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Message Reassembly Times in a Packet Network

This paper addresses the problem of computing the reassembly time of a multipacket message. All packets from a single
message are assumed to flow in sequence along the same physical path. The analysis includes the effects of contention
between messages in the network on the delay time at each station along the path and its impact on message reassembly

time.

Introduction

A common procedure in the transmission of a message
from a source node to a destination node through a
communications network is to divide the message created
at the source into several smaller frames or packets.
Certain header information, such as destination address
and sequence number, is then attached to each packet. In
this way, each packet can flow through the network as an
independent flow unit.

In some communications networks (such as AR-
PANET [1]), the packets from a single message may flow
from source to destination via several different physical
paths. With this scheme, the packets may arrive at the
destination ‘‘out of order.’” With explicit routing (such as
the current Systems Network Architecture [2] implemen-
tation), all packets from a single message flow in se-
quence along the same physical path.

In this paper, only the case of explicit routing is
addressed. A typical routing path is depicted in Fig. 1. In
order to travel from the source to the destination, each
packet must pass through N intermediate stations. These
stations correspond to the various control units and
transmission lines that physically connect the source to
the destination node.

Suppose a message with m packets arrives at the first
station. This station spends some time processing the first
packet. Upon completion of this processing, this packet
moves to the second station. Then, while the second
station processes the first packet, the first station pro-
cesses the second packet of the message, and so on.

Thus, there is considerable overlap (or pipelining) associ-
ated with the message transmission. However, there is
not complete overlap because station processing times
are not all equal.

Sometime after the arrival of the message at the first
station, the leading packet reaches the destination node.
This time is easily calculated as the sum of the N station
processing times. A more difficult problem, however, is
to determine the message reassembly time, i.e., that time
between the arrival of the first packet at the destination
node and the final transmission of the mth packet. This is
the problem that this paper addresses.

This problem has received attention in the literature
(e.g., Kleinrock [1] and Miyahara et al. [3]). However,
these studies have introduced a number of approxima-
tions and simplifications. By means of a completely
different approach, we attempt to remove some of these
limitations. Examples of these limitations include the
requirement that all lines have the same speed, all packets
have the same mean length, and the arrival process at a
service station is Poisson.

Multipacket message transmission delays

In Fig. 1, we consider an m-packet message created by a
particular source node. In the transmission of this mes-
sage from the source to a destination node, each packet
must pass through a series of N stations. The packet
response time R, at station i is a random variable with
known mean. This response time involves the packet
service time plus the waiting time for packets from other
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messages. This response time does not include any wait-
ing that a given packet may experience due to other
packets from the same message.

The average response times, as defined above, can be
computed from a mean value analysis of a queueing
network similar to that described in Bard [4]. This analy-
sis is particularly useful since it separates the total mean
response time into three components: namely, the mean
service time, mean waiting time for jobs (packets) in other
chains, and mean waiting time for jobs in the same chain.
As the packet response time is defined in this section,
only the first two components are used. The reason for
not including the waiting time for packets from the same
message will become apparent later.

The average end-to-end message transmission time D
consists of two parts. The first is the average time for the
first packet to flow from the source to the destination.
This is simply

N
D,= 2 R,. M
i=1

The second part is the average message reassembly time
D, ,i.e., the time for the remaining (m — 1) packets of the
message to arrive at the destination node. The remainder
of this paper is directed towards a method for estimating
D,.
We first define a packet pair. A packet pair consists of
two adjacent packets of the same message. We introduce
the notion of a leading packet and a trailing packet. In the
transmission of a packet pair, the trailing packet is never
allowed to pass the leading packet; i.e., the packet pair is
assumed to arrive in the same sequence that it was sent.
We also note that an m-packet message consists of (m —
1) packet pairs.

We now find an expression for the average reassembly
time of a packet pair. This is simply the time between the
arrival of the leading packet and the arrival of the trailing
packet at the destination node. Once this expression is
determined, the average message reassembly time is
readily calculated.

Again we refer to Fig. 1 and define the ‘‘state’ of a
packet pair by the 2-tuple (n, b) where

n = the station location of the leading packet, and

b = the number of stations back from # for the location of
the trailing packet.

State transitions are observed only at those time instants
(epochs) that the leading packet moves to the next
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Figure 1 Flow of an m-packet message.

&
station. Thus, state transitions are of the form
n,b)->n+1,b+1-),
where j is the number of stations that the trailing packet
has traversed while the leading packet has moved from
station n to n + 1. We assume that the sequence of states
is a Markov chain.

The initial state could be defined as (1, 0). However,
since this state flows to the state (2, 1) with probability 1,
the initial state of our analysis is taken as (2, 1). We define
the destination node as station N + 1.

