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In an  earlier paper, the authors presented an  algorithm forfinding all polyhedral solid objects with a given set of vertices 
and straight  line edges (its wire frame). This paper extends the Wire  Frame  algorithm to find all  solid polyhedral objects 
with a given set of two dimensional projections. These projections may contain depth information in the form of dashed 
and  solid lines, may represent cross sections, and  may  be  overall  or  detail views. The choice of labeling conventions in 
the projections determines the dificulty of the problem. It is  shown that with certain conventions and projections the 
problem offleshing out projections essentially reduces to the problem offleshing out wire frames. Even if no labeling  is 
used, the  Projections algorithm presented here finds all solutions even though it  is possible to construct simple examples 
with a very  large number of solutions. Such examples have a large amount of symmetry and  various accidental 
coincidences  which  typically do not occur  in objects of practical interest. Because of its generality, the algorithm can 
handle pathological cases if they arise. This Projections algorithm, which has applications in the conversion of 
engineering  drawings  in a Computer Aided Design, Computer Aided  Manufacturing (CADCAM)  system, has  been 
implemented. The  algorithm has successfully found solutions to problems that are rather complex in terms of either the 
number of possible solutions or the  inherent complexity of projections of objects of engineering interest. 

1. lntroductlon 
In an earlier paper [ 11 the authors presented an  algorithm 
for finding all  polyhedral  solid objects with a given set of 
vertices and straight line edges (its wire frame). The Wire 
Frame  algorithm  was based on the concepts of algebraic 
topology  and rigorous definitions of the geometric entities 
involved. It recognized that many  solid objects may have 
the same  wire frame and was able to find all  possible 
solutions  efficiently. 

In this paper we extend the Wire Frame algorithm to 
polyhedral objects described by a set of two dimensional 
projections such as might  be seen on an  engineering 
drawing. The projection process may introduce another 
level of ambiguity into reconstruction problems and  in- 
creases the possibility of there being  many objects with 
the same set of projections. The Projections algorithm 
presented here can work  with very little information, for 

‘Consistent  use of alphabetical  ordering of authors’  names  tends  to  slight  people 
whose  names  begin  with  letters  towards  the  end of the  alphabet. Thus, the  order  of 
names  on  this  paper is not  meant  to pass judgement  on  the  relative  contributions of the 
authors, but rather to illustrate  the  fact  that  names  appearing  in  alphabetical  order  is 
not a  “natural law.” 

example,  only two projections, and find  all  possible 
objects matching the data. However, it is seen that the 
number of solutions may be very large and that it may  be 
reasonable to provide more  information in the form of 
three or more projections, by labeling corresponding 
features in divers views, and by providing depth informa- 
tion. The Projections algorithm is able to make use of this 
extra information  and can also accept other forms of 
advice, such as whether given points are inside  material. 

Quite apart from its mathematical interest, the algo- 
rithm  has ‘practical applications in the automatic conver- 
sion of digitized  engineering  drawings into solid  volumet- 
ric representations of the geometry of objects. These 
solid  volumetric representations become the basis for the 
simulation  and synthesis of large parts of the design 
validation, analysis, manufacture, inspection, and docu- 
mentation process [2, 31. 

The  subject of reconstruction of solid polyhedral ob- 
jects from their projections has been studied over a period 
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of years. Early  work [4-61 was  largely based on labeling 
corresponding  information in different  views  and requir- 
ing the user to conform to constraints on the manner of 
description of features such as faces. The historical trend 
has  been to free the user of as many constraints as 
possible [71. However, the relaxation of constraints has 
led to the possibility of multiple solutions to a given 
problem,  and workers have tended to concentrate on 
heuristic approaches to find a probable solution. A recent 
paper [81 reports such a heuristic approach that allows 
complete freedom of input and has been implemented; 
another paper [91 outlines an approach that would  allow 
certain views of cylindrical surfaces but does not include 
an implementation. None of this work appears to be 
based on formal geometric definitions  and the concepts of 
algebraic  topology. A closely related development path 
has  been  followed by workers in the fields of Computer 
Vision  and Scene Analysis. This path has  been based on 
vertex and  edge  configurations  in a single  view [lo-121 
and  has  generally  been restricted to objects with trihedral 
vertices  and  views  with no chance alignments;  this ap- 
proach  has  led to the Origami  World [ 131 and a linear 
programming approach [ 141. 

This paper presents a very general and complete ap- 
proach  based  on the authors’ previously published  Wire 
Frame  algorithm. In addressing the problem of construct- 
ing a solid object from a number of two  dimensional 
views,  it is shown that, on the one hand, complete 
labeling of edges  and vertices leads to the previously 
published  Wire Frame algorithm. On the other hand, the 
Projections  algorithm described here is capable of work- 
ing  with  no further information than the lines  and points 
of the two dimensional projections and is able to enumer- 
ate all  possible solutions to a given set of projections, 
with a cost commensurate with the number of solutions. 
The techniques presented are applicable when two or 
more projections are available. Of course, the one projec- 
tion case has, in general, infinitely  many solutions and is 
not discussed further in this paper. The chief advantage 
gained  from  providing  more projections is quite naturally 
to reduce the number of possible  ambiguities. 

The Projections algorithm constructs polyhedral ob- 
jects from projections containing  only straight lines. The 
logical  component of this algorithm is topological  in 
nature  and is, in principle, independent of whether the 
components are linear or nonlinear.  While extension to 
objects  with curved surfaces and projections with curved 
lines appears to be feasible, the ease of actually carrying 
out  such  an extension would depend greatly on the family 
of allowable curves and surfaces, as well as the projection 
conventions  used. 

The paper is  organized as follows: Section 2 reviews 
the definitions of objects, faces, edges, and vertices used 
in the paper describing the Wire Frame algorithm [l] and 
then  develops the basic results dealing  with  back projec- 
tions  and  labeled projections. Section 3 outlines the 
original  Wire Frame algorithm  and describes the Basic 
Projections  algorithm  which handles the general case of 
unlabeled projections of wire frames of objects. Section 4 
presents some extensions to the Basic Projections algo- 
rithm  which enable it to make use of more general forms 
of input data. For example, various types of views 
(overall, detail, and cross section) and depth information 
distinguishing between visible  and occulted lines are 
considered. In Section 5 ,  some  examples are given to 
clarify  this discussion. These examples illustrate the 
execution of the algorithm  in  both the stylized world of 
geometric puzzles with  multiple solutions and the practi- 
cal  world of engineering drawings. The engineering  ob- 
jects successfully constructed from their projections are 
sufficiently  complicated that a human  unfamiliar  with the 
solid object generally  has  some  difficulty  envisioning it. 
Thus, the algorithm appears capable of handling real 
world  problems. 

2. Basic concepts  and  results 
The  basic concepts defined  in this section are based  on 
some  fundamental  topological ideas which are described 
in detail  in [15]. Throughout the paper the standard 
topology  in IR3 and the induced  topology  on subsets of IR3  

are assumed. Vertices refer to points in IR3  and edges 
refer to line segments defined  by  two points in Et3 .  The 
approach  used in this section is to define faces, objects, 
wire frames, and projections, and then describe the 
consequences of these definitions. 

Definition I 
A face, f, is the closure of a nonempty, bounded, con- 
nected, coplanar, open (in the relative topology) subset of 
IR3 whose  boundary (denoted by  df) is the union of a 
finite  number of line segments. Pf  is used to denote the 
unique  plane  which contains f. 0 

Definition 2 
An object, 6, is the closure of a nonempty, bounded, 
open subset of IR3  whose boundary (denoted by do) is the 
union of a finite number of faces. 0 

From the definitions above it is easy to see that the 
“cube,” {x, y, z E IR3  I O  5 x I 1 , O  I y I 1,0 I z I 1) 
is  an object and that ((1, y, z) E IR3  I 0 I y I 1, 0 I z I 1) 
is  one of its “square” faces. Starting off with open sets 
means that faces and objects have nontrivial interiors. 
Notice that it is not assumed that an object is the closure 
of a connected set. This  allows objects that consist of 
disjoint “solids” or even objects which intersect only  in 939 
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Figure 1 Examples of projections. 

edges, etc. One can argue that this last case does not 
represent a “real” object, but in practice all sorts of 
strange objects can appear. Thus, we decided to handle 
the most  general case possible. Furthermore, this gener- 
ality does not exact any penalty other than creating a 
large  number of solutions. 

Another  point worth noticing is that Definitions 1 and 2 
allow  many different representations of the boundaries of 
faces and objects by line segments and faces (respective- 
ly). However, there are canonical representations of the 
boundaries  which correspond to one’s intuitive notions 
about  such things. To get to these representations it is 
necessary to introduce several additional concepts. 

Definition 3 
(a) Let f be a face. The vertices off, V(f), are defined to 
be the set of all points for which two noncolinear line 
segments, contained in af, can be found whose intersec- 
tion  is the given point. 
(b) Let f be a face. The edges off, E(D, are defined to be 
the set of all  line segments e, contained in  af,  satisfying 
the following conditions: 

1. The endpoints of e belong to V(0; 
2. No interior point of e belongs to V(f). 

(c) Let 0 be an object. The vertices of 0, V(O), are 
defined to be the set of all points p for which faces f i t  f2, f3 
c a6  can  be  found such that (p} = f, n f2 n f3 = P,, n Pf2 

(d) Let 0 be  an object. The edges of 0, E@), are defined 
to be the set of all  line  segments e, contained in 80, 

” Pf,. 

