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Impact  of  a  Liquid  Drop  Against  a  Flat  Surface 

Lagrangian methods  are  used  with an assumedflowJield and a  truncated sphere model to analyze the dynamical process 
of a liquid drop impacting aflat ,  rigid surface. The resulting differential  equation for  drop height as a function of time 
during contact is solved numerically for several  values of the three parameters:  Weber number of the incoming drop, 
ratio of the surface tension in air to that at the contact  surface, and the viscosity  parameter. The drop contact radius as a 
function of time is also calculated  and  compared  with some experimental results in the literature. 

lntroductlon 
Liquid drop impact  with a solid surface has been a topic 
of interest in  many different  engineering applications. At 
present the main interests are in connection with  nuclear 
reactor cooling  and  ink-jet  printing.  In the former applica- 
tion  heat transfer is  affected by the drop dynamics  upon 
impact  of the drop with a hot surface. In the latter the 
eventual spot size  produced  is  affected by the drop 
dynamics  upon  impact  with the paper. Our concern is 
with  ink drop spot size. 

We can separate the process of producing  an  ink spot 
into  two  distinct parts. First is the drop shape resulting 
from the dynamics of impact.  Second  is the final spot size 
after penetration of the liquid into the paper and subse- 
quent  drying.  The latter part has been  considered by 
Cantow  and  Nebenzahl [I]. Here we are concerned with 
the  impact  dynamics,  and  we  assume that the dynamical 
process  is  completed  before the penetration is  begun. We 
therefore  idealize the dynamical process by assuming that 
the  target  surface  is flat, rigid,  and impenetrable. 

Early studies of drop impact  were concerned with 
cavitation  damage  on steam turbine blades  and later with 
rain  damage  on aircraft surfaces. Engel [2] presents high 
speed  photographs  and  schlieren patterns of water drops 
impacting a glass surface. These photographs show the 
spherical drop initially  deforming to a shape similar to a 
truncated sphere and later spreading to a circular disk 

shape. No recovery and  bounce-off  phenomenon  was 
indicated  from these experiments. An energy  balance 
type  analysis  was  used to predict the impact pressure as a 
function of time. 

Wachters  and  Westerling [31 presented experimental 
results  for drop impact  on a 400°C polished  gold surface. 
Since  vaporization occurs between the drop and the 
surface, wetting does not occur and the drops bounce 
away after a period of near contact during  which there is a 
flattening  and  then a recovery of the drop. They observed 
that  the drops tend to splatter if the Weber  number W = 
paU21a is greater than 80, where p and u are fluid density 
and surface tension, respectively, a is the drop diameter, 
and U is the drop velocity. Similar observations were 
made  by Pederson [4] and  by  Styricovich et al. [5 ] .  

A recent study by  Kendall  and  Rohsenow [61 was 
concerned  with  heat transfer to dispersed  flows  and 
sprays.  They  showed that low heat transfer rates are 
associated  with the rebounding of drops after impact  from 
very  hot  surfaces.  They  developed  an analytical model  of 
the drop impact  dynamics  based  on  Lagrangian  methods. 
Two drop models-cylindrical and truncated sphere- 
were  considered. Drop height  and radius were calculated 
based  on the cylindrical  model. These results were  com- 
pared  with experiments and  were  found to be in reason- 
able  agreement. 
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Figure 1 Truncated  sphere geometries. 

Our  analysis  is  similar to that of [6] .  We use a truncated 
sphere  model  with  Lagrangian methods and  an assumed 
flow  field.  Our approach differs  from that in [6] in that we 
use a different expression for kinetic energy, we include 
different surface tension values for the free surface and 
contact surface of the drop, and we include viscous 
dissipation. A second order nonlinear, ordinary differen- 
tial equation is derived for determining the drop height as 
a function of time  during contact. This equation is  solved 
numerically for various values of the Weber number, 
surface tensions, and viscosity. Drop contact radius is 
also calculated, and the results are compared with  some 
experimental results in the literature. 

Problem  formulation 
Assume that a spherical liquid drop of diameter a ,  density 
p, and free surface tension u (in air) impacts a flat  rigid 
stationary target surface with  velocity U .  We neglect the 
interaction between the drop and air, and we let ab denote 
the interface tension between the drop and target surface. 

