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Fleshing Out Projections

In an earlier paper, the authors presented an algorithm for finding all polyhedral solid objects with a given set of vertices
and straight line edges (its wire frame). This paper extends the Wire Frame algorithm to find all solid polyhedral objects
with a given set of two dimensional projections. These projections may contain depth information in the form of dashed
and solid lines, may represent cross sections, and may be overall or detail views. The choice of labeling conventions in
the projections determines the difficulty of the problem. It is shown that with certain conventions and projections the
problem of fleshing out projections essentially reduces to the problem of fleshing out wire frames. Even if no labeling is
used, the Projections algorithm presented here finds all solutions even though it is possible to construct simple examples
with a very large number of solutions. Such examples have a large amount of symmetry and various accidental
coincidences which typically do not occur in objects of practical interest. Because of its generality, the algorithm can
handle pathological cases if they arise. This Projections algorithm, which has applications in the conversion of
engineering drawings in a Computer Aided Design, Computer Aided Manufacturing (CADCAM) system, has been
implemented. The algorithm has successfully found solutions to problems that are rather complex in terms of either the
number of possible solutions or the inherent complexity of projections of objects of engineering interest.

1. Introduction

In an earlier paper [1] the authors presented an algorithm example, only two projections, and find all possible

for finding all polyhedral solid objects with a given set of
vertices and straight line edges (its wire frame). The Wire
Frame algorithm was based on the concepts of algebraic
topology and rigorous definitions of the geometric entities
involved. It recognized that many solid objects may have
the same wire frame and was able to find all possible
solutions efficiently.

In this paper we extend the Wire Frame algorithm to
polyhedral objects described by a set of two dimensional
projections such as might be seen on an engineering
drawing. The projection process may introduce another
level of ambiguity into reconstruction problems and in-
creases the possibility of there being many objects with
the same set of projections. The Projections algorithm
presented here can work with very little information, for
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*Consi use of | ordering of authors’ names tends to slight people
whose names begin with letters towards the end of the alphabet. Thus, the order of
names on this paper is not meant to pass judgement on the relative contributions of the
authors, but rather to illustrate the fact that names appearing in alphabetical order is
not a “‘natural law.”

objects matching the data. However, it is seen that the
number of solutions may be very large and that it may be
reasonable to provide more information in the form of
three or more projections, by labeling corresponding
features in divers views, and by providing depth informa-
tion. The Projections algorithm is able to make use of this
extra information and can also accept other forms of
advice, such as whether given points are inside material.

Quite apart from its mathematical interest, the algo-
rithm has practical applications in the automatic conver-
sion of digitized engineering drawings into solid volumet-
ric representations of the geometry of objects. These
solid volumetric representations become the basis for the
simulation and synthesis of large parts of the design
validation, analysis, manufacture, inspection, and docu-
mentation process [2, 3].

The subject of reconstruction of solid polyhedral ob-
jects from their projections has been studied over a period
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of years. Early work [4-6] was largely based on labeling
corresponding information in different views and requir-
ing the user to conform to constraints on the manner of
description of features such as faces. The historical trend
has been to free the user of as many constraints as
possible [7]. However, the relaxation of constraints has
led to the possibility of multiple solutions to a given
problem, and workers have tended to concentrate on
heuristic approaches to find a probable solution. A recent
paper [8] reports such a heuristic approach that allows
complete freedom of input and has been implemented;
another paper [9] outlines an approach that would allow
certain views of cylindrical surfaces but does not include
an implementation. None of this work appears to be
based on formal geometric definitions and the concepts of
algebraic topology. A closely related development path
has been followed by workers in the fields of Computer
Vision and Scene Analysis. This path has been based on
vertex and edge configurations in a single view [10-12]
and has generally been restricted to objects with trihedral
vertices and views with no chance alignments; this ap-
proach has led to the Origami World [13] and a linear
programming approach [14].

This paper presents a very general and complete ap-
proach based on the authors’ previously published Wire
Frame algorithm. In addressing the problem of construct-
ing a solid object from a number of two dimensional
views, it is shown that, on the one hand, complete
labeling of edges and vertices leads to the previously
published Wire Frame algorithm. On the other hand, the
Projections algorithm described here is capable of work-
ing with no further information than the lines and points
of the two dimensional projections and is able to enumer-
ate all possible solutions to a given set of projections,
with a cost commensurate with the number of solutions.
The techniques presented are applicable when two or
more projections are available. Of course, the one projec-
tion case has, in general, infinitely many solutions and is
not discussed further in this paper. The chief advantage
gained from providing more projections is quite naturally
to reduce the number of possible ambiguities.

The Projections algorithm constructs polyhedral ob-
jects from projections containing only straight lines. The
logical component of this algorithm is topological in
nature and is, in principle, independent of whether the
components are linear or nonlinear. While extension to
objects with curved surfaces and projections with curved
lines appears to be feasible, the case of actually carrying
out such an extension would depend greatly on the family
of allowable curves and surfaces, as well as the projection
conventions used.
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The paper is organized as follows: Section 2 reviews
the definitions of objects, faces, edges, and vertices used
in the paper describing the Wire Frame algorithm [1] and
then develops the basic results dealing with back projec-
tions and labeled projections. Section 3 outlines the
original Wire Frame algorithm and describes the Basic
Projections algorithm which handles the general case of
unlabeled projections of wire frames of objects. Section 4
presents some extensions to the Basic Projections algo-
rithm which enable it to make use of more general forms
of input data. For example, various types of views
(overall, detail, and cross section) and depth information
distinguishing between visible and occulted lines are
considered. In Section 5, some examples are given to
clarify this discussion. These examples illustrate the
execution of the algorithm in both the stylized world of
geometric puzzles with multiple solutions and the practi-
cal world of engineering drawings. The engineering ob-
jects successfully constructed from their projections are
sufficiently complicated that a human unfamiliar with the
solid object generally has some difficulty envisioning it.
Thus, the algorithm appears capable of handling real
world problems.

2. Basic concepts and results

The basic concepts defined in this section are based on
some fundamental topological ideas which are described
in detail in [15]. Throughout the paper the standard
topology in R? and the induced topology on subsets of IR
are assumed. Vertices refer to points in IR® and edges
refer to line segments defined by two points in IR>. The
approach used in this section is to define faces, objects,
wire frames, and projections, and then describe the
consequences of these definitions.

Definition 1

A face, f, is the closure of a nonempty, bounded, con-
nected, coplanar, open (in the relative topology) subset of
R® whose boundary (denoted by of) is the union of a
finite number of line segments. P; is used to denote the
unique plane which contains f. O

Definition 2

An object, 0, is the closure of a nonempty, bounded,
open subset of IR® whose boundary (denoted by a0) is the
union of a finite number of faces. O

From the definitions above it is easy to see that the
“cube,” {x,y,zER*I0=x=<1,0=<y=<1,0=zs1}
isan object and that{(1,y,2) E R*10=y=<1,0<z< 1}
is one of its ‘‘square’’ faces. Starting off with open sets
means that faces and objects have nontrivial interiors.
Notice that it is not assumed that an object is the closure
of a connected set. This allows objects that consist of
disjoint “‘solids’’ or even objects which intersect only in
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Figure 1 Examples of projections.

edges, etc. One can argue that this last case does not
represent a ‘‘real’’ object, but in practice all sorts of
strange objects can appear. Thus, we decided to handle
the most general case possible. Furthermore, this gener-
ality does not exact any penalty other than creating a
large number of solutions.

Another point worth noticing is that Definitions 1 and 2
allow many different representations of the boundaries of
faces and objects by line segments and faces (respective-
ly). However, there are canonical representations of the
boundaries which correspond to one’s intuitive notions
about such things. To get to these representations it is
necessary to introduce several additional concepts.

Definition 3

(a) Let f be a face. The vertices of f, V(f), are defined to
be the set of all points for which two noncolinear line
segments, contained in df, can be found whose intersec-
tion is the given point.

