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Impact of a Liquid Drop Against a Flat Surface

Lagrangian methods are used with an assumed flow field and a truncated sphere model to analyze the dynamical process
of a liquid drop impacting a flat, rigid surface. The resulting differential equation for drop height as a function of time
during contact is solved numerically for several values of the three parameters: Weber number of the incoming drop,
ratio of the surface tension in air to that at the contact surface, and the viscosity parameter. The drop contact radius as a
Sfunction of time is also calculated and compared with some experimental results in the literature.

introduction

Liquid drop impact with a solid surface has been a topic
of interest in many different engineering applications. At
present the main interests are in connection with nuclear
reactor cooling and ink-jet printing. In the former applica-
tion heat transfer is affected by the drop dynamics upon
impact of the drop with a hot surface. In the latter the
eventual spot size produced is affected by the drop
dynamics upon impact with the paper. Our concern is
with ink drop spot size.

We can separate the process of producing an ink spot
into two distinct parts. First is the drop shape resulting
from the dynamics of impact. Second is the final spot size
after penetration of the liquid into the paper and subse-
quent drying. The latter part has been considered by
Cantow and Nebenzahl [1]. Here we are concerned with
the impact dynamics, and we assume that the dynamical
process is completed before the penetration is begun. We
therefore idealize the dynamical process by assuming that
the target surface is flat, rigid, and impenetrable.

Early studies of drop impact were concerned with
cavitation damage on steam turbine blades and later with
rain damage on aircraft surfaces. Engel [2] presents high
speed photographs and schlieren patterns of water drops
impacting a glass surface. These photographs show the
spherical drop initially deforming to a shape similar to a
truncated sphere and later spreading to a circular disk

shape. No recovery and bounce-off phenomenon was
indicated from these experiments. An energy balance
type analysis was used to predict the impact pressure as a
function of time.

Wachters and Westerling [3] presented experimental
results for drop impact on a 400°C polished gold surface.
Since vaporization occurs between the drop and the
surface, wetting does not occur and the drops bounce
away after a period of near contact during which there is a
flattening and then a recovery of the drop. They observed
that the drops tend to splatter if the Weber number W =
palP/q is greater than 80, where p and o are fluid density
and surface tension, respectively, a is the drop diameter,
and U is the drop velocity. Similar observations were
made by Pederson [4] and by Styricovich et al. [5].

A recent study by Kendall and Rohsenow [6] was
concerned with heat transfer to dispersed flows and
sprays. They showed that low heat transfer rates are
associated with the rebounding of drops after impact from
very hot surfaces. They developed an analytical model of
the drop impact dynamics based on Lagrangian methods.
Two drop models—cylindrical and truncated sphere—
were considered. Drop height and radius were calculated
based on the cylindrical model. These results were com-
pared with experiments and were found to be in reason-
able agreement.
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Figure 1 Truncated sphere geometries.

Our analysis is similar to that of [6]. We use a truncated
sphere model with Lagrangian methods and an assumed
flow field. Our approach differs from that in [6] in that we
use a different expression for kinetic energy, we include
different surface tension values for the free surface and
contact surface of the drop, and we include viscous
dissipation. A second order nonlinear, ordinary differen-
tial equation is derived for determining the drop height as
a function of time during contact. This equation is solved
numerically for various values of the Weber number,
surface tensions, and viscosity. Drop contact radius is
also calculated, and the results are compared with some
experimental results in the literature.

Problem formulation ,

Assume that a spherical liquid drop of diameter a, density
p, and free surface tension o (in air) impacts a flat rigid
stationary target surface with velocity U. We neglect the
interaction between the drop and air, and we let o, denote
the interface tension between the drop and target surface.

Rather than attempt to solve this flow problem by use
of the continuum theory of fluid mechanics, we use a
dynamical model based on Lagrangian methods together
with certain assumptions about the drop deformation. In
a manner similar to that used by Kendall and Rohsenow
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[6] we assume the drop is of constant volume and, after
contact with the target surface, has the shape of a
truncated sphere. Figure 1 shows two configurations of
such a truncated sphere in contact with the target surface,
which is located at z = 0. The geometry of the truncated
sphere can be expressed in terms of the height A, which
gives the maximum distance on the drop surface from the
target surface. If the drop is not in contact with the target
surface, an additional parameter, say the location of the
mass center z_, is required to specify the geometry. It
will be convenient in deriving the equation that deter-
mines A, as a function of time during contact to use both
parameters N, and z_. The relationship between them
supplies a measure of the drop deformation.