Rather than attempt to solve this flow problem  by use 
of the continuum theory of fluid mechanics, we use a 
dynamical  model based on Lagrangian methods together 
with certain assumptions about the drop deformation. In 

964 a manner  similar to that used by Kendall and Rohsenow 
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[6] we assume the drop is of constant volume and, after 
contact with the target surface, has the shape of a 
truncated sphere. Figure 1 shows two configurations of 
such a truncated sphere in contact with the target surface, 
which  is located at z = 0. The geometry of the truncated 
sphere  can  be expressed in terms of the height X,, which 
gives the maximum distance on the drop surface from the 
target surface. If the drop is not in contact with the target 
surface, an additional parameter, say the location of the 
mass center zm, is required to specify the geometry. It 
will  be convenient in  deriving the equation that deter- 
mines X, as  a function of time  during contact to use both 
parameters X, and zm. The relationship between them 
supplies a measure of the drop deformation. 

Let X, and X, denote the spherical radius and the 
contact circle radius of the truncated sphere. Defining the 
dimensionless drop height x by 

x = h,/a,  (1) 

we obtain from the geometry of the truncated sphere the 
results 

Ada = x(2 + ~ - ~ ) / 6 ,  X,/a = [(x" - x2)/3]'" = N(x).  (2 )  

By use of the definition of mass center and after 
performing the required volume integrations, we obtain 
the following relationship between zm and X, during 
contact: 

zm/a = (2x + x4)/6 = M(x). ( 3 )  

The drop volume V ,  free surface area A ,  and contact 
surface area A, are given by 

V = ra3/6, A = 2rX1X,, A, = r(2X,X2 - X,). 2 (4) 

Initially, when the spherical drop first touches the 
target surface, the parameters defined above have the 
values 

X, = a ,  X, = a/2, X, = 0,  zm = a12 0 0 0 0 

AO = r a  , A, = 0. 2 0  ( 5 )  

The potential energy of the drop due to surface and 
interface tension is  given by 

PE = UA + ubAb 

= (ua2r/3){2x2 + x-' + (ub/u)[x" - x,]) 

= ua2L(x). (6) 

The kinetic energy is given by 

KE = -p  J ( 5  + u:) dV, 

where U, and U,  represent the radial and  axial  compo- 

I 
(7) 

2 v  
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nents of the flow velocity. In order  to  express KE in terms 
of dxldt we must have a particular  form  for  the velocity 
field. For this we  assume  the axisymmetric  stagnation 
point flow for inviscid  irrotational  conditions (see Batche- 
lor [7]) ,  which can be written in the  form 

1 " ( x )  dx 

dz " ( x )  dx 
dt M(x)  dt 

Uz=.+-- (z - Zm). 

This  axisymmetric  velocity field clearly satisfies 

1 a(rUJ au aur au 
" +2= 0 - - 2 = 0 .  (9) r ar a2  ' az ar 

It also has a stagnation  point at  the origin and satisfies the 
inviscid boundary  condition at z = 0, since  from (8) and 
(3) it follows that 

UJO, 0, t)  = 0, U2(0, 0, t )  = 0, U2(r, 0, t)  = 0. (10) 

Finally, it includes a specific measure of the  drop defor- 
mation by relating the flow field to  the  mass  center. With 
use of (8) and (3) in (7) we  obtain,  after integrating over 
the volume of the  truncated  sphere, 

1 " ( x )  dx 
2 [ M(x) dt ]" 1" K E = - p  -- (z2 + r2/4) dV 

in which 

We observe  that  the initial values of PE and KE are 
given by 

PEO = ura2,  K E O  = ~ a ~ p ~ ~ 1 1 2 .  (13) 

The initial Weber number, defined by 

w = paU2/u, (14) 

can be expressed  also  as 

W = 12 KE'IPEO. 

It  is found  experimentally (see [31) that  drop  splatter 
occurs  for W > 80 so our analysis will be restricted  to 
initial Weber  numbers below  this  value. 

Derivation  of  the  differential  equation  for  the  drop 
height 
We begin with the variational statement 
rt2 r r 1 

in which T represents a shear  stress  and d, is  the radial 
displacement on the  contact  surface of the  drop.  Since no 
shear  stress  is developed  by the velocity field (81, we 
make the assumption that  the  shear  stress  at z = 0 is 
proportional to Ur, i.e., 

in which p is  the fluid viscosity and C is a constant with 
the dimension of inverse length. The radial  displacement 
d, associated  with U, in (8) is given  by 

1 
2 

dr = -- In [M(x)]r. (18) 

Using (6), (8), ( l l ) ,  (12), (17), and (18) in (16), and 
carrying out  the variations  with x as  the independent 
parameter assumed to vanish at t ,  and t,, we obtain the 
nonlinear, second  order differential equation 

d2x 
dt2 

~ A ( x )  - + A'(x) 
dx 

+ - L'(x) = 0 
U 

PV 

subject to  the initial conditions 

In (19) the function A(x) describes  the kinetic  energy 
given in (1 l), L'(x) describes  the  derivative of the  poten- 
tial energy in (6), M(x) relates  the  drop height to  the  mass 
center in (3), while B(x) derives  from  the dissipation term 
in (16) and is given  by 

