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Design  Verification  System  For  Large-Scale  LSI  Designs 

This  paper describes the  changing  environment of large-scale hardware designs as influenced by technology advancements and 
the growing use of design verification in  the design implementation process. The design verification methodology presented 
here saved some 66% from the 3081 product schedule, when compared with  a schedule utilizing  a conventional verijcation 
method, on almost 800 000 LSI  logic circuits. The paper discusses the use of software modeling techniques to verifv L S I  
hardware designs, methods used for deciding when modeling should be stopped and hardware can  be built with  suficient 
assurance to permit additional verification to continue on the hardware, methods for testing the hardware as it is assembled 
into a very large processor complex, and the organization of the design verification system  to avoid duplicate creation of test 
cases for di'erent stages of the design process. Experiences encountered in designing and verifving the 3081 system, a 
discussion of some shortcomings, and  an endorsement of certain techniques and improvements for use  in future designr are 
also presented. 

Introduction 
Before the advent of LSI, a designer had the ability to design 
a computer, build it, debug it, and correct the errors on the 
test floor with little help from a manufacturing facility or 
from vendors. With LSI, the engineer is dependent on a 
manufacturing entity for  building the customized chips, chip 
mounts or modules, and boards, and for reworking these 
items during the building and testing phases. With these 
dependencies, the initial hardware delivery of a model  design 
was projected to take  a minimum of  six months. An average 
of thirty working days were projected for  reworking the 
hardware for each design change. Since thousands of 
changes were  likely on a project of the 3081 scope, a design 
would  be  obsolete by the time it was ready for shipment. 

On the basis of these considerations, as well as Roth's 
early work [l], it was determined that a design verification 
system (DVS) was essential to permitting the advantages of 
LSI to be realized. Through the use of the DVS, the 
engineers could  verify the logic functionality of the design, 
could check that  the timing constraints were met, and could 
track the progress of the design  verification status to a preset 
goal before committing the design to hardware. Further- 
more, they could continue to track  the  status when engineer- 
ing changes, function enhancements, and  feature additions 
would change the original design. 

In pre-LSI designs, ratification (matching the design 
specifications), involved simulation of the logic designs with 
little use of high-level  models. LSI ratification still uses 
detailed simulation but also employs intermediate simula- 
tion  using  higher-level  models. 

In the past, use of the word validation was restricted to 
the testing of a hardware model on the test floor; but 
validation, as used  in this paper, means an analytic method 
of comparing two  models [2]. The purpose of the validation 
process is to  find the differences between the two  models 
being compared. The validation method assumes that one of 
the models  being compared is correct and any differences 
represent design errors. 

Before LSI, the  term coverage analysis was  unknown. 
The designer had the problem of determining when the 
ratification of a design  was completed, and to what extent 
design problems had been eliminated. With LSI, the design 
community required techniques to determine quantitatively 
the quality (adherence to specifications) of the design being 
released to manufacturing in order to maximize the number 
of design errors removed prior to  the construction of hard- 
ware. The designer also needed a method to determine when 
to stop simulating and when to start  the release process. 
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Figure 1 Design Verification System  (DVS) overview. (Note:  BDL/CS = Basic Design Language for Cycle Simulation,  BDL/S = Basic 
Design Language for Structure, VMS = Variable Mesh Simulator, VTs = Verification Tests.) 

In  pre-LSI designs, timing  analysis was used only on 
single paths  thought  to  be  “critical” by the designers; all 
other  timing problems  were  found by means of the  hardware 
model.  Also  in  previous  technologies,  clock-line tuning could 
be used to cover product  variations.  With  LSI,  the technol- 
ogy rules  are of such complexity that  the  designer  can no 
longer identify  “critical”  paths.  In  addition,  the new technol- 
ogy has a  wide range of tolerances,  requiring a statistical 
timing  analysis in order  to  maintain  the  functionality of the 
product over a large  range of production variations. 

With  pre-LSI  hardware, model  testing was not always 
systematic  and  thorough,  but was  based on the knowledge, 
experience, and needs of the designers,  who  were  also 
responsible for  the  hardware model debugging.  They could 
rewire the  hardware  at will. LSI  hardware,  on  the  other 
hand,  has  required  the designers to  generate a systematic 
testing  procedure prior to  hardware building to  beat  the 
hardware  change  cost  and  turn-around times. Thus,  tech- 
niques  like  functional  matrices  and  cause-and-effect 
diagrams [3], as well as  automatic  result  checking  and 
automatic  test-case  generation,  had  to become a basic  part 
of the design process. Test-case  hierarchy  techniques for the 
optimization of test-case  packages were  needed, and  the 
requirement for an  independent  group of experts in test-case 
generation was demonstrated. 

As a  by-product of the design  verification  effort, all  the 
necessary parts fell into  place  to  create a diagnostic  test 90 
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package for use by manufacturing  and field personnel, to 
identify  failing hardware components,  once the design  was 
verified. Also, the  ability  to inject numerous  error conditions 
into  the  software models and  to points not accessible to 
hardware bugging  could be exploited to verify the  diagnostic 
package before the  hardware was operational. 

Design verification system goals 
The  main goal of a  design  verification system is to  establish 
an  orderly design process with testing  repeatability  and  test 
data  integrity, not  only for  the  initial design but  also  for  any 
follow-on engineering changes (ECs), feature  additions, or 
enhancements.  The  system  must verify not only the logic 
design but  also  the  other  parts of the design  process,  includ- 
ing the  architecture of the  machine,  the  manufacturing- 
support  package,  and  the field-support package.  Problems 
must  be discovered  in the  earliest  stages of development. 

