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The concepts of automated diagnostics that were developed for and that are implemented in the IBM 3081 Processor Complex
are presented in this paper. Significant features of the 3081 diagnostics methodology are the capability to isolate intermittent
as well as solid hardware failures, and the automatic isolation of a failure to the failing field-replaceable unit (FRU) in a high
percentage of the cases. These features, which permit a considerable reduction in the time to repair a failure as compared to
previous systems, are achieved by designing a machine which has a very high level of error-detection capability as well as
special functions to facilitate fault isolation using Level-Sensitive Scan Design (LSSD), and which includes a Processor
Controller to implement diagnostic microprograms. Intermittent failures are isolated by analyzing data captured at the
detection of the error, and the analysis is concurrent with customer operations if the error is recoverable. A further
improvement in the degree of isolation is achieved for solid failures by using automatically generated validation tests which
detect and isolate stuck faults in the logic. The diagnostic package was designed to meet a specified value of isolation
effectiveness, stated as the average number of FRUs replaced per failure. The technique used to estimate the isolation
effectiveness of the diagnostic package and to evaluate proposals for improving isolation is described. Testing of the

diagnostic package by hardware bugging indicates very good correlation between projected and measured effectiveness.

Introduction

A major portion of the logic of the IBM 3081 Processor
Complex is implemented using level-sensitive scan design
methodology [1-3]. Up to 118 LSI chips are mounted on a
thermal conduction module (TCM) [4] which is the field-
replaceable unit (FRU). A 3081 Processor Unit with 16
channels contains 26 TCMs and one with 24 channels
contains 27 TCMs. The subject of this paper is the design of
diagnostic microprograms that are capable of isolating fail-
ures if they occur in these TCMs, on the boards on which the
TCMs are packaged, or in the interboard cables. A major
design goal was to isolate automatically all hardware-
detected errors caused by hardware failures. This goal has
the following advantages: 1) the duration of repair action is
reduced because the set of FRUs required to repair the 3081
is identified by the diagnostic microprograms, which operate
at microprocessor speed, and is communicated to the
customer engineer (CE), who can bring these FRUs with
him; 2) the level of training required by a CE to repair the
3081 is reduced, since the CE need not know the internal
logic; and 3) the same reliable service is available to all

customers, since the CE’s skill in diagnosing a failure is not a
factor. Another design goal for the diagnostic package is
that it be able to isolate, to a single TCM or to a set of
TCMs, both intermittent and solid (permanent) failures for
a specified percentage of failures. The word isolation is used
here to imply that the diagnostics will identify (call) a set of
TCMs such that the failing TCM is in the set. If the set
contains no other TCM than the failing one, the isolation is
unambiguous and the 3081 can be repaired by replacing the
identified TCM. If the set contains more than one TCM, the
3081 can be repaired by replacing at most all TCMs in the
set.

A figure of merit to compare different diagnostic strate-
gies is the isolation effectiveness, defined here as the average
number of FRUs called by diagnostics for a failure. This is
an important figure of merit because the cost of the FRUs
replaced in the field is directly proportional to the isolation
effectiveness. The actual isolation effectiveness is a function
of several factors including the ratio of intermittent to solid
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faults (we describe this later in the section on diagnostic
effectiveness). Although the goal is to identify a failure to
the failing FRU unambiguously, the designers of the diag-
nostics for the 3081 had to design a system that has an
isolation effectiveness of 1.2 TCMs per failure or less.

There is a major difference between the technique used
for diagnostics in the 3081 and that used in existing systems
[5-7}, which mainly rely on being able to recreate a failure
by running diagnostic tests on the failed machine. In the
3081, a new approach, which uses the data captured at the
detection of the error, is used to isolate a failure. Advantages
of this method over the former for isolating intermittent
failures are discussed in the paper by Bossen and Hsiao 8]
in this issue.

This paper describes the techniques used to achieve the
previously discussed goals and the evolution of the auto-
mated diagnostic methodology. This is followed by a review
of the key features of the 3081 Processor Complex hardware
that facilitate the implementation of automated diagnostics.
A brief description of the Processor Controller’s role in
supporting diagnostics is given; the fault-isolation process
and the four algorithms that form the heart of the methodol-
ogy are described; and techniques for determining the aver-
age number of TCMs-called-per-failure are presented.
Highlights of the key features of the automated diagnostic
methodology are discussed in the concluding section. The
fault-isolation process applies to diagnostics of all failures of
the TCMs, the boards on which TCMs are mounted, and the
interboard cables, which constitute a major portion of the
3081 hardware.

