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Delay  Analysis of a  Two-Queue,  Nonuniform  Message 
Channel 

A Message  Channel  is  dejined  as a tandem  connection  of single  server queues in which  the  successive  service  times 
experienced  by  any  particular  customer are scaled versions of  the  same  random  variable,  and  thus it serves  as a model 
for sparsely connected  store-and-forward  data  communications  networks  (or  network  segments)  where  messages 
typically preserve  their  lengths  as  they  traverse  the  system. A particular instance  of  such a nonstandard  queueing  model 
is analyzed  in  this  paper.  The  system  consists  of  two single  server queues  in  tandem  subject  to a Poisson arrival process 
(at  the  first  queue)  and  providing  service  according  to  scaled  versions  of a sequence of two-level,  discrete  random 
variables. A set of recursive  equations  that  can  be  used  to solve the  model  for  any  given scaling factor  at  the  second 
queue  (normalized  with  respect to the  jirst  queue  service) is explicitly derived.  In  addition,  complete  solutions  are 
displayed for  several  cases  of  interest,  and  the equilibrium mean  cumulative waiting times  for  these  instances  are 
compared  as a method  of indicating the  impact of the scaling factor  on  the  operation of the  system.  The  extension  of 
several results  to  systems with more  general service time  processes  is  discussed. 

1. introduction 
One of the  inherent complexities  associated  with  queue- 
ing models for store-and-forward data communications 
networks arises from  the  fact  that messages typically 
preserve their lengths as they traverse  the  system.  The 
interamval  and  service  sequences  at  queues internal to 
the  system are  thus  dependent, making standard  methods 
of analysis  realistically  inappropriate. In an effort to find 
methods for dealing with such nonstandard  queueing 
systems, a model for  sparsely  connected  networks  (or 
network  segments)  called a Message Channel  has been 
studied. A Message Channel  is defined as a tandem 
connection of single server  queues in which the succes- 
sive  service  times experienced by any particular  custom- 
er  are scaled  versions of the  same  random variable.  When 
the scaling factors  are identical, the system is called a 
Uniform Message Channel (UMC) or Repeated-Service 
Tandem  Connection. Some general properties of such 
queueing models have recently  been reported (Calo [l]), 
and  integral equations  for  the equilibrium  distribution 
function of the cumulative waiting time process in  Uni- 
form  Message Channels, which have, in certain in- 
stances,  been explicitly solved,  have  been obtained  (Calo 
V I  1. 

When the scaling factors  are not  identical, the problem 
becomes  considerably  more  complex. The  general Mes- 
sage  Channel has  thus  proved  to be  much more difficult to 
characterize  than  the  UMC.  In  this  paper we consider a 
specific instance of such a Nonuniform  Message Channel, 
whose structure  is  yet  amenable  to analysis. 

Our model consists of two single-server queues in 
tandem  subject to a Poisson  arrival stream  at  the first 
queue  and providing service  according  to  scaled versions 
of a sequence of two-level discrete random  variables. The 
interarrival sequence at the first queue, {T,},",, thus 
consists of independent, identically,  negative-exponen- 
tially distributed random variables  with  mean  value E{T} 
= 1IA < CQ, and  the underlying  service sequence {S,,)nm_, 
consists of independent, identically  distributed random 
variables such  that (for each n)  S,, equals b ,  with  probabil- 
ity p 1  or b, with  probability p2 = 1 - p, ,  where  for 
convenience we  require  that 0 5 6 ,  5 b, < CQ. We also 
denote  the mean  value of the  elements of this service 
sequence by E{S,} = p lb l  + p,b, = Up < CQ. The service 
process  at  the first queue  is  taken  as {S,)nm_,, while the 
service process  at  the  second  queue  is {aSn},m=l, where 
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the  scaling factor is a nonnegative  real  number (a  2 0). 
With a = 1 the model reduces to that of a two-queue 
UMC and  is  indeed a special instance of one of the 
examples  given in [ 2 ]  for which  explicit  solution proce- 
dures exist (two packet classes under  Poisson arrivals). 

While the analysis of the two-queue  system  described 
above is the  principal topic of this paper, we have  also 
undertaken to relate the effort to more expansive at- 
tempts at the development of solution procedures for 
problems  involving  tandem interconnections of message 
queues. Thus in Section 2 ,  general expressions for the 
cumulative  waiting  time process in a two-queue  tandem 
connection are formulated, and a widely  applicable result 
concerning front-end dominated systems is exhibited. 
Then in Section 3 the development  is  continued for two- 
queue, nonuniform,  message channels, and an integral 
equation for a limiting  conditional distribution function 
from  which the distribution of the equilibrium  cumulative 
waiting time  can be readily  obtained is derived. The 
particular  form of this equation that is  applicable to 
systems that are rear-end  dominated  is also explicitly 
exhibited. 

Section 4 deals with furthering our analysis  when the 
arrivals to the system are assumed to constitute a Poisson 
process.  In  this case it  is  shown that a complete  solution 
can  be  obtained for rear-end dominated systems without 
making any additional assumptions regarding the service 
time distribution. 

Finally in Section 5 we return to the analysis of our 
specific  model  utilizing the more  general results of previ- 
ous sections as appropriate. For a E [O, b,lb,], the system 
is  front-end  dominated (the service time distributions in 
the separate queues are nonoverlapping  with  largest 
service  always  given in the first queue), and  the total 
waiting  time in the system is  simply the waiting  time at 
the first queue, which  under our assumptions is MIGl1 
(with our particular service process) and thus easily 
solved. For a E [b,/b,, m), the system is rear-end 
dominated (the service time distributions in the separate 
queues are nonoverlapping  with  longest  service  given in 
the last queue), and the expression for the  Laplace- 
Stieltjes transform (LST) of the equilibrium  distribution 
function of the cumulative  waiting  time process previous- 
ly derived for this instance (in Section 4) then  applies. 

When this nonoverlapping characteristic no  longer  pre- 
vails, Le., for a E (b,/b,, b,lb,) in our case, the complex- 
ity  of the analysis greatly increases. We show that for 
discrete service time  random variables a complete  solu- 
tion  can  still  be obtained. The simplest  (two-level)  such 

916 instance  is  used here as an example of the more  general 

procedure. Utilizing the integral equation development of 
Sections 3 and 4 with the added  assumption of the 
discrete nature  of  the service process, sets of recursive 
equations  with  easily  identified  boundary conditions are 
derived  from  which the LST of the distribution  function 
of the equilibrium  cumulative  waiting time can be  ob- 
tained  for the scaling factor (a) in appropriate subregions 
of the intervals (b,lb,, 1) and (1, b,lb,). The  number of 
such  transform equations that must be solved in any 
particular instance depends upon  relationships  among  the 
values of the scaling factor and the allowable  service 
times, as one would expect. The closer the system is  to 
being dominated (front or rear), the simpler the solution 
procedure. 

