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Message  Reassembly  Times  in  a  Packet  Network 

& This paper  addresses the problem of computing the reassembly time of a multipacket message. All packets  from  a single 
message are assumed  tojlow in sequence  along the same physical path. The analysis includes the effects  of  contention 
between  messages in the network on the delay time at  each station along the path and  its impact on message  reassembly 
time. 

Introduction 
A  common procedure in the transmission of a message Thus,  there  is considerable overlap  (or pipelining) associ- 
from  a source node to a destination  node  through  a ated with the message  transmission. However,  there is 
communications network is to divide the message created not  complete overlap  because  station processing  times 
at  the  source  into  several smaller frames  or  packets.  are not all equal. 
Certain header information, such  as  destination  address 
and  sequence number, is  then  attached  to  each  packet. In 
this  way, each  packet  can flow through the network as  an 
independent flow unit. 

In some  communications networks (such as AR- 
PANET [ l]), the  packets  from a single message may flow 
from source  to destination  via several different physical 
paths. With this scheme,  the  packets may arrive  at  the 
destination “out of order.” With explicit  routing (such  as 
the  current  Systems  Network  Architecture [2] implemen- 
tation), all packets  from a single message flow in se- 
quence along the  same physical path. 

In this paper, only the  case of explicit  routing is 
addressed. A typical  routing path is depicted in Fig. 1. In 
order  to  travel  from  the  source  to  the  destination,  each 
packet  must pass through N intermediate stations.  These 
stations  correspond  to  the various control units and 
transmission  lines that physically connect  the  source  to 
the destination  node. 

Suppose a  message  with m packets  arrives  at  the first 
station.  This station  spends some  time  processing the first 
packet. Upon completion of this  processing,  this packet 
moves to  the  second  station.  Then, while the  second 
station processes  the first packet,  the first station  pro- 
cesses  the  second  packet of the message,  and so on. 

Sometime after  the arrival of the message at  the first 
station,  the leading packet  reaches  the destination node, 
This time is easily  calculated as  the sum of the N station 
processing  times.  A  more difficult problem, however,  is 
to determine the message  reassembly  time, i .e.,  that time 
between the arrival of the first packet  at  the destination 
node and  the final transmission of the mth packet. This is 
the problem that  this  paper  addresses. 

This  problem has received attention in the  literature 
(e.g. ,  Kleinrock [l] and Miyahara et  al. [3]). However, 
these studies  have  introduced a  number of approxima- 
tions and simplifications. By means of a completely 
different approach,  we  attempt  to  remove some of these 
limitations. Examples of these limitations  include the 
requirement that all lines have  the  same  speed, all packets 
have the  same mean length,  and  the arrival process  at a 
service  station is Poisson. 

Multipacket  message  transmission  delays 
In Fig. 1, we  consider  an m-packet  message created by  a 
particular source node. In  the transmission of this mes- 
sage from  the  source  to a destination node, each  packet 
must pass through a series of N stations.  The  packet 
response time Ri at  station i is a random variable with 
known mean. This response time  involves the  packet 
service  time  plus the waiting time for  packets  from  other 

Copyright 1981 by  International Business Machines Corporation. Copying is permitted without payment of royalty provided that ( 1 )  
each reproduction is done without alteration and (2) the Journal reference and  IBM copyright notice are included on the first page. 

930 
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission 
to republish other excerpts should be obtained from the Editor. 

GARY STROEBEL IBM J .  RES. DEVELOP. VOL. 25 NO. 6 NOVEMBER 1981 



messages.  This response time does not include  any  wait- 
ing that a given packet may experience due to other 
packets from the same message. 

The average response times, as defined above, can be 
computed  from a mean  value analysis of a queueing 
network  similar to  that described in Bard [4]. This analy- 
sis is particularly useful  since it separates the total mean 
response time into three components: namely, the mean 
service time, mean  waiting  time for jobs (packets) in other 
chains, and mean  waiting  time for jobs in the same chain. 
As the packet response time is defined  in this section, 
only the first  two components are used. The reason for 
not  including the waiting  time for packets from the same 
message will become apparent later. 

