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Model  for  Transient  and  Permanent  Error-Detection  and 
Fault-Isolation Coverage 

As computer technologies advance to achieve higher performance and density, intermittent failures become more dominant 
than solid failures, with the result that  the eflectiveness of any diagnostic procedure which relies on reproducing failures is 
greatly reduced. This problem is solved at the system level by a new strategy of dynamic error detection and fault isolation 
based on error checking and analysis of captured information. The model developed in this paper allows the system designer 
to project the dynamic error-detection andfault-isolation coverages of the system as a function of the failure rates of 
components and the types and placement of error checkers, which has resulted in signiJicant improvements to both detection 
and isolation in  the IBM 3081 Processor Unit. The model has also resulted in new probabilistic isolation strategies based on 
the likelihood of failures. Our experiences with this model on several IBMproducts, including the 3081, show good correlation 
between the model and practical experiments. 

Introduction 
Traditionally, failure  (fault) isolation  in a digital system has 
been dealt with in terms of testing, with testing procedures 
or at least specific test patterns generally produced only 
after the hardware to be tested is designed. Theoretical 
investigations of the fault-isolation problem have therefore 
concentrated on methods for producing “efficient” diagnos- 
tic test sets [ l ,  21, including the proposed measure of the 
diagnosability of systems [3] .  An important exception to this 
testing approach is  use of syndromes produced by error- 
checking circuits during normal machine operation for fault 
isolation. This general idea  is  obvious and has been 
previously discussed [4] ,  although no  follow-on  work 
concerning the effectiveness or coverage of such an approach 
has been reported. 

In the investigations of fault isolation via testing, the 
assumed starting point  is a data matrix D = [ dij], which has 
one row for every fault f ;  (1 5 i 5 n )  and one column for 
every test tj  (1 5 j 5 m) .  An entry di, in D is 1 if faultf;. is 
detected by test tY Based on the characteristics of this 
matrix, statements can be made about  fault distinguishabili- 
ty, fault coverage, and efficiency. 

Problems amenable to solution using such a model gener- 
ally have the implicit assumption that there are more tests 

available than actually needed. This is rarely the case in 
practice. One solution has been the development of proce- 
dures either for eliminating redundant tests or for selecting 
tests which isolate faults to a replaceable package level 
rather  than to the particular circuit [ 1 1 .  Additional work  in 
testing efficiency has resulted in a procedure for selecting 
the best testing order to achieve the lowest average-test- 
sequence length [ 21. 

Faults in  logic are generally assumed to be  of the single 
stuck-at-O/stuck-at-1 (s-a-O/s-a-1) variety, although other 
models such as short-circuit faults in LSI and their asso- 
ciated test-generation procedures have  been  proposed [ 51. 
From a practical standpoint, a fundamental shortcoming 
with these approaches is that they are based on testing 
procedures which  rely on the presence of permanent faults, 
whereas in actual practice, most faults are intermittent or 
transient. It is a well-documented fact that these faults cause 
most of the serious isolation problems in the field [6-91. 

Some work has been reported on the problem of detecting 
and isolating intermittent  faults [ 10-151 that involves the 
use of test procedures which attempt to reproduce the 
assumed randomly occurring intermittent faults. Since the 
fault may  not  be present when the test is applied, the 
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approach  taken is to  repeat  the  tests  many times. There  are 
various  suggestions  for computing how much  repetition is 
necessary to  ensure a specified probability  that a fault is or is 
not  present.  However, diagnostic  time in  a  customer’s office, 
even for a single  pass-through  set of tests, is  costly; hence, 
approaches  requiring  large  repetitions of tests  are  generally 
unacceptable. 

The  approach  to  fault isolation  described  in this  paper is 
to  capture  and  interpret  the  syndromes  resulting  from  error 
checkers  that  are  active  during  normal  machine  operation. 
The  advantage of such  an  approach is that  error  checkers 
can  detect  all classes of errors which  exist during  each 
checking  cycle. For example,  these  errors  may  be  caused by 
faults of the following types: stuck-at,  intermittent,  single or 
multiple, transient,  externally  (environmentally)  induced, 
pattern-sensitive, or any  other  fault which causes  the 
computer’s state  to  be  outside  the code space of the  appropri- 
ate detection mechanism  or  error  checker. 

In order  to  analyze  the  fault  detection  and isolation 
coverage, we introduce a dynamic  fault-probability model 
for projecting the  ability of a system to  detect  and  isolate 
failures,  including  intermittent  failures, in an  operational 
environment. In fact,  this is a fundamental  hardware design 
and  diagnostic  requirement  for  the  3081 Processor Unit 
maintenance  strategy [ 161. Relevant figures-of-merit are 
defined and  computed using the model. The model is an 
integral  part of an overall  design evaluation  procedure  to 
enhance a  product’s reliability,  availability,  and serviceabili- 
ty. 

