
I?. N. Gustafson
F. J. Sparacio

IBM 3081 Processor Unit: Design Considerations and
Design Process

Significantly new challenges were presented for the design of the 3081 Processor Unit since it was the first IBM large system
implemented in LSI technology. Solutions had to be found for a new set of problems in order to achieve the required product
objectives while maintaining an acceptable development cost and schedule. In this paper, the design aspects and the
characteristics of the 3081 Processor Unit are described and the tradeoffs that were made due to the implementation of LSI
are presented. A design strategy was chosen that included tradeoffs covering the areas of machine organization, performance
level, implementation costs, testing and servicing aids, and development schedules. An innovative verification effort was
introduced into the design process, capitalizing on a hardware flowcharting discipline and rigorous design rules. On the basis
of this development experience, some thoughts concerning VLSI implementations are explored.

Introduction
The 3081, a 303X-compatible product, represents the intro-
duction of the use of LSI technology by IBM in the large-
computer-systems area [I]. The 308 1 Processor Unit is
entirely implemented in LSI technology, with high-density
packaging utilized on the chip, module, and board levels.
The unit consists of a number of components for CPU,
storage, and 1 / 0 control and has a dyadic structure contain-
ing two central processors.

This paper discusses the 3081 Processor Unit design and
its development methodology, focusing on those areas which
were affected or influenced by the use of LSI technology.
The packaging characteristics and design considerations are
described, indicating the objectives and techniques that were
used to take maximum advantage of the characteristics of
the LSI technology at the chip, module, and board levels.
The organization and structure of the processor unit reflect a
design in which the performance objectives were achieved by
a combination of the dyadic configuration and the aggressive
26-11s cycle time. To support the use of the much less
changeable LSI technology, a design verification plan ensur-
ing the detection of a very high percentage of the latent
design errors, prior to the actual hardware testing phase, was
put into place. The intersection and impact of this verifica-
tion strategy with the overall development cycle are

discussed. The experiences gained as well as the new devel-
opment tools that were established during the 308 1 program
have convinced us that the foundation exists for further
exploitation of LSI and VLSI as well.

0 L S I Characteristics
The major attributes of LSI which affected the design
philosophy for the 308 1 Processor Unit were the following:

1. Long turn-around time: Because of the much higher level
of integration, the turn-around time for changes to the
hardware for the correction of design errors or for design
modifications was expected to be in the order of weeks,
whereas non-LSI designs typically experienced turn-
around times measured in hours. Therefore, significantly
more design errors had to be removed prior to the
building of hardware, and an improved ability was
needed to change, or to work around, discovered prob-
lems.

2. Power dissipation: Dense packaging could be obtained at
the chip, module, and board levels; but power distribu-
tion, signal coupling, and cooling considerations placed
restrictions on the type of circuits that could be used.
Because of their speed/power characteristics, T2L
circuits were chosen for these reasons. The number of
array chips per thermal conduction module (TCM) [2],

Copyright 1982 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and
abstract may be used without further permission in computer-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor. 12

R. N. GUSTAFSON A LND F. J. SPARACIO IBM J. RES. DEVELOP. VOL. 26 NO. I JANUARY 1982

their circuit density, and their performance levels were
also limited by these considerations. Thus, system
performance had to be achieved by a unique balance of
hardware and microcode design concepts.

3. Debugging capability: The lack of traditional scoping
capability could severely impact the ability to trouble-
shoot and to isolate problems during the hardware testing
phase. Our experience has shown that this limitation can
largely be circumvented by the scan-in, scan-out capabil-
ity that is inherently available in Level-Sensitive Scan
Design (LSSD) [3].

Design strategy
The design approach taken in the structure of the 3081
Processor Unit to minimize the limitations of LSI while still
obtaining relatively high performance, within the limits of
the package and technology, was essentially the following:

1. Simple organization: Provision of a relatively simple
straightforward design, with limited overlapping or pipe-
lining of instructions. This approach allows maximum use
of microcoded controls with minimum hardware assists.
A writable control store provides a broader capability to
make temporary fixes for hardware logic errors.

2. Hardware partition: Organization of the processor unit to
take maximum advantage of the circuits and package in
order to minimize the machine cycle time. To a much
larger degree than previously, with LSI technology this
means minimizing both chip and module crossings (inter-
connections) in logic paths, rather than designing to
minimize the number of “logic” levels. Although logic
levels still remain important, they are increasingly
becoming the parameter that is traded off against “chip”
and higher-level packaging “crossings.”