(b) Let f be a face. The edges of f, E(f), are defined to be
the set of all line segments e, contained in of, satisfying
the following conditions:

1. The endpoints of e belong to V(f);
2. No interior point of e belongs to V(f).

(c) Let G be an object. The vertices of O, V(0), are
defined to be the set of all points p for which facesf,, f,, f;
C 80 can be found such that {p} =f, Nf,Nf, = Pfl N sz
N Pf;‘

(d) Let G be an object. The edges of O, E(0), are defined
to be the set of all line segments e, contained in 90,
satisfying the following conditions:
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1. The endpoints of e belong to V(0);

2. No interior point of e belongs to V(0);

3. For every point p of €, two noncoplanar faces can be
found, f,, f, C 30 such that p € f, N1,

(e) Let O be an object. The wire frame of 0, WF(0), is
defined to be the ordered pair (V(0), E(0)). O

It can be shown that the edges of an object can intersect
only at vertices of the object, i.e., at their endpoints.

The Wire Frame algorithm detailed in [1] allows one to
construct all possible objects which have a given wire
frame. It happens to be true, but not immediately obvious
from the definitions, that V(f), E(f), V(0), and E(0) are all
finite and well-defined. These facts and others are dis-
cussed in greater detail in [1].

The Wire Frame algorithm described in [1] runs on any
collection of points and line segments in R® and either
returns all objects having the given collection as their
wire frame or shows that the given collection could not be
a valid wire frame. In presenting the Projections algo-
rithm the first things to consider are the projections of the
wire frame of a valid object. At this point it is necessary
to make clear exactly what is meant by a projection.

Definition 4

Let O be an object, P C R? a plane, and 7rp:lR3 — P the
perpendicular projection. By the P-projection of 0, denot-
ed by O | P, is meant the ordered pair, (V(CIP), E(CIP)), of
P-vertices and P-edges of O defined by the following
process. Let E* be the set of images under m, of all edges
of € which are not perpendicular to P. Then the P-vertices
of 0 are those points of P which lie on at least two non-
colinear line segments in E*. The P-edges of © are those
line segments of P which have elements of V(OIP) as
endpoints, have no points of V(GIP) as interior points, and
are subsets of unions of elements of E*.

XY, YZ, and ZX are used to denote the planes Z = 0, X
=0, and Y = 0, respectively. [

Figure 1 shows some of the things that can happen as a
result of projection. The vertex A disappears in the front
and top views. Furthermore, the edges AB, AC, AD, and
AE do not appear as such in these views. Rather a single
edge appears which is the union of the projections of the
four aforementioned line segments. However, in the side
view the vertex A projects into a vertex, and the projec-
tions of AB, AC, AD, and AE form distinct line seg-
ments.

At this point it seems appropriate to discuss the situa-
tions in which vertices of an object project into vertices in
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a given projection. Note that if a vertex of a polyhedral
object is the intersection of at least three noncoplanar line
segments, the image of that vertex under any projection is
the intersection of at least two noncolinear line segments
and is thus a vertex in that projection. For convenience,
vertices which are the intersections of at least three
noncoplanar line segments are called Class I vertices.
Thus, if two different projections of an object are given,
the Class I vertices are a subset of the set of all intersec-
tions of all the perpendiculars erected at the vertices in
each projection.

All vertices of an object which are not Class I are to be
called Class II vertices. In Fig. 1, vertex A is Class II; all
other vertices are Class I. In general, one cannot expect
to recover Class II vertices simply by erecting perpendic-
ulars and computing their intersections.

There are a number of properties of Class I and Class II
vertices which are useful in recovering an object from its
projections. The key observation, which is formalized
below, is that the wire frame of © can be recovered from
the Class I vertices of O and certain line segments joining
these vertices.

Definition 5

The skeleton, S(0), of an object O is the ordered pair
(SV(0), SE(0)) of skeletal vertices and skeletal edges
where SV(0) is the set of the Class I vertices of € and
SE(©) is a set of line segments joining the elements of
SV(®©). For v, v, € SV(0), there exists w € SE(0),
joining v, v, iff there exists an edge or colinear sequence
of edges of G joining v, and v, and not containing any
other Class I vertex. O

Theorem 6

Let © be an object. Then the wire frame of 0, (V(0),
E(0)), can be recovered from the skeleton of G, (SV(0),
SE(0)), as follows. First, V(0) = V*(©) where

V*©) = SV(0) U {vi{v} = e, Neyee € SE(0)}.

Thus, to get all vertices of O it is enough to add all
intersection points of skeletal edges to the skeletal verti-
ces. Second, E(0) is simply the set of line segments which
result from partitioning the skeletal edges using their
points of intersection.

Proof Observe that from Definition 5 it follows that
every skeletal edge is the union of edges of ©. Thus, the
intersection of two skeletal edges is a point of intersection
of two edges. However, edges of O intersect only in
vertices of 0. Thus, V*(©) C V(0).

It remains to show that V() C V*(©). In particular it
must only be demonstrated that every Class II vertex of 0
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belongs to V¥*(0). To see this it is necessary to consider
briefly the nature of the edges of 0. Lete € E(0), p E e,
and € the infinite line through p containing e. Let X be the
set of disjoint line segments formed by the intersection of
€ and the boundary of 0. Now either p is in the interior of
X (i.e., there are points of X on both sides of p which are
arbitrarily close to p) or p has arbitrarily close neighbors
only to one side of it. Let f, and f, be the two noncoplanar
faces whose intersection contains e. If p is not in the
interior of X, then, since p is on the boundaries of f, andf,
but is not in the interior of any of the edges, it must be a
vertex of each of the faces, i.e., there must be edges, e, €
f,, e, € f,, not colinear with e such that{p} =eNe =eN
e, But in this case there are three noncoplanar edges
through p, namely, e, e,, and e,. Thus, p is a Class I
vertex.

The point of the preceding paragraph is to show that
either a point, p, of an edge, e, is a Class I vertex or the
line through p containing e has boundary points of O
arbitrarily close to p, i.e., there exists a line segment s D e
contained in 80 for which p is an interior point. In
particular, an edge, e, containing a Class II vertex p can
be extended to a line segment s lying in 40 containing e
whose endpoints are Class I vertices, i.e., every edge of 0
is contained in some skeletal edge. Since every vertex of
O must lie on at least three edges, every Class II vertex of
O must lie on at least two skeletal edges and hence V(0) =
V*(0).

Since every edge of O lies in some skeletal edge and
V(0) = V*(0), it follows that the edges of O are exactly
the pieces into which the skeletal edges are partitioned by
the vertices of €. (I

Theorem 6 gives some insight into the working of the
Projections algorithm. Back projection yields a pseudo
skeleton consisting of a set of vertices which includes the
Class I vertices and a set of edges. This pseudo skeleton
is processed to produce a pseudo wire frame. In general,
the pseudo skeleton and pseudo wire frame contain
vertices and edges not in the skeleton and wire frame of
the original object. However, they do contain all the
vertices and a partition of the edges of the skeleton and
wire frame of the original object. In fact, the additional
complexity of the Projections algorithm is based on the
fact that back projection generally yields many vertices
and edges not in the original object. The Projections
algorithm thus proceeds along the lines laid down by the
Wire Frame algorithm, but with suitable modifications
made to deal with surplus information.

The discussion of Class II vertices in the proof of
Theorem 6 shows that they have various properties, one
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of which appears as Theorem 7. Theorem 7 is very useful
in showing that certain points which arise from back
projection cannot be vertices of 0. Example 4 later in the
paper illustrates the power of this observation.

Theorem 7
Let € be an object and v a Class II vertex of 0. Any plane,
P, through v separates R? into two components each of
which contains interior points of © which are arbitrarily
close to v.

Proof From the proof of Theorem 6 it follows that v is
the intersection of two noncolinear line segments, e, and
€,, which are unions of line segments of 0, are contained
in the boundary of O, and contain v as an interior point.
Any plane through v not containing €, or e, is clearly
going to contain interior points of © near v, and in this
case this theorem is true. Also, there is only one plane, P,
containing e, and e,. If all of G were to one side of P, there
would be a contradiction, since at least four noncoplanar
faces would go through v, but all the edges containing v
would be coplanar. O

The remainder of this section shows how much simpler
things are when items are labeled or when special projec-
tions are used. The discussion of the unlabeled case is
resumed in Section 3.

