
Gordon L. Smith
Ralph J. Bahnsen
Harry Halliwell

Boolean Comparison of Hardware and Flowcharts

Boolean comparison is a design verification technique in which two logic networks are compared for functional equivalence
using analysis rather than simulation. Boolean comparison was used on the IBM 3081 project to establish that hardwareflow-
charts and the detailed hardware logic design were functionally equivalent. Hardware flowcharts are a graphic form of a
hardware description language which describes the logical behavior of the machine in terms of the inputs, outputs, and
latches. The logical correctness of the hardware flowcharts was previously established via cycle simulation. The concepts and
techniques of Boolean comparison as used on the IBM 3081 project are described.

1. Introduction
Boolean comparison is one element of a new hardware design
verification methodology that was used on the IBM 3081
project. The entire methodology involves the use of hardware
flowcharts, cycle simulation, and Boolean comparison for
logic verification, as well as a timing analysis program for
timing verification [1-41. The methodology has been
created to meet the need for an effective, economical, and
timely means of verifying the correctness of clocked hard-
ware in the LSI environment. The need exists because
hardware debugging is no longer a viable technique for
locating a large number of design problems; both the lack of
probe points and the large amount of time required to
change a chip make LSI hardware debugging slow and
difficult. This paper describes the concepts and techniques of
Boolean comparison as embodied in this methodology.

Boolean comparison programs may be found as early as
1965 in unpublished program documentation of the system
described in [5] . However, little was published until 1976
and thereafter [6-lo]. During development of Boolean
comparison for the IBM 308 1, four algorithms were imple-
mented. Three, while very capable, were unable to
completely analyze the 3081 logic because of the amounts of
time and storage required. Some of these algorithms were
influenced by work on test generation and logic synthesis
[ll-141. The algorithms finally adopted because they
handled the 3081 logic are the Differential Boolean

Analyzer (DBA), written by R. J. Bahnsen, and DBA with
Equivalent Sets of Partials (DBA/ESP), suggested by G . L.
Smith and implemented by Bahnsen. DBA and DBA/ESP
are described later in the paper.

Section 2 of the paper provides an overview of Boolean
comparison concepts and the verification methodology. This
is followed by a description of the process in which the
various models, Boolean comparison, and results analysis are
described. A special topics section follows, including a
discussion of algorithms, relaxation of requirements, and
internal signals.

2. Overview

Boolean comparison concepts
With the methodology used, two logic design representations
exist which purportedly describe equivalent sequential
machines with the same state assignments. The engineer
defines a one-to-one correspondence between the latches,
between the primary inputs, and between the primary
outputs of the two representations. The Boolean comparison
programs then determine whether or not the functions driv-
ing each corresponding pair of latches or outputs in the two
representations are Boolean equivalent. If this equivalence is
satisfied by a pair of representations, it follows that the two
machines described by the representations sequence in

Copyright 1982 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and

106
abstract may be used without further permission in computer-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor.

GORDON L. SMITH ET AL. IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982

exactly the same way [151. If both machines are placed in
corresponding initial states and corresponding input patterns
are applied at each clock interval, then both machines pass
through corresponding states and the outputs agree at each
clock interval. This conclusion is, of course, dependent upon
timing assumptions that permit next states to be determined
from the time-independent functions driving each latch.
Because the IBM 3081 uses a clocked design and timing
constraints are checked by a timing analysis program, assur-
ance can be given that the functions driving each latch
determine the next state behavior.

Boolean comparison is useful in design verification if two
design representations exist where the first is known to
function correctly and the second is believed to be function-
ally identical to the first. Boolean comparison verifies that
the two representations are in fact equivalent and that the
second, therefore, functions correctly. Of course, Boolean
comparison only proves that the second representation is as
good as the first, not better. The correctness of the first must
be established by other techniques, such as simulation or
hardware implementation.

With the methodology used on the IBM 3081, Boolean
comparison is performed between detailed hardware logic
diagrams of the machine and equivalent higher level hard-
ware flowcharts which represent the same machine. The
hardware flowcharts are a graphical form of a hardware
description language. These flowcharts describe the opera-
tion of the hardware at each clock interval by describing the
logical behavior of the latches and outputs in terms of the
input and latch values available a t each clock interval.
However, the detailed implementation of the intervening
combinational logic is normally quite different from that of
the physically realized machine.

Hardware flowcharts have been used as an integral part of
the 3081 design process because of the many advantages
they offer for design discipline, documentation, and commu-
nication. Prior to Boolean comparison, verification of the
functional correspondence of the flowcharts with the hard-
ware was either done by manual checks or by partial checks
obtained by simulation. With Boolean comparison, complete
verification of functional equivalence is achievable.