Overview of automated diagnostic methodology

A primary requirement for designing a diagnostic methodol-
ogy that automatically isolates failures to a set of FRUs is
that some hardware mechanism should detect a very high
percentage of failures. Since failures cause errors and since
well-known techniques are available to detect errors [9], the
IBM 3081 Processor Unit is designed with extensive error-
detection mechanisms. It has a capability of instantaneously
detecting an estimated 90% of the errors caused by hardware
failures; this estimate is based upon the definition and
methodology described in the paper by Bossen and Hsiao

(8].

The next major requirement is to design a scheme for
isolating the detected failures to meet the average-FRUs-
per-failure goals for diagnostics. Once an error is detected,
certain information that describes the state of the machine
at the time of the occurrence of the error is collected. This
information determines the isolation effectiveness (average
number of TCMs called by the diagnostics per failure). A
failure is considered to be isolated to a set of FRUs if the
detected error could have been caused by failure of some
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hardware on one of the FRUs in the set and not by the
failure of any other FRU not in the set. In order to fix the
failure with certainty in a single repair action, all FRUs in
the set must be replaced. To meet the stated goals for
isolation effectiveness, the hardware should be designed so
that the information required to isolate the failure must be
available to the diagnostic microprogram. Finally, a given
physical failure may cause a set of errors, possibly with
distinct symptoms, from which the system can recover. The
total information collected for the entire set of errors may
result in further isolation of the failure. Thus, a set of
algorithms is required to process the information collected
for a set of errors to achieve the best possible isolation.

These algorithms isolate the failure to a failing FRU in
many cases, but there is still a class of failures for which the
isolation is greater than one FRU. For those cases, two
additional techniques are used for further isolation. Using
the LSSD facilities, the suspected TCMs can be tested for
the existence of stuck-at faults (i.e., logic stuck at either 1 or
0 levels). If any TCM has a stuck-at fault, it is identified by
these tests. A certain percentage of failures do not fall into
the stuck-fault category. For such failures, these algorithms
do not identify the single FRU that has failed; we just know
the set of FRUS, one of which has failed. A procedure called
sequential FRU replacement (SFR) has been developed and
implemented to reduce the average number of TCMs called
by diagnostics to fix such failures. The SFR policy identifies
a subset of the set of FRUs such that the failing FRU is in
the subset with a very high average probability. These FRUs
are replaced in the first repair action when the failure
occurs. In a very small percentage of the cases where SFR is
used, a second repair action may be required. The implemen-
tation of this scheme is described subsequently.

Throughout the development of the diagnostics, it was
necessary to evaluate whether they met the stated isolation
objectives. The method used for evaluation, described subse-
quently, was also used to project what percentage improve-
ment would occur in the isolation effectiveness if a proposed
hardware or diagnostic algorithm change were to be imple-
mented.

3081 Processor Complex hardware

Hardware features which are most significant to the diag-
nostics are that 1) the hardware has a very high level of
error-detection capability, 2) the concept of the active
source identifier (described subsequently) is developed and
implemented to improve isolation, 3) information required to
isolate a failure is stored in the LSSD shift-register latches
(designated herein as SRLs) and arrays, and 4) the monitor-
ing and system support adapter (MSSA) and the logic
support station (LSS) provide a means for the Processor

79

NANDAKUMAR N. TENDOLKAR AND ROBERT L. SWANN




80

TCM or Module A
Register A
Checker A
T Register B
ASID Gates
AC,
23
X BC
Checker B
Register C
Checker C
Module B

Figure 1 An example of the Active Source ldentifier (ASID)
concept.

Controller to know about the detection of an error and the
ability to scan out the SRLs and arrays that contain the
information required for isolation. (Note: characteristics of
the Processor Controller are discussed in the paper by Reilly
et al. [10] in this issue.) As a result of such features,
diagnostic microprograms which run on the Processor
Controller have the necessary information to isolate a failing
TCM.

Error-detection mechanisms are extensively used in the
3081 Processor Complex. Checking techniques are used for
hardware facilities such as registers, array chips, adders,
decoders, and control mechanisms. When a checker detects
an error, certain events are triggered which ultimately lead
to the invocation of the diagnostic microprograms. We
return to this later.