Thus, a set of management goals had  to  be designed into 
DVS to  evaluate  the  status of the  quality of the  hardware 
design  being  released to  manufacturing.  This  required a 
method  for  tracking  the  circuits or logic  blocks that  had  been 
verified, and a  way of determining  and  presenting  this 
information  to both designers  and  management. 

Hardware error projections 
The  number of errors  found in a  design generally  depend on 
the complexity of the  circuits  and on the  number of chips. 
We expected to find ten  errors per thousand  circuits in data 
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path logic designs and four times that many in control logic 
designs.  An additional factor had to be considered for the 
complexity of the timing problems associated with the 
circuit tolerances of the technology and packaging used.  For 
the 3081, on the basis of expectations of DVS  effectiveness 
and hardware change turn-around time, we set the design 
goals to catch 84% of the logic  design problems and 100% of 
the timing problems through design verification. The 
remaining 16% of the logic  design  problems have to be 
isolated on the hardware. 

An error-projection model incorporating the error history 
of previous machines as well as the characteristics of the new 
technology, the complexity of the new design, and  the 
proposed schedule was  used to predict the number of errors 
expected in the design. A contingency factor of 14% was 
added for non-error-type changes resulting from revised 
design  specifications. 

Ratification  techniques 
The design  verification system illustrated in Fig. 1 contains a 
structure for ratification made up of four models:  Model 1 
(logic simulation) consists of a detailed logic  design evalua- 
tion; Model 2 (cycle simulation) consists of an intermediate- 
level software model built from  flowcharts; Model 3 (micro- 
code debug tool) consists of a high-level software model 
developed  in PL/S  (a Poughkeepsie laboratory adaptation of 
PL/I) for horizontal microcode 141 testing; and Model 4 
(hardware prototype illustrated in Fig. 2) consists of a 
staged, physical-hardware machine constructed to be equiv- 
alent to the intermediate flowchart models. The four models 
are interdependent and support one another. The common 
link among them is the ability to run the same test cases on 
all four models. Each of these ratification techniques is 
described in turn. 

A major problem  with  previous software models  was that 
they never really represented the actual implementation of 
the hardware. The difficulty of maintaining up-to-date 
detailed specifications from which both the  hardware and 
the software models  could  be unambiguously built, and the 
fact that a significant amount of programming time and 
computer resources  were required to debug the software 
models, caused previous projects to drop software modeling 
once the initial hardware was built. 

Ratifcation through cycle simulation 
Cycle simulation utilizes flowcharts as inputs and allows a 
designer to simulate both control and data path logic in 
flowchart form. The flowcharts are coded into a simple 
flowchart language called BDL/CS [ 5 ] ,  which  uses a 
limited number of operands and which requires no program- 
ming  knowledge to use. The  resultant flowcharts not  only 
become the input source for the model but they also serve as 

Design I 
Verification PC 
System I 

Figure 2 Design verification system/prototype hookup. (Note: 
MSSA = Monitoring and System Support Adapter.) 

specifications  which document the hardware for engineering 
and manufacturing use. The use of flowcharts has elimi- 
nated the problems of specification interpretation and 
coding errors between a design and its high-level  model. It 
has significantly reduced the amount of time required to 
debug the software model: each error found  in the flowchart 
represents a design error,  and what the designer has drawn 
in the flowcharts constitutes the software model. Mainte- 
nance of the cycle-simulation model  is also simplified, since 
the model consists of altered flowcharts,  with no programs to 
understand, modify, or change. (As part of the engineering 
change process, each designer updates the flowcharts in the 
process of updating the design.) The cycle-simulation model 
is built on three principles: 

1. The ordering sequence is defined by the hardware 
designer. 

2. Timewise-parallel functions may be described, although 
these are executed with sequential code. 

3. Strict separation is maintained between the functional 
design and  the physical packaging design. (This permits 
the designer to concentrate first on solving the functional 
problem and then on packaging a correctly designed 
function.) 

Cycle-simulation configurations were  divided into three 
stages, using planned increases in the size and complexity of 
the  hardware in each stage, in order to support both the 
development sequence of design  verification and hardware 
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bring-up. The  three  stages  are  illustrated  in  the  right-hand 
side of Fig. 2, which further shows the way DVS is hooked 
up  with  the  hardware  prototype configuration (to  be 
discussed shortly). 

The cycle-simulation  model is built and  executed in eight 
steps in  a very systematic  manner.  The first step is to  create 
the  hardware flowcharts. The second  is to  create  the  data- 
flow-path  models. These  are supplied by the  engineers in the 
form of specifications  which are  then coded up on a latch- 
by-latch  basis by an  independent modeling group.  Similarly, 
the flowcharts are  transcribed  into  BDL/CS by the  group. 
Step  three is to compile the code and  eliminate compile 
errors.  Step  four is to  create  arrays  from a description 
supplied by the design engineer  through  an  automatic soft- 
ware package. Step five creates  the logical structure  from 
the  latch definitions  using the  names given to  each of the 
latches in the machine. Step six defines the  latches  and 
flowcharts to  be used with  the  test-case  library in  a particu- 
lar  run of the model. Step seven creates  the  code combining 
the  three  items,  and  step  eight is the  actual  simulation  run. 