0 Verification methodology
The Boolean comparison program as part of a logic verifica-
tion system is shown in Fig. 1. A hardware flowchart
representation of the logic blocks and connections is entered
into the system. The engineer validates the flowcharts via
cycle simulation, which simulates the flowchart logic a t
clock intervals only; no attention is given to the timing of
events within clock intervals [4]. Hardware logic is laid out
to meet the specifications of the flowcharts.

""-

1 w
Interface Interface

t I

Model builder

4 + '
Internal storage Internal storage
model for the
flowcharts

model for the
hardware

1 1
Segment builder

Comparison
results

Figure 1 Boolean comparison program.

Flowcharts and hardware logic are converted by the
model builder into separate internal storage models consist-
ing of connected Boolean primitives (e.g., NAND blocks). In
the case of the flowcharts, a translator converts the flow-
charts into Boolean logic in such a way that functional
behavior is preserved.

The engineer now provides the Signal Correspondence
Records (SCR) list, which associates the inputs, outputs,
and latches of the flowcharts with the purportedly function-
ally identical inputs, outputs, and latches of the hardware
logic. By the appropriate use of flags in a control field of the
SCR, the engineer indicates the latches and primary outputs
for which Boolean comparison is desired during each run.
(The generation of the SCR is basically a manual process,
although programs are available to aid the process.)

A data structure called a segment is built by the segment
builder of Fig. 1 for each S C R entry which is marked for
comparison. A segment represents all the logic which drives
the output or latch in the flowchart internal storage model
plus all the logic which drives the corresponding output or
net in the hardware internal storage model plus logic to
perform the comparison.

Finally, Boolean comparison is performed on each of the
segments. If the Boolean functions are not equivalent, a list 107

IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982 GORDON L. SMITH ET AL.

I

I I

SUM$=A-B;

Figure 2 Hardware flowchart for sample machine.

Table 1 Facility declarations for sample machine.

Facility name Dimension Type

A 2
clocked by SYSCLK$
On-over-off triggers

ADD$ 1 Input signal

AND$ 1 Input signal

B 2 On-over-off triggers
clocked by SYSCLKS

BUSlS 2 Input signals

BUS2$ 2 Output signals

COMPARES 1 Input signal

COMPL 1 On-over-off trigger
clocked by SYSCLKS

COMPLS 1 Input signal

*DONTCARElS 1 Don't-care signal

GTINBS 1 Input signal

GTOUTAS 1 Input signal

SUMS 2 Internal signals

SYSCLKS 1 Input clock signal

ZERODET 1 On-over-off trigger
clocked by SYSCLKS

'Used in don't-care string (see Fig. 9).

t-3 ZERODETS 1 ;

of input and latch states (patterns) which cause output
mismatches is provided. The engineer analyzes the errata to
pinpoint the fault, then corrects the hardware design, the
flowcharts, or the SCR, as appropriate, and reruns.

3. The process

Hardware Powcharts
Figure 2 contains a simple hardware flowchart example
which displays the various flowchart features. The example
describes a sample two-bit machine (see data flow in Fig. 3)
which adds, subtracts, ANDs, and compares for equality.
Table 1, explained more fully later, is a list of all the
declared inputs, outputs, and triggers (which correspond to
latches in the hardware) used in the flowcharts. These are
known as facilities. The dimension of a facility indicates the
number of bits in the facility. Thus a trigger with dimension
2 represents two triggers.

The flowcharts can be viewed as a set of paths which all
start at a common top point, e.g., block AI in Fig. 2. (The
various types of blocks are explained subsequently.) During
each clock interval, all paths are traced in parallel starting
from the top of the flowcharts and continuing down as far as
the decision blocks allow. If there is a path from the top to
any given assignment block (e.g., block D5 of Fig. 2) for

I GORDON L. SMITH ET AL. IBM J. RES. DEVELOP. VOL. 26 NO. I JANUARY 1982

which all decision blocks (e.g., blocks B2 and C4) are
appropriately satisfied during a clock interval, then all
statements in that assignment block are executed.

As can be seen in the following text, the structure of
hardware flowcharts, which includes branching to one, none,
or many blocks, is different from that of program flowcharts,
which typically have branching to only one block.