The average end-to-end message transmission time D 
consists of two parts. The first is the average  time for the 
first packet to flow from the source to the destination. 
This  is  simply 

D,, = R i  . (1) 

The  second part is the average  message  reassembly  time 
Dm, Le.,  the time for the remaining (m - 1) packets of the 
message to  amve  at the destination node. The remainder 
of this paper is directed towards a method for estimating 

N 

i= 1 

Dm. 

We fist  define a packet pair. A packet pair consists of 
two adjacent packets of the same  message. We introduce 
the notion of a leading packet and a trailing packet. In the 
transmission of a packet pair, the trailing packet is never 
allowed to pass the leading packet; i .e. ,  the packet pair is 
assumed to  amve in the same sequence that it  was sent. 
We also note that an m-packet  message consists of ( m  - 
1) packet pairs. 

We  now  find an expression for the average reassembly 
time of a packet pair. This is simply the time between the 
arrival of the leading packet and the arrival of the trailing 
packet at the destination node. Once this expression is 
determined, the average message  reassembly  time  is 
readily calculated. 

Again  we refer to Fig. 1 and  define the “state” of a 
packet  pair by the 2-tuple (n, b) where 

n = the station location of the leading packet, and 

b = the number of stations back  from n for the location of 
the trailing packet. 

State transitions are observed only at those time instants 
(epochs) that the leading packet moves to the next 

Figure 1 Flow of an rn-packet message. 

* 
station. Thus, state transitions are of the form 

(n, b)+ (n + 1, b + 1 -51, 

where j is the number of stations that the trailing packet 
has traversed while the leading packet has moved  from 
station n to n + 1. We assume that the sequence of states 
is a Markov chain. 

The initial state could  be  defined as (1, 0). However, 
since this state flows to the state (2, 1) with  probability 1, 
the initial state of our analysis is taken as (2, 1). We define 
the destination node as station N + 1. 

The following bounds then apply to the state descrip- 
tors defined above: 

2 1 n s N + 1 ,  

l s b s N ,  

O l j s b .  

We define 

gj(n, b) = probability that  state transition from (n, b) is to 
state (n + 1 ,  b + 1 -51, where 0 5 j 5 b. 

For the time  being, we assume the q&n, b) are known for 
all  valid states (n, b). From these values, we can deter- 
mine the state transition probability matrix A. 

We define 

pfi’(n, b) = probability of the packet pair being  in the 
state (n, b) after i state changes. 

We note that 

p‘O’(n, b) = 0 

p(O’(2, 1) = 1 . 
except for 

It  is  easily established that 
p(i+l) = p(~l A = p(0) (A)’+’ 

9 (2) 

where pfi’ is a vector of state probabilities after i state 
changes. 931 

GARY STROEBE4 IBM I. RES. DEVELOP. VOL. 25 NO. 6 NOVEMBER 1981 



4 \ ' '. 

INumber of stations, N 

Figure 2 All stations with  same  mean response time. 

Then  for  an rn-packet message, there  are (m - 1) packet 
pair assemblies. Therefore, using Eqs. (1) and (5 ) ,  the 
average end-to-end message transmission time becomes 

D = D, + (m - l)T. (6) 

The  calculation ofp,  (and, therefore, T) is based  upon  the 
state transition  matrix A through Eq. (2). The matrix A, in 
turn, is  based  upon the previously defined qj(n, b).  In  the 
following, we derive expressions  for qj(n, b).  

We recall our definition of Ri as  the packet  response 
time at station i. It includes the packet  service time plus 
waiting time for packets  from other messages. It  does not 
include any waiting time  that a particular  packet may 
experience  due to  other  packets from the same message. 

41 
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Figure 3 All stations with  same response time  and rn = 3.  