The  simulation  runs, in turn,  are divided into different 
stages.  The first stage builds a functional model of each 
circuit  module of a  processor element.  The second stage 
takes  an  individual  module  and  adds a combination of 
macros, which represent  interface signals to  the module, to 
simulate  asynchronous  combinations of data which  could 
occur in the physical hardware.  The  macros consist of two 
formats:  special flowcharts created  to  represent  the  inter- 
faces of various functional  units,  or PL/S programs which 
decrease  the  interfaces of a functional  unit.  The  use of this 
“driver” technique allows the engineer to  simulate condi- 
tions which are highly  complex, and in  some  cases, impossi- 
ble  to set up in  a hardware environment. These  macros  and 
drivers  remain  until a full module with its  natural  interface 
signals is operational.  The  advantage of this  staged  approach 
is that  the  designers  are  required  to  simulate  their own 
designs,  using small  amounts of computer  time  to find a 
large  number of problems concurrently. As a by-product, 
functional  test  patterns  can  be saved,  which are  to  be  applied 
by  means of a software  driver  to  be used  in the first stage of 
the  hardware model  bring-up. This  stage of bring-up  (Stage 
1  in  Fig. 2) consists of a hardware  tester  and a module 
handler with the  ability  to  apply  functional  test  patterns. 
These  patterns  are  applied  to  the  actual  LSSD (Level- 
Sensitive  Scan Design) [6]  module  scan  rings  to  validate  the 
functioning of the  hardware design. 

The second stage of the cycle-simulation  modeling  is to 
combine  functional  elements  into  software models to  form 
subsystems. For  an overview of the 3081 subsystems, refer  to 
[7, 81. The  subsystems  thus  formed  represent  the central 
processor (CP),  the system controller (SC),  the external 

data controller (EXDC),  etc.  This  creates  larger models, 
requiring  more  computer  time  than  the  earlier  smaller 
models and very large regions of storage (1 1 + megabytes) 
in which to  execute  the code. The  advantage of the second- 
stage models  is that  the  functional  test  cases  can  be executed 
at  the  operand level. This  permits  the  designer  to  execute 
architectural  test  cases  against  the design the  same way they 
are  executed in a hardware environment. The  test  cases  are 
generated  through  external  means,  such  as  running a 
program in  memory or  entering  data  through a console. This 
adds  the  feature of being able  to  check  the  interfaces 
between a functional  unit  and  other  units comprising the 
system. This  stage of modeling  was  used to  test a complete 
section of hardware housed  in  a  full thermal conduction 
module (TCM)  board. 

Multiple  drivers  on  the  software model are used to 
emulate  customer  environments  as well as  some  critical 
stress scenarios, obtained  from previous machines  as  stress 
cases which were  encountered  during  testing  or  through  real 
customer problems  collected  over a five-year period. By 
applying  these  stress  environments  early in the  simulation 
cycle, we eliminated  some  rather complex potential prob- 
lems  from  the design. Data  thus  generated were  also later 
compared  against  data  obtained on  a  cycle-by-cycle  basis 
from a hardware model, thereby  making possible the evalua- 
tion of other very complex interactions. 

The final stage of the  simulation model  consists of using  a 
functional simulator (an  enhanced version of the cycle 
simulator)  to allow the  engineers  to  construct a complete 
processor,  in order  to  eliminate  potential  interface problems 
not  discovered by the subsystem  models. The processor 
model can  run  standalone  programs of up  to  128K bytes, 
giving the  designers  the  ability  to use system  software  as  test 
cases. 

In  order  to  achieve  test-case  migration between the 
different models, a common test-case  language was  devised. 
The  system  to  support  this  language was called SDS (SLC- 
driven simulation), and could be  initiated  through service 
language commands (SLC)  from  display  formats  identical 
in appearance  to  the  operator console  displays of the 308 1 .  
All levels of simulation were  designed to  accept  test  cases 
generated by SDS.  The  technique used  was to  write a unique 
driver  for  each of the models or hardware  test vehicles rather 
than  to  write different test  cases  for  each  stage of testing. A 
test case, for example,  was  first used  in cycle simulation 
against  the  functional  element,  then  the  functional  unit,  and 
finally, the  functional  system. It was  then  carried  forward 
and used  in  module, subsystem,  and processor testing, elimi- 
nating  duplicate efforts in  creating  and  in  maintaining 
separate  test-case libraries. 
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Logic ratification through variable mesh simulation 
Logic  ratification  was  accomplished in two ways: unit-logic 
simulation and  hybrid  simulation. A test-pattern-driven 
logic simulator called the variable mesh simulator (VMS) 
[9] was available  for use by the logic designers. It could be 
used in the following three modes: 

1. AND/OR-logic  simulation,  ratifying  the basic logic 

2. Unit-delay  simulation,  to check out  the  timing relation- 

3. High-level simulation. 

functions of a  design. 

ships  between AND/OR blocks. 

In the  last  case,  the model is written in a  higher-level 
language.  It allows the designer to  simulate  at a functional 
level and  permits  replacement of parts of the model with  its 
counterparts in unit logic. The  patterns  required  to  drive  the 
simulator  are  manually  generated  and  are  dependent on the 
designers’  knowledge of the design,  using  a simulator  control 
language called BDL/C.  The  output  from  the  simulator is in 
the  form of an “all-events trace,” a  cycle-by-cycle recording 
of every defined test point. This  data  may be analyzed by 
using available  support  programs  to  select  and  format  the 
output  at desired test points in an easily  understood  fashion. 