Let A, and A, denote the spherical radius and the
contact circle radius of the truncated sphere. Defining the
dimensionless drop height x by

x = \/a, 1

we obtain from the geometry of the truncated sphere the
results

Na=x@2 + x)6,\Ja =[x = DB =Nw. @

By use of the definition of mass center and after
performing the required volume integrations, we obtain
the following relationship between z_ and X\, during
contact:

zja = 2x + x*)/6 = M(). ©)

The drop volume V, free surface area A, and contact
surface area A, are given by

V = 7d’/6, A = 2m\\,, A, = TCA N, — N). @

Initially, when the spherical drop first touches the
target surface, the parameters defined above have the
values

N o=a,\)=al2,\) =0,2) = al
A = nd’, A) = 0. )
The potential energy of the drop due to surface and
interface tension is given by
PE = 0A + 0 A,

(ed* w32 + 27 + (o)l - £

oa’L(x). ©)

The kinetic energy is given by
1 2 2
KE = 5P U, + U) dv, )
v

where U, and U, represent the radial and axial compo-
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nents of the flow velocity. In order to express KE in terms
of dx/dt we must have a particular form for the velocity
field. For this we assume the axisymmetric stagnation
point flow for inviscid irrotational conditions (see Batche-
lor [7]), which can be written in the form

1 M'(x) dx
U= —-= —r,
T 2 M(x) dt
dz M'(x) dx
— 4

m

U, — (z
dt M(x) dt
This axisymmetric velocity field clearly satisfies

1 a(rU oU oU U
LA0U) 9, 80, 3V, o
r or 0 0Z ar

z

- z). ®)

It also has a stagnation point at the origin and satisfies the
inviscid boundary condition at z = 0, since from (8) and
(3) it follows that

U©,0,0) =0, U001 =0Uf010=0 (10

Finally, it includes a specific measure of the drop defor-
mation by relating the flow field to the mass center. With
use of (8) and (3) in (7) we obtain, after integrating over
the volume of the truncated sphere, )

yi
1 M) dx]? 2 2
KE ZP[M(x) dz] fv @+
2 dx 2
= pVa® A(x) (—;) , 1n
in which
[M'(x)]z ( 1355 112 x“)
Ax) = + + 7. (12)
M(x) 180 144 T2

We observe that the initial values of PE and KE are
given by

PE® = omd®, KE® = nd’pU%12. (13)
The initial Weber number, defined by

W = pal?o, (14)
can be expressed also as

W = 12 KE%PE". (15

It is found experimentally (see [3]) that drop splatter
occurs for W > 80 so our analysis will be restricted to
initial Weber numbers below this value.

Derivation of the differential equation for the drop
height
We begin with the variational statement

n
f [&KE — PE) - f 76d, dA]d! =0, (16)
t A

1 b
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in which 7 represents a shear stress and d, is the radial
displacement on the contact surface of the drop. Since no
shear stress is developed by the velocity field (8), we
make the assumption that the shear stress at z = 0 is
proportional to U, i.e.,

7= CuU, a7

in which w is the fluid viscosity and C is a constant with
the dimension of inverse length. The radial displacement
d, associated with U, in (8) is given by

d = —% In [M(O]r. (18)

Using (6), (8), (11), (12), (17), and (18) in (16), and
carrying out the variations with x as the independent

parameter assumed to vanish at t, and ¢,, we obtain the
nonlinear, second order differential equation

d’x dx\? nC dx
2Ax) — + A'(x) {— | + B(x) —
dr dt 12pa dt
+Z L' =0 (19)
— x =
pV
subject to the initial conditions
dx
x(0) =1, — = —Ula. (20)
dt |i=0

In (19) the function A(x) describes the kinetic energy
given in (11), L'(x) describes the derivative of the poten-
tial energy in (6), M(x) relates the drop height to the mass
center in (3), while B(x) derives from the dissipation term
in (16) and is given by

