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Design Verification System For Large-Scale LSl Designs

This paper describes the changing environment of large-scale hardware designs as influenced by technology advancements and
the growing use of design verification in the design implementation process. The design verification methodology presented
here saved some 66% from the 3081 product schedule, when compared with a schedule utilizing a conventional verification
method, on almost 800 000 LSI logic circuits. The paper discusses the use of software modeling techniques to verify LSI
hardware designs, methods used for deciding when modeling should be stopped and hardware can be built with sufficient
assurance to permit additional verification to continue on the hardware, methods for testing the hardware as it is assembled
into a very large processor complex, and the organization of the design verification system to avoid duplicate creation of test
cases for different stages of the design process. Experiences encountered in designing and verifying the 3081 system, a
discussion of some shortcomings, and an endorsement of certain techniques and improvements for use in future designs are

also presented.

Introduction

Before the advent of LSI, a designer had the ability to design
a computer, build it, debug it, and correct the errors on the
test floor with little help from a manufacturing facility or
from vendors. With LSI, the engineer is dependent on a
manufacturing entity for building the customized chips, chip
mounts or modules, and boards, and for reworking these
items during the building and testing phases. With these
dependencies, the initial hardware delivery of a model design
was projected to take a minimum of six months. An average
of thirty working days were projected for reworking the
hardware for each design change. Since thousands of
changes were likely on a project of the 3081 scope, a design
would be obsolete by the time it was ready for shipment.

On the basis of these considerations, as well as Roth’s
early work [1], it was determined that a design verification
system (DVS) was essential to permitting the advantages of
LSI to be realized. Through the use of the DVS, the
engineers could verify the logic functionality of the design,
could check that the timing constraints were met, and could
track the progress of the design verification status to a preset
goal before committing the design to hardware. Further-
more, they could continue to track the status when engineer-
ing changes, function enhancements, and feature additions
would change the original design.

In pre-LSI designs, ratification (matching the design
specifications), involved simulation of the logic designs with
little use of high-level models. LSI ratification still uses
detailed simulation but also employs intermediate simula-
tion using higher-level models.

In the past, use of the word validation was restricted to
the testing of a hardware model on the test floor; but
validation, as used in this paper, means an analytic method
of comparing two models {2]. The purpose of the validation
process is to find the differences between the two models
being compared. The validation method assumes that one of
the models being compared is correct and any differences
represent design errors.

Before LSI, the term coverage analysis was unknown.
The designer had the problem of determining when the
ratification of a design was completed, and to what extent
design problems had been eliminated. With LSI, the design
community required techniques to determine quantitatively
the quality (adherence to specifications) of the design being
released to manufacturing in order to maximize the number
of design errors removed prior to the construction of hard-
ware. The designer also needed a method to determine when
to stop simulating and when to start the release process.
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Figure 1 Design Verification System (DVS) overview. (Note: BDL/CS = Basic Design Language for Cycle Simulation, BDL/S = Basic
Design Language for Structure, VMS = Variable Mesh Simulator, VTs = Verification Tests.)

In pre-LSI designs, timing analysis was used only on
single paths thought to be “critical” by the designers; all
other timing problems were found by means of the hardware
model. Also in previous technologies, clock-line tuning could
be used to cover product variations. With LSI, the technol-
ogy rules are of such complexity that the designer can no
longer identify “critical” paths. In addition, the new technol-
ogy has a wide range of tolerances, requiring a statistical
timing analysis in order to maintain the functionality of the
product over a large range of production variations.

With pre-LSI hardware, model testing was not always
systematic and thorough, but was based on the knowledge,
experience, and needs of the designers, who were also
responsible for the hardware model debugging. They could
rewire the hardware at will. LSI hardware, on the other
hand, has required the designers to generate a systematic
testing procedure prior to hardware building to beat the
hardware change cost and turn-around times. Thus, tech-
niques like functional matrices and cause-and-effect
diagrams [3], as well as automatic result checking and
automatic test-case generation, had to become a basic part
of the design process. Test-case hierarchy techniques for the
optimization of test-case packages were needed, and the
requirement for an independent group of experts in test-case
generation was demonstrated.

As a by-product of the design verification effort, all the
90 necessary parts fell into place to create a diagnostic test
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package for use by manufacturing and field personnel, to
identify failing hardware components, once the design was
verified. Also, the ability to inject numerous error conditions
into the software models and to points not accessible to
hardware bugging could be exploited to verify the diagnostic
package before the hardware was operational.