By using the model, it  has been possible to define proba- 
bilistic repair  strategies  and  to project their effectiveness in 
terms of parts replaced  per repair  action  and  the  probability 
of correct  repair.  Such probabilistic repair  strategies  are 
extensively used  in the  3081 [ 161. Further  use of this model 
in the  3081 design has resulted  in  improved error-checker 
placement  to  enhance  fault isolation, and  the inclusion of 
improved error-detection  mechanisms  to cover otherwise 
weakly  checked areas. 

The  remaining sections of this  paper cover a system  design 
strategy  for  intermittent  and solid faults, a new concept of 
probabilistic fault isolation, the  mathematical model  for 
numerically  characterizing  the  dynamic  error-detection  and 
fault-isolation  probabilities of a system, detection  and isola- 
tion coverages, the  procedure  and  ground  rules  for  obtaining 
data for the model, and  our experiences with IBM products 
using the model. 

System design and maintenance strategy 
Dynamic  error-detection  mechanisms  are  usually imple- 
mented in  various combinations of hardware, microcode, 68 

D. C. BOSSEN AND M. Y. HSIAO 

and  software,  and have had  as  their historic raison d’etre the 
detection of errors  during  normal  operation so that recovery 
procedures  may  be  initiated (i.e., retry). A recommended 
system  strategy is to  take  advantage of and,  where neces- 
sary,  to  enhance  these  capabilities  to achieve efficient and 
effective fault isolation. 

To  take  advantage of these  mechanisms for the isolation 
of intermittent  faults,  the  system  architecture  must provide 
for  the  automatic  capture of all necessary error  information 
as  it is detected,  and  before  it is destroyed,  altered,  or 
overwritten by the recovery process. Thus,  such  an  architec- 
ture would allow for  what is called error logging. The 
concept of error logging  was  first introduced in the IBM 
System/360 [ 17, 181, although  it  has not  been  extensively 
used as  an isolation  tool,  largely because  it was  not possible 
to project the  error-detection or fault-isolation coverage. A 
second requirement is a procedure,  preferably  automated, 
for  analyzing  the  error log to  determine  the physical  location 
of the  fault.  Ideally, a set of error log analysis  routines would 
replace  the conventional set of diagnostic  tests  as  the 
primary fault-isolation tool. A third  requirement is a 
design-review procedure  and  fault-probability model to 
allow advance projections to  be  made of the  dynamic  error- 
detection  and fault-isolation  probabilities. This is crucial 
because a strategy based on dynamic  error  detection gener- 
ally requires  changes  to  hardware  functions (e.g., more  error 
checkers or better  placement of them)  that would be  practi- 
cally impossible to  make  after  an LSI design  was  finalized. 

The  importance of a timely evaluation of any  aspect of the 
system reliability or fault-tolerant coverage cannot  be over- 
stressed. Reference [ 191 graphically  illustrates  the  current 
lack of rigorous state-of-the-art  methods for the projection 
of fault-tolerant coverage. Error  detection  and  fault isolation 
are  important  aspects of fault-tolerant coverage. 

W i t h  this recommended system  strategy,  the  fault- 
isolation characteristics of a system  are  not  treated  as  an 
“add-on”  feature provided by diagnostic  tests;  rather,  they 
are a direct  result of the  hardware  functions of error  detec- 
tion and  are,  thus,  the  primary responsibility of the  hard- 
ware  designer.  Reference  [4(b)] gives design information for 
error-detection  circuits  and methods. 

Dynamic  fault-probability  model  for detection and 
isolation 

Coverage figures-of-merit for fault-tolerant  systems 
The proposed strategy  requires several  figures-of-merit for 
the coverage  in order  to properly characterize  the  fault- 
tolerant  performance of the  system  and  to provide  useful 
feedback for making design improvements.  The first is the 
error-detection coverage or percentage (referred  to  as ED).  
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Another,  the fault-isolation coverage ( F I ) ,  is more complex 
to describe. First,  it is possible to  characterize a system by its 
fault-isolation distribution ( I , ,  I , ,  - , I") ,  where I ,  is the 
portion of all  faults which implicate a  single  field-replace- 
able  unit (FRU). In  general, I ,  is the portion of all  faults 
which implicate  exactly i FRUs. This is an  unambiguous 
way of specifying the fault-isolation  coverage  which  is  inde- 
pendent of isolation strategy.  (Other figures-of-merit for 
fault-isolation  coverage are  presented in  a later section, 
along  with a  discussion of isolation strategies.) 