Complete solutions for the model are displayed for the 
instances when the scaling factor is  such that the system 
is (1) front-end dominated; ( 2 )  near-front-end dominated; 
(3) uniform (a = 1); (4) near-rear-end dominated; and (5) 
rear-end  dominated. The equilibrium mean cumulative 
waiting  times for these various instances are also  com- 
pared  within  the context of a specific  example (under 
which  the parameters of the service time  distribution are 
chosen so that it will have  the  same  first three moments as 
a negative-exponential  distribution with parameter p) as a 
means of indicating the impact of the scaling factor on  the 
operation of such a system. The extension of these results 
to systems with  more  general service time processes is 
also discussed. 

2. The twoqueue tandem connection 
We consider a system of two queues in tandem  where 
each station operates as a single  channel (server) facility 
and services messages (customers) in their order of 
arrival (first-come-first-served priority discipline).  Each 
queue in the serial connection is assumed to have  poten- 
tially  infinite  waiting space; i .e. ,  there is no  limit  on  queue 
size. We also  assume for convenience that both queues 
are  originally  empty so that the  first customer to arrive 
suffers zero waiting  time in each. (See  Fig. 1.) 

The stochastic properties of such a tandem  connection 
are completely  determined by the interarrival time  pro- 
cess at the first queue, designated {T,},”=, , and the two 
service  time processes, designated {S ‘,“}nm=l and {S ‘,)}nm=l, 

respectively. These establish the evolution of the waiting 
time processes at the individual queues of the  system 
according to the nonlinear recursions 
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er a; the  kth  queue (k = 1,2) and (Y)' = max (0, Y }  is the 
positive rectification function. 

We note that  the first station of our tandem  connection 
can be treated  as  an isolated single server  queue,  since all 
the information  concerning its arrival process is con- 
tained in the  sequence {T,>,"==,, and  the  subsequent history 
of any customer leaving the  queue  has no effect upon its 
operation. The waiting time process  at  the first queue  as 
indicated  in (1) thus follows the usual single server 
queueing  recursion,  which  can be formulated as  (see,  for 
example, Loynes [3]) 

/ r n  

The  operation of the  second  queue of our tandem connec- 
tion, however,  is  very much  affected  by the prior  history 
of its customers.  The arrival process  to this queue is 
imparted  a  particular correlation  structure by the  queue- 
ing process  at  the  previous  station,  as indicated  by the 
defining recursions of (1). This  correlation structure  is in 
general  quite  complicated  and difficult to  characterize, 
thus making any attempt  at a direct analysis of this 
nonstandard system  as  an isolated queue prohibitively 
complex. 

If, however,  the  performance  characteristic of primary 
interest is  the  total delay suffered by a message in passing 
through the tandem connection,  one need  not  be con- 
cerned  with the details of internal operations but  can  deal 
with global processes directly. We therefore  concentrate 
on formulations for  the cumulative waiting time of cus- 
tomers in the  system,  from which their  delays  can be 
readily determined. 

Letting tn denote  the  amval  epoch of the  nth  customer 
to  the  system (0 5 t l  I t, I . e), it  can be  easily  shown 
(see, for example, Tembe  and Wolff [4]) that  the  depar- 
ture  epoch of the  nth  customer  from  the  kth  queue of a 
tandem connection of length M (k I M ,  M 2 1) can be 
represented as 

+ a . * + 2 sp,] . (3) 
j= ik  

The total amount of time that  the  nth  customer  spends 
waiting in a two-queue  tandem connection  (the cumula- 
tive waiting time in our  system)  is then  clearly 

An = W'," + W',) = TF) - tn - s!) - s(2). 
n (4) 

The last  equality of (4) can be expanded upon using (3) to 
yield (n 2 1) 

Figure 1 The two-queue tandem connection. 

A , + ~  = ( Imax [ max [ i + 1 SP,] 
n+ 1 

rCuSn+ 1 Y 

where T, = tn+l  - tn denotes  the time  between the  ar- 
rivals of the  nth  and (n + 1)th customers (interarrival 
time) as before. 

While the given expression (5 )  provides an algebraic 
characterization,  the  stochastic  behavior of the cumula- 
tive waiting time process  remains difficult to  ascertain  for 
general  service and interarrival  time sequences.  Indeed, 
solutions to problems of this type  have been  obtained 
only under  very specific assumptions concerning these 
underlying processes  and  their interrelationships (Burke 
[SI, Friedman [61, Rubin 17, 81, Boxma [91, Calo [l,  21). 
Some  additional cases of interest  are  pursued  here. 

One  particular  and quite general result that is related to 
several  previous studies follows  quite  readily  from (5)  
when the first server  is known to "dominate" the  system, 
i.e., S:) 2 .SE) (a.s.1 for all n 2 1 and m 2 1. In this 
instance we have  that 

which implies that 

Hence  for a  front-end dominated tandem connection  the 
cumulative waiting time  in the  system  is simply the 
waiting time at  the first queue (cf. Tembe  and Wolfe [41). 
The waiting time at  the  second  queue will be  precisely 
zero  for all customers. We note  that this  result can be 
generalized to  the  case of a tandem  connection of any 
given length, wherein, if the  system is front-end  dominat- 
ed,  the waiting times at all queues but the first will be 
precisely zero  for all customers (Calo [lo]). We  note also 
that no specific assumptions need be made regarding the 
stochastic  nature of the  interamval time or service  pro- 
cesses  (except, of course,  for  the dominance  relation) for 
the indicated  result (6) to hold. An instance of this  very 
general  relationship arises naturally in a subsequent sec- 
tion of this paper. 
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3. The  two-queue,  nonuniform  message  channel 
Our principal interest  is in tandem connections of a 
particular type, viz., message channels,  for which the 
successive  service  times  experienced by any  particular 
customer are scaled  versions of the  same random vari- 
able.  In  the present  context this means  that if we denote 
the service sequence  at  our first queue by {Sn}nm=l, i .e. ,  

S If' = S,, for  each n, then S If) = US,, for  each n, where a is 
a positive real constant. When a = 1 ,  we have a Uniform 
Message Channel (UMC) or Repeated-Service  Tandem 
Connection. Such  systems  have recently  been  studied, 
and  numerous  results have been reported (Boxma [9] 
deals with a two-queue  UMC under Poisson  arrivals, and 
Calo [ 1, 2, 10, 111 deals with UMCs of any given length 
M z 1 under several sets of assumptions). We concen- 
trate here on specific instances of the two-queue, nonuni- 
form message channel  described above. 

