Model for Transient and Permanent Error-Detection and
Fault-Isolation Coverage

As computer technologies advance to achieve higher performance and density, intermittent failures become more dominant
than solid failures, with the result that the effectiveness of any diagnostic procedure which relies on reproducing failures is
greatly reduced. This problem is solved at the system level by a new strategy of dynamic error detection and fault isolation
based on error checking and analysis of captured information. The model developed in this paper allows the system designer
to project the dynamic error-detection and fault-isolation coverages of the system as a function of the failure rates of
components and the types and placement of error checkers, which has resulted in significant improvements to both detection
and isolation in the IBM 3081 Processor Unit. The model has also resulted in new probabilistic isolation strategies based on
the likelihood of failures. Our experiences with this model on several IBM products, including the 3081, show good correlation

between the model and practical experiments.

introduction

Traditionally, failure (fault) isolation in a digital system has
been dealt with in terms of testing, with testing procedures
or at least specific test patterns generally produced only
after the hardware to be tested is designed. Theoretical
investigations of the fault-isolation problem have therefore
concentrated on methods for producing “efficient” diagnos-
tic test sets [1, 2], including the proposed measure of the
diagnosability of systems [3]. An important exception to this
testing approach is use of syndromes produced by error-
checking circuits during normal machine operation for fault
isolation. This general idea is obvious and has been
previously discussed [4], although no follow-on work
concerning the effectiveness or coverage of such an approach
has been reported.

In the investigations of fault isolation via testing, the
assumed starting point is a data matrix D = [d,], which has
one row for every fault f; (1 < i < n) and one column for
every test £, (1 <j =< m). Anentry din D is 1 if fault £ is
detected by test 7. Based on the characteristics of this
matrix, statements can be made about fault distinguishabili-
ty, fault coverage, and efficiency.

Problems amenable to solution using such a model gener-
ally have the implicit assumption that there are more tests

available than actually needed. This is rarely the case in
practice. One solution has been the development of proce-
dures either for eliminating redundant tests or for selecting
tests which isolate faults to a replaceable package level
rather than to the particular circuit [1]. Additional work in
testing efficiency has resulted in a procedure for selecting
the best testing order to achieve the lowest average-test-
sequence length [2].

Faults in logic are generally assumed to be of the single
stuck-at-0/stuck-at-1 (s-a-0/s-a-1) variety, although other
models such as short-circuit faults in LSI and their asso-
ciated test-generation procedures have been proposed [5].
From a practical standpoint, a fundamental shortcoming
with these approaches is that they are based on testing
procedures which rely on the presence of permanent faults,
whereas in actual practice, most faults are intermittent or
transient. It is a well-documented fact that these faults cause
most of the serious isolation problems in the field [6-9].

Some work has been reported on the problem of detecting
and isolating intermittent faults [10-15] that involves the
use of test procedures which attempt to reproduce the
assumed randomly occurring intermittent faults. Since the
fault may not be present when the test is applied, the
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approach taken is to repeat the tests many times. There are
various suggestions for computing how much repetition is
necessary to ensure a specified probability that a fault is or is
not present. However, diagnostic time in a customer’s office,
even for a single pass-through set of tests, is costly; hence,
approaches requiring large repetitions of tests are generally
unacceptable.

The approach to fault isolation described in this paper is
to capture and interpret the syndromes resulting from error
checkers that are active during normal machine operation.
The advantage of such an approach is that error checkers
can detect all classes of errors which exist during each
checking cycle. For example, these errors may be caused by
faults of the following types: stuck-at, intermittent, single or
multiple, transient, externally (environmentally) induced,
pattern-sensitive, or any other fault which causes the
computer’s state to be outside the code space of the appropri-
ate detection mechanism or error checker.

In order to analyze the fault detection and isolation
coverage, we introduce a dynamic fault-probability model
for projecting the ability of a system to detect and isolate
failures, including intermittent failures, in an operational
environment. In fact, this is a fundamental hardware design
and diagnostic requirement for the 3081 Processor Unit
maintenance strategy [16]. Relevant figures-of-merit are
defined and computed using the model. The model is an
integral part of an overall design evaluation procedure to
enhance a product’s reliability, availability, and serviceabili-

ty.