Design verification system goals

The main goal of a design verification system is to establish
an orderly design process with testing repeatability and test
data integrity, not only for the initial design but also for any
follow-on engineering changes (ECs), feature additions, or
enhancements. The system must verify not only the logic
design but also the other parts of the design process, includ-
ing the architecture of the machine, the manufacturing-
support package, and the field-support package. Problems
must be discovered in the earliest stages of development.

Thus, a set of management goals had to be designed into
DVS to evaluate the status of the quality of the hardware
design being released to manufacturing. This required a
method for tracking the circuits or logic blocks that had been
verified, and a way of determining and presenting this
information to both designers and management.

Hardware error projections

The number of errors found in a design generally depend on
the complexity of the circuits and on the number of chips.
We expected to find ten errors per thousand circuits in data
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path logic designs and four times that many in control logic
designs. An additional factor had to be considered for the
complexity of the timing problems associated with the
circuit tolerances of the technology and packaging used. For
the 3081, on the basis of expectations of DVS effectiveness
and hardware change turn-around time, we set the design
goals to catch 84% of the logic design problems and 100% of
the timing problems through design verification. The
remaining 16% of the logic design problems have to be
isolated on the hardware.

An error-projection model incorporating the error history
of previous machines as well as the characteristics of the new
technology, the complexity of the new design, and the
proposed schedule was used to predict the number of errors
expected in the design. A contingency factor of 14% was
added for non-error-type changes resulting from revised
design specifications.

Ratification techniques

The design verification system illustrated in Fig. 1 contains a
structure for ratification made up of four models: Model 1
(logic simulation) consists of a detailed logic design evalua-
tion; Model 2 (cycle simulation) consists of an intermediate-
level software model built from flowcharts; Model 3 (micro-
code debug tool) consists of a high-level software model
developed in PL/S (a Poughkeepsie laboratory adaptation of
PL/I) for horizontal microcode [4] testing; and Model 4
(hardware prototype illustrated in Fig. 2) consists of a
staged, physical-hardware machine constructed to be equiv-
alent to the intermediate flowchart models. The four models
are interdependent and support one another. The common
link among them is the ability to run the same test cases on
all four models. Each of these ratification techniques is
described in turn.

A major problem with previous software models was that
they never really represented the actual implementation of
the hardware. The difficulty of maintaining up-to-date
detailed specifications from which both the hardware and
the software models could be unambiguously built, and the
fact that a significant amount of programming time and
computer resources were required to debug the software
models, caused previous projects to drop software modeling
once the initial hardware was built.

® Ratification through cycle simulation

Cycle simulation utilizes flowcharts as inputs and allows a
designer to simulate both control and data path logic in
flowchart form. The flowcharts are coded into a simple
flowchart language called BDL/CS [5], which uses a
limited number of operands and which requires no program-
ming knowledge to use. The resultant flowcharts not only
become the input source for the model but they also serve as
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Figure 2 Design verification system/prototype hookup. (Note:
MSSA = Monitoring and System Support Adapter.)

specifications which document the hardware for engineering
and manufacturing use. The use of flowcharts has elimi-
nated the problems of specification interpretation and
coding errors between a design and its high-level model. It
has significantly reduced the amount of time required to
debug the software model: each error found in the flowchart
represents a design error, and what the designer has drawn
in the flowcharts constitutes the software model. Mainte-
nance of the cycle-simulation model is also simplified, since
the model consists of altered flowcharts, with no programs to
understand, modify, or change. (As part of the engineering
change process, each designer updates the flowcharts in the
process of updating the design.) The cycle-simulation model
is built on three principles:

1. The ordering sequence is defined by the hardware
designer.

2. Timewise-parallel functions may be described, although
these are executed with sequential code.

3. Strict separation is maintained between the functional
design and the physical packaging design. (This permits
the designer to concentrate first on solving the functional
problem and then on packaging a correctly designed
function.)

Cycle-simulation configurations were divided into three
stages, using planned increases in the size and complexity of
the hardware in each stage, in order to support both the
development sequence of design verification and hardware
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bring-up. The three stages are illustrated in the right-hand
side of Fig. 2, which further shows the way DVS is hooked
up with the hardware prototype configuration (to be
discussed shortly).