In  addition,  we assume  that  the service  sequence 
{Sn}flm=l consists of independent, identically distributed 
(i.i.d.) random  variables with common  distribution  func- 
tion B ( y )  = Pr{S,, 5 y }  and mean value E{S} = (Up) < 00, 
the interarrival sequence {T,},"=, consists of i.i.d. random 
variables with common  distribution  function d ( y )  = 
Pr{T,, I y }  and  mean  value E{T} = (l/X) < 00, and  that 
these  two  sequences are mutually independent. Our point 
of interest is in characterizing the cumulative waiting time 
process of ( 5 )  under  this  set of assumptions. 

The basic  recursion that we shall be considering  is thus 

A ,  = 0; 

An+1 = (max { max [: sj + a c sj ] , + I  

I s r s n  r a u s n + l  
U 

- (a + 1)S,+] - TI)+ (n 2 1). (7) 

We denote  the  elements of the  sequence of cumulative 
waiting time distribution  functions by F,+,(x) = Pr{A,+l 
5 x}, n 2 0, where,  clearly, Fn+ ,(x) = 0 for x < 0, and,  for 
x 2 0, we have 

G,(x, y )  = Pr{A,+, 5 x I Sn+, = Y }  (Y 2 0). (9) 

Defining the random  functions 

q , , ( y )  = max C si, max [ 1 r s v s n  [ si + a 2 U SI - Y ]  

it can  be easily  established  from (7) and (9), by appropri- 
ately exploiting the independence  properties of the under- 
lying sequences, that 

These  conditional  distribution  functions play a key role in 
determining the characteristics of the equilibrium cumula- 
tive waiting time, as is  presently  indicated. 

It  can be shown  that there  exists a function G(x, y )  such 
that 

lim G&, Y )  = G(x, Y )  

and 

fa"= 

under  appropriate  stability  conditions  (see Appendix 1). 
Further, from the defining equation for GJx, y )  we  can 
develop  an  integral  recursion in the following manner: 

/ \ +  > 

, \ +  > 

= io dB(v) 
.m) 

. L " + ( o u - y ) + - x ) + , m )  
dd(.r)Gn(x + T - v -(UV - y)', 

v + (Y - av)+), 
and by applying the Dominated  Convergence  Theorem to 
the  iterated  integrals (on the product space)  it can be 
shown that  the limiting conditional  distribution  function 
must obey 
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We have  then  an integral  equation  which along with (13) 
determines  the equilibrium  cumulative waiting time  distri- 
bution. If we consider  the  case a = 1 ,  i .e . ,  a  two-queue 
uniform message channel, we obtain  the  appropriate form 
of the integral equation developed in [2]. The solution 
procedures  for  the uniform case,  however,  are not  direct- 
ly applicable to the more general, nonuniform,  message 
channel characterized by (14). Indeed, we have  as  yet not 
been  successful in developing methods of solving such 
equations except  under  very specific assumptions regard- 
ing the underlying  interarrival and  service  processes. 

An alternate  form of Eq. (14) which lends itself more 
readily to analysis arises when we consider  systems  that 
are rear-end  dominated. For this instance Sf)  2 SL) for 
all n 2 1 and rn 2 1 so that 

and thus  from (5) the  elements of the cumulative waiting 
time process  can be written (n 2 1) 

Incorporating our  assumptions concerning the interarriv- 
al and  service processes,  and following the  same proce- 
dure  as in the  development of (14) but now instead of (1 1) 
using 

n 

q Y )  = c casj - 5) + sr - Y ,  ( 16) 
r 

we can  establish that  the limiting conditional  distribution 
function  must obey 

for rear-end  dominated tandem  connections. We note that 
informally (17) can be obtained  from (14) by simply 
asserting that av  2 y over all appropriate regions of the 
probability space. We pursue  later  the analysis of these 
equations by  the  use of Laplace-Stieltjes  transforms. 

4. Poisson arrivals 
When the additional  assumption is imposed that  the 
arrivals to  the  system  constitute a  Poisson process, 

further  progress  can be made in solving the integral 
equations of the  previous  section.  In  particular,  expres- 
sions for  the Laplace-Stieltjes  Transform (LST) of the 
distribution  function of the equilibrium cumulative  wait- 
ing time can be obtained  that  in  certain  instances yield 
explicit results.  Thus,  as in the analysis of uniform 
message channels or even  standard GI/G/l queues,  the 
memoryless nature of the negative-exponential  interarriv- 
al time  distribution  greatly simplifies the  appropriate 
analytical methods. 

If we let n(z)  denote  the Laplace-Stieltjes transform of 
the equilibrium cumulative waiting time  distribution and 
define 

H(z, y )  = io e-=G(x, Y )dx, (18) 

then it follows from (13) that 

,m) 

n(z) = z I, dB(Y)H(Z,  Y ) .  (19) 
P) 

By transforming both sides of the integral equation of 
(14), identifying the interarrival  time  distribution explicit- 
ly as d ( ~ )  = 1 - e-” (7 2 0) ,  and using (18) we obtain 

(Z - h)H(z,  y )  = A io d ~ ( ~ ) ~ - A l v + ( a v - ~ ) + l  H(h,  v + ( y  - U V ) ’ )  
,E) 

- x  Lo.=, d ~ ( ~ ) , ) c - z ~ v + ( u v - ~ ’ + l  H(z ,  v + ( y  - a”)+). 

(20) 

This not particularly transparent relationship forms  the 
basis of our subsequent analysis. 