936 satisfying the following conditions: 
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1.  The endpoints of e belong to V(0); 
2. No interior point of e belongs to V ( 0 ) ;  
3. For every point p of e, two noncoplanar faces can be 

found, fl, f2 G a0 such that p E fi n f2. 

(e) Let 0 be  an object. The wire frame of 0, WF(O), is 
defined to be the ordered pair (V(O), E(0)). 0 

It can be  shown that the edges of an object can intersect 
only at vertices of the object, i.e., at their endpoints. 

The Wire Frame algorithm detailed in [ 13 allows one to 
construct all  possible objects which  have a given  wire 
frame. It happens to be true, but not immediately obvious 
from the definitions, that V(f), E(0, V(0), and E(0) are all 
finite  and  well-defined. These facts and others are dis- 
cussed  in greater detail in [l]. 

The  Wire Frame algorithm described in [ 11 runs on any 
collection of points and  line segments in IR3 and either 
returns all objects having the given collection as their 
wire  frame or shows that the given collection could not be 
a valid  wire frame. In presenting the Projections algo- 
rithm the first  things to consider are the projections of the 
wire  frame of a valid object. At this point  it is necessary 
to make clear exactly what is meant by a projection. 

Definition 4 
Let 0 be an object, P C IR3  a plane, and 7rp:IR3 + P the 
perpendicular projection. By the P-projection of 0, denot- 
ed by 0 I P ,  is meant the ordered pair, (V(01P), E(OIP)), of 
P-vertices and P-edges of 0 defined by the following 
process. Let E* be the set of images under 7rp of all edges 
of 0 which are not perpendicular to P .  Then the P-vertices 
of 0 are those points of P which  lie on at least two non- 
colinear  line  segments  in E*. The P-edges of 0 are those 
line  segments of P which have elements of V(0IP) as 
endpoints, have no points of V(01P) as interior points, and 
are subsets of unions of elements of E*. 

XY, YZ, and ZX are used to denote the planes Z = 0, X 
= 0, and Y = 0, respectively. 0 

Figure 1 shows  some of the things that can happen as a 
result of projection. The vertex A disappears in the front 
and top views. Furthermore, the edges AB,  AC,  AD,  and 
AE do not appear as such in these views. Rather a single 
edge appears which is the union of the projections of the 
four  aforementioned  line  segments. However, in the side 
view the vertex A projects into a vertex, and the projec- 
tions of AB,  AC,  AD, and AE form distinct line  seg- 
ments. 

At this point it seems appropriate to discuss the situa- 
tions in  which vertices of an object project into vertices in 
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a given  projection. Note that if a vertex of a polyhedral 
object is the intersection of at least three noncoplanar line 
segments, the image  of that vertex under any projection is 
the intersection of at least two  noncolinear  line  segments 
and  is thus a vertex in that projection. For convenience, 
vertices which are the intersections of at least three 
noncoplanar  line segments are called Class Z vertices. 
Thus, if two different projections of an object are given, 
the Class I vertices are a subset of the set of all intersec- 
tions of all the perpendiculars erected at the vertices in 
each projection. 

All vertices of an object which are not Class I are to be 
called Class ZZ vertices. In  Fig. 1, vertex A is Class 11; all 
other vertices are Class I. In general, one cannot expect 
to recover Class I1 vertices simply  by erecting perpendic- 
ulars  and  computing their intersections. 

There are a number of properties of Class I and  Class I1 
vertices  which are useful  in  recovering  an object from its 
projections. The key observation, which is formalized 
below, is that the wire frame of 0 can be recovered from 
the  Class I vertices of 0 and certain line segments joining 
these vertices. 

Dejinition 5 
The skeleton, S(0), of an object 0 is the ordered pair 
(SV(0), SE(0)) of skeletal vertices and skeletal edges 
where SV(6) is the set of the Class I vertices of 0 and 
SE(0) is a set of line segments joining the elements of 
SV(0). For  v,, v2 E SV(O), there exists w E SE(O), 
joining v,, v,  iff there exists an  edge or colinear sequence 
of edges of 0 joining v, and v2 and not containing  any 
other Class I vertex. 0 

Theorem 6 
Let 0 be an object. Then the wire  frame of 0, (V(O), 
E@)), can  be recovered from the skeleton of 0, (SV(0), 
SE(B)), as follows. First, V(0) = V*(0) where 

V*(Q = SV(0) U {vl{v} = e, n e2, e,, e2 E SE(0)). 

Thus, to get  all vertices of 0 it is enough to add  all 
intersection points of skeletal edges to the skeletal verti- 
ces. Second, E(0) is simply the set of line  segments  which 
result  from  partitioning the skeletal edges  using their 
points of intersection. 

Proof Observe that from  Definition 5 it  follows that 
every skeletal edge  is the union of edges of 0. Thus, the 
intersection of two skeletal edges is a point of intersection 
of two edges. However, edges of 0 intersect only  in 
vertices of 6. Thus, V*(0) c V(0). 

It remains to show that V(0) V*(0). In particular it 
must  only  be demonstrated that every Class I1 vertex of 0 

belongs to V*(0). To see this it is necessary to consider 
briefly the nature of the edges of 0. Let e E E(Q, p E e, 
and e the infinite  line  through p containing e.  Let X be the 
set of disjoint  line  segments  formed by the intersection of 
e and the boundary of 0. Now either p is in the interior of 
X ( i . e , ,  there are points of X on both sides of p which are 
arbitrarily close to p) or  p has arbitrarily close neighbors 
only to one  side of it. Let f, and f,  be the two noncoplanar 
faces  whose intersection contains e. If p is not in the 
interior of X, then, since p is on the boundaries off, and f2 

but  is  not  in the interior of any of the edges, it  must  be a 
vertex of each of the faces, i .e. ,  there must  be edges, e, E 
f,, e, E f2, not colinear with e such that (p} = e n e, = e n 
e2. But  in  this case there are three noncoplanar edges 
through p, namely, e,  e,, and e,. Thus, p is a Class I 
vertex. 

The  point of the preceding paragraph is to show that 
either a point, p, of an edge, e, is a Class I vertex or the 
line  through p containing e has boundary points of 0 
arbitrarily close to  p, i .e.,  there exists a line  segment s 2 e 
contained  in a 0  for which p is an interior point. In 
particular, an edge, e, containing a Class I1 vertex p can 
be extended to a line  segment s lying  in a 0  containing e 
whose endpoints are Class I vertices, i .e. ,  every edge of 0 
is  contained in some skeletal edge. Since every vertex of 
0 must  lie  on at least three edges, every Class I1 vertex of 
0 must  lie on at least two skeletal edges and hence V(0) = 

V*(0). 

Since every edge of 0 lies in some skeletal edge  and 
V(0) = V*(0), it  follows that the edges of 0 are exactly 
the pieces into which the skeletal edges are partitioned by 
the vertices of 0. El 

Theorem 6 gives  some  insight into the working of the 
Projections  algorithm.  Back projection yields a pseudo 
skeleton consisting of a set of vertices which includes the 
Class I vertices and a  set of edges. This pseudo skeleton 
is processed to produce a pseudo wire frame. In general, 
the  pseudo skeleton and pseudo wire frame contain 
vertices and  edges not in the skeleton and  wire frame of 
the  original object. However, they do contain all the 
vertices and a partition of the edges of the skeleton and 
wire  frame of the original object. In fact, the additional 
complexity of the Projections algorithm  is based on the 
fact that back projection generally  yields  many vertices 
and  edges  not in the original object. The Projections 
algorithm thus proceeds along the lines  laid  down by the 
Wire Frame algorithm, but with suitable modifications 
made to deal  with surplus information. 

The discussion of Class I1 vertices in the proof of 
Theorem 6 shows that they have various properties, one 937 
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of  which appears as Theorem 7. Theorem 7 is  very  useful 
in  showing that certain points  which arise from  back 
projection cannot be vertices of 6. Example 4 later in the 
paper illustrates the power of this observation. 

Theorem 7 
Let 6 be  an  object  and v a Class  I1 vertex of 6. Any plane, 
P, through v separates R3 into two components each of 
which contains interior points of 6 which are arbitrarily 
close to v. 

Proof From the proof of Theorem 6 it follows that v is 
the  intersection of two  noncolinear  line segments, e, and 
e,,  which are unions of line  segments of 6, are contained 
in the  boundary of 0, and  contain v as an interior point. 
Any  plane  through v not  containing e, or e, is  clearly 
going to contain interior points of 6 near v, and  in  this 
case  this  theorem  is true. Also, there is  only  one plane, P, 
containing e, and e,.  If all of 6 were to one side of P, there 
would be a contradiction, since at least four noncoplanar 
faces would  go through v, but  all the edges  containing v 
would be coplanar. 0 

The  remainder of this section shows how  much  simpler 
things are when  items are labeled or when  special  projec- 
tions  are  used. The discussion of the unlabeled case is 
resumed  in Section 3. 