There are five basic structures in flowcharts:

e Decision blocks, which cause one of two exits from the
block to be followed depending on whether a condition is
satisfied or not. The condition is specified by a relation
between a pair of expressions involving facilities and
possibly constants. An example of a decision block is D3 of
Fig. 2. If the condition indicated inside of the block is
satisfied, then the yes (Y) leg on the right of the block is
followed; otherwise, the no (N) leg on the left of the block
is followed.

e Assignment blocks, which contain one or more statements
that set facilities (triggers or signals) to the value of
facility expressions. The facility being set appears to the
left of the assignment operator (=). The facility expres-
sions can involve both logical and arithmetic operators.
Blocks B3 and D5 in Fig. 2 are examples of assignment
blocks.

e Multiple branching, by which the entry point to the
flowcharts or either exit of a decision block may branch to
one or many blocks (also, to no blocks in the case of a
decision block exit). Since all paths are traced in parallel,
the branches emanating from any given point are consid-
ered as members of an unordered set. Paths can diverge or
converge, but a path may not loop on itself. Multiple
branching occurs at the entry A1 and at the right side of
block C2 in Fig. 2. The path AI, B2, C2, D4 and the path
A l , B2, C4, D4 diverge at block B2 and converge at block
D4.

e Triggers, which are clocked facilities that can only change
value when a clock pulse occurs at the end of a clock
interval. The value set into a trigger depends upon the set
and reset conditions generated in parallel during that
clock interval. Triggers correspond to latches in the hard-
ware.

It can be seen from Table 1 that six triggers have been
defined, all of which are set by the same clock,
SYSCLK$. The implications of the definition of a trigger
can be seen in the following: A path exists to block B3,
which alters COMPL, and another to block C4, which
tests COMPL. Since the effect of the assignment in block
B3 does not take place until all paths have been
completely processed in parallel for a given clock interval,

BUSI(0:l)

A
“

COMPLEMENT

I

BUSZ(O:I
(? ,x,

Figure 3 Data flow for sample machine.

it follows that the test in block C4 depends upon the value
of COMPL at the beginning of the clock interval . The
assignment in block B3 can, therefore, only affect tests
made in the next or later clock intervals.

Triggers can be defined to have various set-reset proper-
ties. The triggers of the example are defined as on-
over-off, implying that a trigger is set to the value one if
there is both a set and a reset during the same clock
interval and that the trigger retains its value from the
previous clock interval unless there is an explicit set or
reset during this clock interval. The equivalent logic used
for an on-over-off trigger is shown in Fig. 4(a).

0 Signals, which are facilities that change value immedi-
ately upon execution of assignment blocks containing
assignments to the signals. All signals are reset to zero a t
the beginning of each clock interval. During any clock
interval, a signal can be set to the value one by assignment
statements for that signal. Assignment statements which
set a signal to zero have no effect on the signal value. Thus
the value of a signal at the end of a clock interval is zero
unless a t least one set-to-one has occurred. Any decision
block that refers to a signal is not executed until all
assignment statements in parallel paths which can affect
that signal have been executed. There are obvious
constraints upon the order in which signals are used in
assignment and decision blocks if deadlocks are to be
avoided. As an example of signal referencing, the exit
chosen for decision block D3 depends upon the results of
assignment block D4 in the same clock interval. 109

GORDON L. SMITH ET AL. IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982

”SET 1 - NAND
(a)

SCRPOlNT (+)-

NAND
“SET n -

-RESET 1 - ~ NAND - +CLOCK- NAND
J, v - e

-RESET m - -CLOCK- NAND
~

I I
L1 L2

*NET IS NAMED BY EXTERNAL NET ATTACHED TO PIN A
**UNUSED IN BOOLEAN COMPARISON OF SAMPLE MACHINE BECAUSE L2 CLK IS TIED ACTIVE

Figure 4 Expansion rules for storage devices. (a) On-over-off trigger (flowcharts); (b) double latch (hardware).

Signals are used for primary inputs and primary outputs. with dotting. A dot (block outputs wired together) performs
Signals are also used to serve as intermediate values an AND function (in positive logic terms) or a -OR
during a clock interval, often resulting in simplification of function (in negative logic terms). The six triggers of the
the flowcharts. They are then known as “internal flowcharts have been implemented with seven double latch
signals.” devices Ll-L2, where the first latch is driven by L1

Table 1 defines nine input signals, two internal signals,
CLOCK and the second latch is driven by L2 CLOCK. All

and two output signals. (A don’t-care signal, which is
data ports of a double latch are located externally to the

discussed under “Relaxation of requirements,” also double latch, are dotted together, and are fed into the first

appears in the table.) All signal names end in $ by
latch via pin A. The internal logic of a double latch is shown

convention. in Fig. 4(b). This double latch is a simplification of the shift
register latch used in the 308 1.