If we consider  for  the moment the special case of a 
rear-end  dominated system,  then  from  an  appropriate 
transformation of (17) we obtain  the  somewhat simpler 
version below: 

An explicit  solution for  n(z) is now  most  readily obtaine’ 
by introducing an additional transformation of the  form 

Transforming both  sides of (21) then  according  to (22) we 
have 91 9 
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represents the LST of the service time distribution. Since 
(24) holds for general values of s (provided the given 
transforms remain  well  defined), it holds for s = z(a + l), 
in  which case we must  have 

where 

Da(z) = z - A + Aq(a2). (26) 

This then determines T(z, s) as 

and  allows  us to write n(z) from (23) as 

a(z) = 
zT(A, A(a + 1)) A 

Da(z) z - A 

. {D,(Z)T(-A) - ~(-z)hrl(z(a + l)-h)} (28) 

for all values of z for which the relevant transforms exist. 
Noting that n(z) must obey the boundary condition n(0) 
= 1 ,  and  applying this fact to (28) by taking the limit as z 
goes to zero, we  find that 

where p = (Up) denotes the traffic intensity at the first 
queue of our tandem connection. This finally determines 
the LST of the equilibrium cumulative waiting  time 
distribution as 

where 

represents the LST of the equilibrium  waiting  time distri- 
bution in a standard MIGI1 queue with the same service 
time distribution as our dominant server (second queue). 

Equation (29) provides the solution that we had  sought 
in a quite usable form. We can, for example, differentiate 
(29) and take the limit as z goes to zero to obtain the 
equilibrium  mean cumulative waiting  time as 

ha2~{s2 )  
&LJ = + (a + 1) 

-T’(-A)-~(-W{S~ 
2(1 - UP)  l 7  

(3 1) 

where 

q’(-x) = -Lo yehYdB(y) . 
.x) 

The equilibrium  mean sojourn time  in the system (end-to- 
end delay) is then simply 

The equilibrium  mean  waiting  times or sojourn  times at 
each of the individual queues of the connection are also 
easily derivable from the above as  are  other parameters of 
interest. 

We have thus obtained a fairly complete characteriza- 
tion of the operation of a rear-end dominated  system 
faced  with Poisson arrivals without having to make  any 
assumptions concerning the service time distribution. 
Unfortunately, the same techniques of solution are not as 
effective  in  dealing  with  more general cases. 

5. Analysis  of  the simplified  model 
In the previous sections of this paper we have presented 
various results at various levels of generality concerning 
the behavior of two-queue tandem connections. Now we 
consider the analysis of a specific  model in which we 
incorporate the assumptions of previous sections along 
with a further assumption concerning the nature of the 
service process. Much  of our prior effort is directly 
applicable, but quite a bit of additional work  is also 
required. It  is a characteristic of these types of queueing 
problems that they do not yield  easily to analysis. 

As before, our model consists of two single-server 
queues in tandem subject to a Poisson arrival stream at 
the first queue and  providing service according to scaled 
versions of the same sequence of random variables. We 
now specifically assume as well that the service time 
distribution function is that of a two-level discrete ran- 
dom variable, i .e. ,  S,, equals b, with  probability p I  or b2 
with  probability p 2  = 1 - p , ,  where for convenience we 
require that 0 5 b,  5 b, < 03. The mean  value of the 
elements of the service sequence will thus obey 

according to our definitions. 

IBM 1. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981 



The Laplace-Stieltjes  transform of the distribution 
function of the equilibrium  cumulative  waiting  time for 
messages  in the  system in  question can be written  as 

W z )  = Z{P,H,(Z) + P,H,(Z)) (34) 

following Eq. (19), where  the notation Hj(z) = H(z, bj), 
j = 1 ,  2,  has been  used for  convenience. Relationships 
involving these  transforms  can be  developed  from (20), 
which under  our particular service time assumptions 
becomes 

(z - A)H(z, y )  = Aple-X[bl+(abl-Y)'lH(A ' I  b + ( y  - ab 1 )+) 

+ Xp2e-X[b'+(aq-Y)'1H(A ' 2  b + ( y  - ab 2 )+) 

- A ~ , ~ - ~ [ ~ I + ( U ~ I - Y ) ' ~  H(z,  b, + ( Y  - abl)+) 

- z [bz+(ab2-~)+lH(  z, b, + ( Y  - ab,)'). 
- AP,e 

(35) 

The precise  form that this equation  takes in any given 
situation  obviously depends upon  relationships  among 
the  parameter y ,  the scaling factor a ,  and  the service 
levels 6, and b,. Several different cases must be examined 
individually. 

If a 5 1 ,  i .e . ,  the first queue gives  longer  service  times 
to  each  customer  than  the  second,  then (10) can be 
conveniently  rewritten as 

The second term in the  above formulation can be  easily 
shown to  obey  the following inequalities: 

/ \ +  

the  latter resulting from  the fact that  for  every rz, Sn I b,. 
Hence, for y 2 ab,,  we  must  have  that 

n 

g , , ( y )  = c sj,  
r 

which in turn implies from (1 1) and (12) that 

G,(x, y ) = P r { W ; i ,  5 x}.  

The  above indicates that, conditioned on sufficiently large 
services being given in the first queue,  the waiting time at 
the  second queue will be zero.  Therefore, in this specific 
region of the underlying  probability space, the  conditional 
distribution  function sequence will converge to  the distri- 
bution function of the waiting time  in the first queue 
(which under  our  assumptions is an  instance of a standard 
M/G/l system). From (18) then, we can now write 

where 

D*(z)  = z - A + Aple-zbl + Ap2e-Zb2, (37) 

and 

p = AE{S} = Ap,b, + Ap2b2 (38) 

is simply the traffic intensity at  the first queue.  Equation 
(36) follows directly from classical results  for  the LST of 
the equilibrium waiting time in a standard M/G/l queue 
(see,  for  example, Kleinrock [12]). 

Using the  above development and (351, we can deter- 
mine that  for a s 1, 

H2(z)  = H*(Z) (39) 

and 

( z  - A)H,(z) = Ap,e-AbLH(A, b,[2 - a]) 

- Aple-zb'  H(z, b,[2 - a])  

(A) + AP,e 

- AP,e H*(z) .  

-h[b2+(abz-b,)+l H* 

-z[b2+(abz-bl)+1 

(40) 

This latter relation (40) cannot yet be used to establish an 
explicit expression  for H,(z).  The effects on  our analysis 
of the size of the scaling factor, a, with respect  to  the 
sizes of the  service levels, b ,  and b,, must be considered 
in some  detail  before we can proceed further. 