In mechanical drawing practice, one generally starts
with 01XY, 01YZ, and 0IZX, although it is always possi-
ble to use other planes. In fact, as will now be shown, for
each object O it is always possible to find a plane P such
that ™, distinguishes all the elements of WF(0).

Proposition 8

Let O be an object. Then there exists a plane P containing
the origin for which m, projects each element of V(0) into
a distinct vertex of OIP, elements of E(0) project into
distinct line segments which can intersect in at most one
point, and no point in V(0) projects into a projection of an
element of E(0) unless it is a member of it.

Proof The set of all planes in IR containing the origin
can be identified with the unit sphere, SZ, in R? , where
each unit vector corresponds to the plane for which it is a
unit normal. Clearly, in this manner exactly two points of
$? correspond to each plane through the origin. In order
for a projection m, to map each vertex of 0 to a distinct
member of V(OIP), P cannot be perpendicular to any line
which goes through at least two of the points of V(0) and
cannot be perpendicular to any plane containing all edges
incident with a Class II vertex. Each of these restrictions
rules out exactly one plane, i.e., two points on S%. Thus,
in order to get an injection on V(0), at most
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points on S? must be avoided.

Two elements of E(0) can have an intersection of more
than one point in some projection if and only if they are
coplanar. Furthermore, they can project with a nontrivial
overlap only into planes which are perpendicular to the
plane containing both of the elements of E(0). The set of
all planes through the origin perpendicular to a given
plane corresponds to a great circle of S, Thus, to get the
desired behavior at most

( IE(O)I)
2
great circles on S? must be avoided.

To keep a point from projecting onto a line segment not
containing it there are two cases to consider. First, the
point and line segment might be colinear. In this case, one
must avoid the plane perpendicular to the given line.
Again this means avoiding two points. Thus, at most
2IV(0)l 1E(0)| points must be avoided. Second, the point
and line segment are not colinear. In this case it is enough
to avoid all planes perpendicular to a given plane as
before. Thus, at most IV(0)l IE(0) great circles on s?
must be avoided.

Since points and great circles are nowhere dense in s?
and the number of sets which must be avoided is finite, it
follows from the Baire Category Theorem (see [15]) that
there must be points of S* which do not lie in any of the
forbidden sets. Using any such point yields a plane with
the desired properties. O

Definition 9

Let G be an object, P a plane in 3-space, and ™, the
projection of 3-space onto P. Projection m, issaidtobe a
distinguishing projection for O if it has all the properties
of Proposition 8. [J

Note that the proof of Proposition 8 shows that for a
given object ‘‘most’’ projections are distinguishing pro-
jections since the nondistinguishing ones have a two
dimensional measure of 0. The probability of picking a
nondistinguishing projection at random is thus zero in an
ideal model. However, in most practical situations there
are only a finite number of choices for coordinates, and
there is a nonzero probability of picking a nondistinguish-
ing projection. Many objects of engineering interest have
planar features aligned with the ‘‘natural’’ axes of the
object, and the set of three standard views contains a
maximum degree of concealment and self alignment.
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At this point it is worthwhile to consider two cases. In
the first case, the image of each vertex in each projection
‘carries the labels of all the vertices of O that project into

it, i.e., the P-projections are labeled. In the second case,

there are no labels on the vertices of the P-projection.

In the first case there is, quite naturally, significantly
less ambiguity than in the second case. The following
theorem shows exactly how much information can be
recovered from labeled P-projections.

Theorem 10

Let P, and P, be two nonparallel planes in ]Rs, and let 0
be an object. Assume that the P, and P, projections of C
are labeled. Then there is a unique set of points in IR®
which can be V(0). Furthermore, if either of the projec-
tions is distinguishing or if all the edges in at least one P-
projection are labeled with the pairs of vertices they
connect, then WF(0) can be reconstructed uniquely. In
this case, reconstructing objects from projections reduces
to the problem of reconstructing objects from wire
frames.

Proof If P,-vertices and P,-vertices are labeled, to
reconstruct a point x € SV(0), the images of x under the
two projections are found and perpendiculars erected at
those points. Since P, and P, are not parallel, these
perpendiculars can meet in at most one point. Since they
both go through x, x can be recovered as their unique
intersection point. In this way SV(0) can be reconstruct-
ed uniquely, which, by Theorem 6, means that V(0) can
also be reconstructed uniquely.

Clearly, if the edges of at least one P-projection are
labeled as described above, E(0) can be uniquely recon-
structed. If one of the projections is distinguishing, E(0)
can be reconstructed by joining together two points of
V(©) if and only if they are joined together in the
distinguishing projection (or in both projections). O

Thus, given a fairly small amount of information on
projections, one can quickly and easily reconstruct a
unique wire frame. In many practical situations, where
the emphasis is on getting things done and not on creating
puzzles, it seems quite likely that there will be ample
information for constructing the correct wire frame easi-
ly. Unfortunately, there will also be many situations with
inadequate information. The techniques developed for
handling the unlabeled case are of great importance in
such situations.

To complete the development of the labeled case, the
situation in which there are no distinguishing projections
must be discussed. Since this problem is a subset of the
unlabeled case, the unlabeled case is considered next.
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In the unlabeled case, there can be a number of
distinguishing projections and it may not be possible to
recover a wire frame uniquely. The following example
illustrates this in the case of three distinguishing projec-
tions.

Example 11

Let O, be the tetrahedron with vertices {(1, 1, 1), (1, 2, 2),
2,1,2), 2,2, 1)} and G, the tetrahedron with vertices {(1,
1,2),(1,2,1),2, 1, 1), (2,2, 2)}. The projections of 0, and
0, into the XY, XZ, and YZ planes are all distinguishing
and are identical in each plane, but do not allow construc-
tion of a unique wire frame. Actually, the projections into
the various planes are all essentially the same, i.e., by
ignoring the coordinate which is fixed at 0 in each case,
one gets the points {(1, 1), (1, 2), (2, 1), (2, 2)} and the six
possible lines between them, i.e., each projection looks
like a square with both of its diagonals drawn in. In
Section 5, the problem of reconstructing all objects for
which all three standard projections look like a square
with its diagonals is discussed in more detail. As shall be
seen, there are surprisingly many solutions to this prob-
lem. O

The above discussion shows that labeling projections
can be very useful in reducing the difficulty of recon-
structing objects from projections. The truth of the pre-
ceding sentence becomes even more apparent after the
discussion of the algorithm for reconstructing objects
from unlabeled projections in Section 3 and the discus-
sion of the examples in Section 5.

3. Fleshing out unlabeled projections

In order to aid in the comprehension of this rather
complex algorithm, a basic form of the algorithm, which
accepts only limited data, is presented here (Section 3).
The basic algorithm constructs all polyhedral solid ob-
jects whose wire frames have a given set of projections
(or views). The extension of the algorithm to a more
general set of projection forms (i.e., overall, detail, and
cross section), and to the use of depth information to
distinguish between visible and occulted edges, is de-
ferred until Section 4. Since the Projections algorithm is
an extension to the Wire Frame algorithm, the basic
concepts of the Wire Frame algorithm and its terminology
are reviewed first.

In the Wire Frame algorithm the input data [a wire
frame, Fig. 2(a)] are processed to find all graphs contain-
ing more than two noncolinear edges. For each such
graph, minimum enclosed areas are found and nested in a
tree hierarchy. From this hierarchy candidate faces with
an exterior boundary and possibly interior boundaries
(i.e., a face may have holes) are constructed—these are
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(a) Wire frame D
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(b) Virtual faces H @ H
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(¢) Virtual blocks ﬁ
(d)Virtual block
decision states Hole Solid Hole

Figure 2 The Wire Frame algorithm in action.

called virtual faces [Fig. 2(b)]. For each edge, a list of
virtual faces is formed and ordered radially around the
edge. Minimum enclosed volumes are found and nested,
again in a tree hierarchy. From this hierarchy, candidate
volume regions called virtual blocks are found [Fig. 2(c)].
A final decision process assigns state solid or hole to each
virtual block [Fig. 2(d)], glues the solid blocks together,
and finds all possible solid objects with the input wire
frame. Note that one virtual block is always an infinite
envelope block (i.e., it is inside out) and is always a hole.

