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IBM 3081 Processor  Unit:  Design  Considerations  and 
Design  Process 

Significantly new challenges were presented for the design of the 3081 Processor Unit since it was the first IBM large system 
implemented in LSI technology. Solutions had to be found  for a new set of problems in order to achieve the required product 
objectives while maintaining an acceptable development cost and schedule. In this paper, the design aspects and the 
characteristics of the 3081 Processor Unit are described and the tradeoffs that were made due to the implementation of LSI 
are presented.  A design strategy was chosen that included tradeoffs covering the areas of machine organization, performance 
level, implementation costs,  testing and servicing aids, and development schedules. An innovative verification effort was 
introduced into the design process,  capitalizing on a hardware flowcharting discipline and rigorous design rules. On the basis 
of this development experience, some thoughts concerning VLSI implementations are explored. 

Introduction 
The 3081, a 303X-compatible product, represents the intro- 
duction of the use of LSI technology by IBM in the large- 
computer-systems area [ I]. The 308 1 Processor Unit is 
entirely implemented in LSI technology, with high-density 
packaging utilized on the chip, module, and board levels. 
The unit consists of a number of components for CPU, 
storage, and 1 / 0  control and has a dyadic structure contain- 
ing  two central processors. 

This paper discusses the 3081  Processor Unit design and 
its development  methodology,  focusing on those areas which 
were affected or  influenced by the use of LSI technology. 
The packaging characteristics and design considerations are 
described, indicating the objectives and techniques that were 
used to take maximum advantage of the characteristics of 
the  LSI technology at the chip, module, and board levels. 
The organization and structure of the processor unit reflect a 
design in which the performance objectives  were achieved by 
a combination of the dyadic configuration and  the aggressive 
26-11s cycle time. To support the use of the much  less 
changeable LSI technology, a design  verification  plan ensur- 
ing the detection of a very  high percentage of the  latent 
design errors, prior to the  actual hardware testing phase, was 
put into place. The intersection and impact of this verifica- 
tion strategy with the overall development cycle are 

discussed. The experiences gained as well as the new devel- 
opment tools that were established during the 308 1 program 
have  convinced  us that  the foundation exists for further 
exploitation of LSI and VLSI as well. 

0 L S I  Characteristics 
The major attributes of LSI which affected the design 
philosophy for the 308 1 Processor Unit were the following: 

1. Long turn-around time: Because of the much higher level 
of integration, the turn-around time for changes to the 
hardware for the correction of design errors or for design 
modifications  was expected to be in the order of  weeks, 
whereas non-LSI designs typically experienced turn- 
around times measured in hours. Therefore, significantly 
more design errors had to be removed prior to  the 
building of hardware, and an improved ability was 
needed to change, or to work around, discovered prob- 
lems. 

2. Power dissipation: Dense packaging could be obtained at 
the chip, module, and board levels; but power distribu- 
tion, signal coupling, and cooling considerations placed 
restrictions on the type of circuits that could be used. 
Because of their  speed/power  characteristics, T2L 
circuits were  chosen for these reasons. The number of 
array chips per thermal conduction module (TCM) [2], 
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their circuit density, and their performance levels  were 
also limited by these considerations. Thus, system 
performance had to be  achieved  by a unique balance of 
hardware and microcode  design concepts. 

3. Debugging capability: The lack of traditional scoping 
capability could  severely impact the ability to trouble- 
shoot and to isolate problems during the hardware testing 
phase. Our experience has shown that this limitation can 
largely be circumvented by the scan-in, scan-out capabil- 
ity that is inherently available in  Level-Sensitive Scan 
Design (LSSD) [3]. 

Design strategy 
The design approach taken in the  structure of the 3081 
Processor Unit to minimize the limitations of LSI while still 
obtaining relatively high performance, within the limits of 
the package and technology, was essentially the following: 

1. Simple organization: Provision of a relatively simple 
straightforward design,  with limited overlapping or pipe- 
lining of instructions. This approach allows maximum use 
of microcoded controls with minimum hardware assists. 
A writable control store provides a broader capability to 
make temporary fixes for hardware logic errors. 