Clearly, the  support of the random  variable Sn is the 
closed  interval [b , ,  b,], while the  support of the random 
variable asn is  the closed  interval [ab,, ab,]. Hence, if our 
scaling factor, a ,  has a value  in the interval [0, b,/b,], the 
system is front-end  dominated and readily  solved. For 
this  situation, then,  the  LST we have been  seeking is 
simply [refer to (6)J 

with  concomitant  mean  value 

The second  moment of the service  time  distribution is, of 
course, E{S2} = p l b :  + p,b: under  our  assumptions. 

If we now consider  the  system scaling factor to have a 
value such  that 921 
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b, + Nb,  b, + ( N  + l ) b , ]  
a E ( b ,  + Nb,  ' b, + (N + l)b, (43) 

for some nonnegative  integer N, and we define the 
indexed  functions 

h,(z) = H ( z ,  Y,), (44) 

where y ,  = b, + nb,(l - a),  then we have  from (35) that 

(z - A)h,(z) = Aple-Abih,+,(A) + Ap2e-Aab2e-h(b2-yn)H*(h) 

- Aple-zb'h,+,(z) 

- Ap2e -zab2 e -Z(b*-Y,)H* ( z )  (45) 

fo r0  5 n 5 N a n d  

h,(z) = H*(z)  (46) 

for n 2 ( N  + 1 ) .  We have  thus  constructed a recursion 
with a  known boundary condition that  can theoretically 
be  solved  quite  straightforwardly for h,(z), which by 
definition equals  the  desired H , ( z ) ,  for a in any of a 
collection of disjoint intervals whose union is  the interval 
(b,/b,, 1). The  diaculty with  this procedure  is  that  the 
closer the scaling factor  gets to the value  "one," the 
larger the  number of elements in the finite recursion. The 
procedure  can  thus  become  quite  tedious. 

For small values of N ,  however,  the calculation is quite 
readily performed. For example, with N = 0, i .e . ,  

it follows from (46) that h,(z)  = H*(z) ,  so that (45) 
immediately yields 

( z  - k)h,(z) = [Ap,e-Abi + Appe-Aab2e-A(b2-b1) lH*(A) 
- [kPle-zh  + ~ ~ ~ ~ - z a b 2 ~ - z ( b z - b 1 )  lH*(z) ,  

which in turn  establishes  from (34) that 

- A[p,eLzbl + P,e e 
-zabz -z(b2-bl)  

where n,(z) is the  LST of the distribution of the equilibri- 
um waiting time at  the first queue,  as in (41). The 
equilibrium mean  cumulative waiting time can  then be 
determined from (47) as 

E{A,} = E{W(L)} 

where E{ W t)} is  the mean waiting time at the first queue, 
as in (42). A more  general  development is given in 
Appendix 2, where  an explicit  solution is also exhibited 
for  the  case N = 1, and  this  is already seen  to be 
somewhat  complicated  algebraically. 

If a B 1, a similar series of considerations  must be 
made concerning the relative values of the scaling factor 
and the service  levels. With a E [b,/b,, m) the system is 
rear-end  dominated  and the  more  general  results of 
Section 4 apply,  but with B ( y  ) = p 1  U( y - b,) + p2U( y - 
b2), where V(x) denotes  the unit step function. Hence, 
from (29) we have 

1 
Z - A  

n ( z )  = Lna(Z) - 

pleZbl + p2ezb2 
p,eAbI + p2eAb2 

where Cla(z) has been  previously defined in (30); and, 
from (31), the equilibrium mean cumulative waiting time 
becomes 

We note that  the  above, particularly Eq. (50), can be 
easily  renormalized so that in effect the service process  at 
the second queue  is  taken  as {Sn}flffi=l, while the service 
process  at  the first queue  is { ( ~ / U ) S , } , ~ = ~ ,  an operation 
that  is often convenient  when comparing different sys- 
tems.  The equilibrium  mean value,  for  instance, then 
becomes 

and  this  expression  can  now be  compared with (42), 
which can be interpreted  as representing the  same system 
but  with the positions of the  two  servers  reversed. 

If we now consider  the  system scaling factor  to  have a 
value such  that 
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b, + ( N  + l)b, 
b,  + ( N  + l)b, ’ 6 ,  + Nb,  (52) 

for some  nonnegative  integer N ,  and we define the 
indexed  functions 

where now,  however, Y , + ,  = b, + (b, - ab,  - n(a - I )  
b,)’ (n 2 0) and yo = b,, then we have from (35) that 

(Z - A)h (z) = Aple-XableX(Y.-Y.+I)h 
n n + l ( A )  

+ A ~ , ~ - A ~ ~ Z ~ - U ~ Z - Y , )  H,(Q 

_ ~ p l p l e - z a b l e z ( y , - y , + I )  
h,+l(Z) 

- ~ ~ ~ ~ - z a b ~ , - z ( b 2 - ~ . )  H2(z) (54) 

for 0 5 n 5 ( N  ’+ 1); also h,(z) = H,(z), and 

h,,(z) = H,W (55) 

for n 2 N + 2. This recursion thus involves both  H,(z) 
and H,(z) as boundary  conditions, and indeed  must  be 
solved for both transforms.  Hence  its analysis is some- 
what  more  complex than  that of the previously  consid- 
ered  recursion of (45). Nevertheless, theoretically we can 
obtain  explicit expressions for the relevant  transforms for 
the scaling factor, a, in any of a  collection of disjoint 
intervals  whose union is  the interval (1, b,/b,). The 
difficulty as before is  that  the  closer  the scaling factor 
approaches unity the more  complex the analysis. 

A  general  development of a solution procedure  is given 
in Appendix 3, where explicit expressions  are also  de- 
rived for  the  case N = 0 for  both  the Laplace-Stieltjes 
transform, Cl(z), and  the equilibrium mean value, E{A,}. 
These  are  seen  to  be considerably  more  complicated  than 
the  complementary results  for  the regions where a < 1. 
We note that,  as before, equations like (A47) can be easily 
renormalized so that  they  are referenced to  the service 
time of the more  dominant server (in this case  the 
second).  Solutions for larger  values of N can be  devel- 
oped in much the  same way, but no illuminating results 
have as  yet been  obtained by doing so. The complexities 
of the resulting equations tend to mask  any  evolutionary 
factors  that might be  exploited in projecting the solution 
closer to  its limiting form  at  the value a = 1. 