In  mechanical  drawing practice, one generally starts 
with OIXY,  OIYZ, and BIZX, although it is  always  possi- 
ble to use other planes.  In fact, as will  now  be shown, for 
each  object 6 it is  always  possible to find a plane P such 
that vp distinguishes all the elements of WF(0). 

Proposition 8 
Let 6 be an object. Then there exists a plane P containing 
the origin for which vp projects each element of V(0) into 
a distinct vertex of OIP, elements of E(6) project into 
distinct  line  segments  which can intersect in at most one 
point,  and  no  point in V(0) projects into a projection of an 
element of E(0) unless it is a member of it. 

Proof The set of all planes in R3 containing the origin 
can  be  identified  with the unit sphere, S2, in R3, where 
each  unit vector corresponds to the plane for which it is a 
unit  normal. Clearly, in this  manner exactly two  points of 
Sz correspond to each plane  through the origin. In order 
for a projection vp to map each vertex of 6 to a distinct 
member  of  V(61P), P cannot be  perpendicular to any  line 
which  goes  through at least two of the points of V(0)  and 
cannot  be  perpendicular to any  plane  containing  all  edges 
incident  with a Class I1 vertex. Each of these restrictions 
rules  out  exactly one plane, i .e. ,  two points on S2. Thus, 
in order to get an injection  on  V(6), at most 938 
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points  on S2 must  be avoided. 

Two elements of E(0) can have an intersection of more 
than one point  in  some  projection if and  only if they are 
coplanar. Furthermore, they can project with a nontrivial 
overlap  only  into  planes  which are perpendicular to the 
plane  containing both of the elements of E(6). The set of 
all planes  through the origin perpendicular to a given 
plane corresponds to a great circle of S2. Thus, to get the 
desired  behavior at most 

( ’”3 
great  circles on S2 must  be avoided. 

To  keep a point  from  projecting onto a line  segment  not 
containing it there are two cases to consider. First, the 
point  and  line  segment  might  be colinear. In this case, one 
must  avoid  the  plane  perpendicular to the given  line. 
Again this  means  avoiding  two points. Thus, at most 
21V(6)1 IE(6)I points  must  be  avoided. Second, the point 
and  line  segment are not  colinear. In this case it is  enough 
to avoid  all  planes  perpendicular to a given  plane as 
before. Thus, at most IV(6)l IE(6)I great circles on S2 
must  be avoided. 

Since  points  and great circles are nowhere dense in S2 
and the number of sets which  must  be  avoided  is  finite, it 
follows  from the Baire  Category  Theorem (see [151) that 
there  must  be  points of S2 which do not  lie  in any of the 
forbidden sets. Using  any  such  point  yields a plane  with 
the  desired properties. 0 

Definition 9 
Let 6 be an object, P a plane in 3-space, and vp the 
projection of 3-space onto P.  Projection vp is  said to be a 
distinguishing projection for 6 if it has all the properties 
of Proposition 8. 0 

Note that the  proof of Proposition 8 shows that for a 
given object “most” projections are distinguishing pro- 
jections since the nondistinguishing ones have a two 
dimensional  measure  of 0. The  probability of picking a 
nondistinguishing  projection at random  is thus zero in an 
ideal  model. However, in  most practical situations there 
are  only a finite  number  of choices for coordinates, and 
there is a nonzero  probability of picking a nondistinguish- 
ing projection.  Many objects of engineering interest have 
planar features aligned  with the “natural” axes of the 
object, and the set of three standard views contains a 
maximum degree of concealment  and self  alignment. 
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At this  point it is worthwhile to consider two cases. In 
the first case, the image  of each vertex in each projection 
,carries the labels of all the vertices of 6 that project into 
it, i .e. ,  the P-projections are labeled. In the second case, 
there are no labels on the vertices of the P-projection. 

In the first case there is, quite naturally, significantly 
less ambiguity than in the second case. The following 
theorem shows exactly how  much  information can be 
recovered  from  labeled P-projections. 

Theorem 10 
Let P, and P, be two nonparallel planes in R3, and let 6 
be  an object. Assume that the P, and P, projections of 6 
are labeled.  Then there is a unique set of points in R3 
which can  be V(0). Furthermore, if either of the projec- 
tions is distinguishing or if all the edges in at least one P- 
projection are labeled  with the pairs of vertices they 
connect, then WF(6) can be reconstructed uniquely. In 
this case, reconstructing objects from projections reduces 
to the problem of reconstructing objects from  wire 
frames. 

Proof If Ppertices and  P,-vertices are labeled, to 
reconstruct a point x E SV(6), the images of x under the 
two  projections are found and perpendiculars erected at 
those points. Since P, and P, are not parallel, these 
perpendiculars can meet in at most one point. Since they 
both  go  through x, x can be recovered as their unique 
intersection point. In this way SV(6) can be reconstruct- 
ed  uniquely,  which, by Theorem 6, means that V(6) can 
also  be reconstructed uniquely. 

Clearly, if the edges of at least one P-projection are 
labeled as described above, E(6) can be  uniquely recon- 
structed. If one of the projections is distinguishing, E(Q) 
can be reconstructed by  joining together two points of 
V(6) if and  only if they are joined together in the 
distinguishing projection (or in both projections). 0 

Thus, given a fairly small amount of information on 
projections, one can quickly  and  easily reconstruct a 
unique  wire frame. In  many practical situations, where 
the emphasis is on getting  things done and not on creating 
puzzles, it seems quite likely that there will be  ample 
information for constructing the correct wire frame easi- 
ly. Unfortunately, there will also be  many situations with 
inadequate  information. The techniques developed for 
handling the unlabeled case are of great importance in 
such situations. 

To  complete the development of the labeled case, the 
situation in  which there are no distinguishing projections 
must  be discussed. Since this  problem  is a subset of the 
unlabeled case, the unlabeled case is considered next. 

In the unlabeled case, there can be a number of 
distinguishing projections and  it may not  be  possible to 
recover a wire frame uniquely. The following  example 
illustrates this in the case of three distinguishing projec- 
tions. 

Example I1 
Let 6, be the tetrahedron with vertices {( 1 ,   1 ,  l),  (1 ,  2,  2), 
(2, 1,2),  (2,2, 1)) and 6, the tetrahedron with vertices ((1, 
1,2),  (1,2, l), (2, 1, l), (2,2,2)). The projections of 6, and 
6, into the XY, XZ, and YZ planes are all  distinguishing 
and are identical  in each plane, but do not allow construc- 
tion of a unique  wire frame. Actually, the projections into 
the various planes are all essentially the same, i .e.,  by 
ignoring the coordinate which is fixed at 0 in each case, 
one gets the points ((1, l),  (1, 2), (2, l), (2, 2)) and the six 
possible lines between them, i .e. ,  each projection looks 
like a square with both of its diagonals drawn in.  In 
Section 5 ,  the problem of reconstructing all objects for 
which  all three standard projections look  like a square 
with  its  diagonals is discussed in  more detail. As shall  be 
seen, there are surprisingly  many solutions to this prob- 
lem. 0 

The above discussion shows that labeling projections 
can  be  very  useful  in reducing the difficulty of recon- 
structing objects from projections. The truth of the pre- 
ceding sentence becomes even more apparent after the 
discussion of the algorithm for reconstructing objects 
from  unlabeled projections in Section 3 and the discus- 
sion of the examples in Section 5 .  

3. Fleshing  out  unlabeled  projections 
In order to aid in the comprehension of this rather 
complex  algorithm, a basic  form of the algorithm, which 
accepts only  limited data, is presented here (Section 3). 
The  basic  algorithm constructs all polyhedral solid ob- 
jects whose  wire frames have a given set of projections 
(or views). The extension of the algorithm to a more 
general set of projection forms (Le., overall, detail, and 
cross section), and to the use of depth information to 
distinguish between visible and occulted edges, is de- 
ferred  until Section 4. Since the Projections algorithm  is 
an extension to the Wire Frame algorithm, the basic 
concepts of the Wire Frame algorithm and its terminology 
are reviewed  first. 

In the Wire Frame algorithm the input data [a wire 
frame,  Fig. 2(a)] are processed to find all graphs contain- 
ing  more  than two noncolinear edges. For each such 
graph, minimum enclosed areas are found and nested in a 
tree hierarchy. From this hierarchy candidate faces with 
an exterior boundary and possibly interior boundaries 
(Le., a face may have holes) are constructed-these are 93s 
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Figure 2 The  Wire Frame algorithm in action. 

called virtual faces [Fig. 2(b)]. For  each  edge, a list of 
virtual faces is formed and  ordered radially around  the 
edge. Minimum enclosed  volumes are found  and nested, 
again in a tree hierarchy. From this hierarchy, candidate 
volume regions called virtual blocks are  found [Fig. 2(c)]. 
A final decision process assigns state solid or hole to  each 
virtual block [Fig. 2(d)], glues the solid blocks together, 
and finds all possible solid objects with the input  wire 
frame. Note  that  one virtual block is  always  an infinite 
envelope  block (i .e. ,  it is inside out)  and  is always a hole. 

The ability to handle all possible cases  is  embedded in 
the  parts of the algorithm for finding enclosed  regions (for 
example,  bridges are ignored), for  the handling of illegal 
intersections between virtual faces (Type I and  Type I1 
intersections, see below), and in the final decision pro- 
cess. The  correctness of objects is derived  from  the  use of 
directed edges  and  faces  and  from  rules governing the 
number of times and directions  with  which edges  and 
faces  are used. 

