested by G .  L. 
Smith  and  implemented by Bahnsen.  DBA  and  DBA/ESP 
are described later in the  paper. 

Section 2 of the  paper provides an overview of Boolean 
comparison concepts  and  the verification  methodology. This 
is followed by a description of the process in which the 
various models, Boolean comparison,  and  results  analysis  are 
described. A  special  topics  section follows, including a 
discussion of algorithms,  relaxation of requirements,  and 
internal signals. 

2. Overview 

Boolean comparison concepts 
With  the methodology  used,  two logic design representations 
exist  which purportedly  describe  equivalent  sequential 
machines with the  same  state  assignments.  The  engineer 
defines a  one-to-one  correspondence between the  latches, 
between the  primary  inputs,  and between the  primary 
outputs of the two representations.  The Boolean comparison 
programs  then  determine  whether or not the  functions driv- 
ing each corresponding pair of latches or outputs in the two 
representations  are Boolean equivalent. If this equivalence is 
satisfied by a pair of representations, it follows that  the two 
machines described by the  representations  sequence in 
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exactly the  same way [ 151. If both machines  are placed in 
corresponding  initial states  and corresponding input  patterns 
are  applied  at  each clock interval,  then both machines pass 
through corresponding states  and  the  outputs  agree  at  each 
clock  interval. This conclusion is, of course,  dependent upon 
timing  assumptions  that  permit next states  to  be  determined 
from  the  time-independent  functions driving each  latch. 
Because the  IBM 3081 uses a  clocked  design and  timing 
constraints  are checked by a timing  analysis  program,  assur- 
ance  can  be given that  the  functions driving each  latch 
determine  the next state behavior. 

Boolean comparison  is  useful  in  design  verification if two 
design representations exist where  the first is known to 
function  correctly  and  the second is believed to  be function- 
ally  identical  to  the first. Boolean comparison verifies that 
the two representations  are in fact  equivalent  and  that  the 
second, therefore,  functions  correctly.  Of  course, Boolean 
comparison only proves that  the second representation is as 
good as  the first,  not better.  The  correctness of the first must 
be  established by other  techniques,  such  as  simulation or 
hardware  implementation. 

With  the methodology used on the  IBM 3081, Boolean 
comparison is performed  between detailed  hardware logic 
diagrams of the  machine  and  equivalent  higher level hard- 
ware flowcharts  which represent  the  same  machine.  The 
hardware flowcharts are a graphical  form of a hardware 
description language.  These flowcharts describe  the  opera- 
tion of the  hardware  at  each clock interval by describing  the 
logical  behavior of the  latches  and  outputs in terms of the 
input  and  latch values available a t  each clock interval. 
However, the  detailed  implementation of the intervening 
combinational logic is normally quite different from  that of 
the physically  realized machine. 

Hardware flowcharts  have  been  used as  an  integral  part of 
the  3081 design  process  because of the  many  advantages 
they offer for design  discipline, documentation,  and  commu- 
nication. Prior  to Boolean comparison, verification of the 
functional correspondence of the flowcharts  with the  hard- 
ware was either  done by manual  checks or by partial  checks 
obtained by simulation.  With Boolean comparison,  complete 
verification  of functional equivalence is achievable. 

0 Verification methodology 
The Boolean comparison  program  as  part of a logic verifica- 
tion system is shown  in Fig. 1. A hardware flowchart 
representation of the logic blocks and connections is entered 
into  the system. The engineer validates  the flowcharts via 
cycle simulation, which simulates  the flowchart logic a t  
clock intervals only; no attention is given to  the  timing of 
events  within  clock intervals [4]. Hardware logic is laid out 
to meet the specifications of the flowcharts. 
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Figure 1 Boolean comparison program. 

Flowcharts  and  hardware logic are converted by the 
model  builder into  separate  internal  storage models  consist- 
ing of connected Boolean primitives (e.g., NAND blocks). In 
the  case of the flowcharts,  a translator converts the flow- 
charts  into Boolean logic in such a way that  functional 
behavior is preserved. 

