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Timing Analysis of Computer Hardware

Timing Analysis is a design automation program that assists computer design engineers in locating problem timing in a
clocked, sequential machine. The program is effective for large machines because, in part, the running time is proportional to
the number of circuits. This is in contrast to alternative techniques such as delay simulation, which requires large numbers of
test patterns, and path tracing, which requires tracing of all paths. The output of Timing Analysis includes “slack” at each
block to provide a measure of the severity of any timing problem. The program also generates standard deviations for the
times so that a statistical timing design can be produced rather than a worst case approach. This system has successfully
detected all but a few timing problems for the IBM 3081 Processor Unit (consisting of almost 800 000 circuits) prior to the

hardware debugging of timing. The 3081 is characterized by a tight statistical timing design.

1. Introduction

As the usage of large scale integration (LSI) in computers
continues to increase, debugging of timing problems on
actual hardware becomes more and more difficult. LSI
creates a scarcity of probe points; and since timing problems
tend to be identified serially on hardware, the increased time
required to redesign and rebuild components containing
many circuits can have a serious impact on schedules.

Timing Analysis (TA) is a design automation program
which provides an alternative to the hardware debugging of
timing problems. The program establishes whether all paths
within the design meet stated timing criteria, that is, that
data signals arrive at storage elements early enough for valid
gating but not so early as to cause premature gating (see Fig.
1). Although Timing Analysis may be used as part of many
different hardware design verification methodologies, it was
developed as part of the IBM 3081 design verification
methodology [1-3].

Because the usage of clocked designs has been widespread
since the earliest electronic computers, the verification of
path timings has always been important. Previously reported
approaches have sought hardware-independent alternatives
other than hand timing of questioned paths. One approach
centered on the analysis of the detailed electrical properties
of the components along a path, using an approach which

traced all paths [4-6]. Other approaches have taken the
delays of the blocks to be well defined numbers and have
attempted to optimize these delays within a power constraint
[7, 8]. A simulator accepting the delays as stochastic vari-
ables has been used [9] to allow the probabilistic compari-
sons of clock and data setting signals.

Another approach [10]} used a block-oriented algorithm
on limited models. In this algorithm there is a dependency on
the function (AND and OR) of each block. An interesting
approach which does not ignore logic function yet is opera-
tionally efficient is described in [11]. This approach does not
deal with statistics, however. Two papers [12, 13], which
resulted from different statistical approaches to the block
model of the authors, deal with the problems of placing
bounds on the distributions of the model.

The TA program is based on a block-oriented algorithm
which leads to a running time essentially proportional to the
number of logic blocks. Unlike the approaches based on path
tracing or delay simulation, the result is a running time
acceptable for even very large machines, since the block-
oriented algorithm of Timing Analysis does not pay the
excessive costs associated with tracing all paths or associated
with the modeling of a large number of patterns in delay
simulation.
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The basic TA block-oriented algorithm for computation
of arrival times and slacks (see Section 2) for non-probabilis-
tic cases involving combinational logic is analogous to the
Program Evaluation and Review Techniques (PERT) [14]
algorithm when run non-probabilistically.

Timing Analysis is primarily a tool for aiding the engineer
who is charged with producing a design to meet a specified
clock cycle. The output of the TA program not only identi-
fies any logic with timing problems, but also provides a
measure of the severity of each problem. Thus, the engineer
is directed to the problem areas and is given a measure of the
changes required in the path timing.

Timing Analysis also incorporates methods of handling
delay statistics which allow the creation of a statistical
timing design with a shorter clock cycle than that of a worst
case design. These are approximation methods which have
provided good results on the 3081 in which the statistical
terms are a significant but not overwhelming portion of the
path delays.

The program is complete in the sense that the timing of all
paths is effectively verified. A methodology is provided,
however, to allow the engineer to alter the propagation
characteristics of individual blocks when it is known that
logic causes paths to never be sensitized or to meet abnormal
timing criteria. Unlike delay simulation, the program does
not require input of a set of test patterns, nor does it overlook
paths because patterns were omitted.

Because of the characteristics just described, TA is an
effective aid to engineers who must create a valid timing
design, even if the machine consists of a large number of
random logic circuits. In order to apply the TA methodol-
ogy, the design must be a synchronous, sequential machine
and it must be possible to associate explicit clock times with
each storage element.

Section 2 describes the basic block-oriented algorithm of
Timing Analysis. Section 3 discusses the system in which the
algorithm is embedded. Section 4 explains the application of
Timing Analysis and discusses the errors diagnosed by it.
Section 5 provides a summary of TA’s characteristics and
summarizes our experiences.