The cycle-simulation model is built and executed in eight
steps in a very systematic manner. The first step is to create
the hardware flowcharts. The second is to create the data-
flow-path models. These are supplied by the engineers in the
form of specifications which are then coded up on a latch-
by-latch basis by an independent modeling group. Similarly,
the flowcharts are transcribed into BDL/CS by the group.
Step three is to compile the code and eliminate compile
errors. Step four is to create arrays from a description
supplied by the design engineer through an automatic soft-
ware package. Step five creates the logical structure from
the latch definitions using the names given to each of the
latches in the machine. Step six defines the latches and
flowcharts to be used with the test-case library in a particu-
lar run of the model. Step seven creates the code combining
the three items, and step eight is the actual simulation run.

The simulation runs, in turn, are divided into different
stages. The first stage builds a functional model of each
circuit module of a processor element. The second stage
takes an individual module and adds a combination of
macros, which represent interface signals to the module, to
simulate asynchronous combinations of data which could
occur in the physical hardware. The macros consist of two
formats: special flowcharts created to represent the inter-
faces of various functional units, or PL/S programs which
decrease the interfaces of a functional unit. The use of this
“driver” technique allows the engineer to simulate condi-
tions which are highly complex, and in some cases, impossi-
ble to set up in a hardware environment. These macros and
drivers remain until a full module with its natural interface
s‘ignals is operational. The advantage of this staged approach
is that the designers are required to simulate their own
designs, using small amounts of computer time to find a
large number of problems concurrently. As a by-product,
functional test patterns can be saved, which are to be applied
by means of a software driver to be used in the first stage of
the hardware model bring-up. This stage of bring-up (Stage
1 in Fig. 2) consists of a hardware tester and a module
handler with the ability to apply functional test patterns.
These patterns are applied to the actual LSSD (Level-
Sensitive Scan Design) [6] module scan rings to validate the
functioning of the hardware design.

The second stage of the cycle-simulation modeling is to
combine functional elements into software models to form
subsystems. For an overview of the 3081 subsystems, refer to
[7, 8]. The subsystems thus formed represent the central
processor (CP), the system controller (SC), the external
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data controller (EXDC), etc. This creates larger models,
requiring more computer time than the earlier smaller
models and very large regions of storage (11+ megabytes)
in which to execute the code. The advantage of the second-
stage models is that the functional test cases can be executed
at the operand level. This permits the designer to execute
architectural test cases against the design the same way they
are executed in a hardware environment. The test cases are
generated through external means, such as running a
program in memory or entering data through a console. This
adds the feature of being able to check the interfaces
between a functional unit and other units comprising the
system. This stage of modeling was used to test a complete
section of hardware housed in a full thermal conduction
module (TCM) board.

Multiple drivers on the software model are used to
emulate customer environments as well as some critical
stress scenarios, obtained from previous machines as stress
cases which were encountered during testing or through real
customer problems collected over a five-year period. By
applying these stress environments early in the simulation
cycle, we eliminated some rather complex potential prob-
lems from the design. Data thus generated were also later
compared against data obtained on a cycle-by-cycle basis
from a hardware model, thereby making possible the evalua-
tion of other very complex interactions.

The final stage of the simulation model consists of using a
functional simulator (an enhanced version of the cycle
simulator) to allow the engineers to construct a complete
processor, in order to eliminate potential interface problems
not discovered by the subsystem models. The processor
model can run standalone programs of up to 128K bytes,
giving the designers the ability to use system software as test
cases.

In order to achieve test-case migration between the
different models, a common test-case language was devised.
The system to support this language was called SDS (SLC-
driven simulation), and could be initiated through service
language commands (SL.C) from display formats identical
in appearance to the operator console displays of the 3081.
All levels of simulation were designed to accept test cases
generated by SDS. The technique used was to write a unique
driver for each of the models or hardware test vehicles rather
than to write different test cases for each stage of testing. A
test case, for example, was first used in cycle simulation
against the functional element, then the functional unit, and
finally, the functional system. It was then carried forward
and used in module, subsystem, and processor testing, elimi-
nating duplicate efforts in creating and in maintaining
separate test-case libraries.
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® Logic ratification through variable mesh simulation
Logic ratification was accomplished in two ways: unit-logic
simulation and hybrid simulation. A test-pattern-driven
logic simulator called the variable mesh simulator (VMS)
[9] was available for use by the logic designers. It could be
used in the following three modes:

1. AND/OR-logic simulation, ratifying the basic logic
functions of a design.

2. Unit-delay simulation, to check out the timing relation-
ships between AND/OR blocks.

3. High-level simulation.

In the last case, the model is written in a higher-level
language. It allows the designer to simulate at a functional
level and permits replacement of parts of the model with its
counterparts in unit logic. The patterns required to drive the
simulator are manually generated and are dependent on the
designers’ knowledge of the design, using a simulator control
language called BDL/C. The output from the simulator is in
the form of an “all-events trace,” a cycle-by-cycle recording
of every defined test point. This data may be analyzed by
using available support programs to select and format the
output at desired test points in an easily understood fashion.