The concept of the active source identifier is illustrated in
Fig. 1. Suppose Checker C detects an error whereas Check-
ers A and B do not indicate any errors. If we did not know
whether Register B was ingated or Register A was ingated at
the time of the error, then the failure could be either on
Module A or on Module B. Two FRUs would have to be
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called for this detected error. Let us suppose that an SRL
(labeled ASID) is used to indicate whether Gate AC or BC
was open when the data were transferred into Register C.
Then, when a failure is detected while transferring data
from Register B to Register C, the ASID would indicate
Gate BC, and the failure would be isolated to Module B.
Thus the ASID helps in reducing the number of FRUs
called by diagnostics where one or another path could have
been used at the time of the failure. In general, the active
source identifiers are SRLs or arrays which identify the data
source or the control function which was active at the time of
the error. They are used in places where the error-detection
mechanism can be set by failure on more than one source
module.

Arrays have been provided to store the information
required to isolate a failure. Since it takes several cycles
before the clocks of a given portion of the hardware (referred
to as a functional element) that has detected an error can be
stopped, the arrays contain several cycles’ worth of values of
the active source identifiers and control words. The error
checkers are SRLs that, once set to on, cannot be reset by
any mechanism other than the logic support station (LSS).
The LSS provides a mechanism to stop the functional
element that has detected an error. It is connected to the
processor controller via the MSSA. The LSS presents an
interrupt to the processor controller to indicate that an error
is detected.

Role of the Processor Controller

The complete functions of the Processor Controller are
discussed in the article by Reilly et al. [10]. The relationship
of the Processor Controller to other units of the 3081
Processor Complex is shown in Fig. 2. The diagnostic micro-
programs and the error handler and recovery microprograms
run on the Processor Controller. It also supports power and
thermal error detection and failure isolation; thus, logic
errors due to failure of power or cooling equipment can be
separated from those due to failure of TCMs.

When the 3081 hardware detects an error, the LSS
presents an interrupt to the Processor Controller and also
stops the clocks of the functional element involved. The error
handler and recovery microprogram collects the information
that is required for both fault isolation and recovery by
scanning out the SRLs and arrays. The error handler tries to
recover the operation and, if successful, the 3081 can
continue data processing operations. The error handler
records the scanned-out data on the Processor Controller
File (PCF). This recording is called a logout. The error
handler then posts the diagnostics with a message that an
error has been detected and passes a pointer to the location
of the logout. The diagnostic microprograms use this logout
to determine the failing TCM.
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Figure 2 Block diagram illustrating relationship of the Processor Controller to other units of the 3081 Processor Complex.

The Processor Controller also provides facilities for the
diagnostic microprograms to communicate to the customer
engineer (CE). A display console is provided for the CE to
obtain information about any detected failure and the failing
TCMs identified by diagnostics for each failure. If the
frequency of errors is higher than a threshold value or if a
processor is in check-stop state, the diagnostic microprogram
also displays a code on the system console indicating which
TCMs the CE needs to bring with him to fix the problem.

Fault-isolation process

The function of the fault-isolation process is to determine a
minimal set of FRUs that must be replaced to fix a failure or
a fault that has caused an error detected by the hardware.
There are four elements that make up the fault-isolation
process: direct isolation, intersection isolation, validation
tests (VTs), and sequential FRU replacement (SFR). The
fault-isolation process is illustrated in Fig. 3. Whenever an
error is detected by the 3081 hardware, the error handler
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makes a logout and invokes diagnostic microprograms. The
logouts are processed by fault-isolation analysis routines
(FIARs). This phase corresponds to direct isolation. If the
result of direct isolation is a multiple FRU call, intersection
isolation is invoked to further isolate the failure. If the
frequency of the error is over a threshold (currently set at 24
errors in any continuous two-hour period) or if a processor is
put in check-stop state because it is impossible or undesir-
able to continue operation, a message is sent to the system
console indicating that a CE be called, and a coded number
is displayed which is used by the CE to bring the necessary
set of TCMs.

The diagnostic microprograms maintain a file that
contains, for each detected fault, a block of information
called a fault-isolation record control block (FIRCB). The
CE can look at an FIRCB and determine the FRUs called
by diagnostics and any further processing that may be
required. If direct isolation and intersection do not result in
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Figure 3 Fault-isolation process.

isolation to a single TCM, the diagnostic microprogram
indicates (in the FIRCB) to the CE that the system operator
should release the indicated hardware to run VTs.