By using the model, it has been possible to define proba-
bilistic repair strategies and to project their effectiveness in
terms of parts replaced per repair action and the probability
of correct repair. Such probabilistic repair strategies are
extensively used in the 3081 [16]. Further use of this model
in the 3081 design has resulted in improved error-checker
placement to enhance fault isolation, and the inclusion of
improved error-detection mechanisms to cover otherwise
weakly checked areas.

The remaining sections of this paper cover a system design
strategy for intermittent and solid faults, a new concept of
probabilistic fault isolation, the mathematical model for
numerically characterizing the dynamic error-detection and
fault-isolation probabilities of a system, detection and isola-
tion coverages, the procedure and ground rules for obtaining
data for the model, and our experiences with IBM products
using the model.

System design and maintenance strategy
Dynamic error-detection mechanisms are usually imple-
mented in various combinations of hardware, microcode,
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and software, and have had as their historic raison d’etre the
detection of errors during normal operation so that recovery
procedures may be initiated (i.e., retry). A recommended
system strategy is to take advantage of and, where neces-
sary, to enhance these capabilities to achieve efficient and
effective fault isolation.

To take advantage of these mechanisms for the isolation
of intermittent faults, the system architecture must provide
for the automatic capture of all necessary error information
as it is detected, and before it is destroyed, altered, or
overwritten by the recovery process. Thus, such an architec-
ture would allow for what is called error logging. The
concept of error logging was first introduced in the IBM
System/360 [17, 18], although it has not been extensively
used as an isolation tool, largely because it was not possible
to project the error-detection or fault-isolation coverage. A
second requirement is a procedure, preferably automated,
for analyzing the error log to determine the physical location
of the fauit. Ideally, a set of error log analysis routines would
replace the conventional set of diagnostic tests as the
primary fault-isolation tool. A third requirement is a
design-review procedure and fault-probability model to
allow advance projections to be made of the dynamic error-
detection and fault-isolation probabilities. This is crucial
because a strategy based on dynamic error detection gener-
ally requires changes to hardware functions (e.g., more error
checkers or better placement of them) that would be practi-
cally impossible to make after an LSI design was finalized.

The importance of a timely evaluation of any aspect of the
system reliability or fault-tolerant coverage cannot be over-
stressed. Reference [19] graphically illustrates the current
lack of rigorous state-of-the-art methods for the projection
of fault-tolerant coverage. Error detection and fault isolation
are important aspects of fault-tolerant coverage.

“With this recommended system strategy, the fault-
isolation characteristics of a system are not treated as an
“add-on” feature provided by diagnostic tests; rather, they
are a direct result of the hardware functions of error detec-
tion and are, thus, the primary responsibility of the hard-
ware designer. Reference [4(b)] gives design information for
error-detection circuits and methods.

Dynamic fault-probability model for detection and
isolation

® Coverage figures-of-merit for fault-tolerant systems

The proposed strategy requires several figures-of-merit for
the coverage in order to properly characterize the fault-
tolerant performance of the system and to provide useful
feedback for making design improvements. The first is the
error-detection coverage or percentage (referred to as ED).
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Another, the fault-isolation coverage (FI), is more complex
to describe. First, it is possible to characterize a system by its
fault-isolation distribution (I, I,, - - -, I), where I, is the
portion of all faults which implicate a single field-replace-
able unit (FRU). In general, 7, is the portion of all faults
which implicate exactly i FRUs. This is an unambiguous
way of specifying the fault-isolation coverage which is inde-
pendent of isolation strategy. (Other figures-of-merit for
fault-isolation coverage are presented in a later section,
along with a discussion of isolation strategies.)

® Notation and definitions

The system consists of N FRUs (FRU,, FRU,, . - .,
FRU, ). Each FRU; contains r, faults, f %, f %, - - «, f%.The
total system contains N* = Zn, faults. Associated with each
FRU, is a fault probability p,, which is the sum of the fault

probabilities for faults contained on FRU,. That is,
pi= Zp: s
j-1

where p * is the probability of fault f* For practical
systems, the size of the fault set NV * is unmanageably large.
For a FRU containing m lines, N* will be 3" — 1; therefore,
in order to analyze any practical systems of even medium
size, it is mandatory that procedures for grouping faults be
developed.