B(x) = [M'G)/M@OFG* — 2x + x79). Qe
It is convenient to introduce dimensionless time £+ and

surface tension and viscosity parameters ST and VIS,
respectively, through

3vi12 C Wl/2
tx = t/(ﬂ) , 8T = o /o, VIS = =T , (22)
T 12 R

where R is a Reynolds number R = paU/u. We also
reduce the second order differential equation (19) to a first
order system to obtain in dimensionless form

x =y, (23)

¥ = —[C)y* + D)y + E®))RA®X),

in which a dot denotes differentiation with respect to #*
and C(x), D(x), and E(x) are defined by
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Dimensionless drop height

1
1.5
08
1.0
0.6
0.5
S o4
2
g 0
£ 02f
g =05
2 —08
[
E ~09
[a) 0 1 { 1 i 1= 1.0)
0 02 04 06 08 1 12 14 16 18 2
Dimensionless time

Figure 2 Drop height vs time during contact (for various ST
with W = 1 and VIS = ().

13x* 1ix x2 1 2x%\2 *\-2
Cx) = |[— +— + —| |- += + =
36 72 72 3 3 6
1B 1 N1 28
H|— F+ — + — | |= + —
90 72 36 3 3

P )63

W | =

1 23\ 4\ -2
D) = VISG* — 2x + x°9) <_ + __) (i . "_) ,
37337
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The initial conditions for the system (23) are

x0) = 1, y(0) = — W' (25)

Numerical results

The differential system (23)(25) was solved numerically
by use of a Runge-Kutta method for several values of the
parameters W, ST, and VIS. The parameter W, defined in
(14), is a measure of the impact velocity. The parameter
ST is the ratio of the surface tensions on the contact
surface and free surface. The equilibrium shape of the
drop, if it remains on the surface, is expressible in terms
of this parameter, since from (19) the equilibrium drop
height, %, is given by

L' =0, (26)
which, from (6), implies
%= [ + SDR2 - ST, @n
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Figure 3 Drop height vs time during contact (for various W
with ST = 0 and VIS = 0).

This drop height is in agreement with that given by a
truncated sphere with a static meniscus contact angle vy,
(see Fig. 1) related to ST by

cos y, = —ST. (28)

The parameter VIS is defined in (22) in terms of W, R,
and an unknown constant C that introduces an effect
similar to a boundary layer. We have not tried to deter-
mine a value for this constant. The inviscid case is
represented by C = 0. In the numerical computations we
merely chose values of VIS to observe the effect of
viscosity.

Figure 2 shows the dimensionless drop height x as a
function of dimensionless time 7+ for the inviscid case,
VIS = 0, and initial Weber number, W = 1, for various
surface tension ratios, S7, ranging from 1.5 to —1.0.
Under static conditions the contact angle v, in (28) would
be 180 degrees for ST = 1, 90 degrees for ST = 0, and 0
degrees for ST = —1. For |ST| > 1 there is no interpreta-
tion of ST in terms of corresponding static contact angles.
Figure 2 indicates that after impact the drop height
decreases to a minimum, then rebounds to the initial
spherical shape with x = 1 and leaves the surface. This is
true for ST > -1, but for ST = —1, for which the static
contact angle is 0 degrees, the drop continues to spread
and does not rebound. The minimum drop height is
strongly dependent on ST.

Figure 3 shows x vs t* for ST = 0, VIS = 0, and various

values of W between 0.01 and 49. The curve for W = 1
corresponds to the curve for ST = 0 in Fig. 2. These
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Figure 4 Drop height vs time during contact (for various W
with ST = 1 and VIS = 0).
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Figure 5 Drop height vs time during contact (for various ST
with W = 1,2, 4,9 and VIS = 0).
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Figure 6 Drop height vs time during contact (for various VIS
with ST = 0 and W = 1).

curves indicate the sensitivity of the minimum drop
height to the impact velocity parameter W. They also
show that the duration of contact is greater for smaller W.
Figure 4 is similar to Fig. 3 except that ST = 1 rather than
ST = 0. The curve for W = 1 corresponds to the curve for
ST = 1 in Fig. 2.