The CE comes to repair the machine either because the
diagnostic microprograms detected an over-threshold condi-
tion or the customer determined that the rate of errors is
unacceptable and the machine needs repair. If the fault was
isolated by direct or intersection isolation to a single TCM,
the CE proceeds to replace the indicated TCM. If it was not
isolated to a single TCM, the CE makes the necessary
hardware available to diagnostics (with the customer’s
permission) for running VTs. If the VTs detect a fault and
identify the failing TCM or TCMs to be replaced, the CE
replaces them. If the fault was not detected by the VTs, the
SFR policy is invoked and the set of TCMs to be replaced in
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the first call are conveyed to the CE, who replaces them. The
last step in the process is verification of the replacement. In
this step, we ensure that there are no stuck faults remaining
in the system after replacement by running VTs to detect
such faults.

After replacement, the diagnostic file contains informa-
tion on which TCMs were replaced and when. If the fault
recurs in the two-week period following a repair, one of the
following applies: sequential FRU replacement policy was
used and the second call is required; the failure may be on a
board or a cable if the domain of the error so indicates; or all
indicated FRUs, including boards and cables, have been
replaced and the error still persists. In the first case, the CE
proceeds to replace TCMs indicated in the second SFR call.
In the second and third cases, the CE calls a support center
for help because further analysis is required, in either case,
before any repair action can be taken.

® Direct isolation

Direct isolation is defined as the process of isolating a failure
based only on the logout information collected by the error
handler for a single detected error. The isolation of failures
from the logout would be a complicated, if not infeasible,
process if an unknown number of physically distinct failures
could simultaneously occur. If the failures occur as a random
process, and if the failure rate is such that the probability of
a second failure occurring before the first failure is repaired
is very small (1% or less), a single fault will be present 99%
or more of the time when an error is detected. For the
technology used in the 3081 Processor Unit, projection of
failure rates based on testing in the laboratory environment
indicates that this condition is satisfied and the single-fault
assumption is justified.

An important function of the direct-isolation process is
also to create information used by the other elements of the
fault-isolation process. We now introduce the concept of a
direct-isolation domain (DID), which is a collection of
hardware entities, and the concept of error syndromes. We
show how a relationship is established between an error
syndrome and a direct-isolation domain. The process of
direct isolation consists of examining the logout to determine
which error syndrome has occurred and, using the relation-
ship between error syndromes and DIDs, determining the
DID that contains the failure.

Error syndromes A syndrome is a specific combination of
values of the bits in the logout. The logout consists of a
certain number of bits of information on the state of the
machine at the time of the detection of the error. Included is
information on the status (on or off') of the error checkers,
active source identifiers, and other information stored in the
arrays for fault-isolation purposes (e.g., what function was
being performed, etc.).
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Direct isolation domain (DID) of a syndrome  The DID of
a syndrome is a set of hardware entities (SRLs, registers,
encoders, decoders, or some collection of circuits) such that
when any of these fail, they could cause the error syndrome
to occur, and further, there is no other hardware entity
outside the set whose failure could cause the same syndrome.
Clearly, the definition of the DID of a syndrome implies that
the error syndrome could be caused by the failure of only
those FRUs on which the DID of the syndrome lies. Thus,
the problem of isolating the failure requires finding the DID
of the syndrome.

Consider a network of interconnected circuits that is a
subset of the 3081 Processor Unit hardware. Furthermore,
this network has a fixed number of inputs and outputs. Let
the set of inputs be such that for a given syndrome there is no
error in the inputs, and the set of outputs be such that it
corresponds to the error syndrome detected. In this network,
the output is a function of the inputs and the logic of the
network. Since inputs are error-free and an output has errors
in it (if there is a single fault in the system), the fault is in
the set of circuits in this network. If we can find a network
that satisfies these conditions, but no proper subset of it
satisfies them, the set of circuits in the network is the DID of
the syndrome. DIDs are determined by back-tracking algo-
rithms and are verified by simulation. Using the previously
described process, a DID is determined for each valid error
syndrome by the diagnostician. An example of a DID is
shown in Fig. 4.

® Intersection isolation

Intersection isolation is the technique of isolating a failure
to a single FRU when the failure results in a variety of error
syndromes over a period of time. An examination of the
hardware of the 3081 Processor Unit indicated that there are
hardware entities which, when they fail, can cause many
different syndromes to occur depending upon the function
being performed by the machine. Direct isolation would
produce a DID for each such syndrome that occurs. Advan-
tage can be taken of the collective information provided by
several syndromes to further isolate the failure beyond what
was accomplished by direct isolation.

