Jeanine Meyer

An Emulation System for Programmable Sensory

Robots

This paper describes EMULA, an experimental interactive system for the emulation of sensory robots. EMULA was
constructed as a bridge between an existing language for driving actual robots and an existing geometric modeling
system. The modeling system was extended to handle mechanisms, such as robots, and an emulation language was
introduced to indicate certain specific physical effects, including sensory feedback, grasping and releasing of parts, and
gravity. EMULA allows manipulation programs to be tested by users in interactive terminal sessions or in batch mode.
Monitoring functions are provided to record actions, store selected views, and check for collisions.

- Introduction

During the past 20 years many languages have been
developed for programming industrial robots [1-4]. Al-
though some of these languages allow off-line program-
ming without tying up production equipment, they do not
in general provide facilities for off-line debugging of these
programs. A few systems have been described that do
allow off-line simulation of robot motions [5-9], but none
allows off-line simulation of any sensory feedback to the
robot. Since the typical robot program contains condi-
tional branches that depend upon execution-time sensing,
the inability to simulate sensors is a significant limitation
to off-line program preparation. EMULA is an experi-
mental software system for emulating assembly robots
that provides a general method for emulating some forms
of sensory feedback [10].

EMULA consists of four basic subsystems: a modeling
system (an enhanced version of the geometric modeling
facility GDP [11]); a programming language, AML (the
language used to run the robot at this laboratory); an
emulation system; and a graphics subsystem.

After an initial phase in which robot models are creat-
ed, EMULA accepts statements in AML, through which
the robot joints and sensors can be referred to directly.
Any statements involving movement cause the corre-
sponding changes to occur in the model of the robot.
Specifically, EMULA evaluates motor and sensor values
according to a basic sampling cycle much like the real-

time control system that controls the actual manipulator.
Transformations of the geometric models as well as
monitoring functions take place during each basic cycle.
The time granularity represented by the basic cycle can
be changed by the user. A journal can be maintained of
robot actions and monitored collisions.

The model can be displayed at intervals defined as a
multiple of the basic cycle. For example, sets of pictures
for an animated film were produced by setting the display
rate to be 24 frames/second. The screen can be erased
between displays, either from the terminal or automati-
cally. If the display is not erased, we have the multiple
exposures shown in some of the figures in this paper.
Output from EMULA is normally displayed on a video
terminal and on a graphical display device (IBM/3277
graphics attachment, TEKTRONIX display).

The unique aspect of EMULA to the robot user is that
sensory events can be simulated. This is done through
emulation commands that associate functions with sen-
sors. Functions provided for sensor simulation include
geometric interference and probabilistic tests. With the
former, the user can specify that a sensor is to trip if the
geometric models for objects are in contact or intersect.
With the latter, the user can simulate some situations in
which the positions of objects are somewhat uncertain. In
addition, EMULA is extensible; user-provided sensor
simulation functions can be added.

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. @ VOL. 25 ® NO. 6 ® NOVEMBER 1981

955

JEANINE MEYER |

956

|

Figure 1 Disembodied hand.

In this paper, we next describe the extension of the
modeling system to mechanisms and the simulation of
sensors. We then provide examples of the use of
EMULA, including copies of actual displays produced on
a graphics terminal during sessions. The examples show
the use of emulation statements concerning real-world
physical effects, such as sensory feedback, grasping, and
gravity.

Extension of modeling

Our robot emulation system is an extension of the Geo-
metric Design Processor system, GDP [5, 10]. In fact,
any geometric modeling facility which can represent
complex objects as a collection of parts and, as in the case
of a robot, a collection of parts with a specified articula-
tion, would be satisfactory. In GDP objects are modeled
as a hierarchy of sub-objects that are constructed from
geometric primitives. Sub-objects can be defined as ‘‘sol-
ids’’ or ‘‘holes.”” The user can cause sub-objects to be
‘“‘merged’’ to create new objects—polyhedra representing
the sum of the descendant ‘‘solid”” and ‘‘hole’’ parts.
Once the elements of a subtree are merged, the resulting
object is indivisible; its original sub-parts cannot move
with respect to one another.

One can cause the model to be displayed in various
ways (i.e., projections, views, etc.). One can also cause
parts of the model to undergo a geometric transformation.
In the interactive GDP system, the user may indicate that
a node is to undergo a linear transformation along a single
axis or along all three axes or a rotational transformation
is to take place with respect to one of the three axes.