Hardware
A hardware implementation of the flowchart of Fig. 2 is
shown in Figs. 5(a) and 5(b). A number of implementation
errors have been intentionally introduced into the design. It
will be the function of the sample Boolean comparison run,
described later, to detect the errors.

Signal correspondence and segmentation
The SCR list (Table 2) is a file created by the engineer to
establish correspondences between facilities of the flow-
charts and nets of the hardware. Facility names are printed
with a four-digit index in order to identify each bit within a
multi-bit facility. These correspondences must be created for

The logic of the sample machine is implemented in a all primary inputs, primary outputs, and latches; but they
110 technology consisting of AND-INVERT (NAND) circuits may also be created for internal signals.

1 GORDON L. SMITH ET AL. IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982

XHIOIWW?+CATEBUSITOB-

XHIIIIWW.? +BUS I B I T 0

XHIIIZCOI -SUM 1

XHII)IWWS+ANDOP
XHlOlWWIl-COMPAREOP-
XHIOIWW7-ADDOP

X H l n l W w n - L I CLOCK

XHIOIWX?-COMPI.$
XHIOIWX.? +LI CI-OCK
XHIOIWW9+BUS I BIT I

XHIOIWWO+UNUStD
XHlOlWXl -L?C'LOCK

XHIO?+AOOOI- XHlOlGKl
X H I O 2 - A O I I 0 1 ~ X H I O I G K ?

L ? C L K E

XHIII? +COMPLIMENT- XHlOlGUl

XH102

XHIIIIGCI fAOOIH1
XHlOlGHl +BOOol~
XHIOICQl +TRUE
XHIOI\VW?+CAT

XH1111GH?--HIlOO0

-BUS?BITO - XHI(lZCA1

XHII)IGCZ-AOIIOII
XHIOI +SUMO-XHIO?EFI

XHlOlGUl +COMPI- +ZF.RODET - XHIOZGCI
XHIOIWWO-LI CLO

XHIIIIGKI +A0001

HlOl "SUM I - XHlO2COl
-BUS?BITI - XHIO?CII

XHIOIGP2-Bll001

Net
inputs

Equivalence
relationship

J-4
I Segment

Ties “L(L

I

[q Net

Figure 6 Basic segment structure.

Table 2 Signal Correspondence Records (SCR) for sample
machine.

Facility name

ADDSOOOO
ADDfOOOO
ANDSOOOO
AOOOO
AOOOl
BUSIS0000
BUSlSOOOl
BUS250000
BUS2S0001
BOOOO
BOOOl
COMPARESOOOO
COMPL50000
COMPLOOOO
GTINBSOOOO
GTOUTASOOOO
SYSCLKSOOOO
SYSCLKSOOOO
SYSCLKSOOOO
TIE1
TIE2
TIE3
ZERODETOOOO

Net name

+XHIOlWW4

+XHlOlWWS
-XHIOIWW7

-XHIOIGCA
-XHlOlGKA
+XHIOIWV3
+XHIOI WW9
-XH102CAl
-XHlO2CJI
-XHIOIGHA
-XHIOIGPA
-XHIOlWWI
-XHlOlWX2
-XHIOIETA
+XHIOIWW2
+XH102WX4
+XHIOlWWI

+XHlOIWX3
+XHIOlWW6

-XHIOlWWO

-XHlOlWXl
-XH102WW9
-XH102GCA

Con- Don’t care
trol facility name

I
1
0
S DONTCARElSOOOO

Primary inputs of the hardware which are either unused
(e.g., XHlOIWW6) or not modeled in the flowcharts (e.g.,
XH102WW9 and XHIOIWXI) are set to appropriate
constant values. These constant values are specified in the
SCR by inserting a zero or a one in the control field of an
SCR entry. The constant in the control field establishes the
value of the facility specified in the SCR entry. The sign in
front of a net must be considered when ascertaining the
effect of a constant control field value on a hardware net.

The net XH102WW9, which is provided for hardware
testing purposes, is excluded from the flowcharts because
entry of test logic in the flowcharts compromises their

L. SMITH ET AL.

readability. This omission is perfectly legitimate if means
exist which are not dependent upon Boolean comparison for
verifying test logic. In the case of the 3081, test logic is
validated by programs which verify conformance to a set of
design rules.