2. Hardware partition: Organization of the processor unit to 
take maximum advantage of the circuits and package in 
order to minimize the machine cycle time. To  a much 
larger degree than previously,  with LSI technology this 
means minimizing both chip and module crossings (inter- 
connections) in  logic paths, rather  than designing to 
minimize the number of “logic”  levels. Although logic 
levels still remain important, they are increasingly 
becoming the parameter that is traded off against “chip” 
and higher-level packaging “crossings.” 

3. System configuration: Achievement of the system 
performance objectives  with an integrated dyadic config- 
uration composed of two central processors, each having 
access to central storage and channels via a single system 
controller. 

e Design rules 
The techniques utilized for level-sensitive  design  have  been 
used for many years in several large-system designs, largely 
in the CPU and memory  bus areas. The discipline of a 
level-sensitive  design  for a common  clocking system allows 
the design of the various parts of a complex machine to a 
tight cycle time relative to the technology and the integra- 
tion of these various parts with minimal interface timing 
problems. 

To the writers’ knowledge, this technique was first utilized 
in the 7950 system [4] built in Poughkeepsie and shipped in 
January 1961. In this system, as indicated in Fig. 1, logic is 
fed to latches and triggers [ 5 ] ,  the latter being the direct 
source of stable signals for the logic. Latches and triggers 
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Figure 1 Level-sensitive design in the IBM 7950. 

utilize separate clocking lines. The logic is level-sensitive to 
the degree that it adheres to the following  rules: 

1. The steady-state output of logic  is  not dependent on the 
rise time and fall time of individual circuits, or on the 
sequence of signals that  are inputs to it. 

2. The clock or cycle time is no longer than any individual 
logic path delay, including external inputs; i.e., all 
outputs have achieved their final state prior to the latch 
clock transition to the “hold” state. (A minimum logic 
path delay is also imposed,  however, to allow latch and 
trigger clock overlap that further reduces the machine 
cycle time.) 

3. The latches and triggers cannot control their own clocks 
in the same cycle during which they are being set by these 
clocks. 

Level-sensitive scan design, as described in [3], is a design 
technique which  was put into place to permit a high  level of 
logic testing during the manufacturing process. This tech- 
nique was further extended to permit the complete scanning 
capability of all hardware facilities in the machine by the 
processor controller. Thus, the processor controller has the 
capability of examining any or all of the facilities within the 
machine as well as altering their contents. This is the method 
utilized for system reset and initialization, for the logging 
out of all facilities on the occurrence of hardware failures, 
and for the loading of hardware test patterns. This also 
provided a “scoping equivalent” capability that was  success- 
fully used during the hardware test phase. A double-latch 
version [6] of a shijt-register latch (SRL) was  developed to 
implement the  latch and trigger for system logic and also to 
serve as one of a pair of latches in a scannable shift register 
configuration. 

As  used  in the 3081 Processor Unit, the addition of a scan 
capability (in and out) and the rigorous clocking disciplines 
needed  for LSI chip testing are extremely useful for a 
disciplined system design as well as for machine debugging 
and maintenance. 13 
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Figure 2 Functional elements of a central  processor. 

9 Packaging characteristics 
The packaging characteristics of the 3081 Processor Unit 
resulted from several iterations between machine designers 
and packaging designers, including the considerations of 
power distribution and cooling capabilities. The objectives of 
the machine designers were to package the major compo- 
nents of the machine within one board, and  the major 
elements of those conponents within a single TCM, in order 
to minimize the number of interconnections between  pack- 
aging levels and to permit the shortest machine cycle time. 

In conjunction with the 704-logic-circuit chip, two array 
chips were designed having compatible signal levels  with 
logic chips and having placement capabilities on the same 
TCM as logic chips. Array chips having a capacity of 256 x 
9 bits with a 16-ns access time are primarily used  for large 
data buffers (cache and control store).  Array chips with 
32 x 18 bits and a 7-11s access time are primarily used for 
working registers and for  local storage. 

A general problem in the implementation of the 3081 
Processor Unit was caused by the nonuniform gain in LSI 
associated with  logic-chip and array-chip densities. Com- 
pared with the IBM 3033 processor, at  the chip level the 
average logic-chip density increased by a  factor of 40:l 
compared with an average array chip increase in the range 
of 2.5:l. Thus, a disproportionate amount of module area 
had to be allocated for array functions. A special TCM with 
a 20% increase in chip sites was designed to help compensate 
for this problem. Forty-eight of the 118 chip sites have 
restrictive engineering-change- (EC) capabilities and thus 
are generally used only for array chips. A 32K-byte cache 
capacity per central processor (CP) and  a paging mecha- 
nism  for CP and channel microcode  (very similar to CP 
cache paging) were a result of these array characteristics. 