The EMULA system models a robot in two distinct
ways: In the geometric subsystem (GDP), a robot corre-
sponds to a sub-object of the geometric model. In the
emulation subsystem, the robot state is represented. This

JEANINE MEYER

state consists of a set of values representing motor
positions and various system control variables, such as
motor speeds and joint limits. The geometry and the state
are brought together by specifying that certain sub-
objects of a geometric model are to undergo a certain set
of transformations, these transformations being functions
of the motor values, the changes in motor positions, the
motor speeds, limits, etc. The definition of an emulation
robot model, therefore, is this specification of state
variables, along with a set of transformations of specified
sub-objects. A certain amount of implicit information
exists, most notably the actual initial positions of nodes of
the geometric model. In contrast, the initial values of the
motors are given explicitly. A related issue is that we
make no attempt to model or validate the ‘‘physics’’ of a
model and its associated mechanics. For example, we do
not check whether the transformations leave a part of the
model dangling unsupported in space.

We use the term ‘‘family’’ to include all models intend-
ed to represent the same configuration of robot. The
family classification system allows the programmer to use
different models, of varying complexity, during a single
emulation session. The basic EMULA system accepts
several 7-axis robot models, ranging from the simple,
disembodied hand shown in Fig. 1, to the stylized,
articulated box-frame robot shown in Figs. 2 and 3, to the
more detailed robot shown only in part in Fig. 4. EMULA
can also work for different manipulators as well as
different models of the same (i.e., 7-axis) manipulator.
New models and/or new families can be made acceptable
to the emulation system through an interactive or batch
program as proposed in [9]. This program accepts data
specifying the number of motors and sensors, motor
limits, a required set of nodes, and details of the transfor-
mations of these nodes.

Thus, in EMULA it is possible to produce an emulation
system for a variety of robots, together with arbitrary
fixtures, tooling, and end-effectors, and to use a range of
models for these robots, ranging from simple to complex.
We achieve this flexibility by keeping the geometric
modeling distinct from the other subsystems, that is, the
robot language, the mechanics of simulation, and the
graphic display.

Simulation of sensors

Advanced industrial robots are equipped with sensors in
order to obtain information (feedback) about the ‘‘real
world”’ and to act on that information. For the purposes
of our emulation, we postulate that a sensor registers a
single real value at any time and may be subject to
monitoring. A sensory event occurs when a sensor’s
value exceeds some pre-established threshold. The event

IBM J. RES. DEVELOP. ® VOL. 25 @ NO. 6 ®« NOVEMBER 1981

(a) (b)

Figure 2 Sequence using CONTACT.

(c) ’ (d)

Figure 3 Sequence using RANDOM and adjustable option on GRASP.

causes motion to stop. The prototypical sensor is a force/
torque sensor that permits the robot to feel for objects in
its work place.

EMULA provides an extensible facility for simulating
sensors so that a variety of sensor functions can be used.
The emulation command ATTACH is used to associate a
sensor with a function. The association of a function with
a sensor is dynamic and can be changed. At each cycle,
the pseudo-real-time system invokes all functions associ-
ated with sensors and sets each sensor with the value
returned by its function. The subsequent interpretation of
these values is left to the execution of the manipulator
level language statements. Some of the emulation func-
tions to be described are essentially predicates concern-
ing events, and the emulation function arbitrarily picks
the current upper threshold defined for the sensor to

IBM J. RES. DEVELOP. @ VOL. 25 ® NO. 6 ® NOVEMBER 1981

i

1!
i

{,

Figure 4 Sequence using SUPPORT showing a part dropping.

return as the sensor value. This causes the desired
triggering of a sensory event. We now describe functions
for simulation of sensors which we have implemented.

957

JEANINE MEYE]

958

The CONTACT function can be used to detect contact
of the robot with known objects at known locations in the
work space. This function establishes a check at each
cycle for touching or intersection between the objects
indicated as arguments. It is based on the primitive
interference check provided by the geometric modeling
system. Though we accept only a contact/no-contact
determination from this function, the base operation
computes the exact structure of the interference (one,
two, or three dimensional objects). A more elaborate
sensor function could return a value proportional to the
volume of the intersection. Alternatively, CONTACT
could be modified to distinguish surface contact from
penetration. This may prove useful for force controlled
insertion between tight fitting parts.

Certain kinds of noncontact sensors may be simulated
using the CONTACT function. For example, the robot at
this laboratory has a light beam sensor which can detect
the presence or absence of an object between the fingers
of the gripper. A model for the robot can be modified by
the addition of a cylinder representing the light beam.
Detection of contact of this cylinder with any object
would correspond to the beam being broken. The cylinder
would not be added as a sub-object of either of the
fingers; thus, other simulation of sensors would still be
valid.