The sample machine used in this paper requires two clocks
(L1 CLOCK and L2 CLOCK) to drive the double latches,
as is the case in the 3081. Since the functions of the two
latches in each double latch device are identical except for
an offset in time, it is possible to represent a double latch by
a single trigger driven by one clock (SYSCLK$) in the
flowcharts. Since all triggers in the sample machine flow-
charts are driven by the same clock, it is not necessary to
explicitly mention clocks in the flowcharts. For purposes of
Boolean comparison, the L1 latch is compared to the trigger.
The effect of the L2 latch is eliminated by tying the L2 clock
(at XHlOl WX1) to the active state, allowing information to
pass through the L2 latch. In the case of the 3081, this
practice is followed generally because the L2 latch design is
adequately checked out by test generation programs.

A segment (Fig. 6) is built by the segment builder of Fig.
1 for each selected SCR entry. A segment consists of all
logic which drives the facility in the internal storage model
for the flowcharts, all logic which drives the net in the
internal storage model for the hardware, and logic that
produces the inverse of an equivalence relationship between
the facility and the net. The equivalence relationship is
(facility output = net output) if the net sign in the corre-
sponding SCR entry is positive and (facility output # net
output) if the net sign is negative. The “backward” search
for driving logic does not trace through facilities or nets in
the SCR, but it does continue tracing until all logic blocks in
the segment are driven by other logic blocks in the segment
or by facilities or nets in the SCR. The implications of any
inputs with constant values are carried as far forward as
possible in the segment. Any block which has a constant
value as a result is dropped from the segment. If the
backward search either reaches a primary input not in the
SCR or detects a loop, the segment is invalid and is not
subjected to Boolean comparison.

Boolean comparison runs for the 3081 are made for
individual hardware modules of approximately 30 000
circuits each; therefore, the SCRs are structured on hard-
ware module boundaries.

Boolean comparison
For each segment, the Boolean comparison algorithm seeks
patterns for the segment inputs which yield the value one at
the segment output. The values applied to the facility inputs
and the net inputs of the segment are constrained by the
relationship (facility input = net input) if the SCR net sign

1BM J. RES. DEVELOP. VOL. 26 8 NO. 1 8 JANUARY 1982

is positive and the relationship (facility input # net input) if
I the sign is negative. In effect, the facility inputs are tied to
, the corresponding net inputs.

Any pattern producing a segment output value of one is a
counterexample which proves that the two sides of the
segment are not equivalent. All counterexamples are listed
up to an engineer-specified maximum number. In most
counterexamples, many of the inputs are marked with-to
indicate that the value of this input is irrelevant to the
counterexample. If no counterexamples are found, the two
sides are equivalent.

Table 3 shows the Boolean comparison results for the
sample machine. Model 1 names refer to flowchart facilities
and model 2 names refer to hardware net names. Segments
A0000, BUS2S0001, B0001, and ZERODETOOOO show
Boolean equivalence. Segment BOOOO is not shown because
lack of a primary input (net XHlOlWW3) in the SCR
precluded segment building.

Segments AOOOl, BUS2$0000, and COMPLOOOO are all
nonequivalent. Counterexamples are listed for each of these
segments. Counterexamples include the values of the net and
facility outputs and the values of the inputs. Any input
which exists in the flowchart side of the segment but not in
the hardware side has the hardware net marked with an
asterisk, and vice versa.

OResults analysis
The first step of results analysis is to eliminate any SCR
errors that preclude segment building (e.g., BOOOO). This is
followed by processing of Boolean mismatches. A mismatch
between the hardware inputs and flowchart inputs of a
segment-indicated by asterisks in the result-is often the
source of a Boolean mismatch. Analysis of the results for
segment BUS2S0000 leads to the conclusion that net
XHlOlWW2 was erroneously used at block XHl02CA
instead of net XH102WX4. It occasionally happens, howev-
er, that a mismatched input has no effect on the value of the
segment output and, therefore, presents no problem. In the
segment for A0001, COMPL is an input which does not
appear in the hardware for that segment because AOOOl is
actually independent of the value of COMPL. Therefore, the
asterisk in the results for AOOOl does not represent a
problem.