Logic ratification through hybrid simulation 
Hybrid  simulation is the  term used when  higher-level func- 
tional simulation  results  are converted and used to drive the 
lower-level models of single and  multichip sections. This 
allows an  engineer  to develop test  cases by executing  an 
operation code or program  against a high-level model and  to 
use the  detailed  results  to drive the  VMS  AND/OR logic. 
As with earlier technologies, the  hybrid  technique was  only 
effective in the  initial design stages, becoming impractical  as 
larger sections of logic were  put together.  The  main  advan- 
tage of hybrid simulation was that  the designer would not 
have to  understand  the values of all  the  inputs  into  the 
section of the logic being simulated. By use of hybrid 
simulation,  the  designer was able  to  tie  these  nets  to  the 
cycle-simulation  facility names  and  use  the high-level simu- 
lator  to  generate  the bit patterns  to  drive  the  detailed logic. 

Unfortunately, a number of disadvantages were also 
incurred:  the  detailed logic took 30 to 40 times  the  computer 
time  that  the higher-level models  took, and  the  storage 
requirements of the  jobs  were  three  to  four  times  as  large. 
Furthermore,  due  to  capacity  limitations,  VMS was unable 
to  handle  the very large  number of circuits  the designers 
needed to  simulate a t  a time. To make  the  simulation fit, and 
to  run  for finite  periods, the designers had  to  establish 
artificial boundaries  and correspondences  between the high- 
level and low-level simulation models. Discrepancies in 
correspondences introduced new errors  that could not  be 
detected by unit-delay simulation  and  complicated  the 

picture  further.  Thus, we had  to find another  technique  for 
establishing  functional equivalences  between  models; this is 
discussed subsequently. 

Microcode debugging through the microcode debug tool 
Up  to  this point we have  discussed hardware  simulation;  but 
since  the design contains both hardware  and microcode, an 
appropriate  debugging tool, called  the microcode debug tool 
(MDT), was also needed. This was  developed  especially to 
test  horizontal microcode in a software environment. It 
differs from cycle simulation in that  the model is written in 
PL/S, and  it  represents  the high-level function  as  distinct 
from  the  implementation.  Its purpose  is to remove  gross 
errors,  independent of the  hardware  design, before the 
horizontal microcode is merged  with  cycle simulation, in 
order  to  permit a complete  functional  test of both the 
microcode and  the  hardware  simulation.  MDT  can fit in a 
normal TSO region,  consists of an interactive  conversational 
language,  and  can  be run as a background  job.  It  can  create 
and  execute  command lists containing MDT commands 
from  user-independent  data  sets.  It  interfaces  directly  with 
all files containing  the microcode and  test  cases necessary to 
support  the  simulation runs. It  further  contains a  save- 
and-proceed facility within TSO to allow the designer to  stop 
at   any point in the session and  to save the  results in one  data 
set,  together with the  test  environments  he is using. The 
main  characteristics of the  simulator  are  minimally affected 
by hardware  changes,  and it can run a large  number of test 
cases on a large  amount of microcode  in  a  very short  time. 
Modular  programming  techniques used in its design permit 
it  to  be used across  multiple models with  minimal  changes. 
The key feature built into  the model is use of the  identical 
naming convention and facility names of the  hardware 
BDL/CS used  in  cycle simulation. 

Testing 
Testing in the  past  had been plagued by four  major prob- 
lems: 1) The effectiveness of the exercisers  used; 2) Elimi- 
nating obsolete code within the  item being tested; 3) Deter- 
mining loop conditions  within the model  being tested; 4) 
Measuring  the effectiveness of test cases. 

With  DVS we attempted  to  put  into  place a  system that 
would not  suffer from  the above  problems, based on 1 )  A 
systematic  testing  approach using  building blocks, and a 
method for tracking coverage; 2) Cause  and effect diagrams 
and  functional  matrices  to  determine  the  test  cases  to  be 
developed; 3) Automatic  rather  than  manual verification 
that a test  case  had  completed properly; 4) A test-case 
library which permitted  test-case  bucket  optimization  for 
regression test-case scheduling. 

We  further  stipulated  the following: 93 
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Coverage = I 00% Coverage = 50% 

(b) 

Figure 3 Illustrating coverage with TRACEl and  TRACEZ: (a) 
Sample flowchart, (b) Coverage analysis. 

1. Test cases should be prepared concurrently with the 
design and should be  based  on the complete specifications 
provided  by the designer. 

2. The language for developing the test cases should be the 
same as that  to be  used ultimately when the processor  was 
released to the customer. 

3. The microcode  used to drive the model should be the 
functional microcode  used  in the final product after 
having  been tested on the MDT simulator. 

4. All test cases should  be usable for development test and 
manufacturing bring-up. 

Expanding on the building-block approach, test cases 
were  developed  in different stages of complexity. The first 
stage, single-cycle test, is  based on the control specifications 
or flowcharts. These are very basic tests used to check the 
transfer of information between functions within the models. 
The next stage, multicycle test, checks an operation within a 
model  by executing an operation and checking the data and 
control flow  of the machine. The third  stage consists of 
executing nonoverlapping instructions which drive the model 
to performing full functions on an individual basis. The 
fourth stage, program testing, consists of overlapped instruc- 
tions running together, allowing simultaneous conditions 
within the model to be activated. The fifth stage consists of 

94 interface tests designed to check the functions between 

individual units and  the final stages of the error checkers 
within the machine to determine that the hardware acts 
correctly. The combination of all tests is  used to achieve the 
test-case goals for path coverage. 