If the exact position of objects in the work space is
uncertain, or if it is important to test the robot program
for unpredictable events, sensors can be simulated by
functions that do not depend on the specification of
geometric models.

The QUERY function allows the user to set the sensor
value interactively at each cycle. Thus, if there is a
particular, delicate interval in the assembly sequence at
which a sensory event may occur, the QUERY function
could be used to simulate a variety of test conditions.
QUERY requests terminal input to set the sensor to an
arbitrary value, to set the sensor to the current limit, or to
make no change.

The RANDOM function allows the user to put some
limited indeterminacy into the system by associating a
sensory event with a procedure that accesses a pseudo-
random number generator. RANDOM allows the user to
establish that the sensor-triggering event will take place
with linearly increasing probability, the exact parameters
of the distribution being adjustable through the parame-
ters supplied to RANDOM. For example, a typical situa-
tion in robotics is to assume that an object will probably
be found at some point along a specific path and to

JEANINE MEYER

program the robot to move along the path until a sensor
(force, tactile, or LED) is triggered by the object. The
RANDOM function provides a means for modeling such a
search sequence. We note that for any single search
operation the indeterminacy corresponds to one degree of
freedom, e.g., the position of the object along one dimen-
sion. That is, we are not simultaneously simulating inde-
terminacy in position and extents along muiltiple dimen-
sions. Later we describe how the GRASP command with
an adjustment option can be used to continue simulation
following a probabilistically determined event.

We have implemented a slightly different sensor simu-
lation function in conjunction with a primitive modeling
system consisting of rectangular solids. The contact/
intersect test is simplified, and a probabilistic function
that simulates a sensory event sometime during each
move is provided. Our experience with this mini-system
shows that emulation of robots with simulation of sensors
is possible even when the underlying modeling system is
quite rudimentary and there is no graphical display. In
fact, this exercise with a primitive modeling system led us
to consider implementation of a more elaborate contact/
intersect function that involves fuzzy objects. In this
system, we define an object (block) of fixed extents and,
whenever the user chooses, apply a probabilistic function
to modify its boundaries. The sensor simulating function
references the modified boundaries. For complex models,
this would involve a nontrivial amount of computation.
This function is an example of a further extension of
geometric modeling. The definition of the (real world)
model is made to be the product of an original, static,
geometric model and emulation commands.

The functions described here cannot handle all types of
sensory feedback. This is one reason why we chose not to
integrate the emulation of sensors with the geometric
modeling or the robot programming language and why we
provide for user-supplied functions to be associated with
sensors. However, the functions do fulfill some common
requirements: The geometric interference check (CON-

- TACT) can be used to do preliminary feasibility tests,

perhaps make a movie of a new configuration of robot.
The QUERY function can be used for unpredictable
events, such as spurious sensor readings. The RANDOM
function can be used, as shown below, to model a one
dimensional search sequence, a common use of force/
torque sensors. Repeated use of RANDOM or any other
sensor function in conjunction with the appropriate AML
code can be used to program the robot for more elaborate
operations. By an artful use of more than one sensor
simulation function, the user can perform some valuable
off-line testing of an assembly sequence.

IBM J. RES. DEVELOP. ® VOL. 25 ® NO. 6 # NOVEMBER 1981

Examples of emulation

The use of EMULA is first illustrated for a sample
program in which a 7-axis, box frame manipulator search-
es for a part, picks it up, moves with it, and places it down
again on the work table. The program to perform this task
would use three guarded moves, that is, moves preceded
by establishment of limits on one or more sensors. Such a
move is stopped if a sensor limit is exceeded. One
guarded move is required to find the part, another to
grasp the part, and a third to locate the table top when
placing the part. An example of what the robot program
would look like in a somewhat simplified pseudo-code
follows:

move (—2,10,8) /* moves over and above part */ ~
movedown (10) until sensors (1,2) exceed (10) /* guarded
move */

open /* open fingers */

rotate (90)

movedown (1)

close until sensors (1,2) exceed (10) /* guarded move to
grasp part */

moveup (10)

move (2,—10,0)

movedown (10) until sensors (1,2,3) exceed (10)

/* guarded move using wrist sensors to detect part
touching table top */

We now present two different examples of emulation
sequences for this same robot program. The difference is
in the function used to simulate sensor activity. In the
first example we use CONTACT and in the second,
RANDOM.