The  several stages of the Projections algorithm are now 
described.  Since many of these  stages  are  quite similar to 
the  corresponding stages of the Wire Frame algorithm, 
details are given about only those points which are 
different. The  presentation  is given in two  parts: first, a 
brief outline of the  stages,  and  second, a more detailed 
description of each stage. 

The early stages (1, 2, and 3) of the Projections 
940 algorithm are  concerned with converting, by  means of a 

back  projection process, a set of projections of an object 
to a pseudo  skeleton  and  thence to a pseudo wire  frame 
for  the object.  This pseudo wire frame  contains  supersets 
of the  vertices of all objects with the given  projections. 
Furthermore,  the  edges of this pseudo wire  frame  parti- 
tion the edges of all objects with the given projections. 
The  existence of various edges  and  vertices in objects 
may be  known for certain or may be  uncertain. All 
components of the  pseudo wire frame  are  consistent with 
all the views. 

The  later stages (i .e. ,  4-7) apply an  extended  form of 
the Wire Frame algorithm to a pseudo wire frame  to find 
all polyhedral solid objects with the given  projections. 

Outline of the Basic  Projections algorithm 

1 .  Check input data The  input  data  to  the basic algo- 
rithm are assumed to  be a set of at  least  two distinct 
parallel projections of the wire frame of a polyhedral 
object. Extensions to handle  more  general forms of input 
data are  presented in Section 4. The  data  are  checked  for 
validity and  reduced  to canonical form with  edges and 
vertices  distinct and with edges intersecting  only in 
vertices. 

2 .  Construct pseudo vertex  skeleton The  vertices in 
each view are  back projected to find all Class I vertices 
(Le., vertices  formed by  the  intersection of noncoplanar 
edges) and  some  Class I1 vertices (i.e.,  vertices formed by 
the intersection of only coplanar edges); at this  point it is 
not possible to distinguish between  vertex  classes.  The 
vertices  discovered here,  and  the remainder of any Class 
I1 vertices missed in this stage  and  found in Stage 3, are 
called candidate vertices. While not all vertices of 0 may 
be  recovered at this stage, enough are  recovered  to 
enable the recovery of all vertices after passing  through 
the  next  stage. Note  also  that  candidate  vertices may not 
be vertices or  even points of 6. 

3. Construct pseudo wire frame The  vertices  con- 
structed in Stage 2 form a skeleton  for  the  pseudo wire 
frame in the  same  sense  that  WF(6)  derives  from S(0). 
Edges are introduced based  on  the edges in the projec- 
tions. These edges are  checked  for mutual  internal  inter- 
sections. Intersections  are  introduced  as additional  verti- 
ces and  used to partition the edges. The remaining Class 
I1 vertices are  constructed in this  manner. The vertices 
constructed here  and in Stage 2 are the  set of candidate 
vertices  (denoted  CV(6)), and  the final set of edges 
constructed in this  stage is  the  set of candidate  edges 
(denoted  CE(6)). Together  the  candidate  edges  and verti- 
ces form the pseudo wire frame. The candidate  vertices 
are a superset of V(O), and  the  candidate  edges partition 
the elements of E(6). The edge  connectivity of all vertices 
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is examined and  the  candidate edge and  vertex lists 
edited. The editing process may remove impossible 
items, simplify colinear edges, and update  the classifica- 
tion of vertices as Class  I or 11. Candidate edges  and 
vertices which are  the only  possible candidates  for some 
edges and vertices  appearing in one of the projections are 
labeled as certain and must appear in a solution object; all 
others are labeled uncertain and may or may not appear in 
solution objects. For  both  candidate edges and  vertices, 
cross reference  lists are maintained between view edges 
and  vertices and  pseudo wire frame  edges  and  vertices, 
and vice versa. 

4 .  Construct virtual faces Beginning with the  pseudo 
wire frame  generated  in  Stage 3, all virtual faces  are found 
in a  manner  analogous to  that used in the Wire Frame 
algorithm. All uncertain  edges are  checked  for contain- 
ment in at  least  two noncoplanar  virtual faces. Any  edges 
not meeting this  criterion are  deleted  and  the virtual faces 
updated. Any impossible  virtual faces (e .g . ,  a certain 
edge piercing the  interior of a virtual  face) are deleted. 
The  consequences of deletions are propagated until a 
stable condition is  reached. 

5 .  Introduce cutting edges Illegal intersections be- 
tween two virtual faces  such  that  both  faces  cannot exist 
in an object are handled by the introduction of a tempo- 
rary cutting edge along their line of intersection. The 
cutting edge  partitions the virtual face  into smaller inde- 
pendent virtual faces  and will be removed in the final 
stages. All the  partitioning processes in the algorithm,  be 
they of edges or  faces,  generate lists of siblings with 
common parent edge or  face,  and  also lists of correlations 
between  edges or  faces which cannot co-exist in an 
object; these  data  structures  are used in the final stages of 
the algorithm. 

6 .  Construct virtual blocks Virtual faces  are pieced 
together to form virtual blocks in exactly  the  same 
manner as in the Wire Frame algorithm. 

7. Make decisions A depth first decision process is 
used to assign solid or hole state  to  the virtual  blocks and 
to find all objects with the given  projections. The  process 
ensures that all cutting  edges disappear in solution objects 
(i.e.,  that they are  either totally surrounded by space  or 
by material or they separate  coplanar surfaces). Efficien- 
cy in the search process  is obtained  by  careful  pruning of 
the  decision tree,  for  example, by recognizing that deci- 
sions involving partitioned edges  and virtual faces may be 
propagated to  the whole original edge or virtual face. 

Detailed description of the Basic Projections 
algorithm 
TO make the description of the algorithm more compre- 
hensible, the example based  on Fig. 1 is used to illustrate 

the  various stages, i .e. ,  the problem is  to  recover  the 
object in Fig. 1 from  its  three views. For  brevity, this 
problem is referred to  as  the  Two Wedges  problem. 

1. Check input data The  input  data  to  the basic algo- 
rithm are assumed to be a set of two dimensional  views of 
the whole wire  frame of a  polyhedral object.  The views 
may be at  arbitrary projection directions,  but must  meet a 
minimum requirement of at  least  two distinct  projections. 
Each view is  an  ordered pair of vertices and  edges 
(Definition 4) expressed relative to a  local two dimension- 
al  coordinate frame  and accompanied by a  transformation 
matrix between the  coordinate frame of the  three dimen- 
sional object  and the  two dimensional view. 

In this and  later  stages,  tests  are performed on  the  data 
input to a stage of the algorithm, for  detection of inconsis- 
tencies in the  data,  for reduction of the  data  to canonical 
form for  the  stage,  and to obtain information to be  used in 
later  stages. The  exact choice of which tests  to include 
depends on  the  characteristics of the input data  and 
performance trade-offs between  the  cost of performing a 
test first, the usefulness of information generated  for  later 
stages,  and the desirability of reporting errors before 
incurring the  cost of executing the algorithm. These 
issues are not considered  further  here.  However,  it will 
be seen that  the combinatorial  problems of the projec- 
tions algorithm may be very severe,  and  there  is therefore 
a need to minimize the  quantity of surplus information 
generated in the early stages of the algorithm. 

2 .  Construct pseudo  vertex skeleton As stated  earlier, 
in this  stage  perpendiculars are  erected at each  vertex of 
each view. Then, only those  vertices lying on at least  two 
noncolinear  perpendiculars and which are consistent with 
all other projections, i .e.,  their images are  either  vertices 
or interior  points of edges,  are  selected. As  noted after 
Definition 4, all Class  I vertices and  possibly  some  Class 
I1 vertices are  recovered.  In  order  for  the projections to 
be  consistent, it is necessary  that  every  P-vertex  have  at 
least  one  element of CV(0)  in its  inverse image. This 
check may be  performed as  part of this stage.  In addition, 
if some  P-vertex has a  unique  element of CV(0) in its 
inverse image, then  that element of CV(0) must  actually 
be an element of V(0).  Such a vertex is assigned type 
certain,  and all other  vertices  are assigned type uncertain. 

Each intersection is tested  to  see if it coincides  with a 
previously found vertex  and, if not, is introduced as a 
new vertex. Each  vertex found is accompanied  by  a list of 
cross references to  the view-vertex  pairs from which it 
has  been generated.  Conversely,  for  each view vertex, a 
list is formed of the wire frame  vertices  into which it 
projects. 94 1 

M. A. WESLEY AND G .  MARKOWS~Y IBM I. RES. DEVELOP. 0 VOL. 25 NO. 6 0 NOVEMBER 1981 



942 

a e 0 

e e e 

e e e 
e e a 

(a) 

Figure 3 (a) The  vertex  pseudo skeleton of the Two Wedges 
problem.  Edge recovery in  the Two Wedges  problem:  (b)  the 
pseudo skeleton and (c) the  pseudo  wire  frame.  (d)  The two 
solutions to the Two Wedges  problem. 