Coverage determination 
Coverage determination, the systematic audit of the extent 
of cycle-simulation flow paths traced during simulation runs, 
was implemented for the 3081 with two program packages 
called TRACEl and  TRACE2. The  TRACE facility inter- 
acts, cycle by cycle,  with the cycle-simulation model execu- 
tion. A pre-analysis is made of the flowcharts by recording 
all legs of all decision trees to create  a maximum table of 
combinations to be analyzed. The cycle-simulation program 
records the legs executed when test cases are applied to it. 

TRACEl uses the output of the simulator and a list of all 
possible “no” decisions, as well as the  state of all branch 
tables covered by a group of test cases or accumulated over a 
period of time. This provides the designers with an adequate 
way  of measuring the effectiveness of their testing as well as 
a quantitative way  of expressing coverage [ 101. 

TRACE2 analyzes the same data differently because, 
when  decisions are executed, not all legs emanating from the 
decision  block are necessarily tested. It develops a coverage 
map based on paths rather than on legs. Figure 3(a) shows a 
flowchart and Fig. 3(b) the coverage analysis performed by 
TRACEl and TRACEZ. Note that  TRACEl follows the 
“no” path out of both  decision  blocks  in TEST 1, and  the 
“yes” path out of both  decision  blocks  in TEST 2. TRACEl 
concludes that all paths out of the decision  blocks have been 
tested. TRACE2, on the other hand, concludes that there are 
two paths from Dl to D2, that  the “no, no” and “yes,  yes” 
paths are only half of the ways one can get through to the 
end, and that  the “no,  yes” and “yes,  no” paths must also 
be considered. 

The  TRACE2 program evaluates the cycle-simulation 
flowcharts for at least two  levels and up to five  levels  of path 
lengths beyond a decision  block. The two methods together 
allow the engineers to establish criteria for determining 
when  coverage  is  high enough to stop simulation. The 
criteria we chose  were that 90% of all single-, 70% of all 
double-, and 40% of all triple-level decision paths had to be 
covered before software testing could  be stopped. On the 
basis of previous analytic work,  we projected that with the 
foregoing criteria there would be a 95% probability that the 
design would be free from problems, exclusive of those 
dependent on data and timing variations. 

Functional equivalences between models 
As previously discussed, the problem of establishing the 
functional equivalency between different levels  of models 
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had  to  be resolved. At first,  hybrid simulation  was consid- 
ered to provide that function. But  because of the  large 
amount of computer  time  required,  and  because  it  depended 
wholly on the completeness of the  test  cases, a better 
technique was  sought. Thus,  SAS,  the static  analysis  system 
program using the Boolean comparison  technique, was 
developed (see Fig. 4). By converting the basic  design 
language  for  structure  (BDL/S, which the  engineers used 
for  defining the  hardware in automated logic diagrams)  and 
the flowchart language  (BDL/CS, which they used to 
express the  functional specifications) to Boolean-algebra 
equations  and  then performing the isomorphic check [2], the 
equivalency  could be  determined readily. 

Since  this  technique  guarantees a 100% equivalency 
check,  the designer is able  to  relate  the coverage-analysis 
numbers  from  the high-level simulator  and  apply  them  to  the 
detailed  implementation  to  determine  the  quality of the 
design. (This  approach also  identifies clerical  errors  intro- 
duced  in the  transcription of the design into  the  automated 
logic diagrams.)  Thus  SAS allows the designer to  compare a 
flowchart  design against a logic implementation.  It  validates 
the  fact  that  the design which was simulated a t  a  high level 
and on which trace  analysis  had been run is indeed the  same 
design that is now being  released to  manufacturing,  without 
making  it necessary to re-invoke the costly simulation  runs 
at  the  detailed design level (VMS).  The Boolean comparison 
technique  can also be used  between  two EC levels of the 
cycle-simulator  model. Another  practice is to invoke it 
before groups of chips  are released to verify that  the logic 
implementation is equivalent  to  the cycle-simulation  model. 

Timing analysis 
The problems resulting  from  product  variations  and  the 
difficulty of problem  isolation in LSI  hardware  require 
engineers to be able  to  analyze, in  a software  environment, 
the various timing relationships and  characteristics in the 
physical layout  implementation of the logic design. Another 
important  ingredient of DVS  thus  became timing  analysis, 
as  described by Hitchcock et al. [ l l ] .  It was developed to 
verify that  there  are no long paths or race conditions  in the 
design before  the  hardware is built. It allows the  designer  to 
assess any technology changes which may  cause  timing 
problems. Additionally,  it provides a data  base for  identify- 
ing “critical  paths,”  it  aids in the development of dynamic 
tests (exercising critical  paths),  and  it  ensures  that  the cycle 
time is achieved  in  every possible path  through  the logic. 

Since  LSI does not readily permit  the  designer  to observe 
signals along a path within the physical machine,  and since 
experience has shown that  all  paths in the  design, both short 
and long, are potentially critical  (within  tight  tolerances), 
the  required delay analysis  became  quite  complicated.  Thus, 
instead of using  only  a  “worst-case  design” analysis, we 
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Figure 4 Model-equivalence-checking methodology. 
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really  needed to apply  a statistical  approach.  The  delay- 
equation  generator was therefore designed to  calculate 
statistical  delays for  both the  inputs  and  the  output of each 
block, and  the  early-  and late-switching  load characteris- 
tics. 