2. Block-oriented algorithm

Our description of the basic algorithm starts with the treat-
ment of late signals, that is, long paths. Figure 2 shows a
simple example of combinational logic which serves as a
basis for the discussion. At this point, storage elements need
not be considered.

The lower portion of Fig. 2 contains a key defining the
three values associated with each of the blocks on the
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Figure 1 The timing verification problem. Make certain that
every transition stored by one clock will arrive at the next storage
element in time to be gated by the other clock.
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Figure 2 Forward and backward propagation.

diagram. The more complex calculations have been elimi-
nated to permit concentrating on the timing analysis algo-
rithm itself. For example, only one delay D is shown for a
block, rather than one for rising and one for falling transi-
tions. The number, AT, written beneath the output of each
block is the maximum arrival time (in whatever units of time
are chosen as appropriate). The primary input (PI) arrival
times and the primary output (PO) required arrival times,
which are normally derived from clock arrival times, are
assumed to be explicitly given. The slack S is discussed
subsequently.
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Figure 3 Using rising and falling delays.

‘The order in which blocks are processed by Timing
Analysis ensures that every input to a block will have been
processed before the block itself. The arrival time of a block
is computed by

1. Establishing the arrival time at the block output for each
input to the block by propagating each input signal
through the block,

2. Selecting the maximum such arrival time.

Thus, blocks in the leftmost column of Fig. 2 will have an
arrival time equal to the delay of the block plus the
maximum arrival time of any primary input (which are all
shown as zero). Block BA, which has one input at time two
and the other at time three, is typical of other blocks in the
figure. Three is greater, the internal delay is four, therefore
seven is the maximum output arrival time for this block.

These calculations yield the outputs of blocks DA, DB,
DC, and DD, at times eleven, thirteen, nine, and nine,
respectively. (Notice that two signals are late and two
signals are early.)

The slack S is defined as the difference between the
required arrival time and the actual arrival time. The slack
value is computed so that a negative number indicates a
problem; that is, the signal is too late. The output of block
DA arrives at time eleven, one unit late (slack = —1). Block
DB is three units late (slack = —3); block DC is one early
(slack = +1); and DD is three early (slack = +3). The slack
information is then propagated back through the block
graph, with all blocks being reprocessed in order opposite to
that used for generation of the arrival times.

When each block is processed, the slacks are computed for
the sources for each input, one at a time. For example, block
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DA has a delay of three and a required arrival time at its
output of ten; therefore, the required arrival time at its input
is seven (the output required arrival time minus the internal
delay). With respect to this block, the output of block CA is
one unit late, so the slack is minus one. Block DB has a delay
of five, so the required arrival time at its input is five, and the
signal feeding from block CA is three units late. Three units
late (slack = —3) is worse than one unit late, so the program
stores the most negative value (—3) at the output of block
CA. The slack value stored at the output of the block
corresponds to the slack value for the worst path going
through that block.

Note that each block is processed once forward and once
backward; therefore, the process runs in a time proportional
to the number of bloqks. Thus, a solution to a path-oriented
problem has been achieved using a block-oriented tech-
nique.

From Fig. 2, one can observe a funneling of negative slack
values through block BA. If BA could be replaced by a
circuit having a smaller delay, all the negative slacks could
be eliminated without changing the functional design at all.
Clearly, there are also alternative techniques for resolving
this timing problem.

In addition, notice that there are many blocks with posi-
tive slacks. These blocks could use circuits with increased
delay and still be within the timing constraints [9, 10].

If we are looking for early signals caused by short paths,
the above procedures are modified slightly. The arrival time
at a block is computed from the minimum arrival time of any
input to the block rather than the maximum). Slacks are
again defined so that a negative slack indicates a problem;
that is, the signal is too early.

Figure 3 elaborates the Timing Analysis principles illus-
trated by Fig. 2 by showing how the rising and falling delays
and the inverting properties of a block are included in the
computations. As the key at the top of Fig. 3 indicates, the
first number inside the block is the delay if the output is
rising; the second number is the delay if the output is falling;
and the arrival times are kept in a two-tuple with the rising
arrival time in the first position and the falling arrival time
in the second position. The fact that block 2 inverts is
indicated by the triangular wedge symbol at its output. This
means that the rising output will be the greater of the two
falling inputs (at times three and four) plus the block delay
(three), so that the rising arrival time will be seven. The
falling output will be the greater of the two rising inputs (at
times two and three) plus the delay (one), so the falling
arrival time will be four. The same calculation can be done
for each of these blocks so that we can compute the rising
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and falling primary output arrival times of eight and twelve,
respectively. Note that if ten were the required arrival time
for both the rising and falling arrival times, one would be
early and the other late. For this reason the TA diagnostics
distinguish between block output rising and falling arrival
times, not just between blocks.