The  engineer now provides the  Signal  Correspondence 
Records  (SCR) list,  which  associates the  inputs,  outputs, 
and  latches of the flowcharts with  the  purportedly  function- 
ally identical  inputs,  outputs,  and  latches of the  hardware 
logic. By the  appropriate use of flags in a control field of the 
SCR,  the engineer indicates  the  latches  and  primary  outputs 
for which Boolean comparison is desired during  each run. 
(The  generation of the  SCR is basically  a manual process, 
although  programs  are  available  to  aid  the process.) 

A data  structure called  a segment is built by the  segment 
builder of Fig. 1 for  each S C R  entry which  is marked  for 
comparison. A segment  represents  all  the logic  which  drives 
the  output or latch in the flowchart internal  storage model 
plus all the logic which drives the corresponding output or 
net in the  hardware  internal  storage model  plus logic to 
perform  the comparison. 

Finally, Boolean comparison is performed on each of the 
segments. If the Boolean functions  are not equivalent, a  list 107 

IBM J.  RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982 GORDON L. SMITH ET AL. 



I 

I I 

SUM$=A-B; 

Figure 2 Hardware  flowchart for sample machine. 

Table 1 Facility declarations for sample machine. 

Facility name Dimension Type 

A 2 
clocked by SYSCLK$ 
On-over-off  triggers 

ADD$ 1 Input  signal 

AND$ 1 Input signal 

B 2 On-over-off triggers 
clocked by SYSCLKS 

BUSlS 2 Input signals 

BUS2$ 2 Output signals 

COMPARES 1 Input signal 

COMPL 1 On-over-off  trigger 
clocked by SYSCLKS 

COMPLS 1 Input  signal 

*DONTCARElS 1 Don't-care signal 

GTINBS 1 Input signal 

GTOUTAS 1 Input signal 

SUMS 2 Internal signals 

SYSCLKS 1 Input  clock  signal 

ZERODET 1 On-over-off  trigger 
clocked by SYSCLKS 

'Used in don't-care  string (see Fig. 9). 

t-3 ZERODETS 1 ; 

of input  and  latch  states  (patterns) which cause  output 
mismatches is provided. The engineer analyzes  the  errata  to 
pinpoint the  fault,  then  corrects  the  hardware design, the 
flowcharts, or the SCR, as  appropriate,  and  reruns. 

3. The process 

Hardware Powcharts 
Figure 2 contains a simple  hardware flowchart example 
which displays  the various  flowchart features.  The  example 
describes  a sample two-bit machine  (see  data flow in  Fig. 3)  
which adds,  subtracts, ANDs, and  compares for equality. 
Table 1, explained more fully later, is a list of all  the 
declared  inputs,  outputs,  and  triggers (which  correspond to 
latches in the  hardware) used in the flowcharts. These  are 
known as facilities. The dimension of a facility  indicates  the 
number of bits in the facility. Thus a trigger with  dimension 
2 represents  two  triggers. 

The flowcharts can  be viewed as a set of paths which all 
start  at a  common top point, e.g., block AI in  Fig. 2. (The 
various  types of blocks are explained  subsequently.) During 
each clock interval,  all  paths  are  traced in  parallel starting 
from  the  top of the flowcharts and  continuing down as  far as 
the decision blocks allow. If there is a path  from  the  top  to 
any given assignment block (e.g., block D5 of Fig. 2) for 
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which all decision  blocks (e.g., blocks B2 and C4) are 
appropriately satisfied during a clock interval,  then  all 
statements in that  assignment block are  executed. 

As can  be seen in the following text,  the  structure of 
hardware flowcharts,  which  includes branching  to one,  none, 
or many blocks, is different from  that of program flowcharts, 
which typically have  branching  to only one block. 