® Logic ratification through hybrid simulation

Hybrid simulation is the term used when higher-level func-
tional simulation results are converted and used to drive the
lower-level models of single and multichip sections. This
allows an engineer to develop test cases by executing an
operation code or program against a high-level modet and to
use the detailed results to drive the VMS AND/OR logic.
As with earlier technologies, the hybrid technique was only
effective in the initial design stages, becoming impractical as
larger sections of logic were put together. The main advan-
tage of hybrid simulation was that the designer would not
have to understand the values of all the inputs into the
section of the logic being simulated. By use of hybrid
simulation, the designer was able to tie these nets to the
cycle-simulation facility names and use the high-level simu-
lator to generate the bit patterns to drive the detailed logic.

Unfortunately, a number of disadvantages were also
incurred: the detailed logic took 30 to 40 times the computer
time that the higher-level models took, and the storage
requirements of the jobs were three to four times as large.
Furthermore, due to capacity limitations, VMS was unable
to handle the very large number of circuits the designers
needed to simulate at a time. To make the simulation fit, and
to run for finite periods, the designers had to establish
artificial boundaries and correspondences between the high-
level and low-level simulation models. Discrepancies in
correspondences introduced new errors that could not be
detected by unit-delay simulation and complicated the
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picture further. Thus, we had to find another technique for
establishing functional equivalences between models; this is
discussed subsequently.

® Microcode debugging through the microcode debug tool
Up to this point we have discussed hardware simulation; but
since the design contains both hardware and microcode, an
appropriate debugging tool, called the microcode debug tool
(MDT), was also needed. This was developed especially to
test horizontal microcode in a software environment. It
differs from cycle simulation in that the model is written in
PL/S, and it represents the high-level function as distinct
from the implementation. Its purpose is to remove gross
errors, independent of the hardware design, before the
horizontal microcode is merged with cycle simulation, in
order to permit a complete functional test of both the
microcode and the hardware simulation. MDT can fit in a
normal TSO region, consists of an interactive conversational
language, and can be run as a background job. It can create
and execute command lists containing MDT commands
from user-independent data sets. It interfaces directly with
all files containing the microcode and test cases necessary to
support the simulation runs. It further contains a save-
and-proceed facility within TSO to allow the designer to stop
at any point in the session and to save the results in one data
set, together with the test environments he is using. The
main characteristics of the simulator are minimally affected
by hardware changes, and it can run a large number of test
cases on a large amount of microcode in a very short time.
Modular programming techniques used in its design permit
it to be used across multiple models with minimal changes.
The key feature built into the model is use of the identical
naming convention and facility names of the hardware
BDL/CS used in cycle simulation.

Testing

Testing in the past had been plagued by four major prob-
lems: 1) The effectiveness of the exercisers used; 2) Elimi-
nating obsolete code within the item being tested; 3) Deter-
mining loop conditions within the model being tested; 4)
Measuring the effectiveness of test cases.

With DVS we attempted to put into place a system that
would not suffer from the above problems, based on 1) A
systematic testing approach using building blocks, and a
method for tracking coverage; 2) Cause and effect diagrams
and functional matrices to determine the test cases to be
developed; 3) Automatic rather than manual verification
that a test case had completed properly; 4) A test-case
library which permitted test-case bucket optimization for
regression test-case scheduling.

We further stipulated the following:
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Figure 3 Illustrating coverage with TRACE! and TRACE2: (a)
Sample flowchart, (b) Coverage analysis.

1. Test cases should be prepared concurrently with ‘the
design and should be based on the complete specifications
provided by the designer.

2. The language for developing the test cases should be the
same as that to be used ultimately when the processor was
released to the customer.

3. The microcode used to drive the model should be the
functional microcode used in the final product after
having been tested on the MDT simulator.