The major components of the 3081 Processor Unit are 
14 illustrated in [ l ,  Fig. 21. The design objective of having 

major components packaged within individual boards was 
achieved  with  one central processor  being packaged on a 
nine-TCM board, and with the system controller (SC) and 
the external data controller (EXDC) each packaged within 
a six-TCM board. 

Design considerations 
As stated earlier, the design strategy for achieving the 
objectives of the 3081 Processor Unit were a short machine 
cycle time, a limited overlap structure with liberal use  of 
microcode, and an integrated dual-processor configuration. 
Each of these items is now explored, discussing unique 
characteristics and tradeoffs as appropriate. 

Machine cycle time 
Major emphasis was  placed on achieving the shortest possi- 
ble  cycle time while maintaining the same amount of func- 
tion or work  per cycle as other large processors (without 
overlap functions). Analysis continued to support our  belief 
that the proper balance between machine cycle time and 
function per  cycle had been  achieved (i.e., arithmetic opera- 
tions, cache access, control-store access). A cycle time of  26 
ns was  achieved  with an average gate delay of 2.5 ns  per 
logic  level. 

The design and implementation of the CP was the limiting 
factor in establishing the machine cycle time. The CP was 
structured into five elements based on functional partition- 
ing, packaging, and the short cycle time objectives. These 
are discussed  in greater detail in a subsequent section. It is 
cogent to note that functions involving array chips tended to 
contain the cycle-limiting paths. 

Limited overlap 
Design errors are more prevalent in complex control func- 
tions as compared with  more regular data-path functions; 
our data indicate this to be  in the range of 5 to 1.  On the 
basis of our lack of experience with the new verification 
methods and with the hardware testing technique, we opted 
to limit the control complexity of the machine and to provide 
more  flexibility  with the use  of microcode controls. This 
direction was  chosen to minimize the risk of a lengthy testing 
process. Our experience has been  very  positive in both the 
verification and testing efforts; this aspect is discussed  in 
some detail in the paper by Monachino [7]. 

Microcode 
Two types of microcode  were selected for the control of the 
CP and EXDC: 

Horizontal microcode is characterized by a wide  word 
which typically controls one machine cycle. The bits within a 
word directly control the data path (i.e., the  gate into a 
register, etc.). It is utilized when  flexibility and speed of 
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execution are paramount. A rich data path is  needed to take 
full advantage of the efficiencies  of horizontal microcode. It 
is  used  in the CP and in the data server element (DSE) of 
the EXDC. 

Vertical microcode is the type of microcode utilized in the 
channel processing element (CPE) of the  EXDC. It is 
characterized by a less  complex format and is essentially a 
set of basic (Load,  Store, Branch, Shift, Add, etc.) 
assembly-language-type instructions that  are tailored to the 
data path and functions of the CPE. The use of vertical 
microcode facilitates ease of writing and simulation. With 
the relatively simple data path of the  CPE, the vertical 
microcode approaches the efficiency  of horizontal micro- 
code. 

As  previously mentioned, due to  the density of the avail- 
able array chips in conjunction with the size of the physical 
package, only a portion of the microcode  could be contained 
within the CP and the EXDC. However, analysis indicated 
that, on typical job streams, a paging algorithm similar to 
that employed by general cache structures would  be  very 
effective. Less than 5% internal performance degradation 
results from a paging of CP microcode, Also, a minimal 
aggravation to the overrun characteristics of the EXDC has 
been  observed. 

e Dyadic organization 
A major factor in the performance level of the 3081  Proces- 
sor Unit is the symmetrical dyadic-processor configuration. 
LSI created the opportunity to package two identical CPs 
together with the SC and EXDC within one electronics 
frame. The configuration is symmetrical in that each CP has 
the same priority and operational characteristics in relation 
to the  central  storage and channels. 