One of the  major  factors  leading  to  the success of the 
timing-analysis subsystem of DVS is that it requires no test 
patterns  to  analyze  the design. It is an  analytical tool which 
checks the logic paths,  measures  the  slack  (timing tolerances 
in a circuit  path)  and provides accuracy in the  delay  calcula- 
tions. The  algorithm used treats  circuits  and wires as  delay 
elements  without consideration of logic functions. The  basic 
concept is to  calculate  slack, based on delay  equations 
derived from  the  actual  geometric  layout  and  the technology 
rules, to  produce,  statistically within three-sigma  limits, a 
timing validation of each  path. 

System  diagnostics development 
Diagnostics, further described by Tendolkar  and  Swann 
[ 121, consist of verification tests (VTs) (which are  similar  to 
the fault location tests used  in System/360 [ 131 and  are  run 
on an off-line configuration),  and analysis  routines (ARs) 
that  analyze  error  status logouts  collected during  on-line 
operations. 

e Verification tests 
Verification tests  are  stuck-fault  tests  automatically gener- 
ated by a large-scale  test  generator [ 141. Because of the  use 
of LSSD,  the primary  outputs (POs) are easily found  as 
shift-register latches (SRLs).  Each PO is traced  back 
through  the logic by a program  package called domain 
analysis  aid (DAA)  until  the primary inputs (PIS) are 
found. The  output of DAA  for  each  PO, based on the 
trace-back, is called  the segment for  that PO. The  segment is 
a list of nets which  exist  between the PO and  its  PIS.  Another 
program  has  the  capability of grouping  segments, using  a set 95 
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Figure 5 Diagnostic  control  program  debugging paths. (Note: 
BAL - Basic  Assembler  Language,  DCLs = DECLARE state- 
ments, PC = Processor  Controller.) 

of given criteria,  such  as common  scan-ring-accessible POs 
or PIS, common circuit  packages (wholly  within one TCM, 
or within one  TCM  board,  etc.),  and  the  number of POs 
desired to  be  tested  simultaneously.  Once  the  criteria  are fed 
to the  program,  these  segment  groups  may  be  formed  from 
the logic data  and passed  on to  the  test-pattern  generator, 
which tries  to develop patterns  to exercise all  the PIS to  test 
the  group of segments extensively. The  patterns  and  the logic 
are  then fed into a fault  simulator, which analyzes  the  test 
coverage  provided by the  patterns  generated.  The  output of 
this  step is a data  set  from which data  are  extracted for use 
by a test-case compiler  which generates  the  machine- 
readable  test cases to be used by the  308 1. 

In  order  to  obtain a high level of $field-replaceable unit 
(FRU) coverage, the  test  cases  are developed to  run in a 
system  environment using the  real  TCM  boards,  cables, 
TCMs, voltages, and clocks of the  system, first  in manufac- 
turing final test  and  later in the field. This  environment 
allows the VTs to find problems which may pass undetected 
on a unit  tester,  since  the  unit  tester  can only check a module 
by itself,  using the  correct voltages, clocks, and  data supplied 
by the  tester,  rather  than by the physical bounds of the 
system  environment. A T C M  in  a customer  environment 
may  not  match  the  functional specifications exactly  but still 
may lie  within the  tolerances of its design criteria. 

Logout analysis 
Analysis routines (ARs) consist of a group of routines  run in 
the processor controller which analyze  the  error logouts and 96 
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data  resulting  from checking-circuit-detected “red-light” 
errors on the 3081  system. The  product of this  analysis is  a 
“FRU call” displayed to  the  customer, while he  continues  to 
run his own applications,  after  the logout has  taken place. A 
technique used  in the  analysis is called intersection isolation 
[ 121. It is a comparison between  single, independent logouts 
on multiple  errors,  to find a  common FRU group. 

The development of logout analysis  as  part of DVS came 
about because ARs originally  could  only be  tested  on a 
hardware  machine.  This imposed  two  problems  on the  diag- 
nostic  engineers: 

1. They  had  to wait until a functional  hardware model was 
available  (at  the  end of the development  cycle). 

2. They  had no simple  way  to  inject  errors  into an  LSI 
hardware model (and  thereby  systematically prove that 
the ARs are effective). 

The  diagnostic engineers  were also affected by inaccessi- 
bility of hardware  test points for bugging  in the  test-case 
validation process; also, the expected high reliability of the 
finished hardware  did not offer them  many  natural  test 
cases. The solution was  to  add  fault injection to cycle 
simulation  to  permit  diagnostic engineers to  simulate  hard- 
ware  errors  and  to  generate  hardware logouts  like those  the 
actual  machine would produce. By this  means,  the diagnos- 
tic engineers had  available  to  them  the first stage for 
validating  the AR process on a software model. The next 
stage was to convert the  diagnostic  control  program  and  the 
ARs into a format  capable of being executed  as  part of the 
software model. This was  accomplished by having the  diag- 
nostic control  program  written in a high-level language 
(PL/S) which  could be compiled into  both  System/370  and 
Processor Controller code (see Fig. 5). Once  the compiler 
was debugged, we could execute  the  diagnostic  control 
program on  a System/370,  independent of Processor 
Controller  hardware. By developing the ARs as  elements of 
a table, we were able  to  execute  them  also in the  System/370 
environment.  We  had  thus  created a  fully operational  capa- 
bility to  test ARs early in the development cycle. 