Based on the use of error checkers and captured
machine-state information, a system contains M nonzero,
mutually exclusive syndromes, S,, S,, - - -, S,,, together
with the null syndrome S,,. A syndrome is the logical
product (Boolean “AND?”) of identifiers of an error-checker
and its active source at the time the error is captured; thus, it
is the result of a dynamically detected error. (Examples of
syndromes are given in the following section.)

The dynamic error-detection characteristics of the system
are represented by a fault-conditional-probability data
matrix and a vector of fault probabilities. Figure 1 shows the
full fault-conditional-probability data matrix D* of dimen-
sion N* x M and the full fault-probability vector P* of
length N*. D* has a row for each fault and a column for
each syndrome. The matrix entry dj, is the conditional
probability that S, occurs, given fault f*. It is convenient to
deal with this set of information in a compressed form, i.e.,
in the form of a compressed fault-conditional-probability
data matrix D, which has dimension N x M and has one
row for each FRU;, and one column for each syndrome S .
The compressed full fault-probability vector P has one entry
p; for each FRU,, equal to the sum of all fault probabilities
on FRU; (see Fig. 2). The entry 4, of D is simply obtained as
the sum of products:
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Figure 1 Full fault-probability vector P* and fault-conditional-
probability data matrix D*.
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Figure 2 Compressed fault-probability vector P and compressed
fault-conditional-probability data matrix D.
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where Pr (S, | FRU, fails) is the probability of S; due to
FRU, failure. In practice, the full matrix D* is not explicitly 69
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Figure 3 Joint compressed-probability matrix Q.

obtained. What is obtained is a matrix whose size is between
D* and D, which represents an initial grouping of faults
according to functions.

The computational algorithms all have as their basis the
compressed matrix D, the compressed fault-probability
vector P = (p,, p,, - * -, Py), and the joint compressed-
probability matrix Q (see Fig. 3). Matrix Q is useful since it
contains the maximum information; i.e., the sum of each row
is equal to the detected fault probability for FRU,, while the
sum of each column is equal to the syndrome-occurrence
probability for syndrome S;. Each “normalized” (for the
total number of detected faults) column equals the distribu-
tion of likelihoods for FRU failure candidates, given a
particular syndrome occurrence. The total sum of all the
entries in Q is the error-detection probability (ED); thus
Pr(S,n) = 1 — ED. The error-detection probability for
FRU; equals the sum of the row divided by p,. Since the fault
isolation (FI) is normally defined with respect to detected
errors only, for purposes of computing isolation-coverage
figures-of-merit, the matrix Q is normalized by dividing it by
[1-Pr(S_ )]

® Fault-isolation strategies

Before computing figures-of-merit for dynamic fault isola-
tion of a system, it is useful to introduce the concept of
isolation strategy. A strategy is a definition, for each
syndrome S, of the specific repair action to be taken given
the occurrence of S;. The action or strategy is based on the
particular FRU implicated by S,. In a system perfectly
designed for fault isolation, every syndrome implicates a
single FRU, and a discussion of strategy is unnecessary.
However, this is not generally the case and when an ambigu-
ous syndrome occurs a choice must be made between replac-
ing either all of the implicated FRUs or some subset of them.
For the latter case, there is a risk involved since the FRU
containing the actual fault may not be replaced; thus a
subsequent occurrence of the fault may arise, necessitating
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another repair call. Based on the syndrome-probability
matrix, all important factors in such a trade-off can be
quantified.

Examples of various strategies include the following. For
first-call repairs we use the deterministic isolation proce-
dure (DIP) strategy; all implicated FRUs are replaced. For
second-call repairs, the action can be either (a) to replace
the single-most-likely FRU on the first call and replace the
remainder on a subsequent call; or (b) on the first call, to
replace a subset of FRUs that is sufficient to account for a
threshold (e.g., 90%) portion. This is a limited-risk strategy.
For Nth-call repairs, we use the sequential isolation proce-
dure (SIP) strategy; the action taken depends on the number
of calls. On the first call, the most-likely FRU is replaced; on
the second call, the next-most-likely FRU is replaced, etc.,
until on the Nth call, the least-likely FRU is replaced. The
choice among these strategies reflects trade-offs among the
costs for parts, labor, and customer-outage associated with
multiple calls to fix a problem.

o Figures-of-merit for fault-isolation coverage

It was previously noted that the fault-isolation distribution
characterizes fault-isolation coverage independently of the
fault-isolation strategy. However, in order to reflect the very
real practical differences between possible isolation strate-
gies, additional figures-of-merit for the coverage are re-
quired. Two useful measures are the average number of
FRUs replaced per detected fault (NFRU) and the average
number of service calls per detected fault (NSC). Having
calculated these values, a direct estimate of the cost of each
strategy over the life of the system or product can be
computed. NFRU and NSC can be computed directly from’
the normalized Q, P, and the previously stated strategy
definitions.