3. System configuration: Achievement of the system
performance objectives with an integrated dyadic config-
uration composed of two central processors, each having
access to central storage and channels via a single system
controller.

e Design rules
The techniques utilized for level-sensitive design have been
used for many years in several large-system designs, largely
in the CPU and memory bus areas. The discipline of a
level-sensitive design for a common clocking system allows
the design of the various parts of a complex machine to a
tight cycle time relative to the technology and the integra-
tion of these various parts with minimal interface timing
problems.

To the writers’ knowledge, this technique was first utilized
in the 7950 system [4] built in Poughkeepsie and shipped in
January 1961. In this system, as indicated in Fig. 1, logic is
fed to latches and triggers [5] , the latter being the direct
source of stable signals for the logic. Latches and triggers

IBM 1. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982

External signals in l l
clock
Latch

clock
Trigger

Figure 1 Level-sensitive design in the IBM 7950.

utilize separate clocking lines. The logic is level-sensitive to
the degree that it adheres to the following rules:

1. The steady-state output of logic is not dependent on the
rise time and fall time of individual circuits, or on the
sequence of signals that are inputs to it.

2. The clock or cycle time is no longer than any individual
logic path delay, including external inputs; i.e., all
outputs have achieved their final state prior to the latch
clock transition to the “hold” state. (A minimum logic
path delay is also imposed, however, to allow latch and
trigger clock overlap that further reduces the machine
cycle time.)

3. The latches and triggers cannot control their own clocks
in the same cycle during which they are being set by these
clocks.

Level-sensitive scan design, as described in [3], is a design
technique which was put into place to permit a high level of
logic testing during the manufacturing process. This tech-
nique was further extended to permit the complete scanning
capability of all hardware facilities in the machine by the
processor controller. Thus, the processor controller has the
capability of examining any or all of the facilities within the
machine as well as altering their contents. This is the method
utilized for system reset and initialization, for the logging
out of all facilities on the occurrence of hardware failures,
and for the loading of hardware test patterns. This also
provided a “scoping equivalent” capability that was success-
fully used during the hardware test phase. A double-latch
version [6] of a shijt-register latch (SRL) was developed to
implement the latch and trigger for system logic and also to
serve as one of a pair of latches in a scannable shift register
configuration.

As used in the 3081 Processor Unit, the addition of a scan
capability (in and out) and the rigorous clocking disciplines
needed for LSI chip testing are extremely useful for a
disciplined system design as well as for machine debugging
and maintenance. 13

R. N. GUSTAFSON AND F. J. SPARACIO

To the
System Controller

I Control Store
Element

BufferControl
Element

I -
Variable Field Instruction Execution

Element
(W E) ([E)
- Element - Element

(EE)

Figure 2 Functional elements of a central processor.

9 Packaging characteristics
The packaging characteristics of the 3081 Processor Unit
resulted from several iterations between machine designers
and packaging designers, including the considerations of
power distribution and cooling capabilities. The objectives of
the machine designers were to package the major compo-
nents of the machine within one board, and the major
elements of those conponents within a single TCM, in order
to minimize the number of interconnections between pack-
aging levels and to permit the shortest machine cycle time.

In conjunction with the 704-logic-circuit chip, two array
chips were designed having compatible signal levels with
logic chips and having placement capabilities on the same
TCM as logic chips. Array chips having a capacity of 256 x
9 bits with a 16-ns access time are primarily used for large
data buffers (cache and control store). Array chips with
32 x 18 bits and a 7-11s access time are primarily used for
working registers and for local storage.

A general problem in the implementation of the 3081
Processor Unit was caused by the nonuniform gain in LSI
associated with logic-chip and array-chip densities. Com-
pared with the IBM 3033 processor, at the chip level the
average logic-chip density increased by a factor of 40:l
compared with an average array chip increase in the range
of 2.5:l. Thus, a disproportionate amount of module area
had to be allocated for array functions. A special TCM with
a 20% increase in chip sites was designed to help compensate
for this problem. Forty-eight of the 118 chip sites have
restrictive engineering-change- (EC) capabilities and thus
are generally used only for array chips. A 32K-byte cache
capacity per central processor (CP) and a paging mecha-
nism for CP and channel microcode (very similar to CP
cache paging) were a result of these array characteristics.

The major components of the 3081 Processor Unit are
14 illustrated in [l , Fig. 21. The design objective of having

major components packaged within individual boards was
achieved with one central processor being packaged on a
nine-TCM board, and with the system controller (SC) and
the external data controller (EXDC) each packaged within
a six-TCM board.

Design considerations
As stated earlier, the design strategy for achieving the
objectives of the 3081 Processor Unit were a short machine
cycle time, a limited overlap structure with liberal use of
microcode, and an integrated dual-processor configuration.
Each of these items is now explored, discussing unique
characteristics and tradeoffs as appropriate.