There  are five basic  structures in  flowcharts: 

e Decision blocks, which cause  one of two exits  from  the 
block to  be followed depending on whether a  condition is 
satisfied or not. The condition is specified by a relation 
between  a pair of expressions involving facilities and 
possibly constants. An example of a decision block is D3 of 
Fig. 2. If the condition indicated inside of the block is 
satisfied, then  the yes (Y) leg on the  right of the block is 
followed; otherwise, the no (N) leg on the  left of the block 
is followed. 

e Assignment blocks, which contain  one or more  statements 
that  set facilities (triggers or signals)  to  the value of 
facility  expressions. The facility  being  set appears  to  the 
left of the  assignment  operator (=). The facility  expres- 
sions can involve both logical and  arithmetic  operators. 
Blocks B3 and D5 in Fig. 2 are  examples of assignment 
blocks. 

e Multiple branching, by which the  entry point to  the 
flowcharts or either  exit of a  decision block may  branch  to 
one or many blocks (also, to no blocks  in the  case of a 
decision block exit).  Since  all  paths  are  traced in parallel, 
the  branches  emanating  from  any given point are consid- 
ered  as  members of an  unordered set. Paths  can  diverge or 
converge,  but  a path  may not  loop on itself. Multiple 
branching  occurs at  the  entry A1 and  at  the  right  side of 
block C2 in Fig. 2. The  path  AI, B2, C2, D4 and  the  path 
A l ,  B2, C4, D4 diverge  at block B2 and converge at  block 
D4. 

e Triggers, which are clocked facilities that  can only change 
value when a  clock  pulse occurs at  the  end of a clock 
interval. The  value  set  into a trigger  depends upon the  set 
and reset  conditions generated in  parallel during  that 
clock interval. Triggers correspond to  latches in the  hard- 
ware. 

It  can be seen from  Table 1 that six triggers  have been 
defined, all of which are  set by the  same clock, 
SYSCLK$. The implications of the definition of a trigger 
can  be seen  in the following: A path exists to block B3, 
which alters COMPL, and  another  to block C4, which 
tests COMPL. Since  the effect of the  assignment in block 
B3 does not take place until  all  paths have been 
completely processed in parallel  for a given clock interval, 

BUSI(0:l) 

A 
“ 

COMPLEMENT 

I 

BUSZ(O:I 
(? ,x, 

Figure 3 Data flow for sample machine. 

it follows that  the test in block C4 depends upon the value 
of COMPL at  the beginning of the clock interval . The 
assignment in block B3 can,  therefore, only  affect  tests 
made in the next or later clock intervals. 

Triggers  can  be defined to have  various set-reset proper- 
ties. The  triggers of the  example  are defined as on- 
over-off, implying that a trigger is set  to  the  value  one if 
there is  both  a set  and a  reset during  the  same clock 
interval  and  that  the  trigger  retains  its  value  from  the 
previous  clock interval unless there is an explicit set or 
reset during  this clock interval. The  equivalent logic used 
for an on-over-off trigger is shown in Fig.  4(a). 

0 Signals, which are facilities that  change value immedi- 
ately upon  execution of assignment blocks containing 
assignments  to  the signals. All  signals  are reset to  zero a t  
the beginning of each clock interval. During  any clock 
interval, a  signal can be set to  the  value  one by assignment 
statements  for  that  signal.  Assignment  statements which 
set a signal to zero have no effect on the  signal value. Thus 
the  value of a  signal at  the  end of a  clock interval is zero 
unless a t  least  one set-to-one has  occurred.  Any decision 
block that  refers  to a signal is not  executed  until  all 
assignment  statements in parallel  paths which can affect 
that  signal have been executed.  There are obvious 
constraints upon the  order in which signals  are used in 
assignment  and decision blocks if deadlocks  are  to be 
avoided. As  an  example of signal referencing, the  exit 
chosen  for decision block D3 depends upon the  results of 
assignment block D4 in the  same clock interval. 109 
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Figure 4 Expansion  rules for storage devices. (a) On-over-off  trigger (flowcharts); (b) double  latch (hardware). 