For each syndrome S,, d, is defined as the number of
FRUs implicated by syndrome S,. Based on the syndrome
probability matrix Q, 4, is the number of nonzero entries in
column i of Q. The probability of isolating to one FRU, given
a system failure, is computed by summing all entries in the
columns of Q which have d, = 1. Using DIP strategy, this
probability is given by

N

Y42 d -1

f=1

The remainder of the fault-isolation distribution can be
computed using the general relation of the probability of
isolating to K FRUs,

N
Zqij;j = dj =K
i=1

The sequential isolation bound reflects the maintenance
strategy of selecting for replacement the most likely FRU
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implicated by an ambiguous syndrome. An ambiguous
syndrome is represented in the matrix Q by a column
containing more than one nonzero entry. Choosing the most
likely FRU for such a syndrome corresponds to choosing the
FRU associated with maximum entry in each column. Let
Mayx; (g;) be the largest entry in column j of Q. Then for the
sequential isolation, the probability of isolating to one FRU
is given by

M

ZMaxj (g;)-

j=1

Note that this will include all the entries summed for the
deterministic isolation bound.

® NFRU using DIP and SIP strategies
With d, as defined above, NFRU can be computed using DIP
strategy with the relation

M N
242 a,
j=1 =1

which is simply the summation of the number of FRUs
implicated per syndrome times the syndrome probability. In
order to compute NFRU using SIP strategy, define {q,.j}j to
be the arrangement of column j in descending numerical
order. That is,

Gz gz 0 - =y

Then the average number of FRUs per syndrome j, dj (avg)
is given by

N
23%
Zhu

and the average number of FRUs per failure is therefore

=d, (avg)

NFRU(SIP) = Zd (avg) un Zthu

i1 j=l i=1
® Average number of service calls per fault (NSC)
For the DIP strategy, the number of service calls per failure
is equal to one, since this strategy specifies that all impli-
cated FRUs will be replaced on the first call. In the case of
SIP strategy, the average number of service calls is equal to
the average number of FRUs replaced:

NSC(SIP) = NFRU(SIP).

The EDFI process—obtaining data for the fault-
conditional data matrices

It has been found practical to obtain data for the fault-
probability models where circuits have been grouped into
functions. This corresponds to a matrix D*, which is some-
what larger than the compressed matrix D. It has further
been found practical to have the designer provide data for
each FRU in terms of a data set called a basic information
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A-chip power 0.05 On-chip
distribution 1/1 C, 1.0

Figure 4 Parity-checked register example with detailed basic
information table entries.

table, which would correspond to a horizontal slice or set of
rows of the matrix D*. Data provided in this fashion is
reduced by programs to the single row D and the correspond-
ing FRU fault-probability entry in vector P.

Each row of the basic information table is a vector of data
consisting of component name, component failure rate, func-
tion(s) of the component, failure probabilities of the func-
tions, syndromes of each function, and syndrome probabili-
ties given function failure. See Fig. 4. It is quite possible for
each row in the basic information table to correspond to a
single circuit fault, in which case D* would be represented.
Guidelines provided to designers suggest that entries should
correspond to functions such as registers, decoders, parity
checkers, arrays, ALUs, etc.,, each of which may have
hundreds of circuits, and represent hundreds of faults in D*.
The association of a failing function with the error checker
that detects its failure (according to the system design) and
also with the syndrome (checker combined with machine
state) is the designer’s job.