The sequences of displays in Figs. 2 and 3 are from
these two emulation sessions. We note that these figures
were copied from what actually appears on the display.
Among other features of EMULA, they demonstrate
switching back and forth between the two basic- modes
governing the emulation of robot movements: the normal,
‘“‘incremental”’ mode and the “‘complete move’’ mode. In
the incremental mode, the basic cycle is somewhat,
though not completely, analogous to a real-time cycle of
the actual manipulator control system. A move is divided
up into sub-moves corresponding to the sampling time of
the control system. The model is transformed at every
sub-move. In the complete move mode, the entire move,
as given in the manipulator command, is done during a
single cycle.

We now describe our sample emulation sessions. Fig-
ure 2(a) shows the manipulator in its initial position. A
command is then given to move the arm to a position over
the part. Figure 2(b) shows a multiple exposure of a

IBM J. RES. DEVELOP. @ VOL. 25 ® NO. 6 & NOVEMBER 1981

move. (The number of displays showing intermediate
positions during a move is governed by emulation com-
mands.) Note that only the moving part of the model has
been re-drawn. The user sees the lines being drawn on top
of the original display. Before making the next move, we
erase the screen. The next move is a guarded move down
towards the part. We use emulation commands to asso-
ciate functions for simulation of sensory events with real
sensors. Specifically, during every sampling cycle we
check whether the fingers of the manipulator intersect or
contact the part. Figure 2(c) shows the resulting multiple
exposure of the guarded move down. Note that the arm
has stopped, ‘‘resting’’ on the part.

We now skip ahead in the program. Figure 2(d) shows
the arm after it has been rotated and with the fingers
touching the outside of the part. The next move would
cause the part to be picked up. Since the system cannot
determine whether the robot is actually grasping an
object, an emulation command is used to assert this
relationship between the robot and its physical environ-
ment. Figure 2(e) is a single display after a completed
move of the grasped part. Figure 2(f) shows the arm after
a move towards the center of the work station. The aim of
the program now is to touch the part down gently on the
table top. We achieve this by using the contact function
again, with the gripper and the work table as operands.
The previous emulation assertion command has estab-
lished that the part is a sub-object of the gripper. Figure
2(g) is a multiple exposure of the incremental guarded
move down. Figure 2(h) shows the final position.

The minimum modification of the code shown above
for simulation of sensors would be the addition of an
emulation command for associating a simulation function
with a sensor and an assertion command representing the
fact that the part has been grasped. Samples of such
modifications of the pseudo-code given above are shown
in Tables 1 and 2. Table 3 shows the original program
modified by the addition of all the various commands
required to produce the sequence in Fig. 2.

The next set of displays (Fig. 3) involves emulation of
the first part of the same code fragment. However, this
time we put some indeterminacy into our test by using a
different function for simulation of sensory events. We
assume that we do not know exactly how big the part is.

Figure 3(a) is a multiple exposure showing before and
after a complete move of the manipulator arm to a
position above the part. We now associate a randomizing
function with a sensor. This function produces an event
with probability linearly increasing over time. The exact
linear function is governed by its arguments. Figure 3(b)

959

JEANINE MEYER

Table 1 Program with simulation of sensors by CONTACT.

Table 3 Program with various emulation commands.

attach (1,contact,fingerl,parta)
attach (2,contact,finger2,parta)
/* separate contact check for each finger and parta */

move (—2,10,8) /* moves over and above part */
movedown (10) until sensors (1,2) exceed (10) /* guarded move */
open /* open fingers */

rotate (90)

movedown (1)

close until sensors (1,2) exceed (10) /* close fingers around part */

grasp (parta)

moveup (10)
move (2,—-10, 0)

attach (3,contact,gripper,table)

movedown (10) until sensors (1,2,3) exceed (10) /* guarded
move */

Table 2 Program using RANDOM function.

attach (1,random,6, .1, .8)
/* probabilistic test, starting with probability .1 and reaching
.8 in 6 cycles */

move (—2,10,8) /* moves over and above part */
movedown (10) until sensors (1,2) exceed (10) /* guarded move */
open /* open fingers */

rotate (90)

movedown (1)

close until sensors (1,2) exceed (10) /* close fingers around
part */

grasp(parta) at (1,0,0) from (fingerl)
/* the position of block adjusted; it will move with finger1 */

draw
/* draw manipulator in current position */
setdisplaytk(5)
/* set drawing to 1 time per 5 basic cycles
incremental mode is default */
attach (1,contact,fingerl,parta)
attach (2,contact,finger2,parta)
/* separate contact check for each finger and parta */

move (-2,10,8) /* moves over and above part */

erase

[* erase display */
setdrawall(1)