The pseudo vertex skeleton of the Two  Wedges prob- 
lem consists of 12 points: the 8 points corresponding to 
the vertices of a cuboid and 4 points corresponding to the 
mid-points  of the 4 horizontal edges [see Fig.  3(a)]. 

3. Construct pseudo wire frame In this stage all pseudo 
skeletal edges are constructed as a prelude to construct- 
ing the pseudo wire frame. To  do this, simply join two 
vertices in the pseudo vertex skeleton by an edge iff in 
every projection the images of these two vertices coincide 
or are joined by an edge or colinear set of edges and  no 
other vertex of the pseudo vertex skeleton would  be  an 
interior point of the edge. 

In general, these pseudo skeletal edges may intersect in 
mutually interior points. To obtain the pseudo wire frame 
from this skeleton it is only necessary to duplicate the 
techniques of Theorem 6, i.e., to introduce edges in the 
obvious way so that all edges have vertices as endpoints, 
that two edges intersect only  in a vertex, and that no 
vertex be an interior point of an edge. 

M. A. WESLEY AND G. MARKOWSKY 

Note that the proof of Theorem 6 shows that V(6) C 
CV(0) and that every edge of 6 can be written as the 
union of candidate edges. 

Many  of the checks of Stage 2 are used on the vertices 
produced in this stage. With  modification these checks 
are used on candidate edges. Thus, it should  be  verified 
that every P-edge has some element of CE(6) in its 
inverse  image. In particular, if some  P-edge has a unique 
inverse  image, then that element of CE(0) must  be real, 
i.e., it  must actually be an element of E(6) and, like the 
rule for vertices above, is classified as type certain. At the 
end of this stage  pruning operations are performed. All 
vertices  with  edge connectivity of degree 5 1  are re- 
moved, together with any incident edges. If the vertex 
has  degree 2, the incident edges are checked for colinear- 
ity. If they are colinear, the vertex is removed  and the 
two  edges are merged into a single edge. If they are not 
colinear, they are removed together with the vertex. If a 
vertex of degree 2 3  has only coplanar edges, then any 
edges  not  having a colinear extension, and  possibly also 
the vertex, are removed. Whenever edges are removed, 
the effects of the change are propagated until a stable 
configuration is achieved. In a similar manner to the 
vertices, cross reference lists are maintained from pseudo 
wire  frame  edges to view-edge pairs, and conversely, for 
each view edge, a cross reference list to the pseudo wire 
frame edges is formed. 

Figures 3(b) and (c) show the results obtained during 
this  stage  in the case of the Two Wedges  problem. Note 
that vertex A of the original  figure appears in the pseudo 
wire  frame  exhibited  in  Fig.  3(c) but does not appear in 
the skeleton [Fig.  3(b)]. Note also that by Theorem 7 
vertices J and 0 are clearly spurious since all  solid 
material  lies to one side of the planes KLN and FGI. 
However, these conditions cannot be derived until a later 
stage of the algorithm. 0 

The stages described above are fairly straightforward. 
Before .describing the later stages of the Projections 
algorithm  it  will  be  helpful to understand exactly what  has 
been  produced so far. The pseudo wire frame (CV6, 
CE(0)) looks like a wire frame. Indeed, in  many cases 
(CV(O), CE(6)) is exactly the wire frame of 6 and feeding 
(CV(6), CE(6)) to  the Wire Frame algorithm will yield the 
correct solutions directly. The important thing is to 
understand the way  in  which  simply  applying the Wire 
Frame  algorithm to (CV(O), CE(0)) can fail to find  all 
solutions. The chief  problem is  that the original  Wire 
Frame  algorithm treats vertices and edges as real entities, 
whereas the pseudo wire frame contains uncertain edges 
and vertices, any of which  may or may not exist in a 
solution. Any solid object having a subset of (CV(0), 
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CE(6)) as its  wire frame and  producing the correct 
projections is a solution of the projections problem. Thus, 

solutions of the projections problem  (it may  in fact fail to 
find any). The assumption of reality of edges and vertices 
is  crucial to two places in the Wire Frame algorithm: 

Dealing  with  illegal intersections between virtual 

Making decisions. 

1 the Wire Frame algorithm approach may fail to find  all 

faces, and 

Whenever an edge pierces a virtual face (a Type I 
intersection) in a legitimate  wire frame problem, it is safe 
to drop the virtual face since  it is known that the edge  is 
"real"  and that "real"  edges cannot pierce faces which 
separate solid  material  from space (these are the only 
important faces). In the present situation, it might  very 
well  be that the edge is not real and  should  itself  be 
dropped instead. Of course, if it is known that a particular 
edge  is real (i.e., certain), the algorithm can proceed as 
before. 

In the Wire Frame algorithm the decision process was 
concerned  with  finding those combinations of virtual 
blocks  which  made every edge (except the cutting edges) 
an edge of a real object. In the case of the Projections 
algorithm  it  is necessary only to find combinations of 
virtual  blocks  with projections agreeing  with the given 
projections.  In general, this means that not every uncer- 
tain  element of  (CV(O),  CE(O)) is actually a member of 
(V(6), E(6)). Thus, the decision procedure must  be 
modified to check that every edge in each projection 
comes  from a candidate edge  which becomes a real edge 
in the corresponding solution. 

Cutting edges were introduced in [l] to handle  illegal 
intersections between virtual faces when  no internal point 
of an  edge  from  one face was contained in the interior of 
another face, but there were points common to the 
interior of both faces (a Type I1 intersection). This 
situation was interpreted as one where the two faces 
could  not co-exist in the solution, and temporary edges- 
cutting edges-were introduced along the line of intersec- 
tion of the two faces. The cutting edges partitioned the 
faces into nonintersecting sub-faces, which  could  be  used 
to build more, smaller, virtual blocks. The decision 
process ensured that cutting edges did  not  remain  in the 
final solutions. Although introduced originally for Type I1 
intersections, cutting edges are applicable also to Type I 
intersections, and are particularly relevant to the case of 
uncertain edges. 

4 .  Construct virtual faces This stage  is essentially 
identical  with  Stage 4 of the Wire Frame algorithm. As 
noted earlier, each candidate edge  is checked to see 

whether it lies  in at least two noncoplanar virtual faces. 
Thus, in the Two Wedges problem, 19 virtual faces 
[KLO, LON, MON,  ABC, ACE, ADE, FGJ, GIJ, HIJ, 

CAD, KONEAB, DACGJH, BAEIJF in  Fig.  3(c)] are 
discovered. 

5 .  Introduce cutting edges This stage  is very similar to 
its equivalent  in the wire frame algorithm but has a minor 
modification to allow for uncertain edges. If an interior 
point of a certain edge is contained in the interior of a 
virtual face, then the virtual face cannot be a face of the 
object  and is deleted. All other illegal intersections be- 
tween  virtual faces, i .e.,  both faces cannot exist in the 
object, are handled by the introduction of temporary 
cutting edges. Cutting edges separate virtual faces into 
independent  regions so far as the illegal intersection was 
concerned  and are removed  in the final  decision process 
in Stage 7. When a virtual face is  partitioned into subfaces, 
mapping tables and correlation lists are generated in a 
manner  similar to that described for partitioned edges. 

KLCB, NLCE, MNED, BCGF, ECGI, DEIH, MOL- 

Note that if records are kept in the correct manner  all 
reprocessing of virtual faces is done with reference to a 
particular  virtual face, rather than starting with a general 
wire  frame  problem. Furthermore, if, when reprocessing 
a virtual face, f, to determine the smaller virtual faces into 
which  it is partitioned by the cutting edges, a cutting 
edge, e, is found  which  is  not on the boundary of one of 
the smaller  virtual faces, then it can be dropped together 
with any  virtual face, g, whose intersection with f is e. 
Face g can be dropped since it is impossible for g to be a 
member of a virtual  block.  As usual, dropping a virtual 
face will  in general have other repercussions which are 
exploited  until a stable situation results. For brevity, 
virtual faces found  in Stage 4 will be  called original virtual 
faces. Those arising because of cutting edges will be 
called new virtual faces. 

In the Two  Wedges problem, two cutting edges [OA 
and AJ  in Fig.  3(c)] are introduced. These two edges 
partition  four virtual faces (CADHJG, BAEIJF, MOL- 
CAD, KONEAB) into eight virtual faces (CAJG, ADHJ, 
BAJF, AEIJ, KOAB, ONEA, MOAD, OLCA). 

6. Construct virtual blocks This stage is identical with 
the corresponding stage in the Wire Frame algorithm.  In 
the Two  Wedges  problem, six finite virtual blocks are 
uncovered: 

B,:(MONEAD), 
B,:(NOLCAE), 
B,:(LOKBAC), 
B,:(DAEIJH), 
B,:(EACGJI), 
B6:(BACGJF), 943 
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where the description of virtual  blocks is in terms of the 
labeling of Fig. 3(c). The  seventh virtual  block, Bo, is  the 
unique infinite empty block. 

7. Make decisions The  set of virtual  blocks is fed to a 
decision procedure, which is  an  extension of the decision 
procedure  used  in the Wire Frame algorithm. The differ- 
ences between the  two  procedures revolve around  the 
fact that  the Projections  algorithm is  aware  that not every 
vertex and edge  must  be  real. 