Where more than one nonzero syndrome is possible, for
example due to varying path usage or instruction mix, the
relative likelihood is also estimated by the designer. Many
circuit groups performing a function, such as a register or
decoder, are such that their faults are not uniform in
detection probability. For example, a single failure in
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Components Probability Detection probability for
of failure schemes:
(rate)
1 I ur v
Register cells 0.7 1.0 1.0 1.0 1.0
Clock 0.1 0.5 0.5 1.0 0.75
Gates 0.1 0.5 0.5 1.0 075
Power 0.05 1.0 0.5 1.0 0.75
Pads 0.05 075 075 1.0 0388
Total 1.00 089 086 1.0 093
Scheme I:
“d az] as[ a4| alsl asl a7l 2| Py
Chip 1 Chip 2
Scheme I1:
all a2l as] a4 aSI aﬁLa7J agl P,
Scheme 111:
Chip ! 2 3 4 5 6 7 8 9
SchemeIV: - cpip 1 Chip 2

aia2l a3] a4] aﬂ b6] b7l bgl Py bll szl’fil b4] asrail a7J 38[ P,

Checker  Effectiveness Location Description

Figure 5 Four packaging schemes of register and array chips with
the chip-detection probabilities. a,, a,, - - -, a,, P, is an 8-bit byte
with its parity bit; b, b,, - - -, P, corresponds to another 8-bit byte.

circuits in gating and clock distribution of an LSI register
causes multiple bit errors and hence causes the null
syndrome with probability 0.5. On the other hand, the
latches will not cause the null syndrome.

This gives rise to the concept of checker effectiveness,
which represents the weighted average across the failures in
a representative function of the detection probabilities.
Although it is called checker effectiveness, it actually is
associated with the function being checked. Its utility is in
avoiding repeated detailed circuit input to the basic informa-
tion table when a common design function is repetitively
used.

By using the concept of checker effectiveness in this
manner, a designer can provide as input to the evaluation an
additional table called the checker information table
consisting of a row for each identified checker in the system,
the row containing the checker name, and the effectiveness
of the checker.
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C, 0.9 Databus  Byte parity checker

This allows the designer to represent the entire function as a
single row in the basic information table.

Compo- Failure Function Failure Syndrome Syndrome

nent  proba- proba- of likelihood
bility bility  function
(rate)
A chip 1.0 Gated 1.0 C, 1.0

register

The references to checker C, in the Syndrome of function
column will automatically cause a cross reference to the
checker information table to obtain the detection probability
or effectiveness of 0.9, a value previously determined.

A limitation on the use of “checker effectiveness” arises in
a design when a particular checker checks information from
more than one source and the two sources have different
fault distributions. For example, a parity checker checks a
storage array as well as a data register, and the fault
distributions are different. In this case, the basic information
table entries must list the detailed fault distributions of each
function.

Figure 4 shows an LSI parity-checked register chip along
with its basic information table. The relative failure rates
within the chip of the three categories, logic, mechanical
interconnections (pads), and power distribution within the
chip, are provided by the technology developers using a
projection methodology analogous to the one described in
[20]. Circuit and pad counts are provided by the logic
designer. Performing the arithmetic to compute an overall
detection probability for this chip gives 0.8875. If this same
chip part number is used elsewhere in the system, it is
worthwhile to use the checker effectiveness idea (checker
information table) to avoid repeated detailed data entry.

® Enhancing parity-check detection effectiveness

Detection probability of 0.5 is assigned to those circuit faults
which can cause multiple bits to be in error in a parity-
checked field, for example, gate and clock circuits. If the
gate or clock circuit is actually controlling data, e.g., from
two bytes instead of from one, the detection probability for
this class of circuit is [1 — (0.5)’] = 0.75. This fact is useful
in the implementation of multi-byte data flows, in order to
increase the parity-check-detection probability by packaging
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Table 1 Detection probabilities.

Detection mechanism Detection Comments, package,
(%) etc.
Parity check
Arrays
MS-C*, 256 x 9 95 1 field/chip
96 2 fields/chip
100 bit slice
MS-D, 32 x 18 90 1 field /chip
95 2 fields/chip
99 4 fields/chip
100 bit slice
MS-E, 256 x 54 95 1 field/chip
97 2 fields/chip
Registers
MS-A 90 all bits in 1 chip
93 2 fields/chip
100 1 bit/chip/field
MS-B 95 1 field /chip
Parity predict
adder 81
counter 90
Decoder check 75

Cyclic redundancy check 99.9
ECC (error detection only) 1 —27" r check bits
Illegal pattern checking (M/N)100 M = number of illegal

patterns
N = total patterns
Time out 100 Delayed
Sum check 99.9 16 bits
Duplication 100
Sensor detection 100 Will be lowered if low
threshold sensitivity
Power check 100 Sensing
M M = over-detection %
for logic supplied by
this power source
Background diagnostics NxD N = run time/total

time
D = computed diag-
nostic effectiveness

*The abbreviations MS-C, D, E, A, B represent masterslice C, D, E, A, B, etc.

portions of different bytes on the same LSI chip and under a
common gate and clock control. In general, for parts of n
bytes under common control, the detection probability is
1 - (0.5)"].