Verification experience 
Before the 3081  development,  in addition  to  the  simulation 
model and  its  associated  test  cases,  another  set of items 
discarded  early in the development schedule,  after a  one- 
time-only  use,  were the  numerous  test  cases which were only 
designed for a particular level of hardware bring-up. The 
3081  testing philosophy was to  use  all  tests for  regression 
testing at  all levels. We  therefore needed to  create  and 
maintain a test-case  library. 

Modifications  based  on experience have to  be  made  from 
time  to  time;  this  project was no exception, as  was  demon- 

IBM J. RES. DEVELOP. * VOL. 26 * NO. 1 * JANUARY 1982 



strated in the  area of timing analysis. On  the basis of 
previous design  histories [ 15, 161, we had  started with the 
assumption  that only the  “critical”  paths would contain 
timing  errors;  this  gave us one  set of error  numbers.  After 
running  timing  analysis, we discovered that  timing  errors 
could occur in any  path.  This gave  us nine  times  as  many 
errors  as predicted. We  also  learned,  from  experience with  a 
five-year-old production  system  which suddenly  began  to 
exhibit  numerous  timing problems, that  timing  errors  occur- 
ring  anywhere in the design  could not be tolerated.  These 
problems  were traced  to a shift in a circuit  fabrication 
process. The  resultant deviations  were  still  within specifica- 
tions, but  the  errors  occurred within various  paths in the 
machine once the newly fabricated  circuits were  plugged. 
Naturally, we changed our design  methodology and  error- 
projection rates,  and with our new statistical  approach  to 
timing  analysis we expect  that we will have eliminated  this 
potential problem  in the  future. 

Another  interesting  experience which differed  from 
previous machine design  histories  was that, by the  use of 
flowcharts in the  early  stages of the design of the 3081, 
numerous  interface problems  were  uncovered. These prob- 
lems  used to be found late in the design  cycle,  when the 
boards  and  gates were wired together by previous  design- 
automation systems [ 171. They used to delay that  part of the 
development  cycle and  accounted for a much  higher cost 
than we experienced  with  flowcharting. 

Error discovery vs. projections 
Figure 6 shows the projected number of errors based on the 
modified design estimates.  From  the slope of the  curve,  one 
can  determine  the periods when the designers  were rapidly 
discovering  design  problems and  where  they were  most 
efficient in their  simulation efforts. The figure clearly shows 
when the designers  should  have stopped  functional  simula- 
tion and should  have started  timing analysis. The effect of 
introducing new functional problems as a  consequence of 
eliminating  timing problems is also  clearly  illustrated, 
usually following in three-month cycles. The  other  interest- 
ing result  illustrated is that, with each pass of the  function/ 
timing  iteration,  the  number of problems  discovered 
decreases. When  the design trend  stabilized,  and  as soon as 
the coverage analysis showed a  90%  coverage of single  paths 
after decision nodes, we would authorize  hardware  construc- 
tion. This does  not say  that  all design  problems  were  elimi- 
nated at   that  point, but, on the basis of the design  history, we 
expected the  hardware  to be operational  and  to  require a 
reasonably low number of ECs  to  correct  the  remaining 
errors.  The  general  strategy, based on the effectiveness of 
the tools, has  indicated  that  the use of cycle simulation  and 
SAS makes  it possible to  eliminate unit-delay simulation 
completely. Walk-throughs  and inspection [18]  also  are 
effective tools for discovering  design  problems early. 

aTotai errors  discovered 

2 4 6 8 10  12 14 16 I8 20 22 24 26 28 30 32 34: 

Months 

Figure 6 Error discovery projections  with and without DVS. 

Hardware correlation to models 
The 3081 project developed a three-stage  bring-up  plan, 
consisting of module  test,  subsystem  test,  and uniprocessor 
test (single central processor active).  These  entities  were 
built as  mirror  images of the  simulation models  discussed 
previously. This was the first step in positively evaluating  the 
values of DVS. Figure 2 illustrates  the  test hook-up. 

Module test 
Module  test consisted of a  host system  connected  to a 
prototype of the Processor Controller  (PC) [ 191 connected  to 
an  engineering  test box which represented  the  interface 
between the PC and  the module. This  interface controlled a 
TCM  that could be  uncapped  and probed  with servo- 
controlled  probes. 

Module  test proved that,  through  simulation efforts (a 
combination of VMS, cycle-simulation, and  SAS), most 
functional design  problems had been  removed  prior to  hard- 
ware  construction.  It also showed that  the  automatic test- 
case-generating system  used  for simulation  input would also 
identify manufacturing  defects.  Test-case  migration be- 
tween software  and  hardware models  was made possible 
through  this  remote-debug  facility.  The  number of test cases 
that needed to  be modified or corrected  due  to inconsisten- 
cies  between the models and  the  hardware  amounted  to less 
than 1%. (We  had expected it  to  be 10%). 

Subsystem test 
The second level of testing was subsystem  bring-up  (Fig. 2), 
which  consisted of three  dependent models, each consisting 
of a  fully  plugged TCM board  connected  to  an  adapter 
(MSSA  [19]) which  was connected  to  the Processor 
Controller  prototype  and  then  back  to a  host processor. The 
interfaces between the  TCM  board  and  other  parts of the 
308 1 system were emulated with test boxes. 97 
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Figure 7 Design error projection vs. actual discovery through 
DVS. 