The chief difference consists of the  fact  that  whenever 
the  nature of a  new  virtual face is determined (i .e. ,  
whether or not it separates solid material and  space),  the 
same  determination  can be  made  for all other new virtual 
faces which are subdivisions of the  same original virtual 
face. Furthermore,  as  soon  as  it is determined  (or  as- 
sumed) that  an original virtual face,  f,  does  separate solid 
material and  space, all original virtual faces sharing a 
cutting edge with f a re  forced to be spurious. This  means 
that  any  pair of virtual  blocks using any  part of any  virtual 
face “cutting”  f as a common boundary must both be 
assigned the  same  state. Similarly, if a virtual face is 
known to be spurious, all virtual  blocks using any  part of 
it as a boundary  must have  the  same  state. 

These  facts  speed  up  the decision procedure considera- 
bly and offset the  greater number of virtual  blocks that 
have  been introduced. Similar arguments  apply to  entire 
edges which have been  partitioned in Stage 3. In  the final 
solution, no cutting  edge can  be a real  edge. Of course, all 
decisions respect  the  fact  that  the final outcome must be 
consistent  with the original projections. 

In this  stage  virtual  blocks are fitted together  to gener- 
ate all objects with the given  projections.  Basically, each 
virtual block may have solid or hole state  and,  when a 
state assignment has  been  made to each virtual  block, an 
object is obtained. However, not all assignments of solid 
and hole yield the desired  projections. An assignment of 
solid or hole to  the virtual  blocks  yields an  object with the 
correct wire frame iff 

1. Every certain  edge  element  e E E(B) belongs to  two 
noncoplanar  virtual faces  fl  and f2 each of which 
belongs to  one virtual  block  assigned solid state  and 
one  assigned hole state; 

2. No cutting  edge  belongs to  two noncoplanar  virtual 
faces  f,  and  f2  each of which belongs to  one virtual 
block assigned solid state  and  one assigned  hole state. 

3. Every uncertain  edge  element  e E E@) may be as- 
signed either to state  certain  and  obeys  the rule for 
certain  edges (1) above  or  to  state not-visible and 
obeys the rule for cutting edges (2) above, in a manner 

944 consistent with the  input projections. 
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The decision process  is performed  by assigning states 
in a virtual  block state  vector,  whose  elements  are 
ordered a priori. The first element of the  state  vector is 
the unique infinite virtual block, which is assigned the 
empty state.  For  each edge, a list is formed of the  faces 
containing the edge and  the blocks they  bound; this list is 
sorted around  the edge and allows the angular sequence 
of block state  transitions  to  be  discovered. 

The decision process  proceeds  as a depth first search in 
the  virtual block decision space  tree.  At  any node  in the 
tree,  the  current  state  vector  is  checked  for  consistency 
and  consequential states  are assigned. Thus, although the 
state  vector may have dimension of many hundreds,  the 
consistency check may be expected  to  prune large sec- 
tions of the  tree, while the propagation of consequential 
states may be expected  to  reduce substantially the num- 
ber of decisions to  be made. 

The  checks  for  consistency  are essentially those listed 
above. The consequential state assignments are per- 
formed to meet the following criteria: 

A  certain  edge  with all except  one containing block 
assigned the  same  state  forces  the remaining block to 
be assigned the  opposite  state. 
An uncertain  edge  totally surrounded by either all 
material or by all space  becomes nonvisible; an  uncer- 
tain  edge  contained  in  blocks  producing exactly  two 
coplanar state  transitions  around  the edge becomes 
nonvisible; an uncertain edge contained  by  blocks of 
both hole and solid states  and with at  least  two 
noncoplanar state  transitions  around  the edge  be- 
comes  certain. 
An uncertain  edge that is the only  edge remaining to 
create a view edge  becomes  certain. 
A  cutting  edge whose surrounding  blocks have  the 
same state, Le.,  both solid or  both hole,  spanning 
regions 180 degrees  apart, allows the  same  state  to be 
assigned to all blocks around  the  edge. 
A  cutting edge  whose surrounding  blocks have  the 
same  state <180 degrees  apart  around  the edge  allows 
any  intermediate  blocks to be  assigned to  the  same 
state. 
A new virtual face which is a  real face, i .e. ,  it 
separates blocks of different states,  and which is a 
subdivision of an original virtual face formed by 
cutting  edges  allows the  same solid-hole relationship 
to be given to all blocks  containing sibling faces  from 
the original virtual face. Similar rules apply  when the 
face is not  real. 
An uncertain edge which becomes a certain edge  and 
which is a  subdivision of an original wire frame edge 
allows its sibling edges  to be  upgraded to certain  state. 
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In some cases, particularly those  where  there  are high 
degrees of symmetry and a limited number of views, 
giving rise to many highly correlated uncertain edges, 
there may be  a  very  large  number of objects producing 
the given projections. Thus, although the  depth first 
search  and also heuristic search  approaches  to this  prob- 
lem [8] allow a solution to be  found efficiently, an 
exhaustive search must  ultimately  be used,  and efficient 
pruning of the decision tree is very important.  It is 
evident that, in the  case of problems with multiple 
solutions, the provision of rather small amounts of extra 
information by the  user,  for  example, labeling of some 
uncertain  edges, and assigning states  to points in 3-space, 
can  resolve the ambiguities completely. Thus, in a practi- 
cal system,  the  user may be requested  to  assist with 'extra 
information when requested.  The basis for  the  system 
requesting extra information  in the  early  stages of the 
algorithm is the  preponderance of uncertain edges, dis- 
covered in Stage 3, and self intersection of uncertain 
edges,  dicovered in Stages 4 and 5 .  

At this  point it  can  be  appreciated  that  the  use. of 
cutting  edges  has  allowed construction of a set of virtual 
blocks having the  property  that  every solution of the 
projection problem can be built out of the virtual  blocks in 
this set. 

Stage 7 feeds into  an  output module which puts  the 
output  together in forms which can be understood by the 
user of the system. In  our implementation of the algo- 
rithm, the  output  is in the form of a polyhedron for  the 
Geometric Design Processor  system [2]. 

In the  case of the  Two Wedges problem, this  stage 
produces the  two solutions shown in Fig. 3(d). The 
decision procedure  works  as follows  in  this case.  Suppose 
that the search in this case  deals with the virtual  blocks 
Bo, *, B, in that  order. Bo is known to  be  empty.  Thus, 
the first branch of the decision tree  corresponds  to 
determining the  state of B,. 

If B, is assumed to be solid,  MOAD is  seen  to  separate 
solid from  space. This means that  the  entire virtual face 
MOLCAD must separate solid from  space.  In particular, 
B, must be solid and B, empty.  Thus,  the  next  step is to 
decide  whether B, is solid or  empty. Assuming that B, is 
solid forces B, to  be solid and B, to be empty.  However, 
the  object resulting from making B,, B,,  B,,  B, solid and 
Bo, B,, B, empty  clearly fails to have  the right projec- 
tions. Thus, the  decision procedure  backs  up  to  the B, 
decisions  and  assigns  hole to B,. This  means  that  the new 
virtual face DAJH is  spurious  and  that  the original virtual 
face  DACGJH is spurious. Thus, B, and B6 must have  the 
same state. If they  are both assumed  to be empty,  the 

object that results is just a simple  wedge,  which  clearly 
has the wrong projections. Thus, B, and B, must both  be 
assumed to be solid. The  object  that  results is a left-right 
transform of the original object in Fig. 3 and clearly has 
the  correct projections. 

On the  other  hand, if B, is assigned hole, B, and B, 
must both  be  assigned the  same  state. Clearly, if  B, and 
B, are also empty,  it is impossible to obtain the  correct 
front and top views. Thus, B, and B, must  be solid in this 
case. Furthermore, assuming B, to be solid forces B, to 
be solid and B, to be empty. This yields the original 
object. Assuming B, to be empty  forces B, and B6 to  have 
the  same state.  The  objects  that result are  both wedges of 
differing width and are clearly not solutions. 

It  is clear that keeping track of the number of objects 
remaining in the  inverse image of a  projected  artifact can 
be helpful in the decision procedure, i .e . ,  if assigning a 
particular state  to a given virtual  block removes  the  last 
vertex or edge in the back  projection of some  vertex  or 
edge,  then that assignment can be  rejected and its conse- 
quences  need  not be explored further. 0 

The following section describes ways in which  addi- 
tional  information can be extracted from  various  drawing 
conventions. The final section contains  examples which 
should clarify the discussion in this and  the next  section. 

4. Additional  information  from  drawing  conventions 
Designers and draftsmen use a number of conventions 
and  aids to clarify and help reduce ambiguity in engineer- 
ing drawings. Extensions to the Basic  Projections algo- 
rithm are  presented in this section.  These extensions 
cover  two  concepts:  the generalization of the  set of types 
of views to include overall,  detail,  and  cross sectional, 
and the  use of depth  and detail  information expressed by 
line types.  The  presentation is made within the  context of 
the various  stages of the algorithm presented previously. 

e Stages of the algorithm  reconsidered 

1 .  Check input data 
In extending the basic algorithm to handle several differ- 
ent  types of view (i .e. ,  overall,  detail, and  cross section- 
al), the  central problem is  to  be  able  to  relate information 
from the different types of views.  This is achieved here by 
classification of the edges of the object into two  types: 
gross  and  detail. The  gross  edges describe the main 
structure of the  object;  the detail edges add  more  informa- 
tion in regions where  there is fine structure in the  object. 