Depending on the ratio of such common logic faults to
those faults which cause only single bits in error, such
packaging variations can have a pronounced effect on the
overall detection probability. Figure 5 shows four packaging
schemes for parity-checked LSI registers. A common failure
of a single byte is now divided into multiple parity-check
cases; therefore, the average detection probabilities differ
among these four schemes. Some of these variations for the
3081 processor technologies have been evaluated and tabu-
lated as design guidelines in Table 1. The detection varia-
tions among the array technologies reflect different func-
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Number Number of gates Checker Detection
of circuit probability
inputs Decoding Checking overhead
logic logic
NOT AND OR AND
2 2 4 4 1 0.83 0.68
3 3 8 4 1 0.45 0.72
4 4 16 8 1 0.45 0.71
5 5 32 12 1 0.35 0.71

Figure 6 Decoder check with error-detection probabilities and
check-circuit overhead for various size decoders.

tional distributions, and hence, different failure distributions
internal to the chip. Failure mode distributions for array
technologies have been published [20-22] which identify
categories such as bit-line, word-line, cell, and chip kill
failures.

® Other detection mechanisms—detection effectiveness

Parity checking has been emphasized in the preceding exam-
ples because, in most digital systems, parity checking
accounts for 70 to 80% of the detection coverage. Control
logic which consists of counters and registers may also be
parity checked. There is a portion of control logic, however,
for which parity is not appropriate in general. For example,
decoders have the natural characteristic that a one-and-
only-one check may be performed. Since this type of check
amounts to a practical duplication of the logic, it is generally

73

D. C. BOSSEN AND M. Y. HSIAO




74

Source C—l

! |

I Source A l : Eource B—l :
| T |
!

FRU, IFRU, 1FRU,
FRU: _______ N R
1 [
x X X
.
ASID
Receiver table
J¥~A,B,orC
c, -1
Model input Number Syndrome Syndrome
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circuits
FRU, Source A circuits 82 C, (and) A 1.0
FRU, Source B circuits 67 C,(and) B 1.0
FRU, Source C circuits 80 C, (and) C 1.0
FRU, Receiver and

checker circuits 65 C, (and) A 0.33*
C,(and) B 0.33*

C (and)C  0.34*

*Determined by frequency of path usage.

Figure 7 Active source identifier (ASID) as part of the
syndrome.

FRU, FRU;,
Array 1 Array 2
30/34 30/34

Register | [15/17 10/11,

5/6l Drivers l

I 1/1

FRU,

Function Probability Syndrome  Syndrome
of failure name likelihood
(rate)
FRU, Arrayl 34/116 C, 30/34 (0.88)
Register 1 +
checker C, 17/116 C, 15/17 (0.88)
Drivers 6/116 C, 5/6 (0.83)
FRU, Cable 1/116 C, 1/1 (1.00)
FRU,; Array2 34/116 C, 30/34 (0.88)
Register 2 +
checker C, 11/116 C, 10/11 (0.91)
Decoder +
checker C, 13/116 C, 9/13 (0.69)

Figure 8 Example system with basic informatjon table entries for
the example.

avoided in favor of some form of a reduced decoder check;
see Fig. 6 and [3]. The effectiveness of such a checker may
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be evaluated by considering, as the set of all faults, each gate
stuck-at-zero (s-a-0) and stuck-at-one (s-a-1). When the
check circuit itself is included in the function, the overall
“effectiveness” is shown in Fig. 6. The complexity of such an
analysis shows that the detection effectiveness concept
applied to commonly repeated portions of a design is very
useful in practice in reducing the amount of the input
required.

o Syndrome definition for improved isolation

Syndrome entries in the basic information table may in
general consist of Boolean combinations of checkers and
machine status. Figure 7 shows data flow where a down-
stream checker C, checks three sources on three different
FRUs. The implicated FRU set for the condition “C, active”
would be all three sources as well as the receiver, or four
FRUs. The addition of active source identifier logic to
capture the name of the active path will improve isolation.
The input for this situation is also shown in Fig. 7, where it is
seen that isolation is now to two FRUs.