After analysis of any input mismatches of a segment is
complete, the counterexamples are examined. If a counter-
example represents a state which is significant to the
sequencing of the machine, then a logic change to the
hardware is required; otherwise, a change is made to the
flowcharts as described in the subsequent section “Relaxa-
tion of requirements.” The counterexamples for segments

IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982

Table 3 Boolean Comparison results for sample machine.
THE FOLLOWING ARE EQUIVALENT

MODEL I
MODEL 2

OUTPUT- AWOO
OUTPUT- -XHIOIGCA

THE FOLLOWING ARE NOT EQUIVALENT
MODEL I
MODEL 2

OUTPUT - A m 1
OUTPUT- -XHIOIGKA

1/0 MODEL1
0 AMMI
0 -XHIOIGKA

MODEL 2

I ADDSOWO
I ANDSWOO
I A W I

I COMPARESOMK)
I B w o l

I COMPLWOO
I SYSCLKSMHK)

-XHIOIWW7
+XHIOIWWS
-XHIOIGKA
-XHIOIGPA

XHlOlETA
-XHIQIWWI

-XHIOIWWO
THE FOLLOWING ARE NOT EQUIVALENT

MODEL I
MODEL 2

OUTPUT - BUSZSMHK)
OUTPUT - -XHIO2CA I

1/0 MODEL1 MODEL 2
0 BUS2swOo
0 -XH102CA I

I AWOO
1 *GTINBSMW

-XHIOIGCA
XHlOlWW2

I GTOUTASWOO * XH102WX4
THE FOLLOWING ARE EQUIVALENT

MODEL I
MODEL 2

OUTPUT - BUS2SwOI
OUTPUT- -XHIOZCJI

THE FOLLOWING ARE EQUIVALENT
MODEL I OUTPUT - BOW1
MODEL 2 OUTPUT - -XHIOIGPA

THE FOLLOWING ARE NOT EQUIVALENT
MODEL I OUTPUT - COMPLOWO
MODEL 2 OUTPUT - -XHlOlETA

110 MODEL I MODEL 2
0 COMPLWOO
0 -XHIOIETA
I COMPLSWOO
I COMPLWOO -XHlOlETA

-XHlOlWX2

I GTINBSMHK)
I SYSCLKSMHK)

+XHIOIWW2
-XHIOIWWO

THE FOLLOWING ARE EQUIVALENT
MODEL I
MODEL 2

OUTPUT -
DON’TCARE MODEL OUTPUT - OUTPUT -

COUNTEREXAMPLES I TO6
01101 I
01101 I
1 1 1 I I I

ow1 I I
011100

-10-1 0
I I I I I I

COUNTEREXAMPLES I TO 2
10
10
I 1
01
10

COUNTEREXAMPLES I TO2

01
01

01

-XH102GCA
ZERODETOOW

DONTCAREISMHK)

COMPLOOOO and AOOOl can be eliminated by inverting the
signal phase at pin XHlOlDVB and by using the input
rather than the output of block XH102CQ to drive pin
XHlOlFMA. Experience on the 3081 has shown that the
explicit counterexamples provided make it easy to find the
cause of problems.

4. Special topics

Boolean comparison algorithms
Both DBA and DBA/ESP use iterative application of a
sum-of-products expansion theorem [161 to the function of a
segment. The algorithm proceeds by assigning constant
values (zero or one) to inputs of the segment [see Fig. 7(a)]
in a manner which produces a tree where the nodes consist of
functions [see Fig. 7(b)]. The top node of the tree is the
segment function. The bottom nodes are constant functions
of either zero or one. The other nodes contain intermediate
reduced functions. Each node represents a simple reduction
of the node immediately above it. At each node, the algo-
rithm chooses heuristically one input variable of the function
at that node for use in reduction of the function. Each node 113

GORDON L. SMITH ET AL.

I
I

I
I F r"" -I I t I - -
I 1

Flowchart model I I
"""_"""_"I 3 ;. I

A
B
C

'
I
I
I
I

(a)

H L""J

Hardware model

/.

I d e? NAND (A)

F 1 1
H O O
A - 0
B O 1
c 1 1

(C)

Figure 7 Examples of differential Boolean analyzer (DBA): (a)
segment model; (b) tree; (c) counterexamples.

has two branches leaving it, one in which the chosen input is
assigned the value zero and one in which the chosen input
variable is assigned the value one.

A reduction is accomplished by carrying out the immedi-
ate implications of an assignment of zero or one to the
chosen input variable. For example, any A N D in the func-
tion is replaced by the value zero if one of the legs of the
AND acquires the value zero, or by the value one if all of the
legs of the AND acquire the value one. When the output of
any primitive function (e.g., AND, OR, N) acquires a value
of one or zero, the reduction process continues by carrying
out the immediate implications of this assignment. DBA/
ESP additionally recognizes whether any intermediate func-
tion is identical to any intermediate function previously

iMlTH ET AL

processed for that segment; if so, the algorithm backs up
immediately. Each bottom node which contains the constant
function one represents a counterexample. The counterex-
ample consists of the values assigned to the input variables
[see Fig. 7(c)] along the path from the top node to the
particular bottom node. Each counterexample also includes
the values of the inputs to the equivalence relationship [F
and H in Fig. 7(a)].