The edges of the views are labeled with edge types 
according to  an agreed  drawing standard.  For example, 945 
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Figure 4 Three views of an object  related to an octahedron. 

(C)  (dl  

Figure 5 The solution to the  problem of Figure 4: (a) the 
pseudo wire  frame;  all  external edges are of type  certain, internal 
edges are of  type  uncertain; (b, c,  d) some of the 35 solid  objects 
with  the views of Fig. 4. 

visible  edges are generally drawn with  line type solid and 
occulted edges  with type dashed, which provides depth 
information. Another possibility, namely the omission of 
occulted edges, is not permitted; the Projections algo- 
rithm is based on geometric concepts and the premise that 946 

M. A. WESLEY AND 0. MARKOWSKY 

all edges are shown  in  all projections. An algorithm that 
attempts to fill  in  missing  information  would have to be 
based on heuristic ideas of what a most  likely object 
would be as well as on the concepts of geometry. 

An overall  view  is a projection of the major features of 
the  whole object onto a plane outside the object. The set 
of overall  views of the object contain projections of only 
the gross edges. Thus, every gross edge of the object is 
represented as an edge or a vertex in every overall view. 
Similarly, every object vertex that is the intersection of 
gross  edges appears as a vertex or a point in an edge in 
every overall view. 

A detail view  is a projection of a portion of the object. 
The view has a defined polyhedral boundary  and two 
extents along the projection direction. The boundary  and 
extents define a right  prismatic  region in 3-space. The 
detail  view is a projection of all edges and vertices of the 
object contained in the region. A detail view contains 
projections of both the gross and detail edges, without 
distinction, contained within its defined  region. 

A cross sectional view  may  be either overall or detail. 
The  view is a planar cross section normal to the projec- 
tion direction. In this case the view transformation con- 
tains the location of the section plane in the coordinate 
frame of the object. Note that edges are shown at the 
cross section plane that may not be present in the object 
(they  lie in surfaces of the object), and may not  be  shown 
in other views of the object. 
2.  Construct pseudo  vertex skeleton 
This stage proceeds in a manner similar to before.  How- 
ever, somewhat greater care must  be taken to treat the 
various projections consistently. Intersections between 
back projections of vertices from appropriate pairs of 
different  views are considered candidate vertices. Appro- 
priate  means noncolinear projection directions and the 
same type of view, Le., both overall or both detail. In the 
case of pairs of detail views, the intersection point  must 
lie within the intersection of their respective prismatic 
regions.  In the case of a cross sectional view, the inter- 
section point must  lie in the halfspace defined  by the 
section plane  and projection direction. Also, a cross 
sectional view generates a set of vertices and edges in the 
plane of the view. 

3. Construct pseudo wire frame 
This  stage  is essentially unchanged  from Stage 3 in 
Section  3. However, the following is a very useful obser- 
vation: whenever a view shows two noncolinear solid 
(Le., visible)  lines intersecting internally in a point, p, 
then there must  be  some vertex of 6 visible  in the 
appropriate direction which projects onto p and which 
has  only  visible edges incident with  it corresponding to 
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the solid lines incident with  p.  In particular, if in  moving 
along the perpendicular from p one first encounters 
candidate vertices which are clearly not vertices of 0 (see 
discussion of Stage 3 in Section 3), then these vertices 
and  all  incident  edges  may  be discarded. To appreciate 
the power of this observation see Example 4. 

4 .  Construct virtual faces 
This stage is essentially the same as Stage 4 in Section 3. 
However, it is possible at this point to use line type depth 
information to edit out some type I1 vertices and uncer- 
tain candidate edges, as well as  to extract additional 
information for use at a later time. 

The cross reference lists from  view edges to edges in 
the wire frame are concatenated with the list of original 
(i.e,,  before  any partitioning) virtual faces and sorted by 
distance along the projection direction from the mid-point 
of the view  edge. For any  edge that is  visible, i .e. ,  not 
dashed, the nearest pseudo wire frame edge is identified. 
Any interposing virtual faces cannot exist and are de- 
leted. For an  edge to be dashed, there must  be at least one 
occulting virtual face in the projection direction. If there 
is  only one such face, then it must  be a real face 
separating solid  material  from space, and since the pro- 
jection is from outside, the directedness of the face is 
known.  This  information  is  fed forward to the decision 
process as initial certain states of blocks and faces. As 
before, the consequences must  be  fully propagated. 

5 and 6 .  Introduce  cutting edges and form virtual blocks 
These stages are the same as in Section 3. 

7. Make  decisions 
This  stage  again is very similar to the corresponding 
stages described in Section 3. Clearly, however, the 
decision procedure must accommodate the drawing con- 
ventions in the correct manner. It is fairly apparent how 
this  is to be done. Thus, for example, in the case that 
occulted edges are represented explicitly in views, each 
view edge  must contain a visible  edge in the view 
projection direction, and each nonvisible  view  edge  must 
be occulted by an interposed face in the view projection 
direction. 0 

The examples  in the next section illustrate the points 
made above. As shall be seen, pathological features do 
not appear to be  common  in objects of practical interest. 

5. Examples 
To clarify the discussion in Sections 3 and 4, several 
examples are presented in this section. The examples are 
chosen to illustrate particular features of the algorithm 
and  some of the performance trade-offs  involved in 
providing extra information. 
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e Example I-octahedron  projections 
The octahedron illustrates a simple  problem  having  many 
solutions, but for which the Projections algorithm does 
not  need to introduce any cutting edges. Figure 4 shows 
three views of an octahedron. It is interesting to deter- 
mine the set of all objects having the identical projections. 
The back projection process generates the 12 edges of the 
octahedron with type certain and the three intersecting 
diagonals  with type uncertain. In a wire frame example of 
an octahedron [l] it was shown that the diagonal  edges 
must  be introduced as cutting edges for the Wire Frame 
algorithm to handle the mutually intersecting interior 
virtual faces. In the Projections case, the algorithm 
proceeds with no need to generate further edges  and 
enters the decision process with  eight virtual blocks, one 
for each octant around the intersection point of the 
diagonals. Since the interior edges are of type uncertain 
and the exterior are all of type certain, any selection of 
octants such that no two hole octants share a face is a 
solution. The decision process finds 35 solutions: 

1 with  all octants solid, 
8 with  one octant a hole, 

16 with two octants holes, 
8 with three octants holes, and 
2 with four octants holes. 

A sampling  of these solutions is shown in  Fig. 5.  Note 
that in  this case dashed lines do not reduce the amount of 
ambiguity. 0 

e Example 2-cube  projections 
The cube illustrates a simple use of cutting edges. Figure 
6 shows two views, front and top, of a cube. Again the 
Projections algorithm determines the number of objects 
having the same two views. The back projection process 
finds the cube edges, albeit as type uncertain. However, 
in the direction perpendicular to the two given  views, the 
cube face diagonals are found without intersection. A 
cutting edge  is inserted between the intersection points of 
the face diagonals,  and  five virtual blocks are found (the 
envelope and four quadrant blocks). Five solutions are 
found as shown  in  Fig. 7. Note that if all three views of a 
cube were furnished, there would  be a unique  solution to 
this projections problem. 0 

e Example 3"Two Y's problem 
Figure 8 shows a well  known  mechanical  drawing puzzle: 
find all objects having the top and front views  shown. 
Because of the way edges line  up in the two views, the 
back projection process finds the pseudo skeleton with 29 
edges  and 12 vertices shown in  Fig 9. Intersections of the 
edges  yield three additional vertices where the diagonals 
intersect, and intersections of virtual faces yield  eight 
cutting  edges. The final pseudo wire frame is shown  in 
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TOP 

Front 

Figure 8 The Two Y's, a well known mechanical drawing 
puzzle: front and top views of an object. 

tions of Section 4 (i.e.,  all  lines  in the views are assumed 
to be  solid, that is, visible) there are seven solutions. 
These are shown  in  Fig. 12. Figure 6 (a, b) Two views of an object related to a  cube; (c) the 

pseudo wire frame; (d) the pseudo wire frame with a cutting edge 
inserted. 

"----- 

"----- 

I 

I 

rl: 
Figure 7 Objects with the views shown in  Fig. 6 (a, b). 

Fig. 10. The 16 internal virtual blocks  found in Stage 7 are 
shown  in  Fig. 11. Under the assumptions of Section 3 

948 there are 55 solutions to this problem. Under the assump- 
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The Two Y's problem is very sensitive to numerical 
considerations. If the branch point of one of the Y's is 
moved  from the center of its view, there are no solutions 
to the corresponding projections problem. 0 

Example 4-Three x 's  problem 
The Three X's problem illustrates vividly the savings that 
can result from the use of depth information. Figure 13 
shows an apparently minor  modification to the problem of 
Fig. 4; the object is now clearly contained within a cube. 
However, further investigation shows that the solution 
process becomes surprisingly complex. The back  projec- 
tion process produces nine  vertices-the cube vertices 
(uncertain) and its midpoint (certain) and thirty-two 
edges,  all  uncertain-the  twelve cube edges, twelve face 
diagonal  edges  (initially  with type I1 intersections, but 
later changed to mutually exclusive intersections), and 
eight cube diagonals  from the midpoint. Note that, in 
contrast to the situation with  Fig. 4, none of the edges 
found are of type certain and that ambiguities can be 
expected to stem from this lack of definite information. 
The pseudo skeleton that is obtained by back projection is 
shown  in  Fig. 14. 