Organization and structure 

e Central processor 
The CP is  composed of five functional elements. Figure 2 
shows the functional elements of the  central processor and 
Fig. 3 illustrates how they are packaged within the nine- 
TCM board. Three  separate execution elements (IE, VFE, 
EE) were  designed, rather than one  common element, due to 
the size constraint of the  TCM and to achieve the shortest 
possible  cycle time. As  is evident, only the  EE  and  VFE are 
totally contained within a single TCM. (This partitioning 
will  be highlighted as the elements are subsequently 
described.) 

The instruction element (IE) controls the instruction 
sequencing of the  CP.  It initiates requests for instructions 
and attempts to maintain a buffer of four doublewords of 
instructions locally. It performs the instruction-decode and 
the operand-address-generation functions and initiates all 

Figure 3 Central  processor  board  layout.  (Note:  shaded TCM 
location is unused.) 

requests for operands. It also executes all arithmetic  and 
logical operations, exclusive of those done in the VFE and 
the  EE described subsequently. 

Other than instruction fetch look ahead, which  is 
performed in parallel with instruction execution, the IE is 
essentially sequential and does  not attempt to overlap the 
execution of the ( N  + 1)st instruction with the  Nth. Instruc- 
tion execution is controlled by horizontal microcode. 

The  IE could  not  be packaged within a single TCM, and it 
was the most  difficult element within the CP to partition 
across multiple TCMs, within the 1 / 0  limitations of the 
TCM and without impacting the cycle time. The instruction 
buffers are located on the TCM with the VFE, where they 
share  a port from the  cache of the buffer control element. 

The variable-jield element (VFE) executes all variable- 
field-length storage-to-storage instructions. In this class of 
instructions, the IE and the  VFE operate as  a team, with the 
IE performing operand fetches and stores in parallel with the 
VFE execution  wherever  possible. The VFE is largely 
controlled by horizontal microcode. 

The execution element (EE) executes fixed-point multiply 
and divide instructions, convert instructions, and all floating- 
point instructions. The controls for the EE were committed 
to hardware  due to potential partitioning problems with both 
the EE and control store element designs. This was an 
acceptable risk since the  EE functions were  well understood 
and were not as affected by architecture changes. 

The bufer control element (BCE) contains the 32K-byte 
cache and has a store-in-cache algorithm, a 128-byte line 
size, and a four-way set-associative organization with a 
least-recently-used replacement algorithm [8]. The cache 
has a two-cycle  access  with the virtual-to-real address trans- 
lation accomplished  in parallel. The cache itself  is packaged 
on  two identical 118-chip-position TCMs, each of  which 15 
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contains 72 array chips. A vertical partition (one 32-bit word 
on each TCM) was adopted to achieve the machine-cycle- 
time objective. 

The store-in-cache algorithm was selected because it 
produced a higher internal performance level than  a store- 
through algorithm, when the characteristics of the system 
were  considered  in conjunction with the  central  storage 
access  time. Modeling results indicated that a store-in-cache 
algorithm yields superior performance as soon as  the  central 
storage access time exceeds the range of ten machine cycles. 
The 128-byte line size was selected since it delivered the 
optimal performance when analyzed with the central stor- 
age, system controller, and dual-processor characteristics. 
Store-in-cache also provided a foundation for a checkpoint- 
retry algorithm for the CP, which  will  be  described subse- 
quently. 

The control store element (CSE) controls the sequencing 
of the horizontal microcode of the CP. The CP microword is 
108 bits  wide and has an addressing capability of 32K 
microwords.  Two  microword formats are supported, one for 
each of the IE and the VFE. A 1K-microword writable static 
array contains the most-frequently-used microwords. A 
second  1K-microword array contains 32  lines of 32 micro- 
words each. It is fully associative with a least-recently-used 
replacement algorithm, and lines are dynamically loaded on 
demand from a “hardware system area” located in a portion 
of central storage. Like the cache, the control store  arrays 
are packaged on two unique TCMs with a vertical partition- 
ing;  however, a significant number of controls had to be 
replicated to achieve the cycle-time objectives. 

A unique feature of the CP is its hardware checkpoint- 
retry mechanism. The basic concept is to establish a check- 
point at some instruction N .  The contents of the architected 
registers (PSW, GRs, etc.) are saved  in backup registers. As 
instruction execution proceeds, any store into the cache will 
cause the old value of a changed doubleword to be saved in a 
push-down array. In the event of an error condition, the 
architected registers will  be restored to their original value. 
The contents of the cache will also be returned to its original 
values by storing back the contents of the push-down array 
in the reverse order. Regular checkpoints are established 
during normal instruction execution under specific machine 
conditions with a negligible effect on CP performance. 