The ability to handle all possible cases is embedded in
the parts of the algorithm for finding enclosed regions (for
example, bridges are ignored), for the handling of illegal
intersections between virtual faces (Type I and Type 11
intersections, see below), and in the final decision pro-
cess. The correctness of objects is derived from the use of
directed edges and faces and from rules governing the
number of times and directions with which edges and
faces are used.

The several stages of the Projections algorithm are now
described. Since many of these stages are quite similar to
the corresponding stages of the Wire Frame algorithm,
details are given about only those points which are
different. The presentation is given in two parts: first, a
brief outline of the stages, and second, a more detailed
description of each stage.

The early stages (1, 2, and 3) of the Projections
algorithm are concerned with converting, by means of a
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back projection process, a set of projections of an object
to a pseudo skeleton and thence to a pseudo wire frame
for the object. This pseudo wire frame contains supersets
of the vertices of all objects with the given projections.
Furthermore, the edges of this pseudo wire frame parti-
tion the edges of all objects with the given projections.
The existence of various edges and vertices in objects
may be known for certain or may be uncertain. All
components of the pseudo wire frame are consistent with
all the views.

The later stages (i.e., 4-7) apply an extended form of
the Wire Frame algorithm to a pseudo wire frame to find
all polyhedral solid objects with the given projections.

® Outline of the Basic Projections algorithm

1. Check input data The input data to the basic algo-
rithm are assumed to be a set of at least two distinct
parallel projections of the wire frame of a polyhedral
object. Extensions to handle more general forms of input
data are presented in Section 4. The data are checked for
validity and reduced to canonical form with edges and
vertices distinct and with edges intersecting only in
vertices.

2. Construct pseudo vertex skeleton The vertices in
each view are back projected to find all Class I vertices
(i.e., vertices formed by the intersection of noncoplanar
edges) and some Class II vertices (i.e., vertices formed by
the intersection of only coplanar edges); at this point it is
not possible to distinguish between vertex classes. The
vertices discovered here, and the remainder of any Class
II vertices missed in this stage and found in Stage 3, are
called candidate vertices. While not all vertices of 0 may
be recovered at this stage, enough are recovered to
enable the recovery of all vertices after passing through
the next stage. Note also that candidate vertices may not
be vertices or even points of ©.

3. Construct pseudo wire frame  The vertices con-
structed in Stage 2 form a skeleton for the pseudo wire
frame in the same sense that WF(0) derives from S(0).
Edges are introduced based on the edges in the projec-
tions. These edges are checked for mutual internal inter-
sections. Intersections are introduced as additional verti-
ces and used to partition the edges. The remaining Class
II vertices are constructed in this manner. The vertices
constructed here and in Stage 2 are the set of candidate
vertices (denoted CV(0)), and the final set of edges
constructed in this stage is the set of candidate edges
(denoted CE(0)). Together the candidate edges and verti-
ces form the pseudo wire frame. The candidate vertices
are a superset of V(0), and the candidate edges partition
the elements of E(0). The edge connectivity of all vertices
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is examined and the candidate edge and vertex lists
edited. The editing process may remove impossible
items, simplify colinear edges, and update the classifica-
tion of vertices as Class I or II. Candidate edges and
vertices which are the only possible candidates for some
edges and vertices appearing in one of the projections are
labeled as certain and must appear in a solution object; all
others are labeled uncertain and may or may not appear in
solution objects. For both candidate edges and vertices,
cross reference lists are maintained between view edges
and vertices and pseudo wire frame edges and vertices,
and vice versa.

4. Construct virtual faces Beginning with the pseudo
wire frame generated in Stage 3, all virtual faces are found
in a manner analogous to that used in the Wire Frame
algorithm. All uncertain edges are checked for contain-
ment in at least two noncoplanar virtual faces. Any edges
not meeting this criterion are deleted and the virtual faces
updated. Any impossible virtual faces (e.g., a certain
edge piercing the interior of a virtual face) are deleted.
The consequences of deletions are propagated until a
stable condition is reached.

5. Introduce cutting edges Illegal intersections be-
tween two virtual faces such that both faces cannot exist
in an object are handled by the introduction of a tempo-
rary cutting edge along their line of intersection. The
cutting edge partitions the virtual face into smaller inde-
pendent virtual faces and will be removed in the final
stages. All the partitioning processes in the algorithm, be
they of edges or faces, generate lists of siblings with
common parent edge or face, and also lists of correlations
between edges or faces which cannot co-exist in an
object; these data structures are used in the final stages of
the algorithm.

6. Construct virtual blocks  Virtual faces are pieced
together to form virtual blocks in exactly the same
manner as in the Wire Frame algorithm.

7. Make decisions A depth first decision process is
used to assign solid or hole state to the virtual blocks and
to find all objects with the given projections. The process
ensures that all cutting edges disappear in solution objects
(i.e., that they are either totally surrounded by space or
by material or they separate coplanar surfaces). Efficien-
cy in the search process is obtained by careful pruning of
the decision tree, for example, by recognizing that deci-
sions involving partitioned edges and virtual faces may be
propagated to the whole original edge or virtual face.

® Detailed description of the Basic Projections
algorithm

To make the description of the algorithm more compre-
hensible, the example based on Fig. 1 is used to illustrate
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the various stages, i.e., the problem is to recover the
object in Fig. 1 from its three views. For brevity, this
problem is referred to as the Two Wedges problem.

1. Check input data The input data to the basic algo-
rithm are assumed to be a set of two dimensional views of
the whole wire frame of a polyhedral object. The views
may be at arbitrary projection directions, but must meet a
minimum requirement of at least two distinct projections.
Each view is an ordered pair of vertices and edges
(Definition 4) expressed relative to a local two dimension-
al coordinate frame and accompanied by a transformation
matrix between the coordinate frame of the three dimen-
sional object and the two dimensional view.

In this and later stages, tests are performed on the data
input to a stage of the algorithm, for detection of inconsis-
tencies in the data, for reduction of the data to canonical
form for the stage, and to obtain information to be used in
later stages. The exact choice of which tests to include
depends on the characteristics of the input data and
performance trade-offs between the cost of performing a
test first, the usefulness of information generated for later
stages, and the desirability of reporting errors before
incurring the cost of executing the algorithm. These
issues are not considered further here. However, it will
be seen that the combinatorial problems of the projec-
tions algorithm may be very severe, and there is therefore
a need to minimize the quantity of surplus information
generated in the early stages of the algorithm.

2. Construct pseudo vertex skeleton  As stated earlier,
in this stage perpendiculars are erected at each vertex of
each view. Then, only those vertices lying on at least two
noncolinear perpendiculars and which are consistent with
all other projections, i.e., their images are either vertices
or interior points of edges, are selected. As noted after
Definition 4, all Class I vertices and possibly some Class
II vertices are recovered. In order for the projections to
be consistent, it is necessary that every P-vertex have at
least one element of CV(0) in its inverse image. This
check may be performed as part of this stage. In addition,
if some P-vertex has a unique element of CV(0) in its
inverse image, then that element of CV(0) must actually
be an element of V(0). Such a vertex is assigned type
certain, and all other vertices are assigned type uncertain.

Each intersection is tested to see if it coincides with a
previously found vertex and, if not, is introduced as a
new vertex. Each vertex found is accompanied by a list of
cross references to the view-vertex pairs from which it
has been generated. Conversely, for each view vertex, a
list is formed of the wire frame vertices into which it
projects.
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Figure 3 (a) The vertex pseudo skeleton of the Two Wedges
problem. Edge recovery in the Two Wedges problem: (b) the
pseudo skeleton and (c) the pseudo wire frame. (d) The two
solutions to the Two Wedges problem.

The pseudo vertex skeleton of the Two Wedges prob-
lem consists of 12 points: the 8 points corresponding to
the vertices of a cuboid and 4 points corresponding to the
mid-points of the 4 horizontal edges [see Fig. 3(a)].