Machine cycle time
Major emphasis was placed on achieving the shortest possi-
ble cycle time while maintaining the same amount of func-
tion or work per cycle as other large processors (without
overlap functions). Analysis continued to support our belief
that the proper balance between machine cycle time and
function per cycle had been achieved (i.e., arithmetic opera-
tions, cache access, control-store access). A cycle time of 26
ns was achieved with an average gate delay of 2.5 ns per
logic level.

The design and implementation of the CP was the limiting
factor in establishing the machine cycle time. The CP was
structured into five elements based on functional partition-
ing, packaging, and the short cycle time objectives. These
are discussed in greater detail in a subsequent section. It is
cogent to note that functions involving array chips tended to
contain the cycle-limiting paths.

Limited overlap
Design errors are more prevalent in complex control func-
tions as compared with more regular data-path functions;
our data indicate this to be in the range of 5 to 1. On the
basis of our lack of experience with the new verification
methods and with the hardware testing technique, we opted
to limit the control complexity of the machine and to provide
more flexibility with the use of microcode controls. This
direction was chosen to minimize the risk of a lengthy testing
process. Our experience has been very positive in both the
verification and testing efforts; this aspect is discussed in
some detail in the paper by Monachino [7].

Microcode
Two types of microcode were selected for the control of the
CP and EXDC:

Horizontal microcode is characterized by a wide word
which typically controls one machine cycle. The bits within a
word directly control the data path (i.e., the gate into a
register, etc.). It is utilized when flexibility and speed of

R. N . GUSTAFSON AND F. J. SPARACIO IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982

execution are paramount. A rich data path is needed to take
full advantage of the efficiencies of horizontal microcode. It
is used in the CP and in the data server element (DSE) of
the EXDC.

Vertical microcode is the type of microcode utilized in the
channel processing element (CPE) of the EXDC. It is
characterized by a less complex format and is essentially a
set of basic (Load, Store, Branch, Shift, Add, etc.)
assembly-language-type instructions that are tailored to the
data path and functions of the CPE. The use of vertical
microcode facilitates ease of writing and simulation. With
the relatively simple data path of the CPE, the vertical
microcode approaches the efficiency of horizontal micro-
code.

As previously mentioned, due to the density of the avail-
able array chips in conjunction with the size of the physical
package, only a portion of the microcode could be contained
within the CP and the EXDC. However, analysis indicated
that, on typical job streams, a paging algorithm similar to
that employed by general cache structures would be very
effective. Less than 5% internal performance degradation
results from a paging of CP microcode, Also, a minimal
aggravation to the overrun characteristics of the EXDC has
been observed.

e Dyadic organization
A major factor in the performance level of the 3081 Proces-
sor Unit is the symmetrical dyadic-processor configuration.
LSI created the opportunity to package two identical CPs
together with the SC and EXDC within one electronics
frame. The configuration is symmetrical in that each CP has
the same priority and operational characteristics in relation
to the central storage and channels.

Organization and structure

e Central processor
The CP is composed of five functional elements. Figure 2
shows the functional elements of the central processor and
Fig. 3 illustrates how they are packaged within the nine-
TCM board. Three separate execution elements (IE, VFE,
EE) were designed, rather than one common element, due to
the size constraint of the TCM and to achieve the shortest
possible cycle time. As is evident, only the EE and VFE are
totally contained within a single TCM. (This partitioning
will be highlighted as the elements are subsequently
described.)

The instruction element (IE) controls the instruction
sequencing of the CP. It initiates requests for instructions
and attempts to maintain a buffer of four doublewords of
instructions locally. It performs the instruction-decode and
the operand-address-generation functions and initiates all

Figure 3 Central processor board layout. (Note: shaded TCM
location is unused.)

requests for operands. It also executes all arithmetic and
logical operations, exclusive of those done in the VFE and
the EE described subsequently.

Other than instruction fetch look ahead, which is
performed in parallel with instruction execution, the IE is
essentially sequential and does not attempt to overlap the
execution of the (N + 1)st instruction with the Nth. Instruc-
tion execution is controlled by horizontal microcode.

The IE could not be packaged within a single TCM, and it
was the most difficult element within the CP to partition
across multiple TCMs, within the 1 / 0 limitations of the
TCM and without impacting the cycle time. The instruction
buffers are located on the TCM with the VFE, where they
share a port from the cache of the buffer control element.