Signals  are used  for primary  inputs  and  primary  outputs. with dotting. A dot (block outputs wired together)  performs 
Signals  are  also used to serve as  intermediate values an AND function  (in positive logic terms) or a -OR 
during a  clock  interval, often resulting  in  simplification of function (in  negative logic terms).  The six triggers of the 
the  flowcharts.  They  are  then known as  “internal flowcharts  have  been implemented  with seven double  latch 
signals.” devices Ll-L2, where  the first latch is  driven by L1 

Table 1 defines nine  input signals,  two internal signals, 
CLOCK and  the second latch is driven by L2 CLOCK. All 

and two output signals. (A don’t-care signal, which is 
data  ports of a double  latch  are located externally  to  the 

discussed under  “Relaxation of requirements,”  also double  latch,  are  dotted  together,  and  are fed into  the first 

appears in the  table.) All signal names  end in $ by 
latch via pin A. The  internal logic of a double  latch is  shown 

convention. in Fig.  4(b).  This  double  latch is  a  simplification of the  shift 
register  latch used  in the 308 1. 

Hardware 
A hardware  implementation of the flowchart of Fig. 2 is 
shown in Figs. 5(a)  and  5(b). A number of implementation 
errors have  been  intentionally introduced  into  the design. It 
will be  the  function of the  sample Boolean comparison run, 
described  later, to detect  the  errors. 

Signal correspondence and segmentation 
The SCR list (Table 2) is a file created by the engineer to 
establish correspondences  between  facilities of the flow- 
charts  and  nets of the  hardware.  Facility  names  are  printed 
with  a four-digit index  in order  to  identify  each bit  within a 
multi-bit facility. These correspondences must be created for 

The logic of the  sample  machine is implemented in a all  primary  inputs,  primary  outputs,  and  latches;  but  they 
110 technology  consisting of AND-INVERT  (NAND) circuits  may also be  created for internal signals. 
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Figure 6 Basic segment structure. 

Table 2 Signal Correspondence Records (SCR) for sample 
machine. 

Facility name 

ADDSOOOO 
ADDfOOOO 
ANDSOOOO 
AOOOO 
AOOOl 
BUSIS0000 
BUSlSOOOl 
BUS250000 
BUS2S0001 
BOOOO 
BOOOl 
COMPARESOOOO 
COMPL50000 
COMPLOOOO 
GTINBSOOOO 
GTOUTASOOOO 
SYSCLKSOOOO 
SYSCLKSOOOO 
SYSCLKSOOOO 
TIE1 
TIE2 
TIE3 
ZERODETOOOO 

Net name 

+XHIOlWW4 

+XHlOlWWS 
-XHIOIWW7 

-XHIOIGCA 
-XHlOlGKA 
+XHIOIWV3 
+XHIOI WW9 
-XH102CAl 
-XHlO2CJI 
-XHIOIGHA 
-XHIOIGPA 
-XHIOlWWI 
-XHlOlWX2 
-XHIOIETA 
+XHIOIWW2 
+XH102WX4 
+XHIOlWWI 

+XHlOIWX3 
+XHIOlWW6 

-XHIOlWWO 

-XHlOlWXl 
-XH102WW9 
-XH102GCA 

Con- Don’t  care 
trol facility name 

I 
1 
0 
S DONTCARElSOOOO 

Primary inputs of the  hardware which are either unused 
(e.g., XHlOIWW6) or not  modeled in the flowcharts (e.g., 
XH102WW9 and XHIOIWXI) are set to appropriate 
constant values. These constant values are specified in the 
SCR by inserting a zero or a one in the control field of an 
SCR entry. The constant in the control field establishes the 
value of the facility specified  in the SCR entry. The sign in 
front of a net must be considered when ascertaining the 
effect of a constant control field value on a hardware net. 