3. Construct pseudo wire frame 1In this stage all pseudo
skeletal edges are constructed as a prelude to construct-
ing the pseudo wire frame. To do this, simply join two
vertices in the pseudo vertex skeleton by an edge iff in
every projection the images of these two vertices coincide
or are joined by an edge or colinear set of edges and no
other vertex of the pseudo vertex skeleton would be an
interior point of the edge.

In general, these pseudo skeletal edges may intersect in
mutually interior points. To obtain the pseudo wire frame
from this skeleton it is only necessary to duplicate the
techniques of Theorem 6, i.e., to introduce edges in the
obvious way so that all edges have vertices as endpoints,
that two edges intersect only in a vertex, and that no
vertex be an interior point of an edge.

M. A. WESLEY AND G. MARKOWSKY

Note that the proof of Theorem 6 shows that V(0) C
CV(0) and that every edge of G can be written as the
union of candidate edges.

Many of the checks of Stage 2 are used on the vertices
produced in this stage. With modification these checks
are used on candidate edges. Thus, it should be verified
that every P-edge has some element of CE(0) in its
inverse image. In particular, if some P-edge has a unique
inverse image, then that element of CE(0) must be real,
i.e., it must actually be an element of E(0) and, like the
rule for vertices above, is classified as type certain. At the
end of this stage pruning operations are performed. All
vertices with edge connectivity of degree =1 are re-
moved, together with any incident edges. If the vertex
has degree 2, the incident edges are checked for colinear-
ity. If they are colinear, the vertex is removed and the
two edges are merged into a single edge. If they are not
colinear, they are removed together with the vertex. If a
vertex of degree =3 has only coplanar edges, then any
edges not having a colinear extension, and possibly also
the vertex, are removed. Whenever edges are removed,
the effects of the change are propagated until a stable
configuration is achieved. In a similar manner to the
vertices, cross reference lists are maintained from pseudo
wire frame edges to view-edge pairs, and conversely, for
each view edge, a cross reference list to the pseudo wire
frame edges is formed.

Figures 3(b) and (c) show the results obtained during
this stage in the case of the Two Wedges problem. Note
that vertex A of the original figure appears in the pseudo
wire frame exhibited in Fig. 3(c) but does not appear in
the skeleton [Fig. 3(b)]. Note also that by Theorem 7
vertices J and O are clearly spurious since all solid
material lies to one side of the planes KLN and FGI.
However, these conditions cannot be derived until a later
stage of the algorithm. (1

The stages described above are fairly straightforward.
Before - describing the later stages of the Projections
algorithm it will be helpful to understand exactly what has
been produced so far. The pseudo wire frame (CVO,
CE(0)) looks like a wire frame. Indeed, in many cases
(CV(0), CE(0)) is exactly the wire frame of © and feeding
(CV(0), CE(0)) to the Wire Frame algorithm will yield the
correct solutions directly. The important thing is to
understand the way in which simply applying the Wire
Frame algorithm to (CV(0), CE(0)) can fail to find all
solutions. The chief problem is that the original Wire
Frame algorithm treats vertices and edges as real entities,
whereas the pseudo wire frame contains uncertain edges
and vertices, any of which may or may not exist in a
solution. Any solid object having a subset of (CV(0),
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CE(0)) as its wire frame and producing the correct
projections is a solution of the projections problem. Thus,
the Wire Frame algorithm approach may fail to find all
solutions of the projections problem (it may in fact fail to
find any). The assumption of reality of edges and vertices
is crucial to two places in the Wire Frame algorithm:

® Dealing with illegal intersections between virtual
faces, and
® Making decisions.

Whenever an edge pierces a virtual face (a Type I
intersection) in a legitimate wire frame problem, it is safe
to drop the virtual face since it is known that the edge is
‘“‘real” and that ‘‘real”” edges cannot pierce faces which
separate solid material from space (these are the only
important faces). In the present situation, it might very
well be that the edge is not real and should itself be
dropped instead. Of course, if it is known that a particular
edge is real (i.e., certain), the algorithm can proceed as
before.

In the Wire Frame algorithm the decision process was
concerned with finding those combinations of virtual
blocks which made every edge (except the cutting edges)
an edge of a real object. In the case of the Projections
algorithm it is necessary only to find combinations of
virtual blocks with projections agreeing with the given
projections. In general, this means that not every uncer-
tain element of (CV(0), CE(0)) is actually a member of
(V(0), E(0)). Thus, the decision procedure must be
modified to check that every edge in each projection
comes from a candidate edge which becomes a real edge
in the corresponding solution.

Cutting edges were introduced in [1] to handle illegal
intersections between virtual faces when no internal point
of an edge from one face was contained in the interior of
another face, but there were points common to the
interior of both faces (a Type II intersection). This
situation was interpreted as one where the two faces
could not co-exist in the solution, and temporary edges—
cutting edges—were introduced along the line of intersec-
tion of the two faces. The cutting edges partitioned the
faces into nonintersecting sub-faces, which could be used
to build more, smaller, virtual blocks. The decision
process ensured that cutting edges did not remain in the
final solutions. Although introduced originally for Type II
intersections, cutting edges are applicable also to Type I
intersections, and are particularly relevant to the case of
uncertain edges.

4. Construct virtual faces This stage is essentially
identical with Stage 4 of the Wire Frame algorithm. As
noted earlier, each candidate edge is checked to see
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whether it lies in at least two noncoplanar virtual faces.
Thus, in the Two Wedges problem, 19 virtual faces
[KLO, LON, MON, ABC, ACE, ADE, FGJ, GlJ, HlJ,
KL.CB, NLCE, MNED, BCGF, ECGI, DEIH, MOL-
CAD, KONEAB, DACGJH, BAEIJF in Fig. 3(c)] are
discovered.

5. Introduce cutting edges This stage is very similar to
its equivalent in the wire frame algorithm but has a minor
modification to allow for uncertain edges. If an interior
point of a certain edge is contained in the interior of a
virtual face, then the virtual face cannot be a face of the
object and is deleted. All other illegal intersections be-
tween virtual faces, i.e., both faces cannot exist in the
object, are handled by the introduction of temporary
cutting edges. Cutting edges separate virtual faces into
independent regions so far as the illegal intersection was
concerned and are removed in the final decision process
in Stage 7. When a virtual face is partitioned into subfaces,
mapping tables and correlation lists are generated in a
manner similar to that described for partitioned edges.

Note that if records are kept in the correct manner all
reprocessing of virtual faces is done with reference to a
particular virtual face, rather than starting with a general
wire frame problem. Furthermore, if, when reprocessing
a virtual face, f, to determine the smaller virtual faces into
which it is partitioned by the cutting edges, a cutting
edge, e, is found which is not on the boundary of one of
the smaller virtual faces, then it can be dropped together
with any virtual face, g, whose intersection with f is e.
Face g can be dropped since it is impossible for g to be a
member of a virtual block. As usual, dropping a virtual
face will in general have other repercussions which are
exploited until a stable situation results. For brevity,
virtual faces found in Stage 4 will be called original virtual
Jfaces. Those arising because of cutting edges will be
called new virtual faces.

In the Two Wedges problem, two cutting edges [OA
and AJ in Fig. 3(c)] are introduced. These two edges
partition four virtual faces (CADHJG, BAEIJF, MOL-
CAD, KONEAB) into eight virtual faces (CAJG, ADHIJ,
BAJF, AEI], KOAB, ONEA, MOAD, OLCA).

6. Construct virtual blocks This stage is identical with
the corresponding stage in the Wire Frame algorithm. In
the Two Wedges problem, six finite virtual blocks are
uncovered:

B,:(MONEAD),
B,:(NOLCAE),
B,:(LOKBAC),
B,:(DAEUH),
B,:(EACGJI),
B,:(BACGJF),
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where the description of virtual blocks is in terms of the
labeling of Fig. 3(c). The seventh virtual block, B,, is the
unique infinite empty block.

7. Make decisions The set of virtual blocks is fed to a
decision procedure, which is an extension of the decision
procedure used in the Wire Frame algorithm. The differ-
ences between the two procedures revolve around the
fact that the Projections algorithm is aware that not every
vertex and edge must be real.