The practical nature of the algorithms is important. Since
the Boolean comparison problem is known to be NP-
complete [171, one might anticipate that execution times
would increase exponentially with segment size. However,
since engineers reduce complexity by imposing some degree
of orderliness upon all areas of the logic in order to achieve a
comprehensible design, there is usually sufficient regularity
for the algorithms to perform efficiently. A manual assist to
input selection is provided for those few segments where the
heuristic algorithms for selection of inputs are not efficient.

Relaxation of requirements
The Boolean comparison program can handle certain cases
where the requirements described in the section "Boolean
comparison concepts" are relaxed. As previously shown,
SCR entries, usually unused nets or test logic in the hard-
ware, may be tied to one or zero. Also, any individual facility
may be modeled by multiple nets in the hardware for
powering purposes.

An additional technique is provided for handling cases
where the flowchart and hardware logic for a segment differ
only for machine states which are unreachable during proper
operation of the machine. If a counterexample generated by
the system for a given segment represents an unreachable
state, two options are available to the engineer. The first is to
change the flowcharts (or even the hardware) so that the
flowcharts agree with the hardware. This is the preferred
method because it minimizes the risk of error when future
design changes are made. The second option is to define a
"don't-care'' signal in the flowcharts which is set by condi-
tions that define unreachable states of the machine. A
don't-care signal is associated with a segment by entry of the
don't-care signal name in the don't-care field of the SCR
entry. Usually, don't-care signals are only defined as needed
in order to deal with specific mismatches for unreachable
states.

The segment (Fig. 8) generated when there is a don't-care
is expanded to include all logic obtained by a backtrace from
the don't-care signal in the internal flowchart model. Logic
is also added which forces the segment output to zero if the
don't-care output assumes the value one. Therefore, no
counterexample can be generated which falls within a don't
care.

IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982

As an example, close inspection of the set conditions for
the ZERODET facility in the sample machine reveals that
ZERODET is set to 1 or 0 depending on whether or not
SUM$=O in the hardware and is left unchanged in the
flowcharts if ADD$- 1 and COMPARE$= 1. However, if it
is stated that ADD$ and COMPARE$ are never activated
at the same time in the real machine, then such counterex-
amples represent unreachable machine states. The preferred
technique for eliminating the counterexample is a change to
the flowchart (Fig. 2) which eliminates the branch from
block C 2 to block D3, introduces a second copy of block C2
at another location, C2’, and establishes the path Al-
C2”D3.

For purposes of the example assume that the alternative
technique of a don’t-care signal is used. Figure 9 shows
appropriate don’t-care conditions in flowchart form for
setting the new signal DONTCAREl$. DONTCAREl$ is
entered in the don’t-care field of the SCR for the facility
ZERODET (Table 2). It can be seen from Table 3 that no
counterexamples are produced for ZERODET although the
flowcharts and hardware do not agree precisely in the
Boolean sense.

By various techniques, don’t-care signals can be incorpo-
rated into the cycle simulation runs to assure that there has
not been overspecification of the don’t-cares. In the case of
the 308 1, this has been done with some but not all don’t-
cares.

Experience on the 3081 has demonstrated that it is easy to
keep the number of don’t-cares to a very low level if care is
taken to keep the hardware and flowcharts in step as each is
created. If hardware is designed with little regard for the
details of the flowcharts, then many don’t-cares will be
required.

Internal signals
As previously mentioned, the SCR may contain correspon-
dences between internal signals and intermediate nets of the
hardware. If the logic producing the internal signal shares
inputs with the logic driven by the internal signal, the
internal signal may not be able to take on both the value zero
and the value one independently of the values assigned to the
common inputs. A don’t-care may then be necessary for the
driven segment in order to exclude errata for impossible
patterns of the common inputs and internal signal. Conse-
quently, internal signals are entered in the SCR only where
the need to improve performance or to reduce the complexity
of the Boolean comparison output provides clear justifica-
tion.

5. Concluding remarks
Boolean comparison has been successfully used on the IBM
3081; all of the approximately 500 000 circuits subjected to

p- . Don’t-care facility

I
Net I
inputs

Figure 8 Structure of segment with don’t-care.