One important point which this example brings out is the
fact that isolation is generally improved by including
machine-state information with the error checker in order to
define the syndrome. In other words, a single physical error
checker can give rise to a number of unique syndromes, each
with its own set of implicated failures, when machine state is
included together with checker output. This is a very useful
observation when the design changes are being considered in
order to improve isolation coverage. This fact also illustrates
the importance of error logging for producing good isolation.
Exactly what gets logged, in addition to error check outputs,
will have a tremendous impact on the isolation coverage in
general. Using the ED/FI model, it is possible to rapidly
assess the impact on fault-isolation coverage of proposed
design changes, as well as enhanced machine state error

logging.

® [llustrative example

The system under consideration is shown in Fig. 8, along
with its basic information table. It consists of two logic cards
(FRUs) and an interconnecting cable, also a FRU. The
denominator of the fraction shown with each item is the
failure rate expressed in some consistent units. The numera-
tor is obtained as the product of the failure rate times the
error-detection probability for the item, determined accord-
ing to the ground rules previously stated.

The checker information table is not used since functions
checked by checker C, have different detection probabilities.
The compressed fault-probability vector D, the compressed
fault-conditional-probability matrix P, and the compressed
joint-probability matrix Q are shown in Fig. 9. Dividing Q by
[1 — Pr(S,,) ] gives the “normalized” joint-probability
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matrix Q of Fig. 9, where the set of d, giving FRUs per
syndrome is also indicated. The error-detection probability
equals [1 — Pr(S,,)]1 =1 — 16/116 = 0.86. Using the
normalized Q the DIP and SIP isolation probabilities are
computed as

Pr (isolate to 1 FRU, DIP) = Pr (C,or D)) = 0.45 + 0.09 =
0.54,

Pr (isolate to 1 FRU, SIP) = the summation of the maxi-
mum entry in each column of the normalized Q = 0.45 +
0.40 + 0.09 = 0.94,

Other figures-of-merit are the average number of FRUs
using DIP strategy, NFRU(DIP) = 1(0.45) + 3(0.46) +
1(0.09) = 1.92; the average number of FRUs using SIP
strategy, NFRU(SIP) = 1(0.45) + [1(0.4) + 2(0.05) +
3(0.01)] + 1(0.09) = 1.07; the average number of service
calls using DIP strategy, NSC(DIP) = 1; and the average
number of service calls using SIP strategy, NSC(SIP) =
NFRU(SIP) = 1.07.

ED/Fl experience with IBM products

The ED/FI model and evaluation procedures described in
this paper were developed to meet a practical and real need,
and they have been used throughout IBM since 1975 for
assessing error-detection and fault-isolation coverages of
numerous product designs. The definitions and ground rules
have been extended beyond the logic and electronic areas
into the electromechanical products such as printers and disk
drives. The initial experience in developing the model came
about in the early 3081 processor development, where the
system designers, diagnostic developers, and field engineers
agreed that the change in technology required a diagnostic
strategy to handle intermittent errors. Therefore, there was a
strong need to assess the error-detection and fault-isolation
coverage. There were at that time, however, no definitions,
ground rules, or procedures for projecting such coverage
within IBM or reported in the literature [19].

Experience has shown the value of using the ED/FI
evaluation procedure repetitively as the design progresses.
Early evaluation of 3081 system error-detection coverage
yielded about 60% for the CPU. The current level of better
than 90% was achieved by dedicated concentration to put
checking on the initially weak areas as shown by the model.

Because designers became educated and sensitive to the
need for good error-detection coverage, a number of innova-
tions in error checking were made. These were primarily in
the control areas of the machine, and included decoder
checks, illegal pattern checking, encoder checks, and the
application of parity to address and control fields as stan-
dard practice. Packaging arrangements to enhance parity-
error detection, as pointed out in Table 1, were also exten-
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p,| FRrU,|57/116
P -|P, |~ FRU,| 1/116
P,| FRU,| 58/116

CI CZ CJ Snn"
FRU, | 45/57 5/57 0 | 7/57
D-FRU,| 0 1/1 0

FRU, 0 40/58 9/58 | 9/58

=}
L N |

¢, ¢ ¢ S

null

‘ 1
FRU, | 45/116 5/116 0 | 7/116 1|
Q - FRU,| o0 1/116 O o |
FRU,| 0 407116 9/116 | 9/116 i
4