In Table 1 we present a compendium of results con- 
cerning the manner in which the equilibrium mean cumu- 
lative waiting time depends upon the scaling factor (a). 
Each of the indicated equations  has been  developed 
above (or in the accompanying  Appendices) except  for 
the  one describing the uniform case (a = l), which is 
easily obtainable from  results in [2]. All the  equations 
have also been  normalized so that  service times are taken 

with respect  to  the more dominant  server;  hence,  the first 
two  describe a  two-queue tandem  connection with S!)  = 
S,, and S(n2) = U S  (a < l),  while the last two  describe  such 
a  system with St’  = (l/a)Sn and Sf) = S,, (a > l) ,  using 
the notation of Section 2. These pairs of equations  as 
exhibited are  thus complementary and  can be  used to 
compare  instances of the  same  system  but with the 
positions of the  two  servers  reversed. 

In  order  to provide  more concrete performance  com- 
parisons, the equilibrium  mean  cumulative waiting time 
was  evaluated  numerically  by computer program for a 
particular example of interest.  The  results of such a 
calculation for differing values of the  service time scaling 
factor  are shown in Table 2. For  the  purposes of this 
example, the  parameters of the service  time  distribution 
have  been chosen so that it will have  the  same first three 
moments as a  negative-exponential  distribution with pa- 
rameter p. In particular  this determines p , ,  p*, b,, and b, 
as indicated  below: 

2 + *  2 - f i .  
PI = ; p 2  = 4 4 

b, = [2 - fi]; b, = t[2 + fi] . 
CL 

The table compares  the normalized mean wait @{A,} as 
a function of the traffic intensity p for five values of the 
scaling factor a, each in a different performance  subinter- 
val of its  range. 

As  can  be seen  from  the  table,  the waiting time is 
smallest for  the front-end  dominated system. Also, for 
any given scaling factor,  the waiting time is less when the 
first server  tends  to give  longer  service  times than  the 
second, than for  the complementary case (e.g., compare 
the columns for a = 1/4 and a-’ = 1/4 in Table 2). The 
maximum waiting time occurs  for  the uniform case, with 
the waiting time  decreasing  monotonically as  the  system 
becomes either more  front-end or more  rear-end  dominat- 
ed.  The relative  difference between  the minimum (front- 
end  dominated) and maximum (uniform) values, while 
quite significant for low traffic intensities, decreases 
substantially as  the traffic intensity increases.  Hence  the 
value of the scaling factor  tends  to  become less and  less 
important as  the  system  tends  toward instability, as  one 
would expect. 

The  same general types of behavior exhibited  by the 
equilibrium mean  cumulative waiting time in the  above 
example would probably  apply  in systems with more 
complex  service  time  distributions. These remain, how- 
ever, quite difficult to  analyze directly.  We note  that in 
principle, once  we  have  the integral equation of (14) and 

! 
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Table 1 Equilibrium mean cumulative waiting time equations. 

Front-end  dominated a E [o, :] 
E{AJ = 

Near  front-end  dominated a E (3 , x] 
Mplb: + p , b a  

2(1 - P) 

b2 b,  + b, 

Uniform a = 1 

wI = X[1 - ~ , e - ' " ~ ~ ~ ]  

Near  rear-end  dominated a-l E (% , "-1 
'2 b,  + b, 

Rear-end  dominated a-' E ( 0, :] 

Table 2 Mean  wait for d8erent scaling factors. 

P ( ~ 5 3 - 2 G )  (. = t) (a = 1) 

0.1 0.11111 
0.2  0.25000 
0.3 0.42857 
0.4 0.66667 
0.5  1 .m 
0.6 1.5oooO 
0.7  2.33333 
0.8 4.0oooO 
0.9 9.0oooO 

924 

0.12134 0.28784 0.16199 0.12535 
0.26766 0.6161 1 0.32475 0.27883 
0.45152 0.99763 0.52881 0.47236 
0.69332 1.45312 0.79405 0.72577 
1.02919 2.01907 1.15624 1.07479 
1.53090 2.76745 1.68682 1.59085 
2.36536 3.86516 2.55251 2.44061 
4.03275 5.81190 4.25332 4.12408 
9.03320 1  1.10666 9.28927 9.14126 
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the concomitant transform  equation of (20) for  systems 
with Poisson  arrivals, the assumption of any  discrete 
service  time  distribution with a finite support will lead to 
equations like (35) except with  correspondingly  more 
than two levels represented.  Such  equations could then 
be solved in subintervals  determined  by  relationships 
among the values of the scaling factor (a) and  the allowa- 
ble service times (bl,  b2, . * ., b, for a discrete distribu- 
tion with L levels)  in  much that  same way as  has been 
demonstrated  for  the  simplest, nontrivial such  instance (L  
= 2) .  The degree of complexity of the  problem,  however, 
increases  markedly as L increases. 

Concluding  remarks 
In this paper we have  presented a  number of results 
concerning the analysis of two-queue,  tandem  connec- 
tions. Some  have been  quite general,  but most have dealt 
with message channels  that  incorporate  discrete  service 
time distributions  in their  structure and are  subject  to 
Poisson  arrivals.  Solution procedures  have been  devel- 
oped in some  detail for  the particular case of such a 
system with but two  service levels.  This type of service 
time distribution arises in  models for packet-switching 
systems that  support  two  packet  classes-one  for interac- 
tive traffic (short) and  the  other  for file transfers (long), 
for  example. 

While much of the  work  done  here  seems difficult to 
generalize further, it does provide a basis for a firmer 
understanding of the  properties of nonuniform  message 
channels. Indeed,  to  this  author's knowledge, these ef- 
forts  represent  the first  analytical characterization of the 
performance of any  member of this class of nonstandard 
queueing  models. There  remain,  therefore, many interest- 
ing problems to  consider in subsequent studies. 