The chief difference consists of the fact that whenever
the nature of a new virtual face is determined (.e.,
whether or not it separates solid material and space), the
same determination can be made for all other new virtual
faces which are subdivisions of the same original virtual
face. Furthermore, as soon as it is determined (or as-
sumed) that an original virtual face, f, does separate solid
material and space, all original virtual faces sharing a
cutting edge with f are forced to be spurious. This means
that any pair of virtual blocks using any part of any virtual
face ‘‘cutting” f as a common boundary must both be
assigned the same state. Similarly, if a virtual face is
known to be spurious, all virtual blocks using any part of
it as a boundary must have the same state.

These facts speed up the decision procedure considera-
bly and offset the greater number of virtual blocks that
have been introduced. Similar arguments apply to entire
edges which have been partitioned in Stage 3. In the final
solution, no cutting edge can be a real edge. Of course, all
decisions respect the fact that the final outcome must be
consistent with the original projections.

In this stage virtual blocks are fitted together to gener-
ate all objects with the given projections. Basically, each
virtual block may have solid or hole state and, when a
state assignment has been made to each virtual block, an
object is obtained. However, not all assignments of solid
and hole yield the desired projections. An assignment of
solid or hole to the virtual blocks yields an object with the
correct wire frame iff

1. Every certain edge element ¢ € E(O) belongs to two
noncoplanar virtual faces f, and f, each of which
belongs to one virtual block assigned solid state and
one assigned hole state;

2. No cutting edge belongs to two noncoplanar virtual
faces f, and f, each of which belongs to one virtual
block assigned solid state and one assigned hole state.

3. Every uncertain edge element ¢ € E(0) may be as-
signed either to state certain and obeys the rule for
certain edges (1) above or to state not-visible and
obeys the rule for cutting edges (2) above, in a manner
consistent with the input projections.
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The decision process is performed by assigning states
in a virtual block state vector, whose elements are
ordered a priori. The first element of the state vector is
the unique infinite virtual block, which is assigned the
empty state. For each edge, a list is formed of the faces
containing the edge and the blocks they bound; this list is
sorted around the edge and allows the angular sequence
of block state transitions to be discovered.

The decision process proceeds as a depth first search in
the virtual block decision space tree. At any node in the
tree, the current state vector is checked for consistency
and consequential states are assigned. Thus, although the
state vector may have dimension of many hundreds, the
consistency check may be expected to prune large sec-
tions of the tree, while the propagation of consequential
states may be expected to reduce substantially the num-
ber of decisions to be made.

The checks for consistency are essentially those listed
above. The consequential state assignments are per-
formed to meet the following criteria:

® A certain edge with all except one containing block
assigned the same state forces the remaining block to
be assigned the opposite state.

& An uncertain edge totally surrounded by either all
material or by all space becomes nonvisible; an uncer-
tain edge contained in blocks producing exactly two
coplanar state transitions around the edge becomes
nonvisible; an uncertain edge contained by blocks of
both hole and solid states and with at least two
noncoplanar state transitions around the edge be-
comes certain.

® An uncertain edge that is the only edge remaining to
create a view edge becomes certain.

& A cutting edge whose surrounding blocks have the
same state, i.e., both solid or both hole, spanning
regions 180 degrees apart, allows the same state to be
assigned to all blocks around the edge.

® A cutting edge whose surrounding blocks have the
same state <180 degrees apart around the edge allows
any intermediate blocks to be assigned to the same
state.

® A new virtual face which is a real face, i.e., it
separates blocks of different states, and which is a
subdivision of an original virtual face formed by
cutting edges allows the same solid-hole relationship
to be given to all blocks containing sibling faces from
the original virtual face. Similar rules apply when the
face is not real.

& An uncertain edge which becomes a certain edge and
which is a subdivision of an original wire frame edge
allows its sibling edges to be upgraded to certain state.
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In some cases, particularly those where there are high
degrees of symmetry and a limited number of views,
giving rise to many highly correlated uncertain edges,
there may be a very large number of objects producing
the given projections. Thus, although the depth first
search and also heuristic search approaches to this prob-
lem (8] allow a solution to be found efficiently, an
exhaustive search must ultimately be used, and efficient
pruning of the decision tree is very important. It is
evident that, in the case of problems with multiple
solutions, the provision of rather small amounts of extra
information by the user, for example, labeling of some
uncertain edges, and assigning states to points in 3-space,
can resolve the ambiguities completely. Thus, in a practi-
cal system, the user may be requested to assist with extra
information when requested. The basis for the system
requesting extra information in the early stages of the
algorithm is the preponderance of uncertain edges, dis-
covered in Stage 3, and self intersection of uncertain
edges, dicovered in Stages 4 and 5.

At this point it can be appreciated that the use of
cutting edges has allowed construction of a set of virtual
blocks having the property that every solution of the
projection problem can be built out of the virtual blocks in
this set.

Stage 7 feeds into an output module which puts the
output together in forms which can be understood by the
user of the system. In our implementation of the algo-
rithm, the output is in the form of a polyhedron for the
Geometric Design Processor system [2].

In the case of the Two Wedges problem, this stage
produces the two solutions shown in Fig. 3(d). The
decision procedure works as follows in this case. Suppose
that the search in this case deals with the virtual blocks
By, - B, in that order. B, is known to be empty. Thus,
the first branch of the decision tree corresponds to
determining the state of B,.

If B, is assumed to be solid, MOAD is seen to separate
solid from space. This means that the entire virtual face
MOLCAD must separate solid from space. In particular,
B, must be solid and B, empty. Thus, the next step is to
decide whether B, is solid or empty. Assuming that B, is
solid forces B, to be solid and B to be empty. However,
the object resulting from making B, B,, B,, B, solid and
By, B,, B, empty clearly fails to have the right projec-
tions. Thus, the decision procedure backs up to the B,
decisions and assigns hole to B,. This means that the new
virtual face DAJH is spurious and that the original virtual
face DACGJH is spurious. Thus, B, and B¢ must have the
same state. If they are both assumed to be empty, the
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object that results is just a simple wedge, which clearly
has the wrong projections. Thus, B, and B, must both be
assumed to be solid. The object that results is a left-right
transform of the original object in Fig. 3 and clearly has
the correct projections.

On the other hand, if B, is assigned hole, B, and B,
must both be assigned the same state. Clearly, if B, and
B, are also empty, it is impossible to obtain the correct
front and top views. Thus, B, and B, must be solid in this
case. Furthermore, assuming B, to be solid forces B, to
be solid and B, to be empty. This yields the original
object. Assuming B, to be empty forces B, and B, to have
the same state. The objects that result are both wedges of
differing width and are clearly not solutions.

It is clear that keeping track of the number of objects
remaining in the inverse image of a projected artifact can
be helpful in the decision procedure, i.e., if assigning a
particular state to a given virtual block removes the last
vertex or edge in the back projection of some vertex or
edge, then that assignment can be rejected and its conse-
quences need not be explored further. [

The following section describes ways in which addi-
tional information can be extracted from various drawing
conventions. The final section contains examples which
should clarify the discussion in this and the next section.

4. Additional information from drawing conventions
Designers and draftsmen use a number of conventions
and aids to clarify and help reduce ambiguity in engineer-
ing drawings. Extensions to the Basic Projections algo-
rithm are presented in this section. These extensions
cover two concepts: the generalization of the set of types
of views to include overall, detail, and cross sectional,
and the use of depth and detail information expressed by
line types. The presentation is made within the context of
the various stages of the algorithm presented previously.

® Stages of the algorithm reconsidered

1. Check input data

In extending the basic algorithm to handle several differ-
ent types of view (i.e., overall, detail, and cross section-
al), the central problem is to be able to relate information
from the different types of views. This is achieved here by
classification of the edges of the object into two types:
gross and detail. The gross edges describe the main
structure of the object; the detail edges add more informa-
tion in regions where there is fine structure in the object.

The edges of the views are labeled with edge types
according to an agreed drawing standard. For exampie,
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Figure 4 Three views of an object related to an octahedron.