0 Notation and definitions 
The system  consists of N FRUs (FRU,,  FRU,, - -, 
FRU,). Each FRU, contains n, faults,":, f :, - a,":,. The 
total system contains N* = Zn, faults. Associated with  each 
FRU, is a fault  probability pi, which is the  sum of the  fault 
probabilities for  faults  contained on FRU,. That is, 

"i 

Pi = EP,f 7 

j - 1  

where p ,f is the  probability of fault f , f .  For practical 
systems, the size of the  fault set N* is unmanageably  large. 
For  a FRU containing m lines, N* will be 3"' - 1; therefore, 
in order  to  analyze  any  practical  systems of even medium 
size, it is mandatory  that  procedures  for  grouping  faults  be 
developed. 

Based  on the  use of error  checkers  and  captured 
machine-state  information, a  system contains M nonzero, 
mutually exclusive syndromes, SI, S,, e ,  S,, together 
with the null syndrome S,,,,. A syndrome is the logical 
product (Boolean  "AND") of identifiers of an  error-checker 
and  its  active  source at  the  time  the  error is captured;  thus,  it 
is the  result of a dynamically  detected  error.  (Examples of 
syndromes are given in the following section.) 

The  dynamic  error-detection  characteristics of the system 
are  represented by a fault-conditional-probability  data 
matrix  and a vector of fault probabilities. Figure 1 shows the 
full fault-conditional-probability  data  matrix D* of dimen- 
sion N* x M and  the full fault-probability vector P* of 
length N * .  D* has a row for  each  fault  and a column  for 
each syndrome. The  matrix  entry d;k is the conditional 
probability that Sk occurs, given fault f ,f. It is convenient to 
deal  with  this set of information in a  compressed form, i.e., 
in the  form of a compressed fault-conditional-probability 
data  matrix D, which has dimension N x M and  has  one 
row for each FRU, and  one column for  each  syndrome Si. 
The compressed full  fault-probability vector P has  one  entry 
pi for  each FRU,, equal  to  the  sum of all  fault probabilities 
on FRUi (see Fig. 2). The  entry dij of D is simply obtained  as 
the  sum of products: 
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SI ' k  'null 
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Figure 1 Full  fault-probability  vector P* and fault-conditional- 
probability data matrix D*. 

FRU , 
FRU, 

FRU, 

. -  
PI 

P2 

PN, 

= P ,  

Syndromes 

SI s 2  SM 
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d ,  = Pr (Sj  I FRU, fails). 
I- I 

Figure 2 Compressed  fault-probability  vector P and  compressed 
fault-conditional-probability data matrix D. 

k-1 

where  Pr (S, 1 FRU, fails) is the  probability of Si due  to 
FRUi failure.  In  practice,  the full matrix D* is not explicitly 69 
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4 .  = dUp, = Pr (FRU, fails and Si occurs). 
ti 

Figure 3 Joint  compressed-probability  matrix Q. 

obtained. What is obtained is a matrix whose size is  between 
D* and D, which represents an initial grouping of faults 
according to functions. 

The computational algorithms all have as their basis the 
compressed matrix D, the compressed fault-probability 
vector P = (p , ,   p2 ,  - . -, p N ) ,  and the joint compressed- 
probability matrix Q (see Fig. 3). Matrix Q is useful since it 
contains the maximum information; i.e., the sum of each row 
is equal to the detected fault probability for FRU,, while the 
sum of each column is equal to the syndrome-occurrence 
probability for syndrome Sj. Each “normalized” (for the 
total number of detected faults) column equals the distribu- 
tion of likelihoods for FRU failure candidates, given a 
particular syndrome occurrence. The total sum of all the 
entries in Q is the error-detection probability (ED);  thus 
Pr (S,,,,) = 1 - ED. The error-detection probability for 
FRU, equals the sum of the row divided by pi .  Since the fault 
isolation (FZ) is normally defined  with respect to detected 
errors only, for purposes of computing isolation-coverage 
figures-of-merit, the matrix Q is normalized by dividing it by 
- Pr (S,,,,)]. 

Fault-isolation strategies 
Before computing figures-of-merit for dynamic fault isola- 
tion of a system, it is useful to introduce the concept of 
isolation strategy. A strategy is a definition, for each 
syndrome Si, of the specific repair action to be taken given 
the Occurrence of Si. The action or strategy is based on the 
particular FRU implicated by Si. In a system perfectly 
designed for fault isolation, every syndrome implicates a 
single FRU, and  a discussion of strategy is unnecessary. 
However, this is not generally the case and when an ambigu- 
ous syndrome occurs a choice must be made between replac- 
ing either all of the implicated FRUs or some subset of them. 
For the latter case, there is a risk involved since the FRU 
containing the  actual  fault may  not  be replaced; thus  a 
subsequent Occurrence  of the fault may arise, necessitating 70 

D. C. BOSSEN AND I ul. Y. HSIAO 

another repair call. Based  on the syndrome-probability 
matrix, all important factors in such a trade-off can be 
quantified. 