Principle of intersection isolation When a group of errors
occurs in a small time interval such that it is reasonable to
assume that a single fault exists, the fault must be in the
hardware area common to (i.e., the logical intersection of)
all error domains of the group. If this hardware area is on a
single FRU, the fault is isolated to a single FRU for all
errors of the group. This principle is illustrated by an
example shown in Fig. 5. Error 1 occurs when data flow is
from B REG to A REG. The domain of Error 1 contains the
A REG on FRU 1 and the B REG on FRU 2. Sometime
later, Error 2 occurs when the data flow is from the C REG

1BM J, RES. DEVELOP. & VOL. 26 ¢ NO. 1 ¢ JANUARY 1982

AREG
AREG
o 63 [ PARITY,
t__v_j’—
(0:63) (0:7)
AREG
PARCK
MODULE_A
MODULE_C JMODULE_B
GATE_TRIG| 039\ (40:63) (0:7)
CAl
Power X b3
Pow
ogic ) X 94 oo | 7
ZREG
ZREG
0 63| [PARITY,
L ]

ZREG
PARCK

Figure 4 Example of a Direct-Isolation Domain (DID). The
syndrome is ZREG PARCK on and AREG PARCK off.
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Figure 5 Intersection isolation example.

to the A REG. The domain of Error 2 contains the A REG
on FRU 1 and the C REG on FRU 3. Applying the principle
of intersection isolation, it is concluded that the failure is on
FRU 1, A REG, which is the area common to both domains.
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Hence, FRU 1 is the failing FRU. In the example shown in
Fig. 5, the number of FRUs required to correct the problem
is reduced from three to one.

To apply intersection isolation, we first have to identify
the hardware facilities common to a set of (direct isolation)
domains of a set of error syndromes. These hardware facili-
ties could be latches, triggers, registers, etc. Since the
hardware facilities in each domain are specified for the
machine, one can determine the hardware facilities common
to any set of domains. In the following discussion, the term
area is used to denote a collection of hardware facilities such
as latches, triggers, registers, etc.

Intersection isolation requirements The domains have to
be defined in such a way that the area common to various
domains can be identified; this requires the following:

1. Bach FRU is divided into areas, and each area should
meet the following criteria: a. No two areas have any
hardware in common; b. The area lies entirely on a FRU;
c. The area is either completely inside or outside a
domain.
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2. There is a domain D, associated with each error syndrome
i. This D, is identified by direct isolation. For a given D, a
set S, is defined as follows:

S, ={(M, A)|(M, 4) € D},

where (M, A) € D, means that Area 4 on FRU M is a
part of the domain of error i.

Intersection-isolation technique Given a set of error
syndromes and associated domains, we define a set S* as
follows:

S* = (M, 4)|(M, A) € S, for each error i}.

The following three cases can arise:

1. If there is a FRU M * such that for all (M, 4) € §*, M =
M* then the fault is isolated to FRU M*.

2. If there are at least two distinct FRUs M, and M, such
that (M|, 4)) € $* and (M,, A,) € S*, then the fault is
not isolated to a single FRU.

3. If S* is empty, then at least two failures (faults) exist in
the system. This case can be converted into Cases 1 or 2
by partitioning errors into groups. A group is a set of
errors such that there is at least one (M, 4) that belongs
to the domain of every error in the set. ($* is not empty
for all errors that belong to a group.)

Implementation of intersection isolation This technique
would require a process to divide DIDs into areas. Because
of the large number of DIDs involved in the 3081 and the
lack of an automated process, an alternative way of using
just the TCMs for intersection was investigated. Thus, if S|,
S,, - -+, S, are the sets of TCMs corresponding to the
domains of errors E|, E,, - - -, E, detected in a time period
where single fault assumption applies, then S*, where S* =
S, NS, N...NS§,is the set of TCMs to which the
failure is isolated.

If there exists a single fault in the machine, the failing
FRU is still in the intersection of the FRUs called for each
DID, but there is a possibility that intersection using TCMs
would not result in as good an isolation as obtained by using
areas. An example of this is shown in Fig. 6. For both
Domain 4 and Domain B, TCMs X and Y are called. The
intersection of these two domains on a TCM basis still gives
TCMs X and Y. If the failure was in Area C, it would not be
isolated to TCM Y if just TCMs are used for intersection.
The second concern is that there is a small probability that
two distinct faults could occur which would result in a wrong
(not failing) TCM called by intersection. This is shown in
Fig. 7. There are two faults, one on TCM B and another on
TCM A4. The TCM C is the common TCM for their
domains. The intersection would result in calling TCM C.

