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An Emulation  System  for  Programmable  Sensory 
Robots 

This paper describes EMULA, an experimental interactive system  for the emulation of sensory robots.  EMULA  was 
constructed as a  bridge  between an existing language for driving actual robots and an existing geometric modeling 
system. The modeling system  was extended to handle mechanisms, such as robots, and an emulation language was 
introduced to indicate  certain speciJic physical effects, including sensory feedback, grasping  and releasing of parts, and 
gravity.  EMULA allows manipulation programs  to be tested by users in interactive terminal sessions  or in batch  mode. 
Monitoring functions  are provided  to record actions, store selected  views, and  check for collisions. 

introduction 
During the past 20 years many languages  have  been 
developed for programming  industrial robots [1-4]. Al- 
though  some of these languages  allow off-line program- 
ming without  tying  up  production equipment, they do  not 
in general  provide  facilities for off-line  debugging of these 
programs. A few systems have  been  described that do 
allow  off-line  simulation  of robot motions [5-91, but  none 
allows  off-line  simulation  of  any sensory feedback to the 
robot.  Since  the  typical  robot  program contains condi- 
tional  branches that depend  upon  execution-time  sensing, 
the  inability to simulate sensors is a significant  limitation 
to off-line program preparation. EMULA  is an experi- 
mental  software system for emulating  assembly robots 
that  provides a general  method for emulating  some  forms 
of sensory  feedback [ 101. 

EMULA consists of four  basic subsystems: a modeling 
system  (an enhanced version of the geometric  modeling 
facility GDP [ll]); a programming  language,  AML (the 
language  used to run the robot at this laboratory); an 
emulation system; and a graphics subsystem. 

After an initial phase in  which robot models are creat- 
ed, EMULA accepts statements in AML,  through  which 
the  robot joints and sensors can be referred to directly. 
Any statements involving  movement cause the corre- 
sponding  changes to occur in the model of the robot. 
Specifically,  EMULA evaluates motor and sensor values 
according to a basic  sampling  cycle  much  like the real- 

time control  system that controls the actual manipulator. 
Transformations of the geometric  models as well as 
monitoring functions take place during each basic  cycle. 
The  time  granularity represented by the basic  cycle  can 
be  changed  by the user. A journal can be maintained of 
robot actions and  monitored  collisions. 

The model can  be  displayed at intervals defined as a 
multiple of the basic  cycle. For example, sets of pictures 
for  an  animated film were  produced by setting the display 
rate to be 24 frames/second. The screen can be erased 
between displays, either from the terminal or automati- 
cally. If the  display  is  not erased, we have the multiple 
exposures  shown in some of the figures in this paper. 
Output  from  EMULA  is  normally  displayed on a video 
terminal  and  on a graphical  display  device (IBM/3277 
graphics attachment, TEKTRONIX  display). 

The  unique aspect of EMULA to the robot user is that 
sensory events can  be simulated. This  is done through 
emulation  commands that associate functions with sen- 
sors. Functions  provided for sensor simulation  include 
geometric interference and  probabilistic tests. With the 
former, the user can  specify that a sensor is to trip if the 
geometric  models for objects are in contact or intersect. 
With the latter, the user can simulate  some situations in 
which the  positions of objects are somewhat uncertain. In 
addition,  EMULA  is extensible; user-provided sensor 
simulation  functions can be added. 
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Figure 1 Disembodied hand. 

In this paper, we next describe the extension of the 
modeling system to mechanisms  and the simulation of 
sensors. We then provide examples of the use of 
EMULA, including copies of actual displays produced on 
a graphics  terminal  during sessions. The examples show 
the use of emulation statements concerning real-world 
physical effects, such as sensory feedback, grasping, and 
gravity. 

Extension of modeling 
Our robot emulation system is an extension of the Geo- 
metric  Design Processor system, GDP [5 ,  101. In fact, 
any  geometric  modeling  facility  which can represent 
complex objects as a collection of parts and, as in the case 
of a robot, a collection of parts with a specified articula- 
tion, would be satisfactory. In GDP objects are modeled 
as a hierarchy of sub-objects that are constructed from 
geometric  primitives. Sub-objects can be  defined as “sol- 
ids” or “holes.” The user can cause sub-objects to be 
“merged” to create new  objects-polyhedra representing 
the sum of the descendant “solid” and “hole” parts. 
Once the elements of a subtree are merged, the resulting 
object is indivisible; its original sub-parts cannot move 
with respect to one another. 