The following bounds then apply to the state descrip-
tors defined above:
2=n=N+1,
1=b=N,

O0=j= b.

We define

qj(n, b) = probability that state transition from (n, b) is to
state(n + 1,b+ 1 —j), where 0 = j < b,

For the time being, we assume the qj(n, b) are known for

all valid states (n, b). From these values, we can deter-

mine the state transition probability matrix A.

We define

p”(n, b) = probability of the packet pair being in the
state (n, b) after i state changes.

We note that

pP%n, b) =0

except for

e, n=1.

It is easily established that
p“? =p? A =p® @, @
where p™ is a vector of state probabilities after i state
changes. 931

GARY STROEBEL




932

4 A)
\
N
\\\
k1S S~
\\ \\\~~~
~ e~ =
~Sa. e ——— m=4
b ——— -
L - ~——— =1
I S~ ——— T
) T~
= e T T m=2
E ----------- —
.g . m=1
£
=
£
E ] 1 1 1 1 ] |
1 2 3 4 5 6 7 8
Number of stations, N
Figure 2 All stations with same mean response time.
4
No overlap

Current model

-~ -
) Tr~.s
s TTree—_._ Lower bound
CE =
E
g
£
E L i L i L L ]
1 2 3 4 5 6 7 8

Number of stations, ¥

Figure 3 All stations with same response time and m = 3.

After (N — 1) transitions from the state (2, 1), the
leading packet will arrive at the destination node (station
N + 1). We determine the probability that the trailing
packet is b stations behind at this point.

P, =PV PN+ 1,0, 1=b=N. 3)

Now if the trailing packet is b stations behind when the
leading packet arrives at the destination node, the packet
pair average assembly time is

T,= > R, @
i=N—b+1

so that the packet pair average assembly time becomes

N
T= 2 p,[T,. ©)
b=1
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Then for an m-packet message, there are (m — 1) packet
pair assemblies. Therefore, using Eqs. (1) and (5), the
average end-to-end message transmission time becomes

D=D,+ (m— DT. (6)

The calculation of p, (and, therefore, T) is based upon the
state transition matrix A through Eq. (2). The matrix A, in
turn, is based upon the previously defined qj(n, b). In the
following, we derive expressions for qj(n, b).

We recall our definition of R; as the packet response
time at station i. It includes the packet service time plus
waiting time for packets from other messages. It does not
include any waiting time that a particular packet may
experience due to other packets from the same message.

As such, we assume that both the leading and trailing
packets draw their random response time R, at station i
from the same distribution. Thus, we need not distinguish
between a R, for the leading and trailing packets. Note
that this would not be the case if we had included waiting
for packets of the same message.

Given a state (n, b) with transitions to states (n + 1, b +
1 —j)for 0 =j < b we define

xj(n, b) = probability that the leading packet moves from
station n to n + 1 before the trailing packet
completes j hops.

As such

M~

x(n, b) = Prob [Rn =< Rn_b+,.] ©=<j<b-1) (7

0

and
x,(n, b)) =1, ®)

since we do not allow passing of packets.

If we assume the R, are independent and exponentially
distributed with mean R,, it is relatively easy using the
convolution theorem to show that

11'[ R

x{n,b)=1— _—L 9
! i=0 Rn + Rn—b+i

The qj(n, b) are then related to the xj(n, b) by

q(n, b) = x(n, b) — x;_,(n, b) (10)

for1 <j =< b, where x_, = 0.

1

From Egs. (9) and (10), the terms of the state transition
matrix are readily calculated.
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An APL program has been written to do the calcula-
tions associated with this analysis. In the following, we
provide two examples to get a feeling for the type and the
reasonableness of the results of this analysis.

For the first example, we suppose that all N stations
have the same average packet response time R;- We
define a transmission ratio

, 11)

i=1

where D is given by Eq. (6).

In Fig. 2, this ratio is plotted as a function of the
number of stations between the source and destination for
various message sizes. We see that the ratio of message
transmission time to packet transmission time decreases
as the number of service stations increases. This is
expected since more overlap occurs as more stations are
added. Furthermore, this ratio decreases faster with N for
larger messages, again because of a greater degree of
overlap.

An absolute lower bound on the end-to-end message
transmission time can be obtained with the assumption
that each station response time is a constant. In this way,
the packets move in perfect sequence from source to
destination and achieve a maximum degree of overlap.
This lower bound result is shown in Fig. 3 and compared
with the results of the current model for the case of a
three-packet message.

For the second example, we assume that one station
response time is 10 times that for all other stations. With
our model, it does not make any difference which of the N
stations has the long response time. Results for this case
are shown in Fig. 4. Again, a lower bound can be found
by assuming that all station response times are constants.
This lower bound, in comparison with the current model
results, is shown in Fig. 5.
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Figure 4 One station with long response time.
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