Appendix 1 : Convergence  considerations 
From their definitions as probabilities the  functions 
G J x ,   y )  are obviously  bounded 

n ? O  

Y E [O ,  00). 
0 5 G,(x, y )  5 1 x E [0, m) (AI) 

They  are also monotone nonincreasing in n for  each ( x ,   y )  
as we proceed to  show. With 

= max 2 sj, max [ 1 r s w s n  [$ s j + a  i Y sj]-Y 'I 
and 

n 

h J Y )  = g , , ( y )  - c 7, 
r 

we have  that 
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Gfl+ l (x ,  Y )  = pr max h r , f l + l ( ~ )  5 x . (A21 i I 
max h r , f l + l ( y )  = max h l , f l + l ( y ) ,  2Crsn+l max h r , f l + l ( y ) ]  

Isrsn+l 

Consider for n > 1 

l s r s n + l  

2 max hr ,n+ l (Y)  
2 5 r s n +  I 

but,  because of the  independence of the underlying 
random  variables, 

25rSn+l 
max h r , n + l ( ~ )  - max h , , ( y ) ,  

l s r s n  

Le., they are identically distributed. This then directly 
implies that  for  each ( x ,   y )  and n 2 0 

G , + I ( ~ ,  Y )  5 G , k  Y ) .  (A31 

We also  have  from  the defining equations  that 

Gn(m, Y )  = 1, 

G,(x, 00) = F:il (x )  = Pr {WE;, 5 x } ,  (A41 

where we note that F:il ( x )  is  an element  from the 
distribution  function sequence of a standard GI/G/1 
queue. 

Since for  every pair of nonnegative  real numbers ( x ,   y )  
the  sequence {G,(x, y)},"=, is  bounded  and  monotone, it 
must  converge. Hence  there  exists a G ( x ,   y )  such  that 

lim G,(x, Y )  = G ( x ,  Y )  
n-- 

for  every pair ( x ,   y ) .  Further, since the G,(x, y )  are 
bounded, we can apply the Dominated Convergence 
Theorem  to  obtain 

F(x)  = lim Fn+  ,(x) = n-m lim I,,, dB(y )Gf l (x ,  y )  
n-- 

= d B ( y ) G ( x ,  Y ) .  (A51 
,m) 

While we now have  an  expression  for  the equilibrium 
cumulative waiting time  distribution  function in terms of 
the limiting conditional  distribution function,  we  note  that 
the condition 

max (1, a)E{S} < E{ T} (A61 

must be imposed for  Eq. (AS) to be meaningful. For this 
case  the  system is stable  (Loynes [3]), and  the cumulative 
waiting time process will converge honestly in distribu- 
tion (independently of initial conditions). 

Appendix 2: Solution in subintervals of [0, 1) 
If we consider the  recursion given as (45) and  introduce 
some  subsidiary  notation  by defining 9258 
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en@) = Aple-Ablhn+l(A) + Ap2e-Aab2e-A(b"Yn)H*(A), 

(A71 

along with 

and 

Ap2e-zabz e-z(bz-bl) zbl(l-a)n 
a&) = e 

Z - A  

we have  that  for 0 I: n I: N 

h,(z) = (Z - A)- 'E~(A)  - p(z)h,,+,(z) - ~,,(z)H*(z). ( ~ 1 0 )  

In this form,  the  recursion admits the  obvious solution 
N 

h,(z) = (z - A)-' 1 (-l)k-npk-n(z)Ek(A) 
k=n  

- c ( - l )k -npk-n (Z ) (Yk(Z )H* (Z )  
k= n 

+ (-l)N+l-n N + I - n  p (z)hN+l(z)? (All)  

so that, in particular, 
N 

H,(z) = (z - A)-' 1 (-l)kpk(z)Ek(A) + H*(z) 
k=O 

N 

((-1)""pN"(z) - k=O 1 (-L)'pk(z)ak(z)] 

(A121 

follows from (All)  by simply noting that  H,(z) = ho(z) 
and h,+,(z) = H*(z)  as indicated in (44) and (46). Now, 
using (34), (36), (39), (A12) and a  considerable amount of 
algebra it can  be straightforwardly  established that 

where 

-.?ab2 -z(bz-bl) 
- AP,P,e e 

. [(z - A)N+' - (-Ap,e ) 1. -zabl N + 1  
(A171 

We note that (A14)-(A17) establish the desired  transform 
n(z), except  for  the  set of positive  real constants 
{ E ~ ( A ) } : = ~ ,  which have  yet  to  be  determined. 

These ( N  + 1) unknowns  can be  obtained  by  appealing 
to analyticity arguments  for  the Laplace-Stieltjes trans- 
form Cl(z). Thus,  since  the  denominator of  (A13) has a 
zero of order ( N  + 1) at  the point z = A, it must follow 
that 

d" 
Z+A dz" 

in order  for  n(z) to remain finite at that point. The  above, 
(AB),  represents a system of ( N  + 1) independent, linear 
equations in the  unknowns { E , ( A ) } ~ = ~  and  can  therefore 
theoretically  be  solved  straightforwardly by classical 
methods.  Pragmatically, the calculations  involved be- 
come increasingly tedious  as N increases. We  note that 
(A13) has  an additional zero  at  some value of z that we 
shall designate as w,,  where  Dl(wl) = 0 (D,(z)  can be 
shown to  have a unique real  root  for Re(z) 2 0 as in Calo 
[2]). A direct  calculation  readily  yields  QN(wl) = 0 as 
required. 

lim - Q,(z) = 0 (V = 0, 1, 2, * * *, N )  (A18) 

For  the simplest case, N = 0, we have  only  one 
unknown constant  to  determine. This  follows  from 
the single equation Qo(A) = 0 as 

as in (41); 

D*(z) = z - A + + Ap2e-Zb2 (A151 

as in (37); 

D,(z) = z - A + Ap,e-zabl (A 16) 

represents a "partial" transform  as in Calo [2]; and 
N 

QN(z) = p,D,(z)D*(z) 1 (-Aple-zbl)k(z - A)N-k-  Ek(h) 
k=O (1 - PI 

and n(z)  is  then given by 

- A[ple-zb' + p,e e 
-zabz -z(bz-bl) 

as indicated  by (A13) and (A17). We  note that this of 
course duplicates the result of  (47) obtained  earlier. 

For  the  case N = 1 the transform of interest,  as given 
by the  appropriate  expansions of  (A13) and (A17), be- 
comes 
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[(z - A)' - ( -Ap le"ab1)2 ]  

D,(Z) 

As indicated by (A18) we now have  two  equations  to 
solve for  the  two  constants E ~ ( A )  and &,(A); namely, Q , ( A )  
= 0, and Q @ )  = 0. The first gives 

and the second  gives 

where 

c(A) = p I [ l  - A p , b , e - x b l  - Ap,b , e -Ab2]  

- [Pie -Abl + p 2 e - A b 2 ] [ A p , b , ( a  + 1) - eAabl] 

and 

d(A) = p,{e"'a-2'bl - A p , b , ( a  + 2)e-'"I 

- Ap2[ab2 + b, - b,  + 2ab,]e -h[ab2+b2-bl+ab 'I}. 