One can cause the model to be displayed in various 
ways (Le., projections, viewsietc.). One can also cause 
parts of the model to undergo a geometric transformation. 
In the interactive GDP system, the user may indicate that 
a node is to undergo a linear transformation along a single 
axis or along  all three axes  or a rotational transformation 
is to take place  with respect to one of the three axes. 

The EMULA system models a robot in two distinct 
ways: In the geometric subsystem (GDP), a robot corre- 
sponds to a sub-object of the geometric model. In the 

956 emiation subsystem, the robot state  is represented. This 

state consists of a set of values representing motor 
positions  and various system control variables, such as 
motor speeds and joint limits. The geometry and the state 
are brought together by  specifying that certain sub- 
objects of a geometric model are  to undergo a certain set 
of transformations, these transformations being functions 
of the motor values, the changes in  motor positions, the 
motor speeds, limits, etc. The definition of an emulation 
robot  model, therefore, is this specification of state 
variables, along  with a set of transformations of specified 
sub-objects. A certain amount of implicit  information 
exists, most  notably the actual initial positions of nodes of 
the geometric  model. In contrast, the initial values of the 
motors are given explicitly. A related issue is that we 
make no attempt to model or validate the “physics” of a 
model  and  its associated mechanics. For example, we do 
not check whether the transformations leave a part of the 
model  dangling unsupported in space. 

We use the term “family” to include all  models intend- 
ed  to represent the same configuration of robot. The 
family classification system allows the programmer to use 
different  models, of varying complexity, during a single 
emulation session. The basic EMULA system accepts 
several 7-axis robot models, ranging  from the simple, 
disembodied  hand  shown in Fig. 1, to the stylized, 
articulated  box-frame robot shown in Figs. 2 and 3, to the 
more  detailed robot shown  only  in part in  Fig. 4. EMULA 
can  also  work for different manipulators as well as 
different  models of the same @e. ,  7-axis) manipulator. 
New  models and/or new families can be  made acceptable 
to the emulation system through an interactive or batch 
program as proposed in [9]. This program accepts data 
specifying the number of motors and sensors, motor 
limits, a required set of nodes, and details of the transfor- 
mations of these nodes. 

Thus, in EMULA it is  possible to produce an emulation 
system for a variety of robots, together with arbitrary 
fixtures, tooling, and end-effectors, and to use a range of 
models for these robots, ranging  from  simple to complex. 
We achieve this flexibility by keeping the geometric 
modeling distinct from the other subsystems, that is, the 
robot  language, the mechanics of simulation, and the 
graphic display. 

Simulation of sensors 
Advanced industrial robots are equipped with sensors in 
order to obtain information (feedback) about the “real 
world”  and to act on that information. For the purposes 
of our emulation, we postulate that a sensor registers a 
single  real  value at any time  and  may  be subject to 
monitoring. A sensory event occurs when a sensor’s 
value exceeds some pre-established threshold. The event 
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Figure 2 Sequence using CONTACT. 

(a)  (b )  

Figure 3 Sequence using RANDOM and  adjustable option on GRASP. 

causes  motion to stop. The prototypical sensor is a force/ 
torque sensor that permits the robot to feel for objects in 
its work place. 

EMULA  provides an extensible facility  for  simulating 
sensors so that a variety of sensor functions can be used. 
The  emulation  command  ATTACH  is  used to associate a 
sensor with a function.  The  association of a function  with 
a sensor  is  dynamic  and  can  be  changed. At each cycle, 
the  pseudo-real-time system invokes all functions associ- 
ated with sensors and sets each sensor with the value 
returned by its function. The subsequent interpretation of 
these  values is left to the execution of the  manipulator 
level  language statements. Some of the emulation  func- 
tions to be  described are essentially predicates concern- 
ing events, and the emulation function arbitrarily picks 
the current upper  threshold  defined for the sensor to 
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Figure 4 Sequence using SUPPORT showing a part dropping. 