4. All test cases should be usable for development test and
manufacturing bring-up.

Expanding on the building-block approach, test cases
were developed in different stages of complexity. The first
stage, single-cycle test, is based on the control specifications
or flowcharts. These are very basic tests used to check the
transfer of information between functions within the models.
The next stage, multicycle test, checks an operation within a
model by executing an operation and checking the data and
control flow of the machine. The third stage consists of
executing nonoverlapping instructions which drive the model
to performing full functions on an individual basis. The
fourth stage, program testing, consists of overlapped instruc-
tions running together, allowing simultaneous conditions
within the model to be activated. The fifth stage consists of
interface tests designed to check the functions between
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individual units and the final stages of the error checkers
within the machine to determine that the hardware acts
correctly. The combination of all tests is used to achieve the
test-case goals for path coverage.

Coverage determination

Coverage determination, the systematic audit of the extent
of cycle-simulation flow paths traced during simulation runs,
was implemented for the 3081 with two program packages
called TRACE1 and TRACE2. The TRACE facility inter-
acts, cycle by cycle, with the cycle-simulation model execu-
tion. A pre-analysis is made of the flowcharts by recording
all legs of all decision trees to create a maximum table of
combinations to be analyzed. The cycle-simulation program
records the legs executed when test cases are applied to it.

TRACETI uses the output of the simulator and a list of all
possible “no” decisions, as well as the state of all branch
tables covered by a group of test cases or accumulated over a
period of time. This provides the designers with an adequate
way of measuring the effectiveness of their testing as well as
a quantitative way of expressing coverage [10].

TRACE2 analyzes the same data differently because,
when decisions are executed, not all legs emanating from the
decision block are necessarily tested. It develops a coverage
map based on paths rather than on legs. Figure 3(a) shows a
flowchart and Fig. 3(b) the coverage analysis performed by
TRACE!1 and TRACE2. Note that TRACE]1 follows the
“no” path out of both decision blocks in TEST 1, and the
“yes” path out of both decision blocks in TEST 2. TRACEL1
concludes that all paths out of the decision blocks have been
tested. TRACE2, on the other hand, concludes that there are
two paths from D1 to D2, that the “no, no” and “yes, yes”
paths are only half of the ways one can get through to the
end, and that the “no, yes” and “yes, no” paths must also
be considered.

The TRACE2 program evaluates the cycle-simulation
flowcharts for at least two levels and up to five levels of path

" lengths beyond a decision block. The two methods together

allow the engineers to establish criteria for determining
when coverage is high enough to stop simulation. The
criteria we chose were that 90% of all single-, 70% of all
double-, and 40% of all triple-level decision paths had to be
covered before software testing could be stopped. On the
basis of previous analytic work, we projected that with the
foregoing criteria there would be a 95% probability that the
design would be free from problems, exclusive of those
dependent on data and timing variations.

Functional equivalences between models
As previously discussed, the problem of establishing the
functional equivalency between different levels of models
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had to be resolved. At first, hybrid simulation was consid-
ered to provide that function. But because of the large
amount of computer time required, and because it depended
wholly on the completeness of the test cases, a better
technique was sought. Thus, SAS, the static analysis system
program using the Boolean comparison technique, was
developed (see Fig. 4). By converting the basic design
language for structure (BDL/S, which the engineers used
for defining the hardware in automated logic diagrams) and
the flowchart language (BDL/CS, which they used to
express the functional specifications) to Boolean-algebra
equations and then performing the isomorphic check [2], the
equivalency could be determined readily.

Since this technique guarantees a 100% equivalency
check, the designer is able to relate the coverage-analysis
numbers from the high-level simulator and apply them to the
detailed implementation to determine the quality of the
design. (This approach also identifies clerical errors intro-
duced in the transcription of the design into the automated
logic diagrams.) Thus SAS allows the designer to compare a
flowchart design against a logic implementation. It validates
the fact that the design which was simulated at a high level
and on which trace analysis had been run is indeed the same
design that is now being released to manufacturing, without
making it necessary to re-invoke the costly simulation runs
at the detailed design level (VMS). The Boolean comparison
technique can also be used between two EC levels of the
cycle-simulator model. Another practice is to invoke it
before groups of chips are released to verify that the logic
implementation is equivalent to the cycle-simulation model.

Timing analysis

The problems resulting from product variations and the
difficulty of problem isolation in LSI hardware require
engineers to be able to analyze, in a software environment,
the various timing relationships and characteristics in the
physical layout implementation of the logic design. Another
important ingredient of DVS thus became timing analysis,
as described by Hitchcock er al. [11]. It was developed to
verify that there are no long paths or race conditions in the
design before the hardware is built. It allows the designer to
assess any technology changes which may cause timing
problems. Additionally, it provides a data base for identify-
ing “critical paths,” it aids in the development of dynamic
tests (exercising critical paths), and it ensures that the cycle
time is achieved in every possible path through the logic.