System controller (SC) 
The major function of the SC is to provide the paths and 
controls for the communications between the major func- 
tional units and with central storage. A unique structure was 
adopted due to  the packaging limitation (l /O pins), the 
store-in-cache algorithm of the CPs, and the support of the 

16 dual-processor configuration with minimum performance 
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degradation. The 1 / 0  needs of central storage, the SC, and 
the EXDC provided the requirement for the six-TCM board 
with its additional 1 / 0  capability. 

The implementation of the  array portion of central stor- 
age is on a card-on-board package to achieve the density and 
cost requirements. Each board contains 4M bytes of central 
storage, which constitutes a basic storage module (BSM). 
The BSM is configured so that a 128-byte line can be 
accessed (read or write operation) with a single array opera- 
tion. 

The conventional doubleword interleaving of current large 
processors  is  effectively  accomplished within the 4M-byte 
BSM. Of significant importance is that the bandwidth 
requirement for independent doubleword operations with 
central storage has been significantly reduced. This is the 
result of the store-in-cache algorithm of the CPs in conjunc- 
tion  with a 128-byte line, and the 256-byte (per channel) 
buffering capability for data within the EXDC. Thus, the 
SC was structured for a line-transfer characteristic. The 
basic data-bus width of all units connecting to the SC is 
eight bytes (bidirectional) with a data transfer rate of eight 
bytes per machine cycle. 

To achieve a balanced utilization, a 2K-byte address 
interleave structure across the 4M-byte BSMs was adopted. 
This increment was  chosen to minimize the complexity of 
memory reconfiguration and was  sufficient to achieve a 
balanced load. 

The store-in-cache algorithm has created a  data integrity 
problem  which  is managed by the SC. Due to changed data 
residing in the caches of the CPs, the content of central 
storage is  not  always  valid. The SC maintains a duplicate 
copy of each CP cache directory and determines if the 
central storage request will return valid data. In the event of 
a conflict, the SC initiates the casting out of the specific line 
of data from the cache to central storage to then be refetched 
by the requesting unit. 

Each line of data, as it resides in a CP cache, is tagged 
with a read-only (RO) or exclusive (EX) status. A line must 
have EX status before a store operation can be completed 
within that line. To control simultaneous updates to a 
specific line by the CP or channels, the SC permits only one 
copy  of a line to exist  with EX status. Conversely, multiple 
copies of a line having RO status can exist simultaneously 
for  use as long as no store activity occurs. If a store must be 
performed into a line with RO status,  a change is  effected  by 
the SC to EX status, with the purging of the copy  if 
necessary. 

An algorithm predicting the usage (fetch or store) of a 
line of data was adopted to minimize the performance 
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overhead of status changes and purging. On the basis of the 
operation being performed by the  CP  that required the new 
line to be accessed, an RO or EX status is assigned. For 
example, a line that is required for instructions has RO 
status since reentrant code prevails in today’s programs. A 
line that is required for operands has EX  status if a store 
operation is  being performed or if the other CP has a copy 
that has been changed (copy will be cast out in the process). 

The SC also performs an ECC (error checking and 
correction)-to-parity conversion on data to and from central 
storage, contains the storage protect keys and time-of-day 
clock, and manages an eight-position queue containing stor- 
age requests. 

External data controller (EXDC) 
The  EXDC performs the channel functions for the 3081 
Processor Unit. It provides up to 24 channels with a data 
rate of up to three megabytes per channel. Four of these 24 
channels can be byte-multiplexer channels with aggregate 
data  rates of  up to 500 kilobytes  per  second  with a burst size 
of  32 bytes. 

As  previously mentioned, the channel area was a prime 
candidate for the use of microcode controls. Channel designs 
are difficult to completely verify and test because of the wide 
variations  associated with 1 / 0  devices and channel 
programs. Historic data also bear out the  late discovery of 
problems, as different 1/0 loads and configurations are 
encountered. 