Examples of various strategies include the following. For 
first-call repairs we use the deterministic isolation proce- 
dure (DIP) strategy; all implicated FRUs are replaced. For 
second-call repairs, the action can be either (a)  to replace 
the single-most-likely FRU on the first call and replace the 
remainder on a subsequent call; or (b) on the first call, to 
replace a subset of FRUs that is  sufficient to account for a 
threshold (e.g., 90%) portion. This is a limited-risk strategy. 
For Nth-call repairs, we use the sequential isolation proce- 
dure (SIP) strategy; the action taken depends on the number 
of calls. On the first call, the most-likely FRU is replaced; on 
the second call, the next-most-likely FRU is replaced, etc., 
until on the Nth call, the least-likely FRU is replaced. The 
choice among these strategies reflects trade-offs among the 
costs for parts, labor, and customer-outage associated with 
multiple calls to fix a problem. 

Figures-of-merit for  fault-isolation coverage 
It was  previously  noted that the fault-isolation distribution 
characterizes fault-isolation coverage independently of the 
fault-isolation strategy. However,  in order to reflect the very 
real practical differences between  possible isolation strate- 
gies, additional figures-of-merit for the coverage are re- 
quired. Two  useful measures are  the average number of 
FRUs replaced per detected fault (NFRU) and the average 
number of service calls per detected fault (NSC). Having 
calculated these values, a direct estimate of the cost of each 
strategy over the life of the system or product can be 
computed. NFRU and NSC can be computed directly from 
the normalized Q, P, and  the previously stated  strategy 
definitions. 

For each syndrome Si, d, is defined as the number of 
FRUs implicated by syndrome Si. Based on the syndrome 
probability matrix Q, d, is the number of nonzero entries in 
column i of Q. The probability of isolating to one FRU, given 
a system failure, is computed by summing all entries in the 
columns of Q which have di = 1. Using DIP strategy, this 
probability is  given  by 

x q l , . ; j  3 d, = 1. 

The remainder of the fault-isolation distribution can be 
computed using the general relation of the probability of 
isolating to K FRUs, 

xqij; j 3 dj = K .  

The sequential isolation bound reflects the maintenance 
strategy of selecting for replacement the most  likely FRU 

N 

i-1 

N 

i - I  
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implicated by an ambiguous syndrome. An ambiguous 
syndrome is represented in the  matrix Q by a column 
containing more than one  nonzero entry. Choosing the most 
likely FRU for  such a syndrome corresponds to  choosing the 
FRU associated with maximum entry in each column. Let 
Maxj (qij) be the largest entry in columnj of Q. Then for the 
sequential isolation, the probability of isolating to one FRU 
is  given  by 
M 

E Max, (Qij) .  
j - I  

Note that this will include all the entries summed for the 
deterministic isolation bound. 

NFRU using DIP and SIP strategies 
With di as defined  above, NFRU can be computed using DIP 
strategy with the relation 

M N  

C d j C q , *  
j - l  i-l 

which is simply the summation of the number of FRUs 
implicated per syndrome times the syndrome probability. In 
order to compute NFRU using SIP strategy, define (qij}j  to 
be the  arrangement of column j in descending numerical 
order. That is, 

q l j  2 q2j 2 - 2 qNj. 

Then the average number of FRUs per syndrome j ,  d, (avg) 
is  given  by 

N 

D l u  
N dj(avg), 

&ij 

i- I 
-= 

i- I 

and the average number of FRUs per failure is therefore 

j -  I i - l  ,*I i - l  

Average number of service calls  per  fault (NSC) 
For the DIP strategy, the number of service calls per failure 
is equal to one, since this strategy specifies that all impli- 
cated FRUs will  be replaced on the first call. In the case of 
SIP strategy, the average number of service calls is equal to 
the average number of FRUs replaced: 

NSC(SIP) = NFRU(S1P). 

The EDFl process-obtaining data for the fault- 
conditional data matrices 
It has been found practical to obtain data for the fault- 
probability models  where circuits have  been grouped into 
functions. This corresponds to a matrix D*, which is some- 
what larger than the compressed matrix D. It has further 
been  found practical to have the designer provide data for 
each FRU in terms of a data set called a basic information 
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Figure 4 Parity-checked  register  example with detailed  basic 
information  table entries. 

table, which  would correspond to a horizontal slice or set of 
rows  of the matrix D*. Data provided  in this fashion is 
reduced by programs to the single row D and  the correspond- 
ing FRU fault-probability entry in  vector P. 