Since LSI does not readily permit the designer to observe
signals along a path within the physical machine, and since
experience has shown that all paths in the design, both short
and long, are potentially critical (within tight tolerances),
the required delay analysis became quite complicated. Thus,
instead of using only a “worst-case design” analysis, we
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really needed to apply a statistical approach. The delay-
equation generator was therefore designed to calculate
statistical delays for both the inputs and the output of each
block, and the early- and late-switching load characteris-
tics.

One of the major factors leading to the success of the
timing-analysis subsystem of DVS is that it requires no test
patterns to analyze the design. It is an analytical tool which
checks the logic paths, measures the slack (timing tolerances
in a circuit path) and provides accuracy in the delay calcula-
tions. The algorithm used treats circuits and wires as delay
elements without consideration of logic functions. The basic
concept is to calculate slack, based on delay equations
derived from the actual geometric layout and the technology
rules, to produce, statistically within three-sigma limits, a
timing validation of each path.

System diagnostics development

Diagnostics, further described by Tendolkar and Swann
[12], consist of verification tests (VTs) (which are similar to
the fault location tests used in System/360 [13] and are run
on an off-line configuration), and analysis routines (ARs)
that analyze error status logouts collected during on-line
operations.

® Verification tests

Verification tests are stuck-fault tests automatically gener-
ated by a large-scale test generator [14]. Because of the use
of LSSD, the primary outputs (POs) are easily found as
shift-register latches (SRLs). Each PO is traced back
through the logic by a program package called domain
analysis aid (DAA) until the primary inputs (PIs) are
found. The output of DAA for each PO, based on the
trace-back, is called the segment for that PO. The segment is
a list of nets which exist between the PO and its PIs. Another
program has the capability of grouping segments, using a set
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of given criteria, such as common scan-ring-accessible POs
or Pls, common circuit packages (wholly within one TCM,
or within one TCM board, etc.), and the number of POs
desired to be tested simultaneously. Once the criteria are fed
to the program, these segment groups may be formed from
the logic data and passed on to the test-pattern generator,
which tries to develop patterns to exercise all the Pls to test
the group of segments extensively. The patterns and the logic
are then fed into a fault simulator, which analyzes the test
coverage provided by the patterns generated. The output of
this step is a data set from which data are extracted for use
by a test-case compiler which generates the machine-
readable test cases to be used by the 3081.

In order to obtain a high level of field-replaceable unit
(FRU) coverage, the test cases are developed to run in a
system environment using the real TCM boards, cables,
TCMs, voltages, and clocks of the system, first in manufac-
turing final test and later in the field. This environment
allows the VTs to find problems which may pass undetected
on a unit tester, since the unit tester can only check a module
by itself, using the correct voltages, clocks, and data supplied
by the tester, rather than by the physical bounds of the
system environment. A TCM in a customer environment
may not match the functional specifications exactly but still
may lie within the tolerances of its design criteria.

® Logout analysis
Analysis routines (ARs) consist of a group of routines run in
the processor controller which analyze the error logouts and
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data resulting from checking-circuit-detected “red-light”
errors on the 3081 system. The product of this analysis is a
“FRU call” displayed to the customer, while he continues to
run his own applications, after the logout has taken place. A
technique used in the analysis is called intersection isolation
[12]. It is a comparison between single, independent logouts
on multiple errors, to find a common FRU group.

The development of logout analysis as part of DVS came
about because ARs originally could only be tested on a
hardware machine. This imposed two problems on the diag-
nostic engineers:

1. They had to wait until a functional hardware model was
available (at the end of the development cycle).

2. They had no simple way to inject errors into an LSI
hardware model (and thereby systematically prove that
the ARs are effective).