The variable-jield element (VFE) executes all variable-
field-length storage-to-storage instructions. In this class of
instructions, the IE and the VFE operate as a team, with the
IE performing operand fetches and stores in parallel with the
VFE execution wherever possible. The VFE is largely
controlled by horizontal microcode.

The execution element (EE) executes fixed-point multiply
and divide instructions, convert instructions, and all floating-
point instructions. The controls for the EE were committed
to hardware due to potential partitioning problems with both
the EE and control store element designs. This was an
acceptable risk since the EE functions were well understood
and were not as affected by architecture changes.

The bufer control element (BCE) contains the 32K-byte
cache and has a store-in-cache algorithm, a 128-byte line
size, and a four-way set-associative organization with a
least-recently-used replacement algorithm [8]. The cache
has a two-cycle access with the virtual-to-real address trans-
lation accomplished in parallel. The cache itself is packaged
on two identical 118-chip-position TCMs, each of which 15

IBM J. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982 R. N. GUSTAFSON AND F. J. SPARACIO

contains 72 array chips. A vertical partition (one 32-bit word
on each TCM) was adopted to achieve the machine-cycle-
time objective.

The store-in-cache algorithm was selected because it
produced a higher internal performance level than a store-
through algorithm, when the characteristics of the system
were considered in conjunction with the central storage
access time. Modeling results indicated that a store-in-cache
algorithm yields superior performance as soon as the central
storage access time exceeds the range of ten machine cycles.
The 128-byte line size was selected since it delivered the
optimal performance when analyzed with the central stor-
age, system controller, and dual-processor characteristics.
Store-in-cache also provided a foundation for a checkpoint-
retry algorithm for the CP, which will be described subse-
quently.

The control store element (CSE) controls the sequencing
of the horizontal microcode of the CP. The CP microword is
108 bits wide and has an addressing capability of 32K
microwords. Two microword formats are supported, one for
each of the IE and the VFE. A 1K-microword writable static
array contains the most-frequently-used microwords. A
second 1K-microword array contains 32 lines of 32 micro-
words each. It is fully associative with a least-recently-used
replacement algorithm, and lines are dynamically loaded on
demand from a “hardware system area” located in a portion
of central storage. Like the cache, the control store arrays
are packaged on two unique TCMs with a vertical partition-
ing; however, a significant number of controls had to be
replicated to achieve the cycle-time objectives.

A unique feature of the CP is its hardware checkpoint-
retry mechanism. The basic concept is to establish a check-
point at some instruction N . The contents of the architected
registers (PSW, GRs, etc.) are saved in backup registers. As
instruction execution proceeds, any store into the cache will
cause the old value of a changed doubleword to be saved in a
push-down array. In the event of an error condition, the
architected registers will be restored to their original value.
The contents of the cache will also be returned to its original
values by storing back the contents of the push-down array
in the reverse order. Regular checkpoints are established
during normal instruction execution under specific machine
conditions with a negligible effect on CP performance.

System controller (SC)
The major function of the SC is to provide the paths and
controls for the communications between the major func-
tional units and with central storage. A unique structure was
adopted due to the packaging limitation (l /O pins), the
store-in-cache algorithm of the CPs, and the support of the

16 dual-processor configuration with minimum performance

R. N. CUSTAFSON AND F. J. SPARACIO

degradation. The 1 / 0 needs of central storage, the SC, and
the EXDC provided the requirement for the six-TCM board
with its additional 1 / 0 capability.

The implementation of the array portion of central stor-
age is on a card-on-board package to achieve the density and
cost requirements. Each board contains 4M bytes of central
storage, which constitutes a basic storage module (BSM).
The BSM is configured so that a 128-byte line can be
accessed (read or write operation) with a single array opera-
tion.

The conventional doubleword interleaving of current large
processors is effectively accomplished within the 4M-byte
BSM. Of significant importance is that the bandwidth
requirement for independent doubleword operations with
central storage has been significantly reduced. This is the
result of the store-in-cache algorithm of the CPs in conjunc-
tion with a 128-byte line, and the 256-byte (per channel)
buffering capability for data within the EXDC. Thus, the
SC was structured for a line-transfer characteristic. The
basic data-bus width of all units connecting to the SC is
eight bytes (bidirectional) with a data transfer rate of eight
bytes per machine cycle.

To achieve a balanced utilization, a 2K-byte address
interleave structure across the 4M-byte BSMs was adopted.
This increment was chosen to minimize the complexity of
memory reconfiguration and was sufficient to achieve a
balanced load.