An evaluation of the impact of these two concerns on the
isolation effectiveness was performed using random selection
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of failure locations. The study showed that, based on the
projected failure rates of TCMs, if we allowed only
syndromes occurring within a two-week period of each other
to intersect, the average number of TCMs per failure using
TCMs for intersection would be 3% higher than that
obtained by using areas. The major effort required to imple-
ment intersection using areas was not justifiable, so we
decided to intersect the set of TCMs called by DIDs to
isolate a failure. This means that when a set of DIDs occur in
a two-week time period, the failure is isolated to TCMs
common to each DID that occurs. To enable us to take
corrective action in those rare cases where intersection does
not cali the correct set of TCMs, a record is kept of DIDs
that were intersected for a given fault. If the error recurs, the
identity of TCMs corresponding to the particular DID that
recurred are still available to fix the problem.

® Validation tests

Validation tests (VTs) are tests for detecting and isolating
stuck faults in combinational networks. Their generation
and application in fault isolation for systems using LSSD
has been extensively reported. References [11-13] contain
techniques of generating tests for logic networks. References
[1-3, 14] describe the concepts of LSSD and show how tests
can be generated to isolate “stuck-at” faults for a machine
designed with LSSD. For the 3081, validation tests are
generated using the techniques described in these references.
We now describe the role of validation tests in the overall
diagnostic strategy and give some of the characteristics that
are unique to the 3081.

The role of validation tests as part of the diagnostic
microprograms is to confirm the existence of a fault in a
TCM and, if a fault is found, to determine the failing TCM.
The validation tests are also used to verify the repair action
taken by the CE. VTs are primarily used for isolating those
faults for which direct isolation and intersection isolation
call more than one TCM. When the CE is called to fix such a
problem, he is given instructions to vary off line the portion
of hardware on which the VTs need to run. The CE signals
the availability of the hardware, and the diagnostic micro-
programs automatically run the appropriate set of VTs. If
the VTs find a fault, the names of the failing FRU or FRUs
are displayed on the CE console and the CE is asked to
replace them. If VTs do not detect a fault, sequential FRU
replacement (described in the next section) is used to call
FRUs.

Characteristics of validation tests Validation tests are
part of the diagnostic microprograms which reside on the
Processor Controller File. They are generated automatically
by programs from the description of the logic of the 3081.
The processes of scheduling the tests to be run, running the
tests when hardware becomes available, and caliing the
failing FRUs are also automated.
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The logic of the entire machine is divided into segments. A
segment is defined for each SRL, called the primary output
(PO) of the segment, in the machine. It consists of all SRLs
such that the value of the PO SRL of interest at the end of
this machine cycle depends on the current value of this set of
SRLs [called primary inputs (PIs)] plus the combinational
network whose output is the PO SRL. This relationship is
shown in Fig. 8. A stuck fault in a segment can be detected
by scanning a particular set of bits into the SRLs that are
PIs and POs, running the machine one clock cycle, and
comparing the value of the PO SRL to that of the same SRL
of a fault-free machine. If the two values do not agree, there
is a fault in the segment.

The running of VTs requires the scanning of data (test
pattern) into a group of SRLs, running the clocks for one
cycle, and scanning out a group of SRLs to detect a fault. A
number of patterns are required to detect all possible sets of
faults, and the procedure of scan-in, scan-out, and compare
is repeated until a fault is found or all test patterns are
exhausted and no fault detected. The latter case is assumed
to be an intermittent fault. The scan-in, scan-out, and
running of clock for one cycle is controlled by the Processor
Controller. To minimize the time required to detect and
isolate a given fault when multi-FRU DIDs are present, the
entire set of tests is divided into groups of tests called a VT.
Each has a unique name and there is a group of segments
that the VT covers or finds faults in. Thus, only those tests
that cover the suspected portion of the hardware need be run
to isolate a given fault.