After ( N  - 1) transitions  from the  state (2, l),  the 
leading packet will arrive at  the destination  node  (station 
N + 1). We determine the probability that  the trailing 
packet is b stations behind at this  point. 

pb = p'N-l)(N + 1, b),  1 5 b 5 N . (3) 

Now if the trailing packet is b stations behind when the 
leading packet  arrives at  the destination  node,  the  packet 
pair average  assembly time is 

Tb = 2 R i ,  (4) 

so that  the  packet  pair  average assembly time  becomes 

N 

i=N-b+l  

N 
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As such, we assume  that  both  the leading and trailing 
packets  draw their random  response  time Ri at station i 
from the same  distribution. Thus, we need not distinguish 
between a Ri for  the leading and trailing packets. Note 
that  this would not be  the  case if we had included waiting 
for  packets of the  same message. 

Given a state (n, b) with transitions to  states (n + 1, b + 
1 - j ) f o r O s j s b w e d e f i n e  

xi(n, b) = probability that the leading packet moves from 
station n to n + 1 before the trailing packet 
completes j hops. 

As such 

xj(n, b) = Prob Rn 5 1 Rn-b+i (0 5 j 5 b - 1) (7) 

and 

[ 
i 

i = O  1 
b) = 1 , (8) 

since we do not allow passing of packets. 

If we  assume the Ri are independent  and exponentially 
distributed with mean R i ,  it  is relatively easy using the 
convolution theorem  to show that 

The qj(n, b) are then related to  the xj(n, b) by 

qj(n, b) = X j h ,  b) - b) (10) 

for 1 ~j I b, where = 0. 

From Eqs. (9) and (lo), the  terms of the  state transition 
matrix are readily calculated. 
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An APL program has been  written to  do  the calcula- 
tions  associated with this analysis. In the following, we 
provide two examples to get a feeling for the  type  and  the 
reasonableness of the  results of this  analysis. 

For the first example, we suppose  that all N stations 
have the same  average  packet  response time Ri. We 
define a  transmission  ratio 

D r =  - E R i  ' 
i= 1 

where D is given by Eq. (6). 

In Fig. 2, this ratio  is  plotted as a function of the 
number of stations  between  the source and destination for 
various message sizes. We see that  the  ratio of message 
transmission time to packet  transmission time decreases 
as the number of service  stations  increases.  This is 
expected  since  more overlap  occurs  as more  stations are 
added. Furthermore, this  ratio decreases  faster with Nfor 
larger messages, again because of a greater degree of 
overlap. 

An absolute  lower  bound  on  the end-to-end message 
transmission time can be obtained with the  assumption 
that  each  station response time is a constant. In  this  way, 
the packets move in perfect sequence from source  to 
destination  and  achieve a maximum degree of overlap. 
This  lower bound result  is  shown in Fig. 3 and compared 
with the  results of the  current model for  the  case of a 
three-packet message. 

For the  second  example,  we assume  that one  station 
response time is 10 times that for all other stations. With 
our model, it  does  not  make  any difference which of the N 
stations has the long response time. Results for this case 
are shown in Fig. 4. Again, a lower  bound can be found 
by assuming that all station  response  times are  constants. 
This lower  bound, in comparison with the  current model 
results, is shown in Fig. 5 .  
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Figure 4 One station with long response time. 
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Figure 5 One station with long response time and m = 3. 

4. Y. Bard, "Some Extensions to Multiclass Queueing Network 
Analysis," Performance of Computer  Systems, M. Arato, A. 
Butrimenko,  and E. Gelenbe, Eds., North-Holland Publishing 
Company, Amsterdam, 1979, pp. 51-61. 

Received April 14, 1981; revised June 19, 1981 

The author is located  at the System  Products Division 
laboratory, 3605 Highway 52, North,  Rochester, Minne- 
sota 55901. 

933 

GARY STROEBEd 