The store-in-cache algorithm has created a data integrity
problem which is managed by the SC. Due to changed data
residing in the caches of the CPs, the content of central
storage is not always valid. The SC maintains a duplicate
copy of each CP cache directory and determines if the
central storage request will return valid data. In the event of
a conflict, the SC initiates the casting out of the specific line
of data from the cache to central storage to then be refetched
by the requesting unit.

Each line of data, as it resides in a CP cache, is tagged
with a read-only (RO) or exclusive (EX) status. A line must
have EX status before a store operation can be completed
within that line. To control simultaneous updates to a
specific line by the CP or channels, the SC permits only one
copy of a line to exist with EX status. Conversely, multiple
copies of a line having RO status can exist simultaneously
for use as long as no store activity occurs. If a store must be
performed into a line with RO status, a change is effected by
the SC to EX status, with the purging of the copy if
necessary.

An algorithm predicting the usage (fetch or store) of a
line of data was adopted to minimize the performance

IBM J. RES. DEVELOP. VOL. 26 NO. I JANUARY 1982

overhead of status changes and purging. On the basis of the
operation being performed by the CP that required the new
line to be accessed, an RO or EX status is assigned. For
example, a line that is required for instructions has RO
status since reentrant code prevails in today’s programs. A
line that is required for operands has EX status if a store
operation is being performed or if the other CP has a copy
that has been changed (copy will be cast out in the process).

The SC also performs an ECC (error checking and
correction)-to-parity conversion on data to and from central
storage, contains the storage protect keys and time-of-day
clock, and manages an eight-position queue containing stor-
age requests.

External data controller (EXDC)
The EXDC performs the channel functions for the 3081
Processor Unit. It provides up to 24 channels with a data
rate of up to three megabytes per channel. Four of these 24
channels can be byte-multiplexer channels with aggregate
data rates of up to 500 kilobytes per second with a burst size
of 32 bytes.

As previously mentioned, the channel area was a prime
candidate for the use of microcode controls. Channel designs
are difficult to completely verify and test because of the wide
variations associated with 1 / 0 devices and channel
programs. Historic data also bear out the late discovery of
problems, as different 1/0 loads and configurations are
encountered.

The EXDC consists of two types of microcode-controlled
elements. The channel processor element (CPE) is a special
processor which handles the control of 1 / 0 instructions and
interrupts. It supports a queued interface with the central
processor for START 1/0 FAST RELEASE operations and
for 1 / 0 interrupts, and controls the handling of command/
data chaining and all EXDC recovery operations. The CPE
is driven by vertical microcode having a two-byte microword
and an addressing capability of 32K microwords. A 2K-
microword writable static array contains the most frequently
used microwords. A second 256-microword array contains 4
blocks of 64 microwords each. The array is dynamically
loaded on demand from a “hardware system area” located in
a portion of central storage. The processor has a two-byte
data-path structure and is packaged on one TCM.

The second element is the data server element (DSE),
which handles the control sequencing and data buffering for
eight channels. It is packaged on a single TCM, and a
maximum of three DSEs can be attached to the CPE. The
DSE contains 256 bytes of data buffering per channel. It
supports two-byte transfers with the interface adapters and
64-byte data transfers with central storage. The DSE is

IBM J. RES. DEVELOP. VOL. 26 NO. I JANUARY 1982

controlled by horizontal microcode having a 54-bit micro-
word in a 750-microword array. The eight channels are
controlled by DSE microcode that is time-shared on an equal
round-robin basis.

Outboard of the DSE, packaged in a card-on-board tech-
nology, each channel has an interface adapter element which
drives the 1/0 interface and contains eight bytes of data
buffering.

System clocking
A description of the Processor Unit and the effect of LSI
would not be complete without a discussion of the clocking
system. After proceeding with a design strategy using a
“tunable” clock distribution system, the direction was
changed to a very simple “untuned” system, for reasons
which shall now be described.

The initial direction was a sophisticated distribution
network with a tuning capability achieved by the use of
programmable delay chips. It had the quality of providing
some clock change capability and was judged to have the
least clock skew delay delta to the machine cycle time. Sixty
chips per board, a reference generator with an associated
comparison network, and several thousand lines of proces-
sor-controller microcode were required to support the
system. The final untuned system required just six chips per
board and completely eliminated the need for a tuning
process during manufacturing build and test, as well as in
the field when TCMs are replaced.

Delay lines are used to compensate for different physical
distances between the oscillator and the final circuits that
use the various clock pulses. These delay lines are identical
for every machine. The delay variations in the distribution
network caused by the variations of the hardware from
machine to machine are not compensated for by the use of
unique delay values for each machine. That variation has
been statistically combined with the variation of the logic
path delays as part of the overall calculations of the machine
cycle time. The distribution networks are also included in the
timing-analysis verification to be described subsequently. It
is of interest to note that less than 500 picoseconds were
added to the machine cycle time over the “tuned” system.
The untuned system has proven to be an excellent design,
and in the writers’ judgment the cycle time penalty is a small
price to pay to avoid the problems which would be encoun-
tered in manufacturing and field tuning.