Each row  of the basic information table is a vector of data 
consisting of component name, component failure  rate, func- 
tion(s) of the component, failure probabilities of the func- 
tions, syndromes of each function, and syndrome probabili- 
ties given function failure. See Fig. 4. It is quite possible for 
each row  in the basic information table to correspond to a 
single circuit fault, in  which case D* would  be represented. 
Guidelines provided  to designers suggest that entries should 
correspond to functions such as registers, decoders, parity 
checkers, arrays, ALUs, etc., each of which  may  have 
hundreds of circuits, and represent hundreds of faults in D*. 
The association of a failing function with the error checker 
that detects its failure (according to  the system design) and 
also with the syndrome (checker combined with machine 
state) is the designer's job. 

Where more than one nonzero syndrome is possible, for 
example due to varying path usage or instruction mix, the 
relative likelihood  is also estimated by the designer. Many 
circuit groups performing a function, such as  a register or 
decoder, are such that their  faults are not uniform in 
detection probability. For example, a single failure in 



Components Probability Detection probability for 
of failure schemes: 

(rate) 
I II III IV 

Register cells 0.7 1.0 1.0 1.0 1.0 
Clock 0.1 0.5 0.5 1.0 0.75 
Gates 0.1 0.5 0.5 1.0 0.75 
Power 0.05 1.0 0.5 1.0 0.75 
Pads 0.05 0.75 0.75 1.0 0.88 

Total 1 .oo 0.89 0.86 1.0 0.93 
- " - ~  

Scheme I :  

Chip 1 
I i 

Scheme 11: ~ " G j x F l  
Scheme 111: 

Scheme IV: Chio ~ 

Chip 2 

5 6 1 2 9  

Chio 2 

Figure 5 Four packaging  schemes of register  and  array  chips with 
the  chip-detection  probabilities. a,, a,, . ., a,, Pa is an  8-bit  byte 
with  its  parity  bit; b,, b,, e ,  Pb corresponds to another  8-bit byte. 

circuits in gating and clock distribution of an LSI register 
causes multiple bit errors and hence causes the null 
syndrome with probability 0.5. On the other hand, the 
latches will  not cause the null syndrome. 

This gives  rise to the concept of checker effectiveness, 
which represents the weighted average across the failures in 
a representative function of the detection probabilities. 
Although it is called checker effectiveness, it actually is 
associated with the function being checked. Its utility is  in 
avoiding repeated detailed circuit input to the basic informa- 
tion table when a common  design function is repetitively 
used. 

By using the concept of checker effectiveness  in this 
manner, a designer can provide as input to the evaluation an 
additional table called the checker  information  table 
consisting of a row for each identified checker in the system, 
the row containing the checker name, and  the effectiveness 
of the checker. 72 
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Checker  Effectiveness  Location  Description 

c, 0.9 Data bus Byte  parity  checker 

This allows the designer to represent the entire function as  a 
single row  in the basic information table. 

Compo-  Failure  Function  Failure  Syndrome  Syndrome 
nent proba- proba- of likelihood 

bility bility junction 
(rate) 

A chip 1.0 Gated 1.0 c, 1 .o 
register 

The references to checker C ,  in the Syndrome of function 
column will automatically cause a cross reference to the 
checker information table to obtain the detection probability 
or effectiveness of 0.9, a value previously determined. 

A limitation on the use of "checker  effectiveness" arises in 
a design  when a particular checker checks information from 
more than one source and the two sources have different 
fault distributions. For example, a  parity checker checks a 
storage array  as well as a data register, and the fault 
distributions are different. In this case, the basic information 
table entries must list the detailed fault distributions of each 
function. 

Figure 4 shows an  LSI parity-checked register chip along 
with its basic information table. The relative failure  rates 
within the chip of the  three categories, logic, mechanical 
interconnections (pads), and power distribution within the 
chip, are provided by the technology  developers  using a 
projection  methodology analogous to  the one described in 
[20]. Circuit and pad counts are provided by the logic 
designer. Performing the  arithmetic to compute an overall 
detection probability for this chip gives 0.8875. If this same 
chip part number is  used elsewhere in the system, it is 
worthwhile to use the checker effectiveness idea (checker 
information table) to avoid repeated detailed data entry. 

Enhancingparity-check  detection effectiveness 
Detection probability of 0.5 is assigned to those circuit faults 
which can cause multiple bits to be  in error in a parity- 
checked  field, for example, gate and clock circuits. If the 
gate or clock circuit is actually controlling data, e.g., from 
two bytes instead of from one, the detection probability for 
this class of circuit is 11 - = 0.75. This fact is  useful 
in the implementation of multi-byte data flows,  in order to 
increase the parity-check-detection probability by packaging 
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Table 1 Detection probabilities. Decoderchecker 

~~ ____ ~ 

Detection  mechanism  Detection  Comments,  package, 
@) etc. 