The diagnostic engineers were also affected by inaccessi-
bility of hardware test points for bugging in the test-case
validation process; also, the expected high reliability of the
finished hardware did not offer them many natural test
cases. The solution was to add fault injection to cycle
simulation to permit diagnostic engineers to simulate hard-
ware errors and to generate hardware logouts like those the
actual machine would produce. By this means, the diagnos-
tic engineers had available to them the first stage for
validating the AR process on a software model. The next
stage was to convert the diagnostic control program and the
ARs into a format capable of being executed as part of the
software model. This was accomplished by having the diag-
nostic control program written in a high-level language
(PL/S) which could be compiled into both System/370 and
Processor Controller code (see Fig. 5). Once the compiler
was debugged, we could execute the diagnostic control
program on a System/370, independent of Processor
Controller hardware. By developing the ARs as elements of
a table, we were able to execute them also in the System/370
environment. We had thus created a fully operational capa-
bility to test ARs early in the development cycle.

Verification experience

Before the 3081 development, in addition to the simulation
model and its associated test cases, another set of items
discarded early in the development schedule, after a one-
time-only use, were the numerous test cases which were only
designed for a particular level of hardware bring-up. The
3081 testing philosophy was to use all tests for regression
testing at all levels. We therefore needed to create and
maintain a test-case library.

Modifications based on experience have to be made from
time to time; this project was no exception, as was demon-
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strated in the area of timing analysis. On the basis of
previous design histories [15, 16], we had started with the
assumption that only the “critical” paths would contain
timing errors; this gave us one set of error numbers. After
running timing analysis, we discovered that timing errors
could occur in any path. This gave us nine times as many
errors as predicted. We also learned, from experience with a
five-year-old production system which suddenly began to
exhibit numerous timing problems, that timing errors occur-
ring anywhere in the design could not be tolerated. These
problems were traced to a shift in a circuit fabrication
process. The resultant deviations were still within specifica-
tions, but the errors occurred within various paths in the
machine once the newly fabricated circuits were plugged.
Naturally, we changed our design methodology and error-
projection rates, and with our new statistical approach to
timing analysis we expect that we will have eliminated this
potential problem in the future.

Another interesting experience which differed from
previous machine design histories was that, by the use of
flowcharts in the early stages of the design of the 3081,
numerous interface problems were uncovered. These prob-
lems used to be found late in the design cycle, when the
boards and gates were wired together by previous design-
automation systems [17]. They used to delay that part of the
development cycle and accounted for a much higher cost
than we experienced with flowcharting.

® Error discovery vs. projections

Figure 6 shows the projected number of errors based on the
modified design estimates. From the slope of the curve, one
can determine the periods when the designers were rapidly
discovering design problems and where they were most
efficient in their simulation efforts. The figure clearly shows
when the designers should have stopped functional simula-
tion and should have started timing analysis. The effect of
introducing new functional problems as a consequence of
eliminating timing problems is also clearly illustrated,
usually foliowing in three-month cycles. The other interest-
ing result illustrated is that, with each pass of the function/
timing iteration, the number of problems discovered
decreases. When the design trend stabilized, and as soon as
the coverage analysis showed a 90% coverage of single paths
after decision nodes, we would authorize hardware construc-
tion. This does not say that all design problems were elimi-
nated at that point, but, on the basis of the design history, we
expected the hardware to be operational and to require a
reasonably low number of ECs to correct the remaining
errors. The general strategy, based on the effectiveness of
the tools, has indicated that the use of cycle simulation and
SAS makes it possible to eliminate unit-delay simulation
completely. Walk-throughs and inspection [18] also are
effective tools for discovering design problems early.
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Figure 6 Error discovery projections with and without DVS.

® Hardware correlation to models

The 3081 project developed a three-stage bring-up plan,
consisting of module test, subsystem test, and uniprocessor
test (single central processor active). These entities were
built as mirror images of the simulation models discussed
previously. This was the first step in positively evaluating the
values of DVS. Figure 2 illustrates the test hook-up.

Module test

Module test consisted of a host system connected to a
prototype of the Processor Controller (PC) [19] connected to
an engineering test box which represented the interface
between the PC and the module. This interface controlled a
TCM that could be uncapped and probed with servo-
controlled probes.

Module test proved that, through simulation efforts (a
combination of VMS, cycle-simulation, and SAS), most
functional design problems had been removed prior to hard-
ware construction. It also showed that the automatic test-
case-generating system used for simulation input would also
identify manufacturing defects. Test-case migration be-
tween software and hardware models was made possible
through this remote-debug facility. The number of test cases
that needed to be modified or corrected due to inconsisten-
cies between the models and the hardware amounted to less
than 1%. (We had expected it to be 10%).