The  results of this  test  indicated  that  the  dynamic prob- 
lems encountered  (running at  machine clock rates) were 
equivalent to  the  number  predicted by the  error-projection 
model. In  fact,  due  to a delay in hardware delivery, addi- 
tional software  simulation was performed,  and  it  turned  out 
that two-thirds of the problems  expected  were  removed 
before the  hardware  testing  began.  This  also helped validate 
the  assumption  that  dynamic problems  could be discovered 
through DVS, especially since  timing  analysis is part of the 
verification procedure. 

The subsystem test  validated  the  approach of using  a 
high-level model for microcode simulation,  then being able 
to  migrate  the  same microcode to  the  intermediate cycle- 
simulation  model to  test  it  as a complete  entity,  and finally 
applying it  to  the  hardware  machine.  In  fact, we discovered 
no problems  when the  hardware/microcode  interface  was 
tested  after  it  had been completely tested  earlier in  a pure 
simulation environment. We  also proved that we could 
migrate in the reverse  direction: we could take  test condi- 
tions from  the  hardware  and  apply  them  to  the  simulator, 
thereby identifying the  cause of some hardware problems. 
Engineers used this  capability of visibly tracing  and  dump- 
ing  a good level simulation  and  comparing  it  against a 
physical machine with hardware  failures,  thereby identify- 
ing TCM  and  TCM-board  failures. 

Processor test 
The  third level of testing was to build  a complete processor 
from  the  subsystem  parts  and  to  test  it  as  one  entity by 
simulating various customer  environments.  The purpose  was 
to  check  out  the subsystem interfaces  and  to verify more 
subtle  interactions  than could be run on a subsystem basis. 
We found that  the  number of errors discovered  in this  phase 
matched  the  number  predicted for this  environment.  More 
than 60% of the  errors uncovered  were  in the  interfaces 
between  subsystems. 

Eflects on the hardware designer 
With LSI, the designer  was  forced to become  both a 
software  and a hardware engineer. The LSI designer  must 98 
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have  a dual  background, both in logic design and in 
programming,  generally needing less skill than  before in 
physical hardware  debugging  techniques  but  more knowl- 
edge of system programming  and  software  debugging tech- 
niques. The designer now uses a broader  spectrum of tech- 
niques to  create  an  error-free design. 

Product cycle 
From previous  discussions, it is clear  that, with  validation 
techniques,  normal development schedules  are significantly 
reduced. Any conventional hardware  debugging,  as shown  in 
Fig. 7, is a serial process at   the beginning of the  test cycle. 
Only  after a level of functionality  has been  achieved can it 
become  a parallel  operation.  The DVS package,  on the  other 
hand, allows the designers to  apply  many  test  cases  simulta- 
neously to  the design. It  depends  on,  and is limited by, the 
computing resources the designer is willing to invest in 
simulation in order  to achieve  a certain  quality before the 
hardware is  assembled for  the first time.  Hardware debug- 
ging  requires  hardware rework after  the  corrections have 
been designed. This  creates physical  design,  release, and 
manufacturing  delays  that  can  take weeks, and which intro- 
duce  additional  errors  (predicted  as  much  as 1/3 more  than 
with  the  use of DVS). The  changes  required in  a simulation 
model can  be  made  immediately  and  interactively,  and  they 
can be tested  subsequently by continuing with the  simulation 
runs. Compared with  a pure  hardware  debug  technique,  the 
DVS method improved the  product  schedule by 66%. 

Conclusions 
In general, our error-prediction  and verification  plans  were 
sound,  and in  most cases  simulation worked out  better  than 
expected.  The  number of design errors discovered early in 
the design  were  proportional to  the  number of test  cases  that 
were developed and  the  amount of computer  time  spent on 
running  the verification  package. This  project  has  demon- 
strated  that  the  use of multilevel simulation  has  eliminated 
and simplified the development of test  cases  and  test 
programs  to  be used  in hardware check-out. These  programs 
could be used on both the  software models and on the 
hardware.  Furthermore,  the  quality of the  tests could be 
improved by the  use of coverage-analysis-measurement tech- 
niques. We also demonstrated  that  migration of test  results 
back  from  the  hardware could be used to discover  design 
problems  on the  simulator  that  were not  easily addressed on 
the  hardware alone. We  further  demonstrated  that logic 
simulation,  though  cumbersome at  times,  was less expensive 
than physical hardware  debugging.  The cost of building  a 
model, reworking it,  and  manning  it two to  three  shifts a day 
does not  come close to  the  much lower  costs and  turn-around 
times of simulation runs, which  in  most cases provide the 
same or better results. The models  also have  the  capability of 
setting  up  customer  environments or scenarios which would 
otherwise  require extensive 1/0 attachments  to  the  hard- 
ware for testing  them. 
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On  the basis of the experience gained on this project, the 
author believes that  it is impractical  to design any  large- 
scale  machine in LSI technology without  the  use of a design 
verification  system  which can remove 90% of the design  bugs 
before the  hardware  testing of the  machine begins. This 
becomes even more  important  as  the technology  becomes 
denser  and  as  the  repair  and rework time is further  extended 
due  to  the  more complex nature of the processing  problems 
of creating new chips,  TCMs,  and  TCM  boards  after  an 
engineering  change. 
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