P

(a)

%

(b)
(© (d)
Figure 5 The solution to the problem of Figure 4: (a) the
pseudo wire frame; all external edges are of type certain, internal
edges are of type uncertain; (b, c, d) some of the 35 solid objects
with the views of Fig. 4.

visible edges are generally drawn with line type solid and
occulted edges with type dashed, which provides depth
information. Another possibility, namely the omission of
occulted edges, is not permitted; the Projections algo-
rithm is based on geometric concepts and the premise that
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all edges are shown in all projections. An algorithm that
attempts to fill in missing information would have to be
based on heuristic ideas of what a most likely object
would be as well as on the concepts of geometry.

An overall view is a projection of the major features of
the whole object onto a plane outside the object. The set
of overall views of the object contain projections of only
the gross edges. Thus, every gross edge of the object is
represented as an edge or a vertex in every overall view.
Similarly, every object vertex that is the intersection of
gross edges appears as a vertex or a point in an edge in
every overall view.

A detail view is a projection of a portion of the object.
The view has a defined polyhedral boundary and two
extents along the projection direction. The boundary and
extents define a right prismatic region in 3-space. The
detail view is a projection of all edges and vertices of the
object contained in the region. A detail view contains
projections of both the gross and detail edges, without
distinction, contained within its defined region.

A cross sectional view may be either overall or detail.
The view is a planar cross section normal to the projec-
tion direction. In this case the view transformation con-
tains the location of the section plane in the coordinate
frame of the object. Note that edges are shown at the
cross section plane that may not be present in the object
(they lie in surfaces of the object), and may not be shown
in other views of the object.

2. Construct pseudo vertex skeleton

This stage proceeds in a manner similar to before. How-
ever, somewhat greater care must be taken to treat the
various projections consistently. Intersections between
back projections of vertices from appropriate pairs of
different views are considered candidate vertices. Appro-
priate means noncolinear projection directions and the
same type of view, i.e., both overall or both detail. In the
case of pairs of detail views, the intersection point must
lie within the intersection of their respective prismatic
regions. In the case of a cross sectional view, the inter-
section point must lie in the halfspace defined by the
section plane and projection direction. Also, a cross
sectional view generates a set of vertices and edges in the
plane of the view.

3. Construct pseudo wire frame

This stage is essentially unchanged from Stage 3 in
Section 3. However, the following is a very useful obser-
vation: whenever a view shows two noncolinear solid
(i.e., visible) lines intersecting internally in a point, p,
then there must be some vertex of @ visible in the
appropriate direction which projects onto p and which
has only visible edges incident with it corresponding to
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the solid lines incident with p. In particular, if in moving
along the perpendicular from p one first encounters
candidate vertices which are clearly not vertices of © (see
discussion of Stage 3 in Section 3), then these vertices
and all incident edges may be discarded. To appreciate
the power of this observation see Example 4.

4. Construct virtual faces

This stage is essentially the same as Stage 4 in Section 3.
However, it is possible at this point to use line type depth
information to edit out some type II vertices and uncer-
tain candidate edges, as well as to extract additional
information for use at a later time.

The cross reference lists from view edges to edges in
the wire frame are concatenated with the list of original
(i.e., before any partitioning) virtual faces and sorted by
distance along the projection direction from the mid-point
of the view edge. For any edge that is visible, i.e., not
dashed, the nearest pseudo wire frame edge is identified.
Any interposing virtual faces cannot exist and are de-
leted. For an edge to be dashed, there must be at least one
occulting virtual face in the projection direction. If there
is only one such face, then it must be a real face
separating solid material from space, and since the pro-
jection is from outside, the directedness of the face is
known. This information is fed forward to the decision
process as initial certain states of blocks and faces. As
before, the consequences must be fully propagated.

5 and 6. Introduce cutting edges and form virtual blocks
These stages are the same as in Section 3.

7. Make decisions

This stage again is very similar to the corresponding
stages described in Section 3. Clearly, however, the
decision procedure must accommodate the drawing con-
ventions in the correct manner. It is fairly apparent how
this is to be done. Thus, for example, in the case that
occulted edges are represented explicitly in views, each
view edge must contain a visible edge in the view
projection direction, and each nonvisible view edge must
be occulted by an interposed face in the view projection
direction. O

The examples in the next section illustrate the points
made above. As shall be seen, pathological features do
not appear to be common in objects of practical interest.

5. Examples

To clarify the discussion in Sections 3 and 4, several
examples are presented in this section. The examples are
chosen to illustrate particular features of the algorithm
and some of the performance trade-offs involved in
providing extra information.
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® Example l—octahedron projections

The octahedron illustrates a simple problem having many
solutions, but for which the Projections algorithm does
not need to introduce any cutting edges. Figure 4 shows
three views of an octahedron. It is interesting to deter-
mine the set of all objects having the identical projections.
The back projection process generates the 12 edges of the
octahedron with type certain and the three intersecting
diagonals with type uncertain. In a wire frame example of
an octahedron [1] it was shown that the diagonal edges
must be introduced as cutting edges for the Wire Frame
algorithm to handle the mutually intersecting interior
virtual faces. In the Projections case, the algorithm
proceeds with no need to generate further edges and
enters the decision process with eight virtual blocks, one
for each octant around the intersection point of the
diagonals. Since the interior edges are of type uncertain
and the exterior are all of type certain, any selection of
octants such that no two hole octants share a face is a
solution. The decision process finds 35 solutions:

1 with all octants solid,

8 with one octant a hole,
16 with two octants holes,

8 with three octants holes, and
2 with four octants holes.

A sampling of these solutions is shown in Fig. 5. Note
that in this case dashed lines do not reduce the amount of
ambiguity. O

® FExample 2—cube projections

The cube illustrates a simple use of cutting edges. Figure
6 shows two views, front and top, of a cube. Again the
Projections algorithm determines the number of objects
having the same two views. The back projection process
finds the cube edges, albeit as type uncertain. However,
in the direction perpendicular to the two given views, the
cube face diagonals are found without intersection. A
cutting edge is inserted between the intersection points of
the face diagonals, and five virtual blocks are found (the
envelope and four quadrant blocks). Five solutions are
found as shown in Fig. 7. Note that if all three views of a
cube were furnished, there would be a unique solution to
this projections problem. [

® Example 3—Two Y’s problem

Figure 8 shows a well known mechanical drawing puzzle:
find all objects having the top and front views shown.
Because of the way edges line up in the two views, the
back projection process finds the pseudo skeleton with 29
edges and 12 vertices shown in Fig 9. Intersections of the
edges yield three additional vertices where the diagonals
intersect, and intersections of virtual faces yield eight
cutting edges. The final pseudo wire frame is shown in
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Top

(a)

Front

(b) (d)
Figure 6 (a, b) Two views of an object related to a cube; (c) the

pseudo wire frame; (d) the pseudo wire frame with a cutting edge
inserted.

]
D [T

Figure 7 Objects with the views shown in Fig. 6 (a, b).

Fig. 10. The 16 internal virtual blocks found in Stage 7 are
shown in Fig. 11. Under the assumptions of Section 3
there are 55 solutions to this problem. Under the assump-
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Front

Figure 8 The Two Y’s, a well known mechanical drawing
puzzle: front and top views of an object.

tions of Section 4 (i.e., all lines in the views are assumed
to be solid, that is, visible) there are seven solutions.
These are shown in Fig. 12.

The Two Y’s problem is very sensitive to numerical
considerations. If the branch point of one of the Y’s is
moved from the center of its view, there are no solutions
to the corresponding projections problem. O

® Example 4—Three X’s problem

The Three X’s problem illustrates vividly the savings that
can result from the use of depth information. Figure 13
shows an apparently minor modification to the problem of
Fig. 4; the object is now clearly contained within a cube.
However, further investigation shows that the solution
process becomes surprisingly complex. The back projec-
tion process produces nine vertices—the cube vertices
(uncertain) and its midpoint (certain) and thirty-two
edges, all uncertain—the twelve cube edges, twelve face
diagonal edges (initially with type II intersections, but
later changed to mutually exclusive intersections), and
eight cube diagonals from the midpoint. Note that, in
contrast to the situation with Fig. 4, none of the edges
found are of type certain and that ambiguities can be
expected to stem from this lack of definite information.
The pseudo skeleton that is obtained by back projection is
shown in Fig. 14.