The calculation of arrival times also includes statistics.
Each block delay, which has been referred to as a single-
delay number up to this point, actually consists of two
numbers—a nominal delay and a delay standard deviation
(sigma). The calculation of a rising or falling arrival time at
each block of the model involves the calculation of a nominal
arrival time and an arrival-time sigma. Nominal arrival
times are computed by simply adding block nominal delays
to previous nominal arrival times. The arrival-time sigmas
are computed by applying standard convolutions.

The arrival time actually stored at a block output is the
result of propagating one of the input arrival times through
the block. When the TA program is looking for long paths,
the one selected is the one having the latest output arrival
time. The latest arrival time is the one for which the
expression

(nominal arrival time)
+ (confidence level) x (arrival time sigma)

is the greatest. (“Confidence level” is a designer-supplied
input parameter.) This expression is used to compute an
arrival time whenever one is to be printed or a slack is to be
computed. Conclusions about the probability of a timing
failure can be drawn from the confidence level under the
assumption that the distributions are Gaussian. When the
program is looking for short paths, the expression is modified
by replacing the plus sign with a minus sign.

3. The timing analysis system

A complete TA model consists of the combinational logic,
the storage elements, and the clocks. The reference clock
times for the input storage elements are known as propagate
reference times; these determine when signals begin to
propagate into the combinational logic. The reference clock
times for the output storage elements are known as compare
reference times; these determine when signals must arrive at
the output of the combinational logic.

Timing Analysis views circuits as propagation elements,
not as logic functions. Therefore, TA requires the explicit
identification of those points in the model where tests are
needed to verify that the data arrive before the clock. A
means is provided for flagging those points within each
storage element or at each clock gate where timing tests are
required. These are necessarily points at which data and
clock meet.
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Figure 4 Clock descriptions.

Figure 4 shows two storage elements, A and B, and some
combinational logic connecting them into a loop. Clock 1
(C1) gates storage element A, and clock 2 (C2) gates
storage element B. The propagate and compare reference
times  are shown in the lower half of the figure. The path
from A to B and the path back from B to A can be checked
in the same Timing Analysis run without requiring a special
test for each of the separate loops; the only requirement is a
specification of the clocks in a consistent manner so that the
signals resulting from the propagate time from C1 will be
compared with the compare time of C2, and the signals
resulting from the propagate time of C2 will be compared
with the compare time for C1.

The TA program is a complete system in the sense that all
paths are potential candidates for identification as problem
paths. This follows from the TA approach which views
storage elements as special functions and ignores the actual
Boolean properties of other logic blocks with the exception of
their inverting properties.

There may be paths, however, which are identified as
problem paths by TA which can never be sensitized by logic
or which meet special timing criteria at the path outputs. An
example of a special timing criterion is represented by the
so-called two-cycle path in which the path exceeds the cycle
time but logic always ensures that two machine cycles are
available for data to propagate through the path. Therefore,
a means is provided whereby the engineer can insert delay
modifiers at inputs or outputs of the blocks in the model
which prevent the propagation of arrival times or which
adjust arrival times by fixed constants (e.g., minus one cycle
for the two-cycle path). These delay modifiers are placed in
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the model based upon an understanding of the logic by the
engineer. They are processed within the context of the basic
block algorithm of TA.

In certain cases, it may not be possible to place delay
modifiers in a model without having an undesirable effect on
other paths. For example, it may not be possible to locate
any block pin in a two-cycle path where the placement of a
delay modifier will not adversely affect a non-two-cycle
path. It is then necessary to make one or more extra runs in
which delay modifiers in the path are set to different values.

As used in the present methodology, no automatic check is
provided to ensure that delay modifiers do not erroneously
conceal timing problems. Thus, the completeness of TA can
be compromised by the usage of delay modifiers.

When a model of the total design to be analyzed is too
large for storage, it is still possible to analyze the entire
model. The large model is broken up into more manageable
small models that will fit within storage. In the case of the
model of the IBM 3081, it has been found convenient to
make the smaller models correspond to thermal conduction
modules (TCMs) [15], which can contain as many as 45 000
circuits. The values computed at the primary outputs
(inputs) of one model are saved and automatically fed to the
primary inputs (outputs) of the other models connected to it
so that the total analysis effectively processes the entire
model.