/* set display to redraw whole model each time */
seterase(1)

/* set display to erase between drawings */

movedown (10) until sensors (1,2) exceed (10) /* guarded move */

erase
draw
setdisplay(0)

/* set display off */

open /* open fingers */

rotate (90)

movedown (1)

close until sensors (1,2) exceed (10) /* close fingers around part */

grasp(parta)

/* inform system that parta is to move with manipulator */
setdisplay(1)

/* reset display to on */
setincrement(0)

{* set for complete moves */

moveup (10)
move (2,—10, 0)

attach (3,contact,gripper,table)
setincrement(1)
/* reset for incremental motion */

movedown (10) until sensors (1,2,3) exceed (10) /* guarded
move */

draw

shows a multiple exposure of the incremental guarded
move. Note that motion stops after the third sub-move. In
order to continue our testing, we again assert that the part
is grasped, in this case using a re-adjust option as part of
the GRASP command to place the part in the fingers.
Figure 3(c) shows the grasped position. (It is also possible
to access GDP commands for manipulating objects if a
more elaborate re-adjustment is required.)

Another example of EMULA involves use of the
emulation assertion command concerning gravitation and
support. In Fig. 4, we see the robot dropping a part. The
assertion to release this object told the emulation system
to stop moving the part along with the robot fingers. If no

960 other assertion is made to the emulation system, the part

JEANINE MEYER

will remain in the same position. The SUPPORT asser-
tion checks whether an indicated pair of objects, say the
table and the part, are in contact. If they are not, the
second object is translated according to the calculated
effects of gravity in a specified direction. We emphasize
here the assumption that support of one object by another
is indicated by a contact check between the models.

Figures 2, 3 and 4 were obtained from interactive
emulation sessions with a graphics terminal. EMULA can
be used in a batch mode during which pictures can be
constructed and saved or when watching the display is
not so critical. Two features useful for the batch mode are
collision checking and journaling. For example, a moni-
toring function can be used to check for collisions during

IBM J. RES. DEVELOP. & VOL. 25 ® NO. 6 ® NOVEMBER 1981

execution of a program. We note that this use of interfer-
ence checking is independent of any use of CONTACT
for simulation of sensors. In fact, this monitoring may
indicate to the programmer where sensor-based moves
should be inserted in the program. An emulation com-
mand establishes monitoring of collisions between speci-
fied pairs of elements. A collision check can be estab-
lished for any number of pairs of objects. A journal file
can be established by an emulation command: all com-
mands entered by the user, along with any responses
from the system, are recorded in the journal file. We give
a sample journal file in Table 4. In the case shown here,
the objects monitored for collision are the fingers of the
robot. This batch mode of operation can be used to detect
which points of a robot program require delicate maneu-
vering around parts. Testing of a robot program does not
depend on the user looking at the graphics display and
judging that an operation is safe.

+ Future work

The issue of variability and defined tolerances of parts
offers several possibilities for future research in geomet-
ric modeling and emulation. For example, we would like
some automatic or semi-automatic method of generating
models of the same family. The use of a particular
member of a family would be based on a trade-off
involving the computer time required for the display,
transformation, and monitoring of the model versus a
measure of the closeness of its fit to the real robot. One
choice for this measure of closeness could be volume;
another possibility is maximum linear variance along each
of three principal axes.

Similarly, the idea of probabilistic functions for simula-
tion of sensory events, which is represented here by the
RANDOM function, may be adapted to specifying mod-
els with variability. This would involve another extension
of the modeling subsystem to handle objects with variable
extents. We would maintain the dynamic nature of the
association of sensors with simulation functions, such as
a combination of CONTACT and RANDOM, but some
information would be incorporated in the model.

Conclusion

EMULA offers the user of industrial robots a facility for
developing and testing programs, since it accepts the
same instruction set as an actual robot along with an
emulation language for specifying such things as sensory
input and gravitational effects. As part of the work, an
extension was made to the existing modeling system to
handle mechanisms: We establish a procedure to define
what would be an acceptable geometric model for a
family of robots and define the relationship of changes in
motor values to movement of parts of acceptable models.

IBM J. RES. DEVELOP. @ VOL. 25 @ NO. 6 « NOVEMBER 1981

Table 4 Sample journal file.