Testing aids
The long turn-around time of logic changes with LSI and the
lack of scoping abilities initiated the inclusion within the
logic of techniques that would allow temporary fixes, and

ware implementation difficult is the multi-way branch. The
process was significantly enhanced with the development of
a higher-level programming language that would allow for a
more direct translation of hardware flowcharts [1 11.

This high-level software model, called cycle simulation, is
now discussed, together with the logic-equivalence
programs.

a Cycle simulation
The hardware flowchart model in conjunction with a
complete list of hardware facilities (shift-register latches
and arrays) completely describes the machine. The sequenc-
ing of the hardware flowchart model on a cycle-by-cycle
basis and the resulting changes in the hardware facilities
make up the cycle simulator [121.

As compared to a unit delay simulator, the cycle simula-
tor is much more storage- and time-efficient. Thus, whole
areas of the central processor (instruction unit, execution
unit, etc.) can be run by simulating, on a cycle-by-cycle
basis, the actual logic of the machine. This model is driven
by high-level inputs. (The operation code, for example, could
be the input.) Entire units (central processor, system
controller, etc.) can be modeled for a specific function.

Logic equivalence
A method of comparing the hardware flowchart logic to the
actual hardware logic, as implemented in AND and OR
logic blocks, was accomplished in two ways: Boolean
comparison and hybrid simulation. These are now
described.

Boolean comparison 1131 This is a completely automated
method comprised of a series of computer programs to
compare primary outputs, which are generally shift-register
latches (SRLs), in both flowcharts and hardware, for logical
equivalence of all primary inputs (also generally SRLs).

Hybrid simulation Prior to the development of the
Boolean comparison process, a method was developed to
automatically accumulate the patterns of inputs and outputs
over a multi-cycle time interval for a selected set of facilities
from the flowchart simulator. Thus, the capability to auto-
matically generate multiple low-level input and output
signals from a global simulator using a few high-level inputs
becomes available. These signals then become the input
stimuli and the predicted output patterns for the unit delay
simulator. The basic shortcoming associated with hybrid
simulation is that, unless a very large number of flowchart
simulator test cases are provided as input to the hybrid
simulation, many branches of the logic will not be tested. For
this reason, Boolean comparison became the predominantly
used technique because of its comprehensiveness.

_""""""""".
I
I
I

I
I

FF
I
I
I

L""!""""""-ll
~

(b)

Figure 4 Illustration of the use of hardware flowcharts for the
specification of logic: (a) hardware flowcharts, (b) logic implemen-
tation of the hardware flowcharts of (a). (Note: L = latch block;
T = trigger block L-clocks and T-clocks assumed.)

Timing analysis
Verification of the machine cycle time objectives was
achieved with the development of a timing analysis tool
[141. This tool, like Boolean comparison, is a series of
computer programs which accurately calculate the individ-
ual path delays for all SRL-to-SRL paths within the
machine. This is accomplished by evaluating all paths
between interconnected SRLs characterizing all physical
parameters. The proper delay characteristics are then
applied, using the appropriate statistical methods. The net
result is the identification of both long and short paths which
violate the machine cycle time requirements. Timing analy-
sis has proven to be essential to a design effort aimed a t a
high-performance machine by minimizing the machine cycle
time and by obtaining the best potential times from the
technology.

Historically, the cycle time to be obtained has been
achieved by designing all logic paths to some rules of thumb
(i.e., ten logic levels and two card crossings; or eight logic
levels, two card crossings, and one board crossing; etc.) that
were fairly conservative and could be easily applied by all
designers to all their logic paths. If some paths exceeded the
rules, they would be timed with a more detailed description 19

R. N. GUSTAFSON AND F. J. SPARACIO IBM J. RES. DEVELOP. 0 VOL. 26 NO. I JANUARY 1982

Hardware
flowcharts

Logic design
-chip

Logic interconnection
and placement-
TCM, board

Physical design-
chip, TCM, board

Cycle
simulation

Boolean
comparison

Timing
analysis

Physical design-
chip, TCM, board

Release -
Figure 5 Design schedule.

of the physical characteristics of the path (number of loads,
number of pins, precise wire lengths, etc.) using a computer
program that would accurately calculate delays using very
precise technology rules. The use of this method results in
either most paths being significantly under the cycle time to
be achieved, or the design rules-of-thumb being reasonably
accurate compared to the precise calculated value.