The  constant E ~ ( A )  can  then  be explicitly obtained by 
incorporating (A22) into (A23). A rather formidable 
expression for '(z) finally follows from (A21) by includ- 
ing these values for  the  constants in that  equation. 

Appendix 3: Solution  in  subintervals of (1, 00) 
If we consider  the  recursion given as (54) and  introduce 
some  subsidiary  notation  by defining 

&,(A) = ~ ~ , ~ - h a b l ~ h ( y ~ - y ~ + l )  h 
n + I(') 

+ ~ ~ ~ ~ - h a b ~  e - h @ - Y n ) ~  2 ( V ?  (A241 

along with 

and 

we have  that  for 0 I n I N 

h,(z) = (Z - A)-'E~(X) - P ( z ) ~ , + , ( z )  - Q,(z)H,(z). ( ~ 2 7 )  

In this form,  the  recursion admits the  obvious solution 

h,(z) = (z - A)-' (-l)k-npk-n(~)~k(A) 
N 

k = n  

N 

- 1 (- l)k-np k-"(z)ak(z)H2(z) 
k=n 

so that, in particular, 

H2(z) = ( z  - A)-' 1 (- l)kp k ( z ) ~ k ( A )  
N 

k=O 
N 

- 1 (- ' l k p  k(z)ak(z) 
k=O 

+ ( - l )N+lpN+l(Z)hN+l(Z)  (A291 

follows  from (A28) by simply noting that H,(z) = ho(z) as 
indicated just before (55).  Now, from (54) and (A24) with 
n = N + 1 we  can  obtain 

hN+,(z) = (z - A ) - ' E ~ + , ( v  

- H l ( z ) A p l e  e 
-zabl z(b2-bl) - z ( a - l ) b l ( N + l )  e 

- q z ) A P p , e  e 
-zab2 - z ( a - l ) b , ( N + I )  (A301 

by using the  fact  that h,(z) = H,(z)  for n 2 N + 2, as 
indicated  by (55).  Also, from (54), (A24), and ( 5 9 ,  but 
with n = N + 2 this time, we get 

D,(z)ff , (z)  = & ~ + 2 ( h )  - A p 2 e  e 
-zab2 -z(b,-b,) q z ) ,  (A311 

where we  have  let 

D,(z) = z - A + ('432) 

for notational convenience. 

By using (A31) in (A30) we  can obtain an  expression  for 
h,+,(z) in which the only  unknown  function is H2(z) .  This 
expression can  then  be used in turn in (A29) to establish 
that 

after some  algebraic  manipulation, where 

Da(z) = z - A + A p l e - z a b l  + Ap2e-zab2 ,  (A341 

as in (26). We can now combine (A31) with (34) in order  to 
get '(z) in terms of H2(z) only,  and  then employ (A33) to 
establish that 

where 

927 

S .  B. CALOI IBM I. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981 



928 

as in (30); 

QJz) = Dl(z)&z) ( z  - A)N+l-k(-Aple- 
N +  1 

k=O 

+- {p,D,(z)(z - A ) N + 2  
(1 - UP) 

As indicated  by (A39) and (A40), we now have  three 
equations to solve  for  the  constants ~ ~ ( h ) ,  &,(A), and &,(A): 

( 1  - up) namely, Qo(0) = -A$,, Qo(A) = 0, and Q&) = 0. The 
first gives 

P 2 ~ O ( A )  + P l ~ 2 ~ l ( A ) +  p f ~ , ( M  = ( 1  - up); (A421 

the  second yields 

Ek(h) - 

(A371 
E (A) = E 2 (h)eA(b2-abl). (-443) 

is the  numerator  function;  and 

&z) = p,[D,(z) - Aple-Zab2e-z(b2-bl) 1 (A381 

has  been defined for notational convenience. We note 
that (A35)-(A38) establish  the desired transform Cl(z), 
except for  the  set of positive  real constants {~,(A)3:=',2, - E,(A)AP~~ 
which have  yet to be determined. 

and  the third  provides 

E ~ ( A )  = El(A)eAb'(a-l) "(') + D;(A) - blD,(A) 1 
-A[abl+b2-bll 

These ( N  + 3) unknowns  can  be  obtained by  appealing 
to  the  properties of the Laplace-Stieltjes transform Cl(z). 
From their  respective definitions as  transforms of equili- 
brium  distribution functions, it  follows that Cl(0) = R,(O) = 1,  
which then implies that 

QJO) = ( - V N + 2 ( - A ~ 2 )  (A391 

from (A35). Also, since  the  denominator of (A33 has a 
zero of order ( N  + 2) at the  point z = A, it follows that 

d" 
Z-A dz" 
lim - QJz)  = 0 (v = 0, 1 ,  2, . 1 a ,  N + 1) (A40) 

in order  for n(z) to remain finite at that  point.  The  above, 
(A40) along  with (A39), then  represents a system of ( N  + 
3) independent, linear equations in the unknowns 
{E ,JA) }T~;  and  can  therefore theoretically  be  solved 
straightforwardly  by classical  methods. Pragmatically, 
the calculations  involved become increasingly  tedious as 
N increases. We note  that (A35) has  an additional zero  at 
some  value of z that we shall  designate as wl,  where 
Dl(wl) = 0 (Dl(z) can  be  shown  to  have a unique real  root 
for Re(z) 2 0 as in  Calo [2]). A direct calculation  readily 
yields QN(wl) = 0 as required. 

For  the simplest case, N = 0, the transform of interest, 
as given  by the  appropriate  expansions of (A33 and 
(A37), becomes 

z - A) (1 - up) 

( 2 d ,  + b, - bl) . 1 
A simultaneous  solution of (A42)-(A44) then explicitly 
establishes the  three  constants.  These  turn  out  to be 

where we have defined 

d ( ~ )  = P: + p1p2e W - a b d  

+ p2eA(b2-b1)[ 1 - Apt (b, - ab,)] (A46) 

for notational convenience.  These  equations along with 
(A41) establish the desired  transform. The equilibrium 
mean cumulative  waiting  time then follows from 

E{AJ = -n'(O), 
which in this case  becomes 

and 
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We na lte that  the firs :rm of (A47) is  just  the mean it tc 
waiting time in a standard M/G/1 queue with the  same 
service  time  distribution as  our  second  server,  as in (50). 
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