return as the sensor value.  This causes the desired 
triggering of a sensory event. We  now describe functions 
for  simulation  of sensors which  we  have  implemented. 957 
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The  CONTACT function can be used to detect contact 
of the robot with  known objects at known locations in the 
work space. This  function establishes a check at each 
cycle  for  touching or intersection between the objects 
indicated as arguments. It is  based  on the primitive 
interference  check  provided  by  the  geometric  modeling 
system.  Though we accept only a contadno-contact 
determination  from  this function, the base operation 
computes the exact structure of the interference (one, 
two, or three dimensional objects). A more elaborate 
sensor  function  could return a value proportional to the 
volume  of the intersection. Alternatively,  CONTACT 
could  be  modified to distinguish surface contact from 
penetration.  This may prove useful for force controlled 
insertion  between  tight  fitting parts. 

Certain  kinds of noncontact sensors may be simulated 
using the  CONTACT function. For example, the robot at 
this  laboratory has a light  beam sensor which  can detect 
the presence or absence of an object  between the fingers 
of the gripper. A model for the robot can be  modified  by 
the  addition of a cylinder representing the light  beam. 
Detection of contact of this cylinder with  any object 
would correspond to the beam  being broken. The cylinder 
would  not be  added as a sub-object of either of the 
fingers; thus, other simulation of sensors would still  be 
valid. 

If the exact position of objects in the work space is 
uncertain, or if it is important to test the robot program 
for unpredictable events, sensors can be  simulated by 
functions that do not  depend  on the specification of 
geometric  models. 

program the robot to move  along the path  until a sensor 
(force, tactile, or LED) is triggered by the object. The 
RANDOM function  provides a means for modeling  such a 
search  sequence. We note that for any  single search 
operation the indeterminacy corresponds to one degree of 
freedom, e.g., the position of the object  along one dimen- 
sion.  That is, we are not  simultaneously  simulating  inde- 
terminacy in position  and extents along  multiple  dimen- 
sions. Later we describe how the GRASP  command  with 
an  adjustment  option  can  be  used to continue simulation 
following a probabilistically  determined event. 

We have  implemented a slightly  different sensor simu- 
lation  function in conjunction  with a primitive  modeling 
system  consisting of rectangular  solids. The contact/ 
intersect test is  simplified,  and a probabilistic  function 
that simulates a sensory event sometime  during each 
move  is provided. Our experience with  this  mini-system 
shows  that  emulation of robots with  simulation of sensors 
is  possible  even  when the underlying  modeling system is 
quite  rudimentary  and there is no  graphical  display.  In 
fact, this  exercise  with a primitive  modeling system led us 
to consider  implementation of a more elaborate contact/ 
intersect function that involves fuzzy objects. In  this 
system, we  define an object  (block) of fixed extents and, 
whenever the user chooses, apply a probabilistic  function 
to modify its boundaries. The sensor simulating  function 
references  the modified boundaries. For complex  models, 
this would involve a nontrivial amount of computation. 
This  function  is an example of a further extension of 
geometric  modeling. The definition of the (real world) 
model is made to be the product of an original, static, 
geometric  model  and  emulation  commands. 

The  QUERY  function  allows the user to set the sensor 
value  interactively at each cycle. Thus, if there is a 
particular,  delicate interval in the assembly sequence at 
which a sensory event may occur, the QUERY  function 
could  be  used to simulate a variety of test conditions. 
QUERY requests terminal  input to set the sensor to an 
arbitrary  value, to set the sensor to the current limit, or to 
make  no change. 

The  RANDOM  function  allows the user to put  some 
limited indeterminacy into the system  by  associating a 
sensory event with a procedure that accesses a pseudo- 
random  number generator. RANDOM allows the user to 
establish that the sensor-triggering event will take place 
with  linearly  increasing  probability, the exact parameters 
of the distribution  being adjustable through the parame- 
ters supplied to RANDOM. For example, a typical situa- 
tion  in robotics is to assume that an object will probably 