The net XH102WW9, which  is  provided for hardware 
testing purposes,  is excluded from the flowcharts because 
entry of test logic  in the flowcharts compromises their 
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readability. This omission is perfectly legitimate if means 
exist  which are not dependent upon  Boolean comparison for 
verifying test logic. In the case of the 3081, test logic  is 
validated by programs which  verify conformance to a set of 
design rules. 

The sample machine used  in this paper requires two  clocks 
(L1 CLOCK and L2 CLOCK) to drive the double latches, 
as is the case in the 3081. Since the functions of the two 
latches in each double latch device are identical except for 
an offset  in time, it is  possible to represent a double latch by 
a single trigger driven by one clock (SYSCLK$) in the 
flowcharts. Since all triggers in the sample machine flow- 
charts are driven by the same clock, it is  not necessary to 
explicitly mention clocks  in the flowcharts. For purposes of 
Boolean comparison, the L1 latch is compared to the trigger. 
The effect of the L2 latch is eliminated by tying the L2 clock 
(at XHlOl  WX1) to the active state, allowing information to 
pass through the L2 latch. In the case of the 3081, this 
practice is  followed generally because the L2 latch design is 
adequately checked out by test generation programs. 

A segment (Fig. 6) is built by the segment builder of Fig. 
1 for each selected SCR entry. A segment consists of all 
logic  which drives the facility in the internal storage model 
for the flowcharts, all logic  which drives the net in the 
internal storage model for the hardware, and logic that 
produces the inverse of an equivalence relationship between 
the facility and the net. The equivalence relationship is 
(facility output = net output) if the net sign  in the corre- 
sponding SCR entry is  positive and (facility output # net 
output) if the net  sign is negative. The “backward” search 
for driving logic  does  not trace through facilities or nets in 
the SCR, but it does continue tracing until all logic  blocks in 
the segment are driven by other logic  blocks  in the segment 
or by facilities or nets in the SCR. The implications of any 
inputs with constant values are carried as far forward as 
possible  in the segment. Any block  which has a constant 
value as  a result is dropped from the segment. If the 
backward search either reaches a primary input not  in the 
SCR or detects a loop, the segment is invalid and is  not 
subjected to Boolean comparison. 

Boolean comparison runs for the 3081 are made for 
individual hardware modules of approximately 30 000 
circuits each; therefore, the SCRs are structured on hard- 
ware module boundaries. 

Boolean comparison 
For each segment, the Boolean comparison algorithm seeks 
patterns for the segment inputs which  yield the value one at 
the segment output. The values applied to the facility inputs 
and the net inputs of the segment are constrained by the 
relationship (facility input = net input) if the SCR net sign 
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is  positive and the relationship (facility input # net input) if 
I the sign is negative. In  effect, the facility inputs are tied to 
, the corresponding net inputs. 

Any pattern producing a segment output value of one is a 
counterexample which  proves that  the two sides of the 
segment are not equivalent. All counterexamples are listed 
up to an engineer-specified maximum number. In most 
counterexamples, many of the inputs are marked with-to 
indicate that the value of this input is irrelevant to the 
counterexample. If  no counterexamples are found, the two 
sides are equivalent. 

Table  3 shows the Boolean  comparison results for the 
sample machine. Model 1 names refer to flowchart facilities 
and model 2 names refer to hardware net names. Segments 
A0000, BUS2S0001,  B0001, and ZERODETOOOO  show 
Boolean equivalence. Segment BOOOO is  not  shown because 
lack of a primary input (net XHlOlWW3) in the  SCR 
precluded segment building. 

Segments AOOOl, BUS2$0000, and COMPLOOOO are all 
nonequivalent. Counterexamples are listed for each of these 
segments. Counterexamples include the values of the net and 
facility outputs and the values of the inputs. Any input 
which exists in the flowchart side of the segment but not in 
the hardware side has the  hardware net marked with an 
asterisk, and vice versa. 