B(x) = ["(x)IM(x)l2(x4 - 2x + x-2).  (21) 

It is convenient to introduce dimensionless  time t* and 
surface  tension and viscosity parameters ST and VIS, 
respectively,  through 

where R is a Reynolds number R = paUlp. We also 
reduce the second order differential equation (19) to a first 
order system to  obtain in  dimensionless form 

in which a dot  denotes differentiation  with respect to t* 
and C(x), D(x), and E(x) are defined by 965 
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Figure 2 Drop height vs time  during contact (for  various ST 
with W = 1 and VIS = 0). 

4 2 x 3  

. [22 (; + a) - (f + y) ] 

. + f)', 

D(x) = VZS(x4 - 2x + x-2) (; + ") (; + f)', 
2 x 3  2 

E(x) = 2  [4x - x-2 - ST(2x + x-2)]. 

The  initial  conditions for the system (23) are 

x(0) = 1, y(0) = - w'". 

Numerical results 
The  differential system (23)-(25) was  solved  numerically 
by use of a  Runge-Kutta  method for several values of the 
parameters W ,  ST,  and VIS. The parameter W ,  defined in 
(14), is  a  measure of the impact  velocity. The parameter 
ST is the ratio of the surface tensions  on the contact 
surface  and free surface. The equilibrium shape of the 
drop, if it remains  on the surface, is expressible in terms 
of this parameter, since  from (19) the equilibrium drop 
height, 2, is  given  by 

L'(2) = 0, (26) 

which,  from (6), implies 

966 R = [(l + ST)/2(2 - ST)]'". 
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Figure 3 Drop height vs time  during contact (for various W 
with ST = 0 and VIS = 0). 

This drop height is in agreement with that given  by  a 
truncated sphere with  a static meniscus contact angle 7, 
(see Fig. 1) related to ST by 

COS 7, = -ST.  (28) 

The parameter VIS is  defined  in (22) in terms of W ,  R ,  
and  an  unknown constant C that introduces an effect 
similar to a  boundary  layer. We have  not tried to deter- 
mine a  value for this constant. The inviscid case is 
represented by C = 0. In the numerical computations we 
merely  chose  values  of VIS to observe the effect of 
viscosity. 

Figure 2 shows the dimensionless drop height x as a 
function of dimensionless  time t* for the inviscid case, 
VIS = 0, and  initial  Weber  number, W = 1, for various 
surface  tension ratios, ST, ranging  from 1.5 to - 1.0. 
Under static conditions the contact angle 7, in (28) would 
be 180 degrees for ST = 1,90 degrees for ST = 0, and 0 
degrees for ST = -1. For lSTl > 1 there is no interpreta- 
tion of ST in terms of corresponding static contact angles. 
Figure 2 indicates that after impact the drop height 
decreases to a  minimum,  then rebounds to the initial 
spherical  shape  with x = 1 and leaves the surface. This  is 
true for ST > - 1, but for ST = - 1, for which the static 
contact angle  is 0 degrees, the drop continues to spread 
and does not  rebound. The minimum drop height  is 
strongly dependent on ST. 

Figure 3 shows x vs t* for ST = 0, VIS = 0, and  various 
values of W between 0.01 and 49. The curve for W = 1 
corresponds to the curve for ST = 0 in  Fig. 2. These 
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Figure 4 Drop height vs time  during contact (for various W 
with ST = 1 and VIS = 0). 
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Figure 6 Drop height vs time  during contact (for various VIS 
with ST = 0 and W = 1). 

curves indicate the sensitivity of the minimum drop 
height to the impact  velocity parameter W .  They also 
show that the duration of contact is greater for smaller W .  
Figure 4 is  similar to Fig. 3 except that ST = 1 rather than 
ST = 0. The curve for W = 1 corresponds to the curve for 
ST = 1 in  Fig. 2. 

Figure 5 also has VIS = 0 but shows x vs t* for three 
values of ST and four values of W .  The curves are similar 
to the other inviscid results in Figs. 2-4. Here we see that 

1( 
0.5 1 1 

Dimensionless  time 

Figure 5 Drop height vs time  during contact (for various ST 
with W = 1 ,  2, 4, 9 and VIS = 0). 