958 be  found at some  point  along a specific  path  and to 
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The  functions described here cannot handle  all types of 
sensory  feedback.  This  is one reason why  we chose not to 
integrate the emulation of sensors with the geometric 
modeling or the robot programming  language  and  why  we 
provide for user-supplied functions to be associated with 
sensors. However, the functions do fulfill some  common 
requirements:  The  geometric interference check (CON- 
TACT) can  be  used to do preliminary  feasibility tests, 
perhaps make a movie of a new configuration of robot. 
The  QUERY function can be used  for  unpredictable 
events, such as spurious sensor readings. The RANDOM 
function can be used, as shown  below, to model a one 
dimensional search sequence, a common use of  force1 
torque sensors. Repeated  use of  RANDOM or any other 
sensor function in conjunction  with the appropriate AML 
code  can  be  used to program the robot for  more elaborate 
operations. By an artful use of more than one sensor 
simulation function, the user can perform  some  valuable 
off-line testing of an assembly sequence. 
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Examples of emulation 
The  use of EMULA is first illustrated for a sample 
program  in  which a 7-axis,  box frame manipulator search- 
es for a part, picks it up, moves  with it, and places it  down 
again on the work table. The program to perform this task 
would use three guarded moves, that is, moves preceded 
by establishment of limits on one or more sensors. Such a 
move is stopped if a sensor limit is exceeded. One 
guarded  move  is required to find the part, another to 
grasp the part, and a third to locate the table top when 
placing the part. An example of what the robot program 
would look  like  in a somewhat  simplified pseudo-code 
follows: 

move  (-2,10,8) I* moves over and above part *I ,- 
movedown  (10)  until sensors (1,2) exceed (10) I* guarded 
move *I 
open I* open fingers *I 
rotate (90) 
movedown (1) 
close  until sensors (1,2) exceed (10) I* guarded  move to 
grasp part */ 
moveup (10) 
move  (2,- 10,O) 
movedown  (10)  until sensors (1,2,3) exceed (10) 
/* guarded  move  using  wrist sensors to detect part 
touching table top *I 

We  now present two different examples of emulation 
sequences for this same robot program. The difference is 
in the function used to simulate sensor activity. In the 
first  example we use CONTACT and in the second, 
RANDOM. 

The sequences of displays in  Figs. 2 and 3 are from 
these two  emulation sessions. We note that these figures 
were  copied  from  what actually appears on the display. 
Among other features of EMULA, they demonstrate 
switching  back and forth between the two basic modes 
governing the emulation of robot movements: the normal, 
“incremental” mode and the “complete move” mode. In 
the  incremental  mode, the basic cycle is somewhat, 
though  not completely, analogous to a real-time cycle of 
the actual manipulator control system. A move is divided 
up into  sub-moves corresponding to the sampling  time  of 
the control system. The model is transformed at every 
sub-move. In the complete move mode, the entire move, 
as given  in the manipulator command, is done during a 
single cycle. 

We  now describe our sample  emulation sessions. Fig- 
ure 2(a) shows the manipulator  in its initial position. A 
command is then given to move the arm to a position over 
the part. Figure  2(b) shows a multiple exposure of a 
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move.  (The  number of displays showing intermediate 
positions  during a move  is governed by emulation  com- 
mands.) Note that only the moving part of the model has 
been  re-drawn. The user sees the lines  being drawn on top 
of the original  display.  Before  making the next move, we 
erase the screen. The next move is a guarded move  down 
towards the part. We use emulation commands to asso- 
ciate functions for simulation of sensory events with real 
sensors. Specifically,  during every sampling cycle we 
check whether the fingers of the manipulator intersect or 
contact the part. Figure  2(c) shows the resulting multiple 
exposure of the guarded move down. Note that the arm 
has stopped, “resting” on the part. 

We  now skip ahead in the program. Figure 2(d) shows 
the arm after it has been rotated and  with the fingers 
touching the outside of the part. The next move  would 
cause the part to be picked up. Since the system cannot 
determine whether the robot is actually grasping  an 
object, an  emulation  command is used to assert this 
relationship between the robot and its physical environ- 
ment.  Figure  2(e) is a single  display after a completed 
move of the grasped part. Figure 2(f) shows the arm after 
a move towards the center of the work station. The aim of 
the program  now is to touch the part down  gently on the 
table  top. We achieve this by  using the contact function 
again,  with the gripper and the work table as operands. 
The previous  emulation assertion command has estab- 
lished that the part is a sub-object of the gripper. Figure 
2(g) is a multiple exposure of the incremental guarded 
move down.  Figure  2(h) shows the final position. 