Figure 5 also has VIS = 0 but shows x vs ¢+ for three
values of ST and four values of W. The curves are similar
to the other inviscid results in Figs. 2-4. Here we see that
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Figure 7 Drop height vs time during contact (for various VIS
with ST = —0.5and W = 1).

the dependence on ST is much stronger than the depen-
dence on W for the ranges of these two parameters
considered.

The numerical results in Figs. 6-14 illustrate the depen-
dence of x vs t* on the viscosity parameter VIS. Figures
6-8 have ST = 0, —0.5, —0.866, respectively, for W = 1;
Figs. 9-11 have ST = 0, —0.5, —0.866, respectively, for
W = 4; Figs. 12-14 have ST = 0, —0.5, —0.866, respec-
tively, for W = 49. In each of these sets VIS ranges from
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Figure 8 Drop height vs time during contact (for various VIS
with ST = ~0.866 and W = 1).
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Figure 9 Drop height vs time during contact (for various VIS
with ST = 0 and W = 4).
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Figure 10 Drop height vs time during contact (for various VIS
with ST = —0.5and W = 4).

the inviscid value VIS = 0 to a value that represents a
highly damped case. In these curves #* ranges from 0 to 5
whereas in Fig. 2 it ranges from 0 to 2 and in Figs. 3 and 4
it ranges from 0 to 1.5. Correspondingly, the A+ used in
the numerical integration was 0.05 for Figs. 6-14, 0.02 for
Fig. 2, and 0.01 for Figs. 3, 4, and 5. The convergence
was checked in all cases by making test calculations with
a smaller value of Ar*. The figures were drawn with a
digital plotter using a graphics software package that
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Figure 11 Drop height vs time during contact (for various VIS
with ST = —0.866 and W = 4).

gives straight lines between the neighboring data points.
This explains the straight line segments in the curves of
Figs. 6-14.

Figures 6-8 show that when VIS = 0 the drop rebounds
from the target surface, but if VIS is large enough, the
drop remains on the surface and the x vs r* curves
somewhat resemble a damped single degree-of-freedom
linear oscillator. In Fig. 6, where ST = 0, the drop
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Figure 12 Drop height vs time during contact (for various VIS
with ST = 0 and W = 49).

remains on the target surface for VIS > 0.01. As indicated
in Figs. 7 and 8, a smaller value of VIS is required to
prevent bounce-off for smaller values of ST. Also in Fig. 6
we see that for VIS = 0.1 the static condition is reached
after two or three oscillations. This static drop height
value ¥ depends only on ST according to (27). Figures 7
and 8 show that the damping for VIS = 0.1 is more severe
for the smaller values of S7. Figure 8 illustrates the
nonsinusoidal nature of the drop height oscillation, and it
also shows that the period depends on the damping
parameter VIS. The curve for VIS = 0.1 does not
oscillate; the drop height in this case monotonically
decreases to its static value.

Figures 9-11 present a sequence similar to Figs. 8-10
except that W equals 4 rather than 1. Figures 12-14
present a similar sequence for W equals 49. Qualitatively
the results are similar to those in Figs. 8~10, and they
need not be discussed in detail.

Estimate for the viscosity parameter C

The viscosity parameter C introduced in (17) with units of
inverse length can be estimated in terms of an unsteady
boundary layer thickness. In Batchelor [7, p. 355] the
frictional stress at an oscillating boundary is given by the
real part of w(l1 + i)U/S) exp (int), where & is the
boundary layer thickness given by

2 1/2

5= (_"L_) (29)
pn

and n is the angular frequency,

n = 2af = 24/T. (30)
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Dimensionless time

Figure 13 Drop height vs time during contact (for various VIS
with ST = —0.5 and W = 49).

Dimensionless drop height

Dimensionless time

Figure 14 Drop height vs time during contact (for various VIS
with ST = —0.866 and W = 49).

For our application we take T to be the period observed
in the numerical results which, in view of (22), is of the
order

T = (pa’lo)"?. (1)
Then C in (17) is given by
c=5", (32)

where
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Figure 15 Contact radius vs time during contact (for VIS = 0;
ST =0, 1; and W = 15, 45—theory and experiment).
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and, in view of (22) and the definitions of W and R, it
follows that

Vn (w"2)1/2 _Vn (uz )“‘_

R 12 \pao

VIS = 34

For ink-jet applications this expression is typically of
order 0.1, which represents a fairly high value of damping
in the numerical results presented in Figs. 6-14.