Parity check 
Arrays 

MS-C*, 256 X 9 

MS-D, 32 X 18 

MS-E, 256 X 54 

Registers 
MS-A 

MS-B 
Parity predict 

adder 
counter 

Decoder check 
Cyclic redundancy check 
ECC (error detection only) 
Illegal pattern checking 

Time  out 
Sum check 
Duplication 
Sensor detection 

Power check 

Background diagnostics 

95 
96 
100 
90 
95 
99 
100 
95 
97 

90 
93 
100 
95 

81 
90 
15 
99.9 
1 - 2 "  
( M / N )  100 

100 
99.9 
100 
100 

100 
M 

N x D  

1 field/chip 
2 fields/chip 
bit slice 
1 field/chip 
2 fields/chip 
4 fields/chip 
bit slice 
1 field/chip 
2 fields/chip 

all bits in 1 chip 
2 fields/chip 
1 bit/chip/field 
1 field/chip 

r check bits 
M = number of illegal 

patterns 
N = total  patterns 
Delayed 
16 bits 

Will be lowered if  low 
threshold sensitivity 

Sensing 
M = over-detection % 

for logic supplied by 
this power source 

N = run time/total 
time 

D = computed diag- 
nostic effectiveness 

'The  abbreviations MS-C, D, E. A, B represent  masterslice C ,  D, E, A, B, etc 

portions of different bytes  on the  same LSI chip  and  under a 
common gate  and clock  control. In  general, for parts of n 
bytes under common  control, the  detection  probability is 
[l - (0.5)"]. 

Depending on the  ratio of such common logic faults  to 
those faults which cause only single  bits  in error,  such 
packaging  variations  can have  a  pronounced  effect  on the 
overall detection probability. Figure 5 shows four  packaging 
schemes for  parity-checked LSI registers. A common  failure 
of a single byte  is now divided into  multiple  parity-check 
cases; therefore,  the  average  detection probabilities  differ 
among  these  four schemes. Some of these  variations for the 
3081 processor  technologies  have  been evaluated  and  tabu- 
lated  as design  guidelines in Table 1. The  detection  varia- 
tions among  the  array technologies reflect different  func- 

!2l ND O o 0  

I 1 1 1  I Checkinglogic 
""" 

~~ ~~~ ~ 

Number  Number of gates Checker  Detection 
~~ 

of circuit  probability 
inputs Decoding Checking  overhead 

logic logic 

NOT  AND OR AND 

2 2 4 4 1  0.83 0.68 
3 3 8 4 1  0.45 0.72 
4 4 1 6 8 1  0.45 0.71 
5 5 32 12 1 0.35  0.71 

Figure 6 Decoder check with error-detection probabilities and 
check-circuit overhead for various size decoders. 

tional  distributions,  and hence,  different failure  distributions 
internal  to  the  chip.  Failure  mode  distributions for array 
technologies have been published [20-221 which identify 
categories such as bit-line,  word-line,  cell, and  chip kill 
failures. 

Other detection mechanisms-detection effectiveness 
Parity  checking  has been emphasized in the preceding exam- 
ples because,  in  most digital  systems,  parity  checking 
accounts for 70 to 80% of the detection  coverage. Control 
logic which  consists of counters  and  registers  may  also  be 
parity checked. There is a portion of control logic, however, 
for which parity is not appropriate in general. For example, 
decoders have the  natural  characteristic  that a  one-and- 
only-one check  may  be  performed.  Since  this  type of check 
amounts  to a practical  duplication of the logic, it is generally 73 
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be  evaluated by considering, as  the  set of all  faults,  each  gate 
stuck-at-zero (s-a-0) and  stuck-at-one (s-a-1). When  the 
check  circuit itself is included  in the  function,  the overall 
“effectiveness” is  shown in Fig. 6 .  The complexity of such  an 
analysis shows that  the  detection effectiveness concept 
applied to commonly repeated portions of a  design  is very 
useful in practice in reducing  the  amount of the  input 
required. 

~ 

Model input Number  Syndrome  Syndrome 
function of name likelihood 

circuits 

~ ~~ ~~~ ~ ~ ~~ 

FRU , Source A circuits 82 C, (and) A 1.0 
FRU, Source B circuits 67 C,  (and) B 1.0 
FRU, Source C circuits 80 C, (and) C 1.0 
FRU, Receiver  and 

checker circuits 65 C ,  (and) A 0.33* 
C, (and) B 0.33* 
C, (and) C 0.34* 

‘Determined  by  frequency of path usage. 

Figure 7 Active source identifier (ASID) as part of the 
syndrome. 