"+-"' 
Dimensionless  time 

Fw 7 Drop height vs time  during contact (for various VIS 
with ST = -0.5 and W = 1). 

the  dependence  on ST is  much stronger than the depen- 
dence on W for the ranges of these two parameters 
considered. 

The  numerical results in Figs. 6-14 illustrate the depen- 
dence of x vs t* on the viscosity parameter VIS. Figures 
6-8 have ST = 0, -0.5, -0.866, respectively, for W = 1; 
Figs. 9-11 have ST = 0, -0.5, -0.866, respectively, for 
W = 4; Figs. 12-14 have ST = 0, -0.5, -0.866, respec- 
tively, for W = 49. In each of these sets VIS ranges from 967 
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Figure 8 Drop height vs time  during contact (for various VIS 
with ST = -0.866 and W = 1). 

I Dimensionless time 

Figure 10 Drop height vs time  during contact (for various VIS 
with ST = -0.5 and W = 4). 

the inviscid  value VIS = 0 to a value that represents a 
highly damped case. In these curves t* ranges from 0 to 5 
whereas  in  Fig. 2 it ranges from 0 to 2 and in Figs. 3 and 4 
it  ranges  from 0 to 1.5. Correspondingly, the At* used in 
the numerical integration was 0.05 for Figs. 6-14,0.02 for 
Fig. 2, and 0.01 for Figs. 3, 4, and 5 .  The convergence 
was  checked  in  all cases by  making test calculations with 
a smaller  value of At*. The figures were drawn with a 

968 digital plotter using a graphics software package that 
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Figure 9 Drop height vs time  during contact (for various VIS 
with ST = 0 and W = 4). 
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Figure 11 Drop height vs time  during contact (for various VIS 
with ST = -0.866 and W = 4). 

gives straight lines between the neighboring data points. 
This  explains the straight line segments in the curves of 
Figs. 6-14. 

Figures 6-8 show that when VIS = 0 the drop rebounds 
from the target surface, but if VIS is large enough, the 
drop remains  on the surface and the x vs t* curves 
somewhat resemble a damped  single  degree-of-freedom 
linear oscillator. In Fig. 6, where ST = 0, the drop 
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Figure 12 Drop height vs time  during contact (for various VIS 
with ST = 0 and W = 49). 

remains on  the target surface  for VIS > 0.01. As indicated 
in Figs. 7 and 8, a smaller  value of VIS is  required  to 
prevent bounce-off for smaller  values of ST. Also in Fig. 6 
we see  that  for VIS = 0.1 the  static condition is reached 
after two  or  three oscillations. This  static  drop height 
value f depends  only on ST according to (27). Figures 7 
and 8 show  that  the damping for VIS = 0.1 is more severe 
for the smaller  values of ST. Figure 8 illustrates the 
nonsinusoidal nature of the  drop height  oscillation, and it 
also shows that  the period depends on the damping 
parameter VIS. The  curve  for VIS = 0.1 does not 
oscillate; the  drop height in this case monotonically 
decreases  to its static value. 

Figures 9-11 present a sequence similar to Figs. 8-10 
except that W equals 4 rather  than 1.  Figures 12-14 
present a similar sequence  for W equals 49. Qualitatively 
the  results  are similar to  those in Figs. 8-10, and  they 
need not be  discussed in detail. 

Estimate  for  the  viscosity  parameter C 
The viscosity parameter C introduced in (17) with  units of 
inverse length can be  estimated in terms of an  unsteady 
boundary layer  thickness. In Batchelor [7, p. 3551 the 
frictional stress at an oscillating boundary is given  by the 
real part of p(1 + i)(U/S) exp (inf), where S is  the 
boundary layer  thickness given  by 

and n is the angular frequency, 

n = 2mf = 2 d T .  (30) 

/o 1 

lDimensionless time 

2 3 4 

Figure 13 Drop height vs time  during contact (for various VIS 
with ST = -0.5 and W = 49). 

/Dimensionless time 

Figure 14 Drop height vs time  during contact (for various VIS 
with ST = -0.866 and W = 49). 

For  our application we take T to be the period observed 
in the numerical results  which, in view of (22), is of the 
order 

T = (pa3/a)’”. (3 1) 

Then C in (17) is given  by 

c = S-l, (32) 

where 
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Figure 15 Contact  radius vs time  during contact (for VIS = 0; 
ST = 0, 1;  and W = 15,45-theory and experiment). 

(33) 

and, in  view  of  (22) and the definitions of W and R ,  it 
follows that 

G w’” 112 
VIS = - (”) = - - 

12 12 
(34) 

For ink-jet  applications  this expression is  typically of 
order 0.1,  which represents a  fairly high value of  damping 
in the  numerical results presented in Figs. 6-14. 