4. Application of timing analysis

The timing analysis program is used by engineers as an aid
in the generation of a design which meets stated timing
criteria. Slacks produced by the TA program are used for
pinpointing timing problems and for assessing their serious-
ness. The engineers make use of both slacks and arrival
times as listed in the output for each block as an aid for
designing changes to eliminate identified timing problems.
Information is also provided by TA for establishing whether
or not the timing performance goal is achievable for the
machine. Additionally, TA provides information for assess-
ing various design alternatives.

This timing analysis method is applicable to a broad class
of clocked sequential machines, including, in particular,
machines of large size. The domain of applicability of this
technique is primarily determined by the following three
characteristics of the timing analysis method:

1. Block delay modeling
The accuracy of TA results is dependent upon the accu-
racy of the delay parameters calculated for each block on
the basis of the block circuit type and the block circuit
environment. Also, if block delay distributions signifi-
cantly differ from Gaussian distributions, then the ability
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to use the confidence level to draw conclusions about the
probability of a timing failure is weakened. However, the
Central Limit Theorem [16] of the theory of statistics
indicates that this effect is usually minimal.

2. Timing Analysis statistical approximation

The algorithm of Timing Analysis is a statistical approxi-
mation. In particular, the effect of parallel paths is not
reflected within the algorithm. For example, the output
of a block with two independent but identical Gaussian
inputs differs slightly from that of a Gaussian distribu-
tion, and the output nominal delay and standard devia-
tion differ slightly from the values computed by TA. As a
second example, the probability that all paths of a
machine with many paths are free of timing problems is
generally lower than the probability that any given path
is free of timing problems. Thus, the assurance given by a
successful TA run that each individual path in isolation
meets or exceeds the desired probability of freedom from
timing problems does not necessarily result in the same
assurance for the entire design.

3. Non-sensitized paths and special timing criteria

The number of delay modifiers and the number of muiti-
ple runs required because of non-sensitized paths or
special timing criteria have an impact on the ease of
model setup and results analysis. It is easier to set up TA
runs and interpret the output when most of the design
contains (a) only storage elements where a single pair of
propagate and compare times can be assigned and (b)
paths where delay modifiers are not required.

The analysis of the 3081 system utilizing statistical timing
criteria has been successfully accomplished using TA.
Almost all timing problems have been detected via TA prior
to hardware debugging of timing [3]; the few exceptions
were traced to errors in generation of block delays or to
misplacement of delay modifiers within the model. The
resulting design is such that any further shortening of the
clock cycle would impact a very large number of paths and
therefore be extraordinarily difficult to accomplish.

The output provided (slacks and arrival times) has been
found to be very effective as a design aid to the engineer.
Gaussian distributions have served as adequate block delay
approximations, and it has been possible to generate block
delays with high precision. However, block delay definition
represented a major part of the development effort because
of the need to achieve the shortest cycle possible with the
technology. A significant part of this effort results from the
inclusion of wiring effects in the delays. The slacks gener-
ated at each block as a result of the TA statistical approxi-
mations are almost always equal to, or very close to, the
slacks for the worst path through that block—much closer
than a worst case statistical error analysis indicates. Also,
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reasonable engineering judgments adequately handle the
parallel statistical effects when establishing the timing
performance of the entire machine. Finally, the number of
delay modifiers and muitiple runs required because of non-
sensitized paths and special timing criteria has been suffi-
ciently small so as to present a minimal burden.

It is believed that the TA approach has applicability to
many hardware systems; any system with the appropriate
clocking is a candidate.

5. Summary and conclusions

Timing Analysis is a block-oriented algorithm for timing all
paths within a clocked sequential machine; and since it is a
block-oriented algorithm, it is practical for very large
machines. It effectively checks all paths and output arrival
times and slacks for each block. Statistical approximation
and methods for dealing with logic with special timing
characteristics are both built into the TA program.

The timing analysis approach has been successful on the
3081 because

® It has found all but a few timing problems prior to the
hardware debugging of timing.

e It has successfully aliowed the generation of a tight timing
design.

® The basic algorithm is much more efficient than delay
simulation or path tracing for finding timing problems.

® The presentation in the output of slacks and arrival times
for each block presented the engineers with meaningful
parameters for assessing and understanding each timing
problem.

Within the domain of applicability (see the previous
section), the TA approach described in this paper is believed
to be effective for solving the timing design problem for
many LSI machines.
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