Subsystem test

The second level of testing was subsystem bring-up (Fig. 2),
which consisted of three dependent models, each consisting
of a fully plugged TCM board connected to an adapter
(MSSA [19]) which was connected to the Processor
Controller prototype and then back to a host processor. The
interfaces between the TCM board and other parts of the
3081 system were emulated with test boxes.
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Figure 7 Design error projection vs. actual discovery through
DVS.

The results of this test indicated that the dynamic prob-
lems encountered (running at machine clock rates) were
equivalent to the number predicted by the error-projection
model. In fact, due to a delay in hardware delivery, addi-
tional software simulation was performed, and it turned out
that two-thirds of the problems expected were removed
before the hardware testing began. This also helped validate
the assumption that dynamic problems could be discovered
through DVS, especially since timing analysis is part of the
verification procedure.

The subsystem test validated the approach of using a
high-level model for microcode simulation, then being able
to migrate the same microcode to the intermediate cycle-
simulation model to test it as a complete entity, and finally
applying it to the hardware machine. In fact, we discovered
no problems when the hardware/microcode interface was
tested after it had been completely tested earlier in a pure
simulation environment. We also proved that we could
migrate in the reverse direction: we could take test condi-
tions from the hardware and apply them to the simulator,
thereby identifying the cause of some hardware problems.
Engineers used this capability of visibly tracing and dump-
ing a good level simulation and comparing it against a
physical machine with hardware failures, thereby identify-
ing TCM and TCM-board failures.

Processor test

The third level of testing was to build a complete processor
from the subsystem parts and to test it as one entity by
simulating various customer environments. The purpose was
to check out the subsystem interfaces and to verify more
subtle interactions than could be run on a subsystem basis.
We found that the number of errors discovered in this phase
matched the number predicted for this environment. More
than 60% of the errors uncovered were in the interfaces
between subsystems.

® Effects on the hardware designer
With LSI, the designer was forced to become both a
software and a hardware engineer. The LSI designer must

MICHAEL MONACHINO

have a dual background, both in logic design and in
programming, generally needing less skill than before in
physical hardware debugging techniques but more knowl-
edge of system programming and software debugging tech-
niques. The designer now uses a broader spectrum of tech-
niques to create an error-free design.

® Product cycle

From previous discussions, it is clear that, with validation
techniques, normal development schedules are significantly
reduced. Any conventional hardware debugging, as shown in
Fig. 7, is a serial process at the beginning of the test cycle.
Only after a level of functionality has been achieved can it
become a parallel operation. The DVS package, on the other
hand, allows the designers to apply many test cases simulta-
neously to the design. It depends on, and is limited by, the
computing resources the designer is willing to invest in
simulation in order to achieve a certain quality before the
hardware is assembled for the first time. Hardware debug-
ging requires hardware rework after the corrections have
been designed. This creates physical design, release, and
manufacturing delays that can take weeks, and which intro-
duce additional errors (predicted as much as 1/3 more than
with the use of DVS). The changes required in a simulation
model can be made immediately and interactively, and they
can be tested subsequently by continuing with the simulation
runs. Compared with a pure hardware debug technique, the
DVS method improved the product schedule by 66%.

Conclusions

In general, our error-prediction and verification plans were
sound, and in most cases simulation worked out better than
expected. The number of design errors discovered early in
the design were proportional to the number of test cases that
were developed and the amount of computer time spent on
running the verification package. This project has demon-
strated that the use of multilevel simulation has eliminated
and simplified the development of test cases and test
programs to be used in hardware check-out. These programs
could be used on both the software models and on the
hardware. Furthermore, the quality of the tests could be
improved by the use of coverage-analysis-measurement tech-
niques. We also demonstrated that migration of test results
back from the hardware could be used to discover design
problems on the simulator that were not easily addressed on
the hardware alone. We further demonstrated that logic
simulation, though cumbersome at times, was less expensive
than physical hardware debugging. The cost of building a
model, reworking it, and manning it two to three shifts a day
does not come close to the much lower costs and turn-around
times of simulation runs, which in most cases provide the
same or better results. The models also have the capability of
setting up customer environments or scenarios which would
otherwise require extensive I/O attachments to the hard-
ware for testing them.
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On the basis of the experience gained on this project, the
author believes that it is impractical to design any large-
scale machine in LSI technology without the use of a design
verification system which can remove 90% of the design bugs
before the hardware testing of the machine begins. This
becomes even more important as the technology becomes
denser and as the repair and rework time is further extended
due to the more complex nature of the processing problems
of creating new chips, TCMs, and TCM boards after an
engineering change.
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