' C\ Cz C3

FRU, |45 5 0
Qnormalized = FRU,{ 0 1 0
FRU; | 0 40 9

number of 1 3
FRUs/syndrome

Figure 9 Vector P and matrices D, Q, and Q normalized to 100
for the example.

sively used. Fault-isolation coverage was enhanced by better
placement of checkers and by the identification of machine-
state information to produce better syndromes. Some sample
output reports are shown in Figs. 10 and 11 for a representa-
tive large system. Reports are typically produced on a
per-FRU basis for designer feedback.

Independent verification of the projections, by hardware
bugging using a limited sample size on the 3081, shows good
correlation to the coverage values projected by the model.
This model and the ED/FI process have been extended and
used in IBM to project isolation coverage for error-re-
creation diagnostic programs. The circuit and fault cover-
ages of individual tests are determined by test generation
and simulation programs. Each test is treated as an addi-
tional checker added to the hardware checker lists and the
same ED/FI analysis procedure follows to compute an
ED/FI percentage for the solid-failure case using diagnos-
tics. This allows a complete evaluation of the service plan for
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40
35 34%
30
25|

20
15%

Percent of failures

0 0%

Number of implicated FRUs per failure

Figure 10 Representative sample output showing isolation distri-
bution.

ED BASE
100
FRUNAME: CPU.A | UNDETECTED
ED: 81 1 ERRORS
F:(st).- 21
FISIP): 94
FAILURE RATE: 08080 f&?‘“s's MOST LIKELY IS NOT: CPU-A
ED-8——T~—_ _ NAWE: % FI BASIS
............ 04 FUSIP) ™ Tsppg 2
» OBCI’JP7 2
3 \ 1 2
CPU-A A SDC11 =0
UNIQUE SYNDROMES N SDC12 20
NAME: % FI BASIS \\ N ggg: g -0
o4 N v [seee S0
i3] 1\ \ SDP15 >0
RSDE3 2{ \ \
E1 2| \
SDP24 1 \
sDC14 1| \
SDP31 1 \ \
SDP32 1 \ \
gsoas : \ \ MOST LIKELY IS: CPU-A
P25 > -
SDPo% 20 \\ NAME: % FI BASIS
CHP2 >0 SDE3 18
SDbi6 S, Shes i
> SDE2
SOP17 >0 \1 ............ |21 FDIP) SDP4 14
SDPi8 >0 ~ SDP34 1
CHP1 >0 Mo Spp7 1
SDP23 >0 ~ SDP10 1
4OTHERS 1 ~_ |soe11 1
N soeiz 1

Figure 11 Sample FRU output report showing syndrome contri-
bution to isolation. The various abbreviations listed are simply
identified syndrome names for the particular system tested.

a system in both the operational environment (error checkers
and log analysis only) and the maintenance environment
(where error re-creation may be used).

Summary

This paper describes a model for projecting error-detection
and fault-isolation coverages. Implicit in interpreting the
results of the model is a maintenance strategy of fault
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isolation based on dynamically detected errors. The model
has been applied in many practical design cases, and evalua-
tion results have suggested weak areas in both error-
detection and fault-isolation coverage, with improvements
having been made accordingly. Designers are given specific
ground rules for generating inputs to the model, and are
provided error-detection coverage numbers and computa-
tional guidelines for most error checkers in use.

The following lists some of the ED/FT evaluation bene-
fits:

1. Product designers are aware of the need for error detec-
tion and FRU isolation early in the design phases. The
evaluation procedure gives early feedback regarding
areas needing improvement. (It is noteworthy that inven-
tions are often made in response to such needs.) Improve-
ments in error detection made in this iterative fashion,
especially in LSI technologies, have had minimum
impact on product cost, performance, and schedule.

2. By placing primary emphasis on error checkers which can
detect errors from all causes, including intermittent
errors, problems associated with a maintenance strategy
of reproducing errors with diagnostic programs or proce-
dures are eliminated. This benefit results in greatly
reduced mean-time-to-repair, as well as reduced parts
costs.

3. Data integrity, which depends first and foremost on the
detection of errors, can be designed directly into the
hardware. Using the model for error-detection coverage,
quality can be projected in advance.
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