OResults analysis 
The first step of results analysis is to eliminate any SCR 
errors that preclude segment building (e.g., BOOOO). This is 
followed  by processing of  Boolean mismatches. A mismatch 
between the hardware inputs and flowchart inputs of a 
segment-indicated by asterisks in the result-is often the 
source of a Boolean mismatch. Analysis of the results for 
segment BUS2S0000 leads to the conclusion that net 
XHlOlWW2 was erroneously used at block XHl02CA 
instead of net XH102WX4. It occasionally happens, howev- 
er, that a mismatched input has no effect on the value of the 
segment output  and, therefore, presents no problem. In the 
segment for A0001, COMPL is an input which  does  not 
appear in the hardware for that segment because AOOOl is 
actually independent of the value of COMPL. Therefore, the 
asterisk in the results for AOOOl does  not represent a 
problem. 

After analysis of any input mismatches of a segment is 
complete, the counterexamples are examined. If a counter- 
example represents a state which is significant to the 
sequencing of the machine, then a logic change to the 
hardware is required; otherwise, a change is  made to the 
flowcharts as described in the subsequent section “Relaxa- 
tion of requirements.” The counterexamples for segments 
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Table 3 Boolean Comparison  results for sample  machine. 
THE FOLLOWING ARE EQUIVALENT 

MODEL I 
MODEL 2 

OUTPUT- AWOO 
OUTPUT-  -XHIOIGCA 

THE FOLLOWING ARE NOT EQUIVALENT 
MODEL I 
MODEL 2 

OUTPUT - A m 1  
OUTPUT-  -XHIOIGKA 

1/0 MODEL1 
0 AMMI 
0 -XHIOIGKA 

MODEL 2 

I ADDSOWO 
I ANDSWOO 
I A W I  

I COMPARESOMK) 
I B w o l  

I COMPLWOO 
I SYSCLKSMHK) 

-XHIOIWW7 
+XHIOIWWS 
-XHIOIGKA 
-XHIOIGPA 

XHlOlETA 
-XHIQIWWI 

-XHIOIWWO 
THE FOLLOWING ARE NOT EQUIVALENT 

MODEL I 
MODEL 2 

OUTPUT - BUSZSMHK) 
OUTPUT - -XHIO2CA I 

1/0 MODEL1 MODEL 2 
0 BUS2swOo 
0 -XH102CA I 

I AWOO 
1 *GTINBSMW 

-XHIOIGCA 
XHlOlWW2 

I GTOUTASWOO * XH102WX4 
THE FOLLOWING ARE EQUIVALENT 

MODEL I 
MODEL 2 

OUTPUT - BUS2SwOI 
OUTPUT- -XHIOZCJI 

THE FOLLOWING ARE EQUIVALENT 
MODEL I OUTPUT - BOW1 
MODEL 2 OUTPUT - -XHIOIGPA 

THE FOLLOWING ARE NOT EQUIVALENT 
MODEL I OUTPUT - COMPLOWO 
MODEL 2 OUTPUT - -XHlOlETA 

110 MODEL I MODEL 2 
0 COMPLWOO 
0 -XHIOIETA 
I COMPLSWOO 
I COMPLWOO -XHlOlETA 

-XHlOlWX2 

I GTINBSMHK) 
I SYSCLKSMHK) 

+XHIOIWW2 
-XHIOIWWO 

THE FOLLOWING ARE EQUIVALENT 
MODEL I 
MODEL 2 

OUTPUT - 
DON’TCARE MODEL OUTPUT - OUTPUT - 

COUNTEREXAMPLES I TO6 
01101 I 
01101 I 
1 1 1 I I  I 

ow1 I I 
011100 

-10-1 0 
I I I I I  I 

COUNTEREXAMPLES I TO 2 
10 
10 
I 1  
01 
10 

COUNTEREXAMPLES I TO2 

01 
01 

01 

-XH102GCA 
ZERODETOOW 

DONTCAREISMHK) 

COMPLOOOO and AOOOl can be eliminated by inverting the 
signal phase at pin XHlOlDVB and by using the input 
rather  than  the  output of block XH102CQ to drive pin 
XHlOlFMA. Experience on the 3081 has shown that  the 
explicit counterexamples provided make it easy to find the 
cause of problems. 