® Sequential FRU replacement policy

It was pointed out earlier that, for certain sets of failures, the
direct and intersection isolation and validation tests cannot
pinpoint the failing TCM (FRU). The DIDs of such failures
are spread over more than one TCM. It is possible to fix such
a failure with more than one repair action using, on an
average, fewer replacement TCMs per failure than one
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repair action would require. Sequential FRU replacement
(SFR) policy applies to this set of failures, and it minimizes
the average number of TCMs replaced per failure for a given
average probability of fixing the failure in one repair action.
A given failure is fixed in at most two repair actions. For a
slight risk of not fixing a problem in the first repair action, a
considerable reduction in the average number of TCMs per
failure is achieved. From the point of minimizing impact to
customer operations it was assumed that the average risk of
requiring a second repair action for a failure in an SFR case
should not exceed a very small value.

There are two aspects of SFR policy: the first problem is
to determine the optimal set of TCMs to be replaced for a
given failure to meet the objectives stated earlier, and the
second problem is to implement the optimal strategy on the
processor controller.

Optimal SFR policy  An SFR strategy is completely spec-
ified by defining for each DID which TCMs are to be
replaced in the first (repair action) call and which are to be
replaced in the second. Corresponding to each strategy there
is an average number of TCMs replaced per failure and a
risk of second call. A computational procedure was devel-
oped by Rutledge [15] to determine the replacement strat-
egy that has the minimum average TCMs per failure and for
which the average risk of second call does not exceed a given
percentage value. To calculate the average TCMs per failure
and risk of second call, we use the following definitions.
There are k DIDs in the system that call two or more TCMs.
The failure rate of DID, is the number of failures of circuits
of DID, in some specified time period 7. It is proportional to
the number of circuits, f;, in the DID. Let Q; be the
conditional probability that, given there is a failure in the
hardware covered by these DIDs, it is in DID,. Then

Qi = ’kf_‘ .
2_J,
i=t
If DID; has circuits on N, TCMs, then P, is the likelihood

that, given that a failure exists in DID,, it is on TCM Py is
given by the following equation:

Number of circuits of DID, on TCM,
=

Total number of circuits in DID,

For a given DID, for any strategy, TCMs are replaced in
the order of decreasing likelihood. This reduces the average
number of TCMs per failure and the risk of second call for a
fixed number of TCMs that are replaced in the first call. If a
failure occurs in DID,, we replace TCM before TCM . if
P,; > P, Therefore, there are IV, strategies to be consid-
ered for DID,. The rth strategy, 1 < r < N,, is the one in
which the r most likely TCMs are replaced in the first call.
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For the entire set of DIDs, the replacement strategy is
completely specified by a k-element vector ¥ such that V,
i=1,2,. . ., k,is the number of TCMs replaced in the first
call for the DID,. If the ¥V, most likely TCMs of DID, are
replaced in the first call, then the probability of fixing the
failure for DID, in the first call, «;, is given by

o, = ij/i’
J

where j belongs to the set of ¥V, most likely TCMs of DID,.
The probability of second call for DID, is 1 — «,. The
average number of TCMs for the two calls for DID,, M, is
given by

M=oV, + (1 -a)N,

Therefore, the overall average number of TCMs per failure,
M, and probability of second call, P,, across all k DIDs are
given by

k k
M= QM,andP,~ Y Q1 — a,).
i=1 i=1

Both M and P, are functions of V. The replacement strategy
that minimizes M subject to the condition that P, is less than
or equal to a specified very small value meets the objectives
of the SFR policy. This strategy is identified by the algo-
rithm given in [15].

The SFR policy is implemented by associating an SFR bit
with each TCM called by a DID. The SFR bit is set to 1 if
the TCM is to be replaced in the first call for the DID and is
set to 0 if it is to be replaced in the second call. These bits are
set according to the optimal SFR policy identified previously
and are permanently stored on the Processor Controller
File.

When the CE comes to repair a hardware-detected inter-
mittent failure for which multiple TCMs are called, the
TCMs that are to be replaced in the first SFR call are
identified by diagnostics and replaced by the CE. The
diagnostic microprograms keep a record of the TCMs
replaced. Two situations can arise when not all TCMs are
replaced in the first call: either the faulty TCM is replaced,
or it is not. We define that the nonreplacement case is
implied if the same error is detected within two weeks of the
replacement of TCMs in the first call. If no error is detected
in that period, any subsequent occurrence of an error in the
DID is treated as an occurrence of a new fault, because
beyond two weeks the probability of a second failure is
comparable to that of missing the failing TCM in the first
call.