The  EXDC consists of  two types of microcode-controlled 
elements. The channel processor element (CPE) is a special 
processor  which handles the control of 1 / 0  instructions and 
interrupts. It supports a queued interface with the  central 
processor  for START 1/0 FAST RELEASE operations and 
for 1 / 0  interrupts, and controls the handling of command/ 
data chaining and all EXDC recovery operations. The  CPE 
is driven by vertical microcode  having a two-byte microword 
and an addressing capability of  32K microwords. A 2K- 
microword writable static array contains the most frequently 
used  microwords. A second  256-microword array contains 4 
blocks  of 64 microwords each. The array is dynamically 
loaded on demand from a  “hardware system area” located in 
a portion of central storage. The processor has a two-byte 
data-path  structure  and is packaged on one TCM. 

The second element is the data server element (DSE), 
which handles the control sequencing and data buffering for 
eight channels. It is  packaged on a single TCM, and a 
maximum of three DSEs can be attached to the CPE.  The 
DSE contains 256 bytes of data buffering per channel. It 
supports two-byte transfers with the interface adapters and 
64-byte data transfers with central storage. The DSE is 
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controlled by horizontal microcode  having a 54-bit micro- 
word  in a 750-microword array. The eight channels are 
controlled by DSE microcode that is time-shared on an equal 
round-robin basis. 

Outboard of the DSE, packaged in a card-on-board tech- 
nology, each channel has an interface adapter element which 
drives the 1/0 interface and contains eight bytes of data 
buffering. 

System clocking 
A description of the Processor Unit and the effect of LSI 
would  not be complete without a discussion of the clocking 
system. After proceeding  with a design strategy using a 
“tunable” clock distribution system, the direction was 
changed to a very simple “untuned” system, for reasons 
which shall now be described. 

The initial direction was a sophisticated distribution 
network  with a tuning capability achieved by the use of 
programmable delay chips. It had the quality of providing 
some clock change capability and was judged to have the 
least clock  skew delay delta to the machine cycle time. Sixty 
chips per board, a reference generator with an associated 
comparison network, and several thousand lines of proces- 
sor-controller microcode  were required to support the 
system. The final untuned system required just six chips per 
board and completely eliminated the need  for a tuning 
process during manufacturing build and test, as well as in 
the field  when TCMs  are replaced. 

Delay lines are used to compensate for different physical 
distances between the oscillator and the final circuits that 
use the various clock  pulses. These delay lines are identical 
for every machine. The delay variations in the distribution 
network caused by the variations of the hardware from 
machine to machine are not compensated for by the use  of 
unique delay values for each machine. That variation has 
been statistically combined  with the variation of the logic 
path delays as  part of the overall calculations of the machine 
cycle time. The distribution networks are also included in the 
timing-analysis verification to be described subsequently. It 
is  of interest to note that less than 500  picoseconds  were 
added to  the machine cycle time over the  “tuned” system. 
The untuned system has proven to be an excellent design, 
and in the writers’ judgment the cycle time penalty is a small 
price to pay to avoid the problems  which  would  be encoun- 
tered in manufacturing and field tuning. 

Testing aids 
The long turn-around time of  logic changes with LSI and the 
lack of scoping abilities initiated the inclusion  within the 
logic of techniques that would  allow temporary fixes, and 





ware  implementation difficult is the multi-way branch.  The 
process was significantly enhanced  with  the development of 
a  higher-level programming  language  that would allow for a 
more  direct  translation of hardware flowcharts [ 1 11. 

This high-level software model, called cycle simulation, is 
now discussed,  together  with  the  logic-equivalence 
programs. 

a Cycle simulation 
The  hardware flowchart model in conjunction  with a 
complete list of hardware facilities  (shift-register latches 
and  arrays) completely  describes the  machine.  The sequenc- 
ing of the  hardware flowchart  model on a  cycle-by-cycle 
basis and  the  resulting  changes in the  hardware facilities 
make  up  the cycle simulator [ 121. 

As compared to a unit delay  simulator, the cycle  simula- 
tor is much more storage-  and time-efficient. Thus, whole 
areas of the  central processor (instruction  unit, execution 
unit,  etc.)  can  be  run by simulating, on a  cycle-by-cycle 
basis, the  actual logic of the  machine.  This model is driven 
by high-level inputs.  (The  operation code,  for example, could 
be the  input.)  Entire units (central processor,  system 
controller, etc.) can  be modeled for a specific function. 