FRU , 

I 1/1 
FRU 

FRU, 

I 
Array 2 
30/34 

I 

Function Probability  Syndrome  Syndrome 
of failure name likelihood 

(rate) 

FRU, Array 1 34/116 C,  30/34  (0.88) 
Register 1 + 

checkerC,  17/116 C, 15/17 (0.88) 
Drivers 6/116 C, 5/6  (0.83) 

FRU, Cable 1/116 C ,  1 / 1  (1.00) 
FRU, Array 2 34/116 C ,  30/34  (0.88) 

checkerC, 11/116 C, 10/11 (0.91) 

checker C, 13/ 1 16 C, 9/13  (0.69) 

Register 2 + 
Decoder + 

Figure 8 Example  system  with  basic  information  table  entries  for 
the example. 

avoided  in  favor of some  form of a reduced  decoder check; 
74 see  Fig. 6 and [3]. The effectiveness of such a checker  may 

Syndrome  dejinition for improved  isolation 
Syndrome  entries in the basic information  table  may in 
general consist of Boolean combinations of checkers  and 
machine  status.  Figure 7 shows data flow where a  down- 
stream checker C, checks three sources on three different 
FRUs.  The  implicated  FRU set for the condition “C,  active” 
would be  all  three sources as well as  the receiver, or four 
FRUs.  The  addition of active  source identifier  logic to 
capture  the  name of the  active  path will improve  isolation. 
The  input  for  this  situation is  also  shown  in  Fig. 7, where  it is 
seen that isolation is now to two FRUs. 

One  important point  which this  example brings out is the 
fact  that isolation  is generally improved by including 
machine-state  information with the  error  checker in order  to 
define the  syndrome.  In  other words,  a  single  physical error 
checker  can give rise to a number of unique  syndromes,  each 
with  its own set of implicated  failures, when machine  state is 
included together  with  checker  output.  This is a very useful 
observation  when the design changes  are being  considered in 
order  to improve  isolation  coverage. This  fact  also  illustrates 
the  importance of error logging for  producing good isolation. 
Exactly  what  gets logged, in addition  to  error  check  outputs, 
will have  a tremendous  impact on the isolation  coverage in 
general.  Using  the  ED/FI model, it is possible to  rapidly 
assess the  impact on fault-isolation  coverage of proposed 
design changes,  as well as  enhanced  machine  state  error 
logging. 

Illustrative  example 
The system under consideration is shown in Fig. 8, along 
with its basic information  table.  It consists of two  logic cards 
(FRUs)  and  an  interconnecting  cable, also a FRU.  The 
denominator of the  fraction shown with  each  item is the 
failure  rate expressed  in some  consistent units. The  numera- 
tor is obtained  as  the  product of the  failure  rate  times  the 
error-detection  probability for the  item,  determined  accord- 
ing to  the  ground  rules previously stated. 

The  checker  information  table is not used  since functions 
checked by checker C, have different  detection  probabilities. 
The compressed fault-probability vector D, the compressed 
fault-conditional-probability  matrix P, and  the compressed 
joint-probability  matrix Q are shown  in  Fig. 9. Dividing Q by 
[ 1 - Pr (S,,,,) ] gives the  “normalized”  joint-probability 
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matrix Q of  Fig. 9, where the set of di giving FRUs per 
syndrome  is  also indicated. The error-detection probability 
equals [ 1 - Pr (Snn,,) J = 1 - 16/ 1 16 - 0.86. Using the 
normalized Q the DIP and SIP isolation probabilities are 
computed as 

Pr (isolate to 1 FRU, DIP) = Pr (C, or Dl) = 0.45 + 0.09 = 

0.54; 

Pr (isolate to 1 FRU, SIP) = the summation of the maxi- 
mum entry in each column of the normalized Q = 0.45 + 
0.40 + 0.09 = 0.94. 

Other figures-of-merit are the average number of FRUs 
using DIP strategy, NFRU(D1P) = l(0.45) + 3(0.46) + 
l(0.09) = 1.92; the average number of FRUs using SIP 
strategy, NFRU(S1P) = l(0.45) + [ l(0.4) + 2(0.05) + 
3(0.01)] + l(0.09) = 1.07; the average number of service 
calls using DIP strategy, NSC(D1P) = 1; and the average 
number of service calls using SIP strategy, NSC(S1P) = 

NFRU(S1P) = 1.07. 

ED/FI experience with IBM products 
The  ED/FI model and evaluation  procedures described in 
this paper  were  developed to meet a practical and real need, 
and they have  been  used throughout IBM since 1975 for 
assessing error-detection and fault-isolation coverages of 
numerous product designs. The definitions and ground rules 
have  been extended beyond the logic and electronic areas 
into the electromechanical products such as printers and disk 
drives. The initial experience in  developing the model came 
about in the early 3081 processor  development,  where the 
system  designers, diagnostic developers, and field  engineers 
agreed that the change in technology required a diagnostic 
strategy to handle intermittent errors. Therefore, there was a 
strong need to assess the error-detection and fault-isolation 
coverage. There were at  that time, however,  no  definitions, 
ground rules, or procedures for projecting such coverage 
within IBM or reported in the literature [ 191. 