Diagnostic (isolation) effectiveness
One of the major requirements was that the average-
number-of-TCMs-called-per-detected-TCM-failure had to
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be 1.2 TCMs or less. The average number of TCMs per
failure is a function of the percentage of faults that are solid
faults. On the basis of the technology of the 3081 and
experience on previous machines, 25% of the faults are
assumed to be solid faults for the 3081. A secondary objec-
tive was to isolate a high percentage of the failures to a single
TCM on the sole basis of the data captured at the time of
error detection. This would limit the percentage of failures
where a portion of the machine would not be available to the
customer while diagnostics are running and would result in
improved availability. This second objective means that a
high percentage of the failures should be isolated to a single
TCM by a combination of direct and intersection isolation.
To evaluate the fault-isolation process in terms of these
objectives, we first define certain concepts that enable us to
calculate the isolation effectiveness. The actual evaluation is
based on statistical sampling since this is a more cost-
effective method than the analytical technique.

® Analytical definition of effectiveness

Any given area has a known failure rate. If C, is the failure
rate of area i and the failure of this group of circuits results
in N, TCMs to be called by the fauit-isolation process, then
the average number of TCMs per failure, N, is given by

~ - 26
T ozC

i

Let D, = 1 if, and only if, a failure in area / can be isolated
to one TCM by direct and intersection isolation, and 0
otherwise. Then the average percentage of failures isolated
to one TCM by direct plus intersection isolation (P,) is
given by

1002D,C,
ol = > C "

i

Thus knowing N,, D,, and C; we can calculate the necessary
statistics. The 3081 Processor Unit consists of blocks (groups
of circuits), each of which satisfies the criteria defined for an
area. But there are hundreds of thousands of these blocks
and an automated computer program would be required to
determine N,, D,, and C; for each block. Such a program
could not be justified because of the effort required to
develop it. Therefore, a statistical sampling approach was
used to determine diagnostic effectiveness.

® Statistical technique

The statistical technique is based on sampling theory [16]. A
random sample of n blocks is chosen from the total set of
blocks in the 3081 Processor Unit such that the probability
of choosing a block is proportional to its circuit count. The
isolation of a failure of a block i is determined by the
following rules:
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1. If the block is in a set of DIDs such that there is a single
TCM common to all DIDs, then for this block N, = 1 and
D, =1.

2. If the block is in a set of DIDs such that there is more
than one TCM in the intersection of these DIDs, it is
randomly assigned to one of the two following categories,
with 25% probability that a block will be in Category 1
(stuck fault) and 75% probability that it will be in
Category 2 (intermittent fault}. For each block in Cate-
gory 1, N, is the number of TCMs called by VTs. This is
available from the information produced by programs
that generate VTs. For each block in Category 2, NV, is
given by the SFR policy for the DID. Thus X, is assigned
according to the category in which the block falls. D, is 0
for all blocks.

The sample mean and standard deviation are calculated and
the 95% confidence interval is calculated from them. The
formulas for calculating these intervals are as follows:

a. The average number of TCMs per failure is in the
interval given by the following relation, with 95%
confidence:

m+ 1.96
+ 1. _S ,
- Vn

N, o2
where m = N, and S = 4 /E(Ni m) '
n n—1

b. The probability that a given failure is isolated to one
TCM by direct and intersection isolation lies in the
interval given by the following relation, with 95%
confidence:

—_ ZD,
P+ 196 i(—l—f—), where P -=—%.
+ 1. n n

A sample size of 662 failures was analyzed. The sample
average number of TCMs per failure was 1.19, and the 95%
confidence interval was 1.15 to 1.23 TCMs per failure. The
estimated mean percentage of failures isolated to one TCM
by direct and intersection isolation indicated that the design
goals were met.

After the diagnostic package was developed, it was tested
by bugging the hardware. These tests indicated very good
correlation between measured and projected effectiveness.

Summary and conclusion

In this paper, we have presented the approach to the
diagnostics of the 3081 system implemented in a new TCM-
based technology. We developed and implemented a diag-
nostic methodology that automatically identifies the failing
TCM in a customer environment. A novel feature of this
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methodology is that diagnostic microprograms isolate inter-
mittent as well as solid failures. A high percentage of the
time, the failing TCM is identified without running any tests
on the hardware. It was also shown how we met the a priori
stated objectives for the diagnostic package.

The main trend in integrated circuit technology is to
higher-and-higher-density packages (such as TCMs) to give
users highly reliable and available machines that are easy to
repair. An integrated approach such as the one presented in
this paper is mandatory for meeting those objectives and for
keeping service costs at a reasonable level.
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