The minimum modification of the code shown above 
for simulation of sensors would  be the addition of an 
emulation  command for associating a simulation function 
with a sensor and an assertion command representing the 
fact that the part has been grasped. Samples of such 
modifications of the pseudo-code given above are shown 
in Tables 1 and 2. Table 3 shows the original  program 
modified  by the addition of all the various commands 
required to produce the sequence in  Fig. 2. 

The next set of displays (Fig. 3) involves  emulation of 
the first part of the same code fragment. However, this 
time  we put some indeterminacy into our test by using a 
different function for simulation of sensory events. We 
assume that we do not know exactly how  big the part is. 

Figure  3(a) is a multiple exposure showing  before and 
after a complete  move of the manipulator  arm to a 
position above the part. We now associate a randomizing 
function  with a sensor. This function produces an event 
with  probability  linearly increasing over time. The exact 
linear  function is governed by its arguments. Figure  3(b) 959 
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Table 1 Program  with simulation of sensors by CONTACT. Table 3 Program  with various emulation commands. 

attach (l,contact,fingerl,parta) 
attach (2,contact,finger2,parta) 

I* separate  contact  check  for  each  finger  and  parta */ 

move  (-2.10.8) I* moves over and above part *I 
,2) exceed (10) I* guarded move *I 

(10) I* close  fingers  around part *I 

moveciown (ioj until sensors (1 
open I* open fingers *I 
rotate (90) 
movedown  (1) 
close until sensors (1,2) exceed 

grasp (PaW 

moveup  (10) 
move  (2,-10, 0) 

attach (3,contact,gripper,table) 

movedown  (10)  until sensors (1,2,3) exceed (10) I* guarded 
move *I 

Table 2 Program  using RANDOM function. 

attach (l,random,6, . l ,  .8) 
/* probabilistic test, starting  with  probability .1 and  reaching 

.8 in 6  cycles */ 

move (-2,10,8) I* moves over and above part *I 
movedown  (10) until sensors (1,2) exceed (10) I* guarded move *I 
open I* open fingers *I 
rotate (90) 
movedown (1) 
close until sensors (1,2) exceed (10) I* close fingers around 
part *I 

grasp(parta) at (1,0,0) from (fingerl) 
I* the  position  of  block  adjusted;  it will move  with fingerl *I 

draw 

setdisplaytk(5) 
I* draw  manipulator  in  current  position */ 

I* set  drawing to 1  time  per 5 basic  cycles 
incremental  mode  is  default *I 

attach (l,contact,fingerl,parta) 
attach (2,contact,finger2,parta) 

I* separate  contact  check  for  each  finger  and  parta *I 

move (-2,10,8) I* moves over and above part *I 

erase 

setdrawall(1) 

seterase(1) 

I* erase  display *I 

I* set  display  to  redraw  whole  model  each  time *I 

I* set  display to erase  between  drawings *I 

movedown  (10) until sensors (1,2) exceed (10) I* guarded move *I 

erase 
draw 
setdisplay(0) 

/* set  display off *I 

open I* open fingers *I 
rotate (90) 
movedown  (1) 
close  until sensors (1,2) exceed (10) I* close  fingers around part */ 

grasp(paW 
I* inform  system  that  parta  is to move  with  manipulator *I 

I* reset  display to on *I 

I* set  for  complete  moves *I 

setdisplay(1) 

setincrement(0) 

moveup (10) 
move (2,- 10, 0) 

attach (3,contact,gripper,table) 
setincrement(1) 

I* reset  for  incremental  motion *I 

movedown  (10) until sensors (1,2,3) exceed (10) I* guarded 
move *I 

draw 

shows a multiple exposure of the incremental guarded 
move. Note that motion stops after the third sub-move. In 
order to continue our testing, we  again assert that the part 
is  grasped, in this case using a re-adjust option as part of 
the GRASP  command to place the part in the fingers. 
Figure  3(c)  shows the grasped  position. (It is  also  possible 
to access GDP commands for manipulating objects if a 
more elaborate re-adjustment  is required.) 

Another  example of EMULA  involves  use of the 
emulation assertion command  concerning  gravitation  and 
support.  In Fig. 4, we see the robot dropping a part. The 
assertion to release this object told the emulation system 
to stop moving the part along  with the robot fingers. If no 

960 other assertion is made to the emulation system, the part 

will  remain  in the same  position.  The  SUPPORT asser- 
tion checks whether  an  indicated  pair of objects, say  the 
table  and the part, are in contact. If they are not, the 
second  object  is translated according to the calculated 
effects of gravity in a specified direction. We emphasize 
here  the  assumption that support of one object by another 
is indicated by a contact check between  the  models. 