4. Special topics 

Boolean comparison algorithms 
Both  DBA and DBA/ESP use iterative application of a 
sum-of-products expansion theorem [ 161 to  the function of a 
segment. The algorithm proceeds by assigning constant 
values (zero or one) to inputs of the segment [see Fig. 7(a)] 
in a manner which produces a tree where the nodes  consist  of 
functions [see Fig. 7(b)]. The top node of the  tree is the 
segment function. The bottom nodes are constant functions 
of either zero or one. The other nodes contain intermediate 
reduced functions. Each node represents a simple reduction 
of the node immediately above it.  At each node, the algo- 
rithm chooses heuristically one input variable of the function 
at  that node for use in reduction of the function. Each node 113 
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Hardware model 

/. 

I d e? NAND (A) 

F 1 1  
H O O  
A - 0  
B O 1  
c 1 1  

( C )  

Figure 7 Examples of differential  Boolean  analyzer (DBA): (a) 
segment model; (b) tree; (c) counterexamples. 

has two branches leaving it,  one in  which the chosen input is 
assigned the  value  zero  and  one in  which the chosen input 
variable is assigned the  value one. 

A  reduction  is  accomplished by carrying  out  the  immedi- 
ate implications of an  assignment of zero  or  one  to  the 
chosen input  variable.  For  example,  any A N D  in the  func- 
tion is replaced by the  value  zero if one of the legs of the 
AND acquires  the  value zero, or by the  value  one if all of the 
legs of the  AND  acquire  the  value one. When  the  output of 
any primitive function  (e.g.,  AND, OR, N )  acquires a value 
of one  or zero, the  reduction process continues by carrying 
out  the  immediate implications of this  assignment.  DBA/ 
ESP  additionally recognizes whether  any  intermediate func- 
tion is identical  to  any  intermediate  function previously 
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processed for  that  segment; if so, the  algorithm backs up 
immediately.  Each  bottom node  which contains  the  constant 
function  one  represents a counterexample.  The  counterex- 
ample consists of the values  assigned to  the  input  variables 
[see Fig.  7(c)]  along  the  path  from  the  top node to  the 
particular  bottom node. Each  counterexample also includes 
the values of the  inputs  to  the equivalence relationship [F 
and H in Fig. 7(a)]. 

The  practical  nature of the  algorithms is important.  Since 
the Boolean comparison  problem is known to  be  NP- 
complete [ 171, one  might  anticipate  that execution times 
would increase exponentially  with segment size.  However, 
since engineers reduce complexity by imposing some  degree 
of orderliness  upon all  areas of the logic  in order  to  achieve a 
comprehensible design, there is  usually sufficient regularity 
for the  algorithms  to  perform efficiently. A manual assist to 
input selection is provided for those few segments  where  the 
heuristic  algorithms  for selection of inputs  are not efficient. 

Relaxation of requirements 
The Boolean comparison  program  can  handle  certain  cases 
where  the  requirements described in the section "Boolean 
comparison concepts" are  relaxed. As previously shown, 
SCR entries, usually unused  nets or test logic in the  hard- 
ware,  may be tied to  one  or zero. Also, any individual  facility 
may be modeled by multiple  nets in the  hardware  for 
powering  purposes. 

An  additional  technique is provided for handling  cases 
where  the flowchart and  hardware logic for a segment differ 
only for  machine  states which are  unreachable  during proper 
operation of the  machine.  If a counterexample  generated by 
the  system for  a given segment  represents  an  unreachable 
state, two  options are  available  to  the engineer. The first is to 
change  the flowcharts (or even the  hardware) so that  the 
flowcharts agree  with  the  hardware.  This is the  preferred 
method  because it minimizes the risk of error when future 
design changes  are  made.  The second  option is to define  a 
"don't-care'' signal  in the flowcharts  which is set by condi- 
tions that define unreachable  states of the  machine. A 
don't-care  signal is  associated  with  a segment by entry of the 
don't-care signal name in the  don't-care field of the SCR 
entry.  Usually,  don't-care signals are only defined as needed 
in order  to  deal with specific mismatches  for  unreachable 
states. 