Logic equivalence 
A method of comparing  the  hardware flowchart logic to  the 
actual  hardware logic, as  implemented in AND and OR 
logic blocks, was  accomplished in two ways: Boolean 
comparison  and  hybrid  simulation.  These  are now 
described. 

Boolean comparison 1131 This is  a  completely automated 
method  comprised of a  series of computer  programs  to 
compare  primary  outputs, which are  generally  shift-register 
latches (SRLs), in both flowcharts and  hardware, for  logical 
equivalence of all  primary  inputs  (also  generally  SRLs). 

Hybrid simulation Prior  to  the development of the 
Boolean comparison process, a method was  developed to 
automatically  accumulate  the  patterns of inputs  and  outputs 
over  a  multi-cycle time  interval  for a selected set of facilities 
from  the flowchart simulator.  Thus,  the  capability  to  auto- 
matically  generate multiple low-level input  and  output 
signals  from a global  simulator using  a few high-level inputs 
becomes  available. These  signals  then become the  input 
stimuli  and  the  predicted  output  patterns for the  unit  delay 
simulator.  The basic shortcoming associated with  hybrid 
simulation is that, unless  a very large  number of flowchart 
simulator  test  cases  are provided as  input  to  the  hybrid 
simulation,  many  branches of the logic will not be  tested. For 
this  reason, Boolean comparison became  the  predominantly 
used technique  because of its comprehensiveness. 
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Figure 4 Illustration of the use of hardware flowcharts for the 
specification of logic: (a)  hardware flowcharts, (b) logic implemen- 
tation of the  hardware flowcharts of (a).  (Note: L = latch block; 
T = trigger block L-clocks and T-clocks assumed.) 

Timing analysis 
Verification of the  machine cycle time objectives was 
achieved  with the development of a timing analysis tool 
[ 141. This tool, like Boolean comparison, is a series of 
computer  programs which accurately  calculate  the individ- 
ual  path  delays for all  SRL-to-SRL  paths within the 
machine.  This is  accomplished by evaluating  all  paths 
between interconnected  SRLs  characterizing  all physical 
parameters.  The proper delay  characteristics  are  then 
applied, using the  appropriate  statistical methods. The  net 
result is the identification of both  long and  short  paths which 
violate the  machine cycle time  requirements.  Timing  analy- 
sis has proven to  be essential to a  design  effort aimed a t  a 
high-performance  machine by minimizing  the  machine cycle 
time  and by obtaining  the best potential  times  from  the 
technology. 

Historically,  the cycle time  to  be  obtained  has been 
achieved by designing all logic paths  to  some  rules of thumb 
(i.e., ten logic levels and two card crossings; or  eight logic 
levels, two card crossings, and  one  board crossing; etc.)  that 
were fairly conservative and could be easily applied by all 
designers to  all  their logic paths. If some  paths exceeded the 
rules, they would be  timed  with a more  detailed  description 19 
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of the physical characteristics of the  path  (number of loads, 
number of pins, precise wire  lengths,  etc.) using a computer 
program  that would accurately  calculate  delays using very 
precise  technology  rules. The  use of this  method  results in 
either most paths being  significantly under  the cycle time  to 
be achieved, or the design rules-of-thumb  being reasonably 
accurate  compared  to  the precise calculated value. 

Due  to  the complexity of the technology  rules,  a  reason- 
ably simple rule-of-thumb could  not be  obtained for the 
technology  used in the 3081 Processor Unit.  The  machine 
cycle time achieved  was practical only because of Timing 
Analysis. Efforts  to  locate long paths  during  the  hardware 
test  phase proved extremely time-consuming.  If an LSI 
machine  did  not meet the cycle time in the  large  majority of 
paths when sent  into  hardware  test,  it would be  impractical 
to locate  and  correct  the  many  timing  errors  during  test. 
This is a result of the limited  scoping ability with LSI and 
the long turn-around  time for changes. 

Design cycle 
The design  cycle of the 3081 Processor Unit was markedly 
different from those of predecessor  development programs. 
As previously discussed,  a  comprehensive  verification  plan 
was undertaken  to  reduce significantly the  number of hard- 
ware design flaws prior  to  hardware being built.  The follow- 
ing  discussion explains how the verification  effort  was inte- 
grated  into  the design  schedule. 