In the case without depth information, i.e., all edges
drawn regardless of occultation, the partitioning process,
of intersecting edges to generate sub-edges and virtual
faces to generate sub-virtual faces with cutting edges,
divides space into many small regions. A total of 96
internal virtual blocks are found and the decision process
uncovers 38 065 solutions. Clearly, searching a 96-level
decision tree for 38 065 solutions is a complex process.
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Figure 9 The pseudo skeleton of the Two Y’s problem. Figure 10 The pseudo wire frame with cutting edges added.

(a) (¢)
(b) (d)

Figure 12 Objects with the two views of Fig. 8: (a) is symmet-
Figure 11 Sixteen virtual blocks found from the two views of ric; (b, ¢, d) are asymmetric and each is typical of a pair of
Fig. 8. objects. 949
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Top

Front Side

Figure 13 The Three X’s problem: three views of an object
whose extent is bounded by a cube.

—N

Figure 14 The pseudo skeleton for the Three X’s problem.

The solution is made practicable by making heavy use of
the mappings and correlations between original faces and
edges and their partitioned forms. One solution, picked at
random, is shown in Fig. 15. The object is hard to
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Figure 15 One of 38,065 objects found with the views of Fig. 13
and assuming that all edges are shown in each projection. The
object is based on three tetrahedra.

understand, even with a model in one’s hand. It is a set of
three tetrahedra, a pair with a common face and a third
with edge contact only, i.e., it is decomposable into two
disjoint objects. The solutions found could be filtered to
reject unstable objects of this form, but this test has not
been executed.

The analysis of the case with depth information shows
the power of Theorem 7 when used in Stage 3. Each of the
three views shows solid lines intersecting in the center
point. Following a perpendicular from any of the center
points of any view leads first to a point in the center of a
face of the cube containing the pseudo wire frame. This
vertex cannot be a Class I vertex since all candidate edges
incident with it are coplanar. It also cannot be a Class II
vertex since all solid material lies to one side of the plane
containing the face in question. Thus, the center points
and all diagonal edges may be discarded from the front,
top, and appropriate side faces of the cube. Furthermore,
in Stage 4 corresponding faces of the cube are also
discarded since they would obscure a vertex and lines in
the interior. With these faces discarded, three of the
leading edges of the cube must be discarded also since
they no longer contain at least two noncoplanar virtual
faces.

After these reductions, the algorithm goes on to find
the ten solutions shown in Fig. 16. The solutions may be
considered as being based on the union of three pyramids,
as shown in Fig. 16(a). In all solutions, the view of the
objects in the projection directions are the four triangular
faces of the union of the three pyramids. The distinguish-
ing features between the solutions are cavities in the
‘“‘rear’’; the viewpoint for the solutions in Figs. 16(b)—(g)
is chosen to illustrate these cavities. The solutions are
grouped as follows:
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Figure 16 All ten solutions to the Three X's problem in dashed line mode: (a) three pyramids forming the basic solutions; (b) three
pyramid solution; (c) one pyramid bisected; (d) two pyramids bisected; (e) all three pyramids bisected; (f) solution (b) cut by plane
containing the diagonals of the square faces; (g) solution (b) with an internal tetrahedral cavity.

Figure 16(b) shows all three pyramids complete,
Figure16(c) shows one pyramid bisected and is one of
a set of three solutions,

Figure 16(d) shows two pyramids bisected and is one
of a set of three solutions,

Figure 16(e) shows all three pyramids bisected,
Figure 16(f) shows the object (b) above cut by the
plane containing the diagonals of the three square
faces,

Figure 16(g) shows the object (b) with an internal
tetrahedral cavity just visible as diagonal edges of the
square faces.

® Example 5—Two Ramps problem

The Two Ramps problem illustrates the effectiveness of
the pruning operations of Stage 3. Figure 17 shows this
well known two view puzzle problem reputed to have
twelve solutions. The back projection process produces
an array of three by four, i.e., twelve, vertices on the left-
hand face and an array of two by four for the right-hand
face. Twelve edges are found linking the left and right
sides. However, the number of possible edges in the end
faces, i.e., in the direction normal to the two given views,
is large; see Fig. 18. Fortunately many of those in the left-
hand face are rejected by the edge and virtual face
connectivity test at the end of Stage 3 (Fig. 19). Some 108
internal virtual blocks are found and 107 distinct solu-
tions. Only 12 of the solutions, however, pass the stable
object criterion. Some of the solutions are shown in Fig.
20.0
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® Example 6—real engineering objects

After developing the algorithm to be as general as possi-
ble, and proving it with problems chosen for their geomet-
ric difficulty and ambiguities, it is refreshing to look at
some real engineering objects and consider their recon-
struction from their three standard views. Figures 21 and
22, parts (a), (b), and (c), show two examples of engineer-
ing objects. Even without using depth information, only
one solution is found to each object, and the reconstruct-
ed objects are shown in Figs. 21(d) and 22(d). It is
apparent from the views that the polyhedral approxima-
tions of the cylindrical holes in the objects greatly in-
crease the number of vertices and edges to be handled
and that the projections of these polyhedral features can
lead to many small edges in the view, indicating potential
for numerical problems. However, our implementation of
the Projections algorithm does not have problems in these
areas with these examples. Further, it is clear that objects
of this complexity raise real problems in ensuring the
validity of the input data. The three views used as input in
this example were obtained from an existing model and
were therefore guaranteed to be correct. A human gener-
ating these views directly would have some difficulty
ensuring their correctness and self consistency. The
Projections algorithm in its present form does not attempt
to handle incorrect (or incomplete) data. [

6. Summary
The Projections algorithm presented in this paper finds all
polyhedral objects © with a given set of projections. It has
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Top

Front

Figure 17 The Two Ramps problem: two views of an object.

Figure 18 The pseudo skeleton of the Two Ramps problem.

been shown that, if the projections are labeled, the
problem may be solved by the Wire Frame algorithm {1];
in the unlabeled case an extended form of the Wire Frame
algorithm, the Projections algorithm, is needed.

M. A. WESLEY AND G. MARKOWSKY

Figure 19 Pseudo wire frame after pruning in Stage 3; note the
reduction of edges in the left-hand face.

It has been shown that an inverse projection process
may be used to construct a superset of Class I vertices of
© (vertices contained in at least three noncoplanar edges)
together with a superset of unions of edges of 0. These
edges and vertices constitute the skeleton of O.

It has also been shown that a superset of the Class II
vertices of O (vertices contained only in a set of coplanar
edges) may be found as intersections of skeleton edges.
These updated vertices and edges constitute a pseudo
wire frame.

A pseudo wire frame differs from a wire frame in that it
contains supersets of the edges and vertices of the wire
frame. Some of these elements have been identified
uniquely and have type certain; the rest are of type
uncertain. Any object whose wire frame is composed of
the certain elements of the pseudo wire frame and any
subset of the uncertain elements and produces the correct
projections is a solution.

The pseudo wire frame is processed to find candidate
faces (virtual faces). Virtual faces are connected to en-
close volume regions (virtual blocks). A depth first deci-
sion process with heavy pruning is used to find all state
assignments of hole or solid to virtual blocks that produce
solid objects with the correct projections.

IBM J. RES. DEVELOP. & VOL. 25 & NO. 6 ® NOVEMBER 1981




Figure 20 Some of the 107 solutions to the Two Ramps prob-
lem.

The Basic Projections algorithm accepts projections of
the wire frame of 0; extensions handle a more general set
of projection types (detail, overall, and cross sectional)
and projection conventions such as depth information
obtained from occulted edges in a projection being shown
as dashed.

The Projections algorithm has been implemented-and
its operation has been illustrated by a set of examples.
These examples have shown that problems of a mechani-
cal drawing puzzle nature, which typically have high
degrees of symmetry leading to large numbers of uncer-
tain elements in the pseudo wire frame, can have very
large numbers of solutions. On the other hand, engineer-
ing objects, with projections sufficiently complex to re-
quire careful thought from a human, have been run and
have produced unique solutions.
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Figure 22 The Projections algorithm applied to an engineering .
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