The  segment  (Fig. 8) generated when there is a  don't-care 
is expanded  to  include  all logic obtained by a backtrace  from 
the  don't-care signal  in the  internal flowchart  model.  Logic 
is also added which  forces the  segment  output  to  zero if the 
don't-care  output  assumes  the  value one. Therefore, no 
counterexample  can  be  generated which falls within  a  don't 
care. 
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As an example, close inspection  of the  set conditions for 
the  ZERODET facility  in the  sample  machine reveals that 
ZERODET is set  to 1 or 0 depending on whether  or not 
SUM$=O in the  hardware  and is left  unchanged in the 
flowcharts if ADD$- 1 and  COMPARE$= 1.  However, if it 
is stated  that  ADD$  and  COMPARE$  are never activated 
at  the  same  time in the real machine,  then  such  counterex- 
amples  represent  unreachable  machine  states.  The  preferred 
technique for eliminating  the  counterexample is a change  to 
the flowchart (Fig. 2) which eliminates  the  branch  from 
block C 2  to block D3,  introduces a  second  copy of block C2 
at  another location, C2’, and establishes the  path Al-  
C2”D3. 

For purposes of the  example  assume  that  the  alternative 
technique of a  don’t-care  signal is used. Figure 9 shows 
appropriate  don’t-care conditions  in  flowchart form for 
setting  the new signal  DONTCAREl$.  DONTCAREl$ is 
entered in the  don’t-care field of the  SCR for the facility 
ZERODET  (Table  2).  It  can be seen from  Table 3 that no 
counterexamples  are produced for  ZERODET  although  the 
flowcharts and  hardware  do not agree precisely  in the 
Boolean sense. 

By various techniques,  don’t-care  signals  can  be incorpo- 
rated  into  the cycle simulation  runs  to  assure  that  there  has 
not been  overspecification of the don’t-cares. In  the  case of 
the 308 1, this  has been done  with  some  but  not  all don’t- 
cares. 

Experience  on the  3081  has  demonstrated  that  it is easy  to 
keep the  number of don’t-cares to a  very low level if care is 
taken  to keep the  hardware  and flowcharts  in step  as  each is 
created. If hardware is designed with  little  regard for the 
details of the flowcharts, then  many don’t-cares will be 
required. 

Internal signals 
As previously mentioned,  the  SCR  may  contain correspon- 
dences between internal signals and  intermediate  nets of the 
hardware. If the logic producing the  internal  signal  shares 
inputs with the logic driven by the  internal  signal,  the 
internal signal may not be  able  to  take on  both the  value  zero 
and  the value one  independently of the values  assigned to  the 
common inputs. A don’t-care  may  then  be necessary for  the 
driven segment in order  to  exclude  errata  for impossible 
patterns of the  common  inputs  and  internal signal.  Conse- 
quently,  internal  signals  are  entered in the  SCR only where 
the need to improve performance or to  reduce  the complexity 
of the Boolean comparison  output provides clear justifica- 
tion. 

5. Concluding remarks 
Boolean comparison has been successfully  used  on the  IBM 
3081;  all of the  approximately 500 000 circuits  subjected  to 

p- . Don’t-care facility 

I 
Net I 
inputs 

Figure 8 Structure of segment with don’t-care. 

Y Fig. 2 

COMPARE$= I? m 
I“--- 

r DONTCAREI$=I; 7 u 
Figure 9 Don’t-care flowchart for sample machine. 

Boolean comparison  were brought  into  agreement  with  the 
flowcharts. While  many  factors  contributed  to  this success, 
the efficiency of the  algorithms  and  the completeness of the 
process must  be identified as being the most important. 
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