JOURNAL OPENED AT 10:00:00:000
setdisplay (0);

startupmotors;

open (1); /* open fingers */

setcrashchk (1, ‘FINGERY’, ‘FINGER?’);

close (0); /* close fingers */

**CRASH DETECTED* FINGER1 & FINGER2
**CRASH DETECTED* FINGER1 & FINGER2
setjournal (0);

JOURNAL CLOSED AT 10:04:50:000

Various features are included to make the system usable:
for example, definition of a robot family, programmer
control of rate and nature of displays, and recording of
display and/or monitor information in a journal. Of
course, EMULA cannot be used for complete testing of
robot programs. In addition to the general problem of
modeling tolerances of parts, fixtures, and the robot
itself, the robot application domain contains indetermi-
nacies caused by hysteresis, wear, noise, etc. Unlike
resolution, these cannot be adequately modeied by a
geometric modeling/emulation system. The EMULA sys-
tem, however, does ease the difficult task of designing
and programming a computer controlled mechanical ma-
nipulator to perform assembly and/or testing jobs in a
“real-life”” production environment.

Acknowledgments

The author wishes to thank Peter Will for original encour-
agement in the work, Frederick Ris for solution of a
numerical problem in the GDP system, Kenneth Davies
and Norman Brenner for continuous help in PL/I and
system problems, and Anna Bruss, Phillip Summers, and
David Grossman for reading many drafts of this paper.

References and note

1. C. Cunningham, ‘“‘Robot Flexibility through Software,”
Proceedings of the 9th International Symposium on Industri-
al Robots, Society for Manufacturing Engineers, Dearborn,
MI, March 1979.

2. R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman,
“AL, A Programming System for Automation,”’ Stanford
Artificial Intelligence Laboratory Memo AIM-243, Stanford
University, Stanford, CA, November 1974.

3. L. I. Lieberman and M. A. Wesley, “AUTOPASS: An
Automatic Programming System for Computer Controlled
Mechanical Assembly,”” IBM J. Res. Develop. 21, 321-333
1977).

4. W. T. Park and D. J. Burnett, ‘‘An Interactive Incremental
Compiler for More Productive Programming of Computer-
Controlled Industrial Robots and Flexible Automation,”
Proceedings of the 9th International Symposium on Industri-
al Robots, Society for Manufacturing Engineers, Dearborn,
MI, March 1979.

5. D. D. Grossman, ‘‘Procedural Representation of Three-
Dimensional Objects,”” Research Report RC5314, 1BM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 1975.

JEANINE MET[ER
r‘

961

6.

7.

10.

962

JEANINE MEYER

W. B. Heginbotham, M. Dooner, and K. Case, ‘‘Robot
Application Simulation,”” The Industrial Robot 6 (1979).

T. Kuno, F. Matsumari, H. Moribe, and T. Ikeda, ‘‘Robot:
A Performance Simulator,’’ Proceedings of the 9th Interna-
tional Symposium on Industrial Robots, Society for Manu-
facturing Engineers, Dearborn, MI, March 1979,

. R. Paul, ““Modelling, Trajectory Calculation and Servoing of

a Computer-Controlled Arm,” Stanford Artificial Intelli-
gence Laboratory Memo AIM-177, Stanford University,
Stanford, CA, November 1972.

. B. I. Soroka, ‘‘Debugging Robot Programs with a Simula-

tor,” presented at CADCAM-8 Conference, Society for
Manufacturing Engineers, Dearborn, MI, November 1980.

There is a lack of consensus on the distinction between
simulation and emulation. In our view, simulators are con-
cerned with the internal mechanism of a system or phenome-
non, whereas emulators try to match a specific, external
interface. It is a significant feature of the EMULA system
that the manipulator commands are the same as those of an
actual system for running manipulators, However, no at-

tempt is made to predict physical effects, such as gravity,
grasping of a part by the robot, etc. The design and imple-
mentation of EMULA is concerned primarily with making
the behavior of the robot controllable, reasonable, and
understandable by the user. For these reasons, we chose to
call this an emulation system rather than a simulation
system.

11. L. 1. Lieberman, M. A. Wesley, and M. A. Lavin, “A
Geometric Modelling System for Automated Mechanical
Assembly, Research Report RC7089, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, NY, 1978.

Received December 22, 1980; revised April 24, 1981

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELOP. # VOL. 25 @ NO. 6 ¢ NOVEMBER 1981