Comparison with experiments

There have been only a few experimental investigations
of liquid drop impact on rigid surfaces, and these usually
were for hot surfaces in heat transfer experiments.
Wachters and Westerling [3] made photographs of drops
impacting a polished gold surface maintained at a tem-
perature of 400°C. Their Fig. 12 shows contact surface
radius as a function of a dimensionless time after impact
for three different impact velocities. Their photographs
(presented in their Figs. 9-11) show that a truncated
sphere is close to the actual shape during the height
reduction stage but not during the rebound stage. Since
the temperature of their target surface is much greater
than the boiling point of the liquid (water), the surface is
not wetted, and the surface tension on the contact surface
should be that appropriate to water in steam at the boiling
point. The droplets were discharged at an initial tempera-
ture of 99°C so p and o on the free surface were taken as
the boiling point values. Evidently, though never specifi-
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cally stated, they used p/o = 1.612 s*/m>. This gives W
equal to 15, 45, and 183 for the three velocities used in
their Fig. 12. Since the value 183 is much higher than their
observed critical value for splatter, only their 15 and 45
values of W are useful for comparison with our analytical
results. Figure 15 shows dimensionless contact radius
xb/a versus dimensionless time ¢+ for W = 15, 45 and for
ST = 0, 1 with VIS = 0. These results were calculated
with use of (2) after x versus t* had been obtained for
these parameters. Also shown on Fig. 15 are the experi-
mental results from Fig. 12 of Wachters and Westerling
[3]. It is clear from these results that the ST = 0 curves
correspond more closely to experiment than do the ST =
1 curves. It is expected that the surface tension next to
the 400°C surface would be less than the value in air, so
that ST would be less than unity. We also observe that the
experimental curves for contact radius increase faster and
approach zero slower than do the theoretical results. The
latter discrepancy is understandable if we observe that
upon rebound the experimental drops become quite elon-
gated rather than retaining the shape of a truncated
sphere.

It is possibly more useful for applications to display the
minimum drop height and maximum contact radius as a
function of Weber number. This occurs when dx/dr
vanishes, and hence at the first minimum in Figs. 2-14.
When VIS = 0, we can use conservation of energy to
derive the necessary condition for this minimum. Since
from (11) KE vanishes with dx/dt, we get

KE® + PE® = PE,
or with use of (6) and (13)~(15), x_. satisfies

mm

5 3 (W
Q-ST)x -3 (?+2)x+(1+ST)=0.
After this cubic is solved for x__ , the maximum contact
radius is computed from the result and the second of (2).
Figures 16(a) and (b) show x_;  and (\ /a), . versus (W/6)
+ 2 for various values of ST. The experimental results for
W = 15, 45 from [3] are shown in Fig. 16(b), again
indicating close agreement with the calculated result for
ST = 0.

Summary

A truncated sphere model is used with Lagrangian meth-
ods to study analytically the impact of a spherical drop
against a flat rigid surface. The method is similar to that
used by Kendall and Rohsenow [6] but differs from theirs
in three ways. First, our kinetic energy expression is
different. We use (7) with an assumed flow field for
axisymmetric stagnation flow (8) to calculate KE. In [6] a
form was used that was similar to one obtained for the
cylindrical drop model, but with two constants subse-
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Figure 16 Dependence of minimum height and maximum contact radius on 2 + W/6.

quently determined by comparing results for free vibra-
tion of the drop. Second, we allow different arbitrary
values of free surface tension and contact surface tension,
whereas in [6] the latter was set equal to zero. Third, we
introduce dissipation into our model.

The analysis predicts a plausible drop impact depen-
dence on three parameters W, ST, and VIS, which
represent the impact drop Weber number, the ratio of
surface tensions, and the viscosity parameter. Compari-
son with a limited set of experiments indicates that the
analytical results should be useful in predicting spot size
in ink jet printing.

Additional experimental results would be helpful in
determining the appropriate values for the viscosity pa-
rameter.
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