Comparison with experiments 
There  have  been  only  a  few experimental investigations 
of  liquid drop impact on rigid surfaces, and these usually 
were  for  hot surfaces in heat transfer experiments. 
Wachters  and  Westerling  [3]  made photographs of drops 
impacting  a  polished  gold surface maintained at a  tem- 
perature of 400°C. Their  Fig. 12 shows contact surface 
radius as a function of a  dimensionless  time after impact 
for three different  impact velocities. Their photographs 
(presented in their Figs. 9-11) show that a truncated 
sphere  is  close to the actual shape during the height 
reduction  stage but not  during the rebound stage. Since 
the temperature of their target surface is much greater 
than the boiling  point of the liquid (water), the surface is 
not wetted, and the surface tension on the contact surface 
should  be that appropriate to water in steam at the boiling 
point.  The droplets were  discharged at an initial tempera- 
ture of 99°C so p and u on the free surface were taken as 

970 the boiling point  values. Evidently, though never specifi- 

cally stated, they  used p/a  = 1.612 s2/m3.  This  gives W 
equal to 15,  45, and 183 for the three velocities  used in 
their  Fig. 12. Since the value 183 is  much  higher than their 
observed  critical  value for splatter, only their 15 and 45 
values of Ware useful for comparison  with our analytical 
results.  Figure 15 shows dimensionless contact radius 
A& versus dimensionless  time t* for W = 15,  45 and for 
ST = 0, 1  with VIS = 0. These results were calculated 
with use of (2) after x versus t* had  been obtained for 
these parameters. Also  shown on Fig. 15 are the experi- 
mental results from  Fig. 12  of Wachters and  Westerling 
[3]. It is clear from these results that the ST = 0 curves I 
correspond  more  closely to experiment than do the ST = 
1 curves. It is expected that the surface tension next to 
the 400°C surface would  be less than the value in air, so 
that ST would be less than  unity. We also observe that the 
experimental curves for contact radius increase faster and 
approach zero slower than do the theoretical results. The 
latter discrepancy is understandable if we observe that 
upon rebound the experimental drops become quite elon- 
gated rather than  retaining the shape of a truncated 
sphere. 

It is  possibly  more  useful for applications to display  the 
minimum drop height  and  maximum contact radius as a 
function of  Weber number. This occurs when dx/dt 
vanishes,  and hence at the first minimum  in  Figs. 2-14. 
When VIS = 0, we can use conservation of energy to 
derive the necessary  condition for this minimum. Since 
from  (11) KE vanishes  with dxldt, we get 

K E O  -F PEO = PE, 

or with  use of  (6) and (13)-(15), xmin satisfies 

(2 - S T ) x 3  - 2 (E + 2) x + (1 + S T )  = 0. 
2 6  

After  this  cubic  is  solved for xmin, the maximum contact 
radius  is  computed  from the result and the second of (2). 
Figures 16(a)  and (b) show xmin and ( A , , / U ) ~ ~  versus (W/6) 
+ 2 for various  values of ST. The experimental results for 
W = 15,  45 from [3] are shown in  Fig.  16(b),  again 
indicating  close  agreement  with the calculated result for 
ST = 0. 

Summary 
A truncated sphere model  is  used  with  Lagrangian  meth- 
ods to study analytically the impact of a spherical drop 
against  a  flat  rigid surface. The method  is  similar to that 
used  by  Kendall  and  Rohsenow  [6] but differs  from theirs 
in three ways. First, our kinetic  energy expression is 
different. We use (7) with an assumed flow  field for 
axisymmetric  stagnation flow (8) to calculate KE. In [61 a 
form  was  used that was similar to one obtained for the 
cylindrical drop model,  but  with  two constants subse- 
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Figure 16 Dependence of minimum height and maximum contact radius on 2 + W/6. 

quently  determined  by  comparing results for free vibra- 
tion of the drop. Second, we  allow  different arbitrary 
values of free surface tension  and contact surface tension, 
whereas in [6] the latter was set equal to zero. Third, we 
introduce  dissipation into our model. 

The  analysis predicts a  plausible drop impact  depen- 
dence  on three parameters W, ST, and VIS, which 
represent the impact drop Weber  number, the ratio of 
surface tensions, and the viscosity parameter. Compari- 
son  with  a  limited set of experiments indicates that the 
analytical results should  be  useful in predicting spot size 
in  ink jet printing. 

Additional  experimental results would be helpful in 
determining  the appropriate values for the viscosity  pa- 
rameter. 
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