Y Fig. 2

COMPARE$= I? m
I“---

r DONTCAREI$=I; 7 u
Figure 9 Don’t-care flowchart for sample machine.

Boolean comparison were brought into agreement with the
flowcharts. While many factors contributed to this success,
the efficiency of the algorithms and the completeness of the
process must be identified as being the most important.

6. Acknowledgments
While it is not feasible to recognize all contributions, the
authors wish to acknowledge the technical contributions of
the following people to the Boolean comparison system used
on the IBM 3081: David D. Cheng, Wilm E. Donath, 115

GORDON L. SMITH ET AL. IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982

Charles W. Evans, Catherine C. Koo, Hillel Ofek, John G.
Rogers, and A. Patrick Torney. In addition, this develop-
ment was significantly influenced by concepts of J. Paul
Roth and Albert Brown. Finally, the management support of
Albert Brown, John Chapman, Brian R. Golnek, Judith M.
Lauch, and Michael Monachino is acknowledged.

References
1 . R. N. Gustafson and F. J. Sparacio, “IBM 308 1 Processor Unit:

Design Considerations and Design Process,” IBM J. Res.
Develop. 26, 12-21 (1982, this issue).

2. Michael Monachino, “Design Verification System for Large-
Scale LSI Designs,” IBM J . Res. Develop. 26, 89-99 (1982,
this issue).

3. Robert B. Hitchcock, Sr., Gordon L. Smith, and David D.
Cheng, “Timing Analysis of Computer Hardware,” IBM J.
Res. Develop. 26, 100- 105 (1982, this issue).

4. G. J. Parasch and R. L. Price, “Development and Application
of a Designer Oriented Cyclic Simulator,” Proceedings of the
13th Annual Design Automation Conference, ACM and IEEE,
New York, 1976, pp. 49-53.

5. J . P. Roth, “Systematic Design of Automata,” AFIPS Conf.
Proc.. Fall Jt . Computer Conf.27, Part I, 1093-1099 (1965).

6. J . P. Roth, “Hardware Verification,” IEEE Trans. Computers

7. N. Kawato, T. Saito, F. Maruyama, and T. Uehara, “Design
and Verification of Large-Scale Computers by Using DDL,”
Proceedings of the 16th Design Automation Conference, San
Diego, 360-366 (1979).

8. F. Maruyama, T. Uehara, N. Kawato, and T. Saito, “Hardware
Verification and Design Error Diagnosis,” Digest of Papers-
The 10th International Symposium on Fault-Tolerant
Computing, Kyoto, Japan, 1980, pp. 59-64.

9. S. B. Akers, “A Procedure for Functional Design Verification,”
Digest of Papers-The 10th International Symposium on
Fault-Tolerant Computing, Kyoto, Japan, 1980, pp. 65-67.

C-26,1292-1294 (1977).

116

GORDON L. SMITH ET AL.

10. W. E. Donath and H. Ofek, “Automatic Identification of
Equivalence Points for Boolean Logic Verification,” IBM Tech.
Disclosure Bull. 18,2700-2703 (1976).

1 1 . J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a
Method,” IBM J . Res. Develop. 10,278-291 (1966).

12. J. P. Roth, “Algebraic Topological Methods for the Synthesis of
Switching Systems I,” Trans: Amer. Math. SOC. 8< 301-326
(1958).

3. H. Halliwell and J. P. Roth, “SCD, a System for Computer
Design,” IBM Tech. Disclosure Bull. 17, 1517-1519 (1974).

4. J. P. Roth, “VERIFY: An Algorithm to Verify a Computer
Design,” IBM Tech. Disclosure Bull. 15,2646-2648 (1973).

5. F. C. Hennie, Finite State Models for Logical Machines, John
Wiley & Sons, Inc., New York, 1968.

6. C. E. Shannon, “A Symbolic Analysis of Relay and Switching 1’
Circuits,” Trans. AIEE 57,713-723 (1938).

17. H. R. Lewis and C. H. Papadimitriou, “The Efficiency of
Algorithms,” Scientific American 238, 96-109 (January
1978).

-

Received October 27, 1980; revised August I I, 1981

Gordon L. Smith is located at the IBM Data Systems
Division laboratory and Ralph J . Bahnsen is located at the
IBM General Technology Division laboratory, both in
Poughkeepsie, New York 12602. Harry Halliwell is at the
IBM United Kingdom Laboratories Limited, Hursley Park,
Winchester, Hampshire SO21 2JN. England.

IBM J. RES. DEVELOP. \ IOL. 26 NO. 1 JANUARY 1982