In the case without depth information, i .e.,  all  edges 
drawn regardless of occultation, the partitioning process, 
of intersecting edges to generate sub-edges and virtual 
faces to generate sub-virtual faces with cutting edges, 
divides space into many  small  regions. A total of  96 
internal virtual blocks are found and the decision process 
uncovers 38 065 solutions. Clearly, searching a 96-level 
decision tree for 38 065 solutions is a complex process. 
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Figure 9 The pseudo skeleton of the Two Y's problem. 

Figure 11 Sixteen virtual blocks found from the two views of 
Fig. 8. 
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Figure 10 The pseudo wire frame with cutting edges added. 

Figure 12 Objects with the two views of Fig. 8: (a) is symmet- 
ric; (b, c,  d) are asymmetric and each is typical of a pair of 
objects. 



Figure 13 The  Three X’s problem:  three  views of an  object 
whose  extent  is  bounded by a cube. 

Figure 14 The  pseudo  skeleton for the Three X’s problem. 

The solution is made practicable by  making  heavy use of 
the mappings and correlations between original faces and 
edges  and their partitioned forms. One solution, picked at 

950 random, is shown in  Fig.  15. The object is hard to 

Figure 15 One  of 38,065 objects  found with the  views of Fig. 13 
and  assuming  that all edges  are  shown in each  projection.  The 
object is based  on  three  tetrahedra. 

understand, even with a model  in  one’s  hand. It is a set of 
three tetrahedra, a pair with a common face and a third 
with  edge contact only, i.e., it is decomposable into two 
disjoint objects. The solutions found could  be  filtered to 
reject unstable objects of this form, but this test has not 
been executed. 

The analysis of the case with depth information shows 
the power of Theorem 7 when used in Stage 3. Each of the 
three views shows solid lines intersecting in the center 
point.  Following a perpendicular from  any of the center 
points of any  view leads first to a point in the center of a 
face of the cube containing the pseudo wire frame. This 
vertex cannot be a Class I vertex since all candidate edges 
incident  with it are coplanar. It also cannot be a Class I1 
vertex since all  solid  material lies to  one side of the plane 
containing the face in question. Thus, the center points 
and all diagonal edges may  be discarded from the front, 
top, and appropriate side faces of the cube. Furthermore, 
in Stage 4 corresponding faces of the cube are also 
discarded since they would obscure a vertex and lines in 
the interior. With these faces discarded, three of the 
leading  edges of the cube must  be discarded also since 
they no  longer contain at least two noncoplanar virtual 
faces. 

After these reductions, the algorithm goes on to find 
the ten solutions shown in  Fig. 16. The solutions may  be 
considered as being based on the union of three pyramids, 
as shown  in  Fig.  16(a).  In  all solutions, the view  of the 
objects in the projection directions are the four triangular 
faces of the union of the three pyramids. The distinguish- 
ing features between the solutions are cavities in the 
“rear”; the viewpoint for the solutions in Figs.  16(b)-(g) 
is chosen to illustrate these cavities. The solutions are 
grouped as follows: 
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(e) ( f )  (g) 

Figure 16 All  ten solutions to the  Three X's problem  in  dashed line  mode: (a) three  pyramids  forming the  basic solutions; (b) three 
pyramid solution; (c) one pyramid bisected; (d) two pyramids bisected; (e) all  three  pyramids bisected; (f) solution  (b)  cut  by  plane 
containing  the  diagonals of the square faces; (g) solution  (b)  with  an  internal  tetrahedral cavity. 

Figure  16(b) shows all three pyramids complete, 
Figurel6(c) shows one pyramid bisected and is one of 

Figure  16(d) shows two pyramids bisected and is  one 

Figure  16(e) shows all three pyramids bisected, 
Figure  16(f) shows the object (b) above cut by the 
plane  containing the diagonals of the three square 
faces, 
Figure 16(g) shows the object (b) with  an internal 
tetrahedral cavity just visible as diagonal edges of the 
square faces. 

a set of three solutions, 

of a set of three solutions, 

0 Example 5"Two Ramps  problem 
The Two  Ramps  problem illustrates the effectiveness, of 
the pruning operations of Stage 3. Figure 17 shows this 
well  known two view  puzzle  problem reputed to have 
twelve solutions. The back projection process produces 
an array of three by four, i .e.,  twelve, vertices on the left- 
hand face and an array of two by four for the right-hand 
face.  Twelve edges are found  linking the left  and  right 
sides. However, the number of possible edges in the end 
faces, i .e.,  in the direction normal to the two  given views, 
is large; see Fig.  18. Fortunately many of those in the left- 
hand face are rejected by the edge  and virtual face 
connectivity test at the end of Stage 3 (Fig. 19). Some 108 
internal virtual blocks are found  and 107 distinct solu- 
tions. Only 12  of the solutions, however, pass the stable 
object criterion. Some of the solutions are shown  in  Fig. 
20. 0 

0 Example 6-real engineering objects 
After  developing the algorithm to be as general as possi- 
ble,  and  proving  it  with problems chosen for their geomet- 
ric  difficulty  and ambiguities, it is refreshing to look at 
some  real  engineering objects and consider their recon- 
struction from their three standard views.  Figures 21 and 
22, parts (a), (b), and (c), show two examples of engineer- 
ing objects. Even without using depth information, only 
one  solution is found to each object, and the reconstruct- 
ed objects are shown in Figs.  21(d)  and  22(d). It is 
apparent from the views that the polyhedral  approxima- 
tions of the cylindrical holes in the objects greatly in- 
crease the number of vertices and edges to be  handled 
and that the projections of these polyhedral features can 
lead to many  small edges in the view,  indicating potential 
for numerical  problems. However, our implementation of 
the Projections  algorithm does not have problems in these 
areas with these examples. Further, it is clear that objects 
of this  complexity raise real problems in ensuring the 
validity of the input data. The three views  used as input in 
this  example were obtained from  an  existing  model  and 
were therefore guaranteed to be correct. A human  gener- 
ating these views directly would  have  some  difficulty 
ensuring their correctness and self consistency. The 
Projections  algorithm in its present form does not attempt 
to handle incorrect (or incomplete) data. 0 

6. Summary 
The Projections algorithm presented in this paper finds  all 
polyhedral objects 0 with a given set of projections. It has 951 

IBM 1. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981 M. A. WESLEY AND G. MARKOWSKY 1 



Figure 17 The Two Ramps problem: two views of an object. 

Y 
J 

Figure 18 The pseudo skeleton of the Two Ramps problem. 

been  shown that, if the projections are labeled, the 
problem  may  be  solved  by the Wire Frame algorithm [l]; 
in the unlabeled case an extended form of the Wire Frame 

952 algorithm, the Projections algorithm,  is needed. 

R 

c 

Figure 19 Pseudo wire frame after pruning in Stage 3; note the 
reduction of edges in the left-hand face. 

It has  been  shown that an inverse projection process 
may be  used to construct a superset of Class I vertices of 
6 (vertices contained in at least three noncoplanar  edges) 
together with a superset of unions of edges of 0. These 
edges  and vertices constitute the skeleton of 0. 

It has also  been  shown that a superset of the  Class I1 
vertices of 8 (vertices contained  only  in a set of coplanar 
edges)  may  be  found as intersections of skeleton  edges. 
These  updated vertices and  edges constitute a pseudo 
wire frame. 

A pseudo wire  frame  differs  from a wire  frame in that it 
contains supersets of the edges  and vertices of the  wire 
frame.  Some of these elements have  been  identified 
uniquely  and  have type certain; the rest are of type 
uncertain. Any object  whose  wire  frame is composed of 
the certain elements of the pseudo wire frame and  any 
subset of the  uncertain elements and produces the correct 
projections is a solution. 

The  pseudo  wire frame is processed to find candidate 
faces  (virtual faces). Virtual faces are connected to en- 
close  volume  regions (virtual blocks). A depth first  deci- 
sion process with  heavy  pruning  is  used to find  all state 
assignments of hole or solid to virtual blocks that produce 
solid objects with the correct projections. 
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Figure 20 Some of the 107 solutions to the Two Ramps prob- 
lem. 

The Basic  Projections algorithm accepts projections of 
the wire  frame of 0;  extensions handle a more  general set 
of projection types (detail,  overall, and  cross sectional) 
and  projection conventions  such as depth information 
obtained from  occulted  edges in a projection being shown 
as  dashed. 

The Projections algorithm has been  implemented  and 
its  operation  has  been  illustrated by a set of examples. 
These examples have  shown  that problems of a mechani- 
cal drawing  puzzle nature, which typically have high 
degrees of symmetry  leading to large  numbers of uncer- 
tain  elements in the  pseudo wire frame,  can  ,have very 
large numbers of solutions. On the  other  hand, engineer- 
ing objects,  with  projections sufficiently complex to re- 
quire  careful  thought from a  human,  have  been  run and 
have  produced  unique  solutions. 
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