Experience has shown the value of using the ED/FI 
evaluation procedure repetitively as the design  progresses. 
Early evaluation of 3081 system error-detection coverage 
yielded about 60% for the CPU. The current level  of better 
than 90% was achieved by dedicated concentration to put 
checking  on the initially weak areas as shown  by the model. 

Because  designers  became educated and sensitive to the 
need  for  good error-detection coverage, a number of  innova- 
tions in error checking were  made. These were primarily in 
the control areas of the machine, and included  decoder 
checks,  illegal pattern checking,  encoder  checks, and the 
application of parity to address and control fields as stan- 
dard practice. Packaging arrangements to enhance parity- 
error detection, as pointed out in Table 1 ,  were  also  exten- 
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FRU , 
P = [si] - FRU, 

FRU, 

c, c, c3 

FRU , 
D = FRU, 

FRU, 

[::::I 58/116 

S""ll 

J 

c, c, c, S"",, 

FRU, [45/116 5/116 0 1 7 / 1 1 6  1 I I 

c, c,  c, 

number of 
FRUs/syndrome 1 3 1  

Figure 9 Vector P and matrices D, Q, and Q normalized to 100 
for the example. 

sively  used. Fault-isolation coverage  was enhanced by better 
placement of checkers and by the identification of machine- 
state information to produce better syndromes. Some sample 
output reports are shown  in  Figs. 10 and 1 1  for a representa- 
tive large system. Reports are typically  produced on a 
per-FRU basis for designer feedback. 

Independent verification of the projections, by hardware 
bugging  using a limited sample size on the 3081, shows  good 
correlation to the coverage  values  projected by the model. 
This model and the ED/FI process  have  been extended and 
used  in IBM to project  isolation  coverage  for error-re- 
creation diagnostic programs. The circuit and fault cover- 
ages of individual tests are determined by test generation 
and simulation programs. Each test is treated as  an addi- 
tional checker added to  the hardware checker lists and the 
same ED/FI analysis procedure follows to compute an 
ED/FI percentage for the solid-failure case using  diagnos- 
tics. This allows a complete evaluation of the service  plan for 75 
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I 

/o 1 2 3 4 5 

Number of implicated FRUs per failure 

Figure 10 Representative  sample  output showing  isolation distri- 
bution. 

ED BASE 
loo I 

,UNDETECTED 
ERRORS 

MOST LIKELY IS NOT 
NAME: % FI BASIS 

SDCl1 
SDCIZ 
SDCl3 ,, 0 
SOP13 
SDPl4 ’0 
SDPl5 >O 

CPU-A 

\ 
\ 
\ 
\ 

\, MOST LIKELY IS: CPU-A 
NAME: Y O  FI BASIS 

\ 
\ 

SDP34 
\ SOP7 

Figure 11 Sample FRU output report showing  syndrome  contri- 
bution  to  isolation.  The  various  abbreviations  listed are simply 
identified  syndrome  names for the particular system  tested. 

a system in both  the  operational  environment  (error  checkers 
and log analysis  only)  and  the  maintenance  environment 
(where  error re-creation may  be  used). 

Summary 
This  paper describes a model  for  projecting error-detection 
and fault-isolation  coverages. Implicit  in  interpreting  the 
results of the model  is a maintenance  strategy of fault 76 
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isolation  based on dynamically  detected  errors.  The model 
has been  applied  in many  practical design  cases, and  evalua- 
tion results have  suggested  weak areas in  both error- 
detection  and fault-isolation  coverage,  with improvements 
having been made accordingly. Designers  are given specific 
ground  rules  for  generating  inputs  to  the model, and  are 
provided error-detection coverage numbers  and  computa- 
tional guidelines for most error  checkers in use. 

The following lists some of the  ED/FI evaluation  bene- 
fits: 

1 .  Product designers are  aware of the need for  error  detec- 
tion and  FRU isolation early in the design  phases. The 
evaluation  procedure gives early  feedback  regarding 
areas needing  improvement. (It is noteworthy  that inven- 
tions are often made in  response to  such needs.) Improve- 
ments in error detection made in this  iterative  fashion, 
especially in LSI technologies,  have had  minimum 
impact on product cost, performance,  and schedule. 

2. By placing primary  emphasis on error  checkers which can 
detect  errors  from  all  causes, including intermittent 
errors, problems  associated  with  a maintenance  strategy 
of reproducing  errors with diagnostic  programs or proce- 
dures  are  eliminated.  This benefit results in greatly 
reduced mean-time-to-repair,  as well as reduced parts 
costs. 

3. Data  integrity, which depends first and foremost on the 
detection of errors,  can  be designed directly  into  the 
hardware.  Using  the model for  error-detection coverage, 
quality  can be projected in advance. 
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