Figure 5 illustrates  the design  schedule. Hardware flow- 
charting  and  the design of individual  chip  types  dominate 20 
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the  front  end of the schedule. Chips  containing  data-path 
functions  are  the first to  be designed. It is  not uncommon  for 
several  design iterations using different  partitions  to  take 
place before  arriving a t   an  optimal design. Hardware flow- 
charts  are  the  detailed specifications for  the  control  func- 
tions, and  these  precede  the  implementation of the asso- 
ciated logic chips. Flowcharts  and  chip designs are  entered 
into  the  data bases of the engineering design  system (EDS) 
[ 151, triggering  the  use of a sophisticated design automation 
process. 

Replication of multi-usage chips, with  interconnections 
and  placement of all  chips on the higher-level packages, 
completes the  initial  implementation phase.  A  first pass  was 
made  through chip,  module, and  board physical  designs to 
ensure a satisfactory physical  design and  to provide the 
actual  parameters  for  Timing  Analysis verification. For the 
start of Timing Analysis, we chose to wait for the completion 
of initial physical  design due  to  the physical variations  that 
were introduced  during  that process. 

Cycle  simulation verification starts  as soon as sufficient 
flowcharts are  complete  to  represent a reasonable  functional 
element. Individual functional  elements  are  simulated on a 
stand-alone basis, using low-level test cases,  prior to being 
combined for a complete  component configuration (central 
processor,  system  controller, etc.). 

Boolean comparison begins  with the completion of the 
interconnection of the  detailed logic. Equivalent  partitions 
are chosen  between the  hardware flowcharts and  the 
detailed logic equating  the  primary  inputs  and  outputs.  This 
forms  the body of logic to  be verified using the Boolean 
comparison process. 

After a sufficient verification level has been  achieved with 
resulting hardware  changes  applied, a  final  physical  design 
is completed  and  then released to  manufacturing for the 
building of hardware.  Additional verification  work will most 
likely continue  during  the  procurement of the first hardware, 
with additional  changes  to  be  applied  as soon as  that  hard- 
ware is received. The objective  is to  complete  enough of the 
verification  work prior  to  the  initial building of the  machine 
to  ensure  that  the bugs  in the main-line logic have been 
removed and  that  the  remaining  defects  are within  a 
manageable limit. 

Potential problems and strategies in future VLSl 
technologies 
The 308 I Processor Unit  had  approximately 400 chip  types 
that  averaged  around 500 circuits per  chip. The  problems 
that  were  encountered  and solved in the design and  debug- 
ging of the 3081 machine  using LSI are  multiplied,  largely 
in degree, with VLSI. Thus  the scoping ability  obtained  with 
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chips that average 5000 circuits is substantially less, the 
possibility of utilizing “unit logic” for temporary fixes  of 
hardware is substantially less, etc. For these reasons it is 
believed that the techniques developed  in the 3081 machine 
to deal with these “debugging problems”  will be extended 
and improved. The following developments are projected: 

1. Faster, more  efficient simulation tools, capable of  effi- 
ciently handling larger sections of the system as an entity, 
will  evolve. This will permit additional design errors to be 
fixed prior to the hardware testing phase. 

2. The ability to manufacture, test, and install a new chip in 
days rather  than weeks  will alleviate many of the 
projected “delays” during the debugging time. 

3. The concept of level-sensitive  design and the ability to 
scan in and out of shift-register latches will be continued. 

4. The use of “history arrays” will probably be  refined and 
expanded. 

5. The design approach which maximizes the use of control 
store and still maintains high performance, through cycle 
time and multiprocessing, will probably be  followed 
unless the evolvement of the preceding points 1-4 over- 
comes, in large degree, the problems of engineering 
debugging and field changes. 

An initially obvious  method of bypassing many of the 
problems of VLSI would  be to build a machine in change- 
able technology, to debug this machine to wring out most 
hardware errors, and then to remap  the machine into LSI or 
VLSI. This approach is feasible but has the disadvantages of 
additional resources and time to design, build, debug, and 
remap the model.  Also, the remapped VLSI model  will 
probably be unable to take full advantage of the unique 
packaging and circuit characteristics of the technology to 
achieve the best potential performance. How much is lost is 
subjective, but we believe that  the development time and 
performance gained through the design techniques asso- 
ciated with the 3081 make that approach to VLSI design 
superior. It appears from our perspective that there are no 
inherent problems that make VLSI impractical from a 
machine-development viewpoint. 
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