Due to the complexity of the technology rules, a reason-
ably simple rule-of-thumb could not be obtained for the
technology used in the 3081 Processor Unit. The machine
cycle time achieved was practical only because of Timing
Analysis. Efforts to locate long paths during the hardware
test phase proved extremely time-consuming. If an LSI
machine did not meet the cycle time in the large majority of
paths when sent into hardware test, it would be impractical
to locate and correct the many timing errors during test.
This is a result of the limited scoping ability with LSI and
the long turn-around time for changes.

Design cycle
The design cycle of the 3081 Processor Unit was markedly
different from those of predecessor development programs.
As previously discussed, a comprehensive verification plan
was undertaken to reduce significantly the number of hard-
ware design flaws prior to hardware being built. The follow-
ing discussion explains how the verification effort was inte-
grated into the design schedule.

Figure 5 illustrates the design schedule. Hardware flow-
charting and the design of individual chip types dominate 20

R. N. GUSTAFSON AND F. J. SPARACIO

the front end of the schedule. Chips containing data-path
functions are the first to be designed. It is not uncommon for
several design iterations using different partitions to take
place before arriving a t an optimal design. Hardware flow-
charts are the detailed specifications for the control func-
tions, and these precede the implementation of the asso-
ciated logic chips. Flowcharts and chip designs are entered
into the data bases of the engineering design system (EDS)
[151, triggering the use of a sophisticated design automation
process.

Replication of multi-usage chips, with interconnections
and placement of all chips on the higher-level packages,
completes the initial implementation phase. A first pass was
made through chip, module, and board physical designs to
ensure a satisfactory physical design and to provide the
actual parameters for Timing Analysis verification. For the
start of Timing Analysis, we chose to wait for the completion
of initial physical design due to the physical variations that
were introduced during that process.

Cycle simulation verification starts as soon as sufficient
flowcharts are complete to represent a reasonable functional
element. Individual functional elements are simulated on a
stand-alone basis, using low-level test cases, prior to being
combined for a complete component configuration (central
processor, system controller, etc.).

Boolean comparison begins with the completion of the
interconnection of the detailed logic. Equivalent partitions
are chosen between the hardware flowcharts and the
detailed logic equating the primary inputs and outputs. This
forms the body of logic to be verified using the Boolean
comparison process.

After a sufficient verification level has been achieved with
resulting hardware changes applied, a final physical design
is completed and then released to manufacturing for the
building of hardware. Additional verification work will most
likely continue during the procurement of the first hardware,
with additional changes to be applied as soon as that hard-
ware is received. The objective is to complete enough of the
verification work prior to the initial building of the machine
to ensure that the bugs in the main-line logic have been
removed and that the remaining defects are within a
manageable limit.

Potential problems and strategies in future VLSl
technologies
The 308 I Processor Unit had approximately 400 chip types
that averaged around 500 circuits per chip. The problems
that were encountered and solved in the design and debug-
ging of the 3081 machine using LSI are multiplied, largely
in degree, with VLSI. Thus the scoping ability obtained with

IBM J. RES. DEVELOP. \ ‘OL. 26 NO. I JANUARY 1 982

chips that average 5000 circuits is substantially less, the
possibility of utilizing “unit logic” for temporary fixes of
hardware is substantially less, etc. For these reasons it is
believed that the techniques developed in the 3081 machine
to deal with these “debugging problems” will be extended
and improved. The following developments are projected:

1. Faster, more efficient simulation tools, capable of effi-
ciently handling larger sections of the system as an entity,
will evolve. This will permit additional design errors to be
fixed prior to the hardware testing phase.

2. The ability to manufacture, test, and install a new chip in
days rather than weeks will alleviate many of the
projected “delays” during the debugging time.

3. The concept of level-sensitive design and the ability to
scan in and out of shift-register latches will be continued.

4. The use of “history arrays” will probably be refined and
expanded.

5. The design approach which maximizes the use of control
store and still maintains high performance, through cycle
time and multiprocessing, will probably be followed
unless the evolvement of the preceding points 1-4 over-
comes, in large degree, the problems of engineering
debugging and field changes.

An initially obvious method of bypassing many of the
problems of VLSI would be to build a machine in change-
able technology, to debug this machine to wring out most
hardware errors, and then to remap the machine into LSI or
VLSI. This approach is feasible but has the disadvantages of
additional resources and time to design, build, debug, and
remap the model. Also, the remapped VLSI model will
probably be unable to take full advantage of the unique
packaging and circuit characteristics of the technology to
achieve the best potential performance. How much is lost is
subjective, but we believe that the development time and
performance gained through the design techniques asso-
ciated with the 3081 make that approach to VLSI design
superior. It appears from our perspective that there are no
inherent problems that make VLSI impractical from a
machine-development viewpoint.