Figures 2, 3 and 4 were obtained from interactive 
emulation sessions with agraphics terminal.  EMULA  can 
be  used in a batch mode  during  which pictures can be 
constructed and  saved or when  watching the display is 
not so critical. Two features useful for the batch mode are 
collision  checking  and  journaling. For example, a moni- 
toring  function  can  be  used to check for collisions  during 
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execution of a program. We note that this  use of interfer- 
ence  checking  is independent of any  use of  CONTACT 
for  simulation  of sensors. In fact, this monitoring may 
indicate to the  programmer  where sensor-based moves 
should  be  inserted in the program. An emulation  com- 
mand establishes monitoring  of  collisions  between  speci- 
fied pairs of elements. A collision  check can be estab- 
lished for any  number of pairs of objects. A journal file 
can  be  established by an  emulation  command:  all  com- 
mands entered by the user, along  with any responses 
from the system, are recorded in the journal file. We  give 
a sample journal file  in Table 4. In the case shown here, 
the  objects  monitored for collision are the fingers of the 
robot.  This  batch  mode of operation can be used to detect 
which points of a robot program require delicate  maneu- 
vering  around parts. Testing of a robot program does not 
depend on the user looking at the graphics  display and 
judging that an  operation is safe. 

. Future  work 
The  issue of variability and  defined tolerances of parts 
offers several possibilities for future research in geomet- 
ric  modeling  and  emulation. For example, we  would  like 
some  automatic or semi-automatic  method of generating 
models  of the  same  family. The use of a particular 
member  of a family  would  be  based on a trade-off 
involving the computer  time  required for the display, 
transformation,  and  monitoring of the model versus a 
measure of the closeness of its fit to the real robot. One 
choice for this  measure of closeness could  be  volume; 
another possibility  is maximum linear  variance  along  each 
of three principal axes. 

Similarly,  the  idea  of  probabilistic  functions for simula- 
tion of sensory events, which  is represented here by the 
RANDOM function, may  be adapted to specifying mod- 
els with variability.  This would involve another extension 
of the  modeling subsystem to handle objects with  variable 
extents. We  would maintain the dynamic nature of the 
association of sensors with  simulation functions, such as 
a combination of CONTACT  and  RANDOM,  but  some 
information  would be incorporated in the model. 

Conclusion 
EMULA  offers the user of industrial robots a facility for 
developing  and  testing programs, since  it accepts the 
same  instruction set as an actual robot along  with an 
emulation  language for specifying  such  things as sensory 
input  and  gravitational  effects.  As part of the work, an 
extension was  made to the  existing  modeling system to 
handle  mechanisms:  We  establish a procedure to define 
what  would  be an acceptable geometric  model for a 
family  of  robots  and  define  the relationship of changes in 
motor  values to movement of parts of acceptable models. 
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Table 4 Sample  journal file. 

***JOURNAL OPENED AT 10:00:00:000*** 
setdisplay (0); 
startupmotors; 
open (1); /* open fingers */ 
setcrashchk (1, ‘FINGERl’, ‘FINGERZ’); 
close (0); /* close fingers */ 
**CRASH DETECTED* FINGER1 & FINGER2 
**CRASH DETECTED* FINGER1 & FINGER2 
setjournal (0); 
***JOURNAL CLOSED AT 10:04:50:000*** 

Various features are included to make the system usable: 
for  example,  definition of a robot family,  programmer 
control of rate and nature of displays, and  recording of 
display andor monitor  information in a journal. Of 
course, EMULA cannot be  used for complete testing of 
robot  programs. In addition to the  general  problem of 
modeling tolerances of parts, fixtures, and the robot 
itself,  the robot application  domain contains indetermi- 
nacies  caused  by hysteresis, wear, noise, etc. Unlike 
resolution, these cannot be adequately  modeled by a 
geometric  modeling/emulation system. The EMULA sys- 
tem,  however, does ease the difficult task of designing 
and  programming a computer  controlled  mechanical ma- 
nipulator to perform  assembly and/or testing jobs in a 
“real-life”  production environment. 
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