Acknowledgments
The comprehensive acknowledgment of the engineers
responsible for a design effort of this size is difficult. We
wish to recognize a few who made significant contributions
in establishing the design direction and in defining the
functions and structure of the components of the 3081
Processor Unit; for the Central Processor: R. J. Bullions,
C . W. Evans, J. A. Gerardi, S. R. Levine, and B. L.
McGilvray; for the External Data Controller: P. N. Crock-
ett, M. J. Halma, R. P. Jewett, and A. J. Scriver; and for the
System Controller: E. J. Annunziata and B. U. Messina. The
key management direction for the design was provided by
R. A. Houdtzagers, R. S. James, L. H. Johnson, and R. B.

Stuart. We would also like to acknowledge the significant
management efforts of A. E. Fitch and M. M. Monachino
for the development of the verification tools that were so
critical to the program.

References and notes
1. M. S. Pittler, D. M. Powers, and D. L. Schnabel, “System

Development and Technology Aspects of the IBM 3081 Proces-
sor Complex,” IBM J. Res. Develop. 26, 2-1 1 (1982, this
issue).

2. A. J. Blodgett and D. R. Barbour, “Thermal Conduction
Module: A High-Performance Multilayer Ceramic Package,”
IBMJ. Res. Develop. 26,30-36 (1982, this issue).

3. E. B. Eichelberger and T. W. Williams, “A Logic Design
Structure for LSI Testability,” Proceedings ofthe 14th Design
Automation Conference, New Orleans, LA, June 1977, pp.

4. F. J. Sparacio, “IBM 7950 Indexing and Control Techniques,”
IBM Internal Report TR 00.818, Poughkeepsie, NY, October
17, 1961.

5. M. E. Homan, “Data Latching Systems,” U.S. Patent
3,075,091 (filed February 3, 1960; issued January 22, 1963).

6. E. B. Eichelberger, R. N. Gustafson, and C. Kurtz, “Logic
Circuit for Scan-In/Scan-Out,” U.S. Patent 3,806,891, 1974.

7. Michael Monachino, “Design Verification System for Large-
Scale LSI Designs,” IBM JRes. Develop. 26,89-99 (1982, this
issue).

8. Alan Jay Smith, “A Comparative Study of Set Associative
Memory Mapping Algorithms and Their Use for Cache and
Main Memory,” IEEE Trans. Software Engineering SE4,
121-130 (1978).

9. A. C. Auch, D. D. Chang, and J. J. Hughes, “Tales-Logic
Simulation and Evaluation System,” IBM Internal Report TR
00.1864, Poughkeepsie, NY, April 1, 1969.

10. The initial concepts of utilizing hardware flowcharts as a base
for cycle-by-cycle simulation of the hardware were conceived in
1968 by R. N. Gustafson and D. W. Anderson.

11. C . W. Evans provided the initial ideas for the language syntax
to allow hardware flowcharts to be described in a program
language (BDL/CS-Basic Design Language for Cycle Simu-
lation) that can be compiled to a list of inputs which are used
directly by a cycle-simulation program.

12. G. J. Parasch and R. L. Price, “Development and Application
of a Design Oriented Cycle Simulator,” Proceedings ofthe 13th
Design Automation Conference, San Francisco, CA, June 1976,

13. Gordon L. Smith, Ralph J. Bahnsen, and Harry Halliwell,
“Boolean Comparison of Hardware and Flowcharts,” ZBM J.
Res. Develop. 26, 106-1 16 (1982, this issue).

14. Robert B. Hitchcock, Sr., Gordon L. Smith, and David D.
Cheng, “Timing Analysis of Computer Hardware,” IBM J Res.
Develop. 26, 100-105 (1982, this issue).

15. P. W. Case, M. Correia, W. Gianopulos, W. R. Heller, H. Ofek,
T. C. Raymond, R. L. Simek, and C. B. Stieglitz, “Design
Automation in IBM,” IBM J. Res. Develop. 25, 631-646
(1981).

462-468.

pp. 48-53.

Received August 7, 1980; revised July 7, 1981

The authors aredocated at the IBM Data Systems Division
laboratory, Poughkeepsie, New York 12602. 2 1

1BM 1. RES. DEVELOP. VOL. 26 NO. 1 JANUARY 1982 R. N. GUSTAFSON AND F. J. SPARACIO

