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Delay Analysis of a Two-Queue, Nonuniform Message
Channel

A Message Channel is defined as a tandem connection of single server queues in which the successive service times
experienced by any particular customer are scaled versions of the same random variable, and thus it serves as a model
Jor sparsely connected store-and-forward data communications networks (or network segments) where messages
typically preserve their lengths as they traverse the system. A particular instance of such a nonstandard queueing model
is analyzed in this paper. The system consists of two single server queues in tandem subject to a Poisson arrival process
(at the first queue) and providing service according to scaled versions of a sequence of two-level, discrete random
variables. A set of recursive equations that can be used to solve the model for any given scaling factor at the second
queue (normalized with respect to the first queue service) is explicitly derived. In addition, complete solutions are
displayed for several cases of interest, and the equilibrium mean cumulative waiting times for these instances are
compared as a method of indicating the impact of the scaling factor on the operation of the system. The extension of

several results to systems with more general service time processes is discussed.

1. Introduction

One of the inherent complexities associated with queue-
ing models for store-and-forward data communications
networks arises from the fact that messages typically
preserve their lengths as they traverse the system. The
interarrival and service sequences at queues internal to
the system are thus dependent, making standard methods
of analysis realistically inappropriate. In an effort to find
methods for dealing with such nonstandard queueing
systems, a model for sparsely connected networks (or
network segments) called a Message Channel has been
studied. A Message Channel is defined as a tandem
connection of single server queues in which the succes-
sive service times experienced by any particular custom-
er are scaled versions of the same random variable. When
the scaling factors are identical, the system is called a
Uniform Message Channel (UMC) or Repeated-Service
Tandem Connection. Some general properties of such
queucing models have recently been reported (Calo (11},
and integral equations for the equilibrium distribution
function of the cumulative waiting time process in Uni-
form Message Channels, which have, in certain in-
stances, been explicitly solved, have been obtained (Calo

[2D.

When the scaling factors are not identical, the problem
becomes considerably more complex. The general Mes-
sage Channel has thus proved to be much more difficult to
characterize than the UMC. In this paper we consider a
specific instance of such a Nonuniform Message Channel,
whose structure is yet amenable to analysis.

Our model consists of two single-server queues in
tandem subject to a Poisson arrival stream at the first
queue and providing service according to scaled versions
of a sequence of two-level discrete random variables. The
interarrival sequence at the first queue, {‘Tn}::l, thus
consists of independent, identically, negative-exponen-
tially distributed random variables with mean value E{7}
= 1/ < =, and the underlying service sequence {S,}"_,
consists of independent, identically distributed random
variables such that (for each n) S, equals b, with probabil-
ity p, or b, with probability p, = 1 — p,, where for
convenience we require that 0 < b, = b, < ». We also
denote the mean value of the elements of this service
sequence by E{S} = p,b, + p,b, = 1/u < =. The service
process at the first queue is taken as {Sn}:zl, whiie the
service process at the second queue is {aSn}:ll, where
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the scaling factor is a nonnegative real number (a = 0).
With a = 1 the model reduces to that of a two-queue
UMC and is indeed a special instance of one of the
examples given in [2] for which explicit solution proce-
dures exist (two packet classes under Poisson arrivals).

While the analysis of the two-queue system described
above is the principal topic of this paper, we have also
undertaken to relate the effort to more expansive at-
tempts at the development of solution procedures for
problems involving tandem interconnections of message
queues. Thus in Section 2, general expressions for the
cumulative waiting time process in a two-queue tandem
connection are formulated, and a widely applicable result
concerning front-end dominated systems is exhibited.
Then in Section 3 the development is continued for two-
queue, nonuniform, message channels, and an integral
equation for a limiting conditional distribution function
from which the distribution of the equilibrium cumulative
waiting time can be readily obtained is derived. The
particular form of this equation that is applicable to
systems that are rear-end dominated is also explicitly
exhibited.

Section 4 deals with furthering our analysis when the
arrivals to the system are assumed to constitute a Poisson
process. In this case it is shown that a complete solution
can be obtained for rear-end dominated systems without
making any additional assumptions regarding the service
time distribution.

Finally in Section 5 we return to the analysis of our
specific model utilizing the more general results of previ-
ous sections as appropriate. For a € [0, b/b,], the system
is front-end dominated (the service time distributions in
the separate queues are nonoverlapping with largest
service always given in the first queue), and the total
waiting time in the system is simply the waiting time at
the first queue, which under our assumptions is M/G/1
(with our particular service process) and thus easily
solved. For a € [bz/bv ), the system is rear-end
dominated (the service time distributions in the separate
queues are nonoverlapping with longest service given in
the last queue), and the expression for the Laplace-
Stieltjes transform (LST) of the equilibrium distribution
function of the cumulative waiting time process previous-
ly derived for this instance (in Section 4) then applies.

When this nonoverlapping characteristic no longer pre-
vails, i.e., for a € (b,/b,, b,/b)) in our case, the complex-
ity of the analysis greatly increases. We show that for
discrete service time random variables a complete solu-
tion can still be obtained. The simplest (two-level) such
instance is used here as an example of the more general

procedure. Utilizing the integral equation development of
Sections 3 and 4 with the added assumption of the
discrete nature of the service process, sets of recursive
equations with easily identified boundary conditions are
derived from which the LST of the distribution function
of the equilibrium cumulative waiting time can be ob-
tained for the scaling factor (a) in appropriate subregions
of the intervals (b,/b,, 1) and (1, b,/b;). The number of
such transform equations that must be solved in any
particular instance depends upon relationships among the
values of the scaling factor and the allowable service
times, as one would expect. The closer the system is to
being dominated (front or rear), the simpler the solution
procedure.

Complete solutions for the model are displayed for the
instances when the scaling factor is such that the system
is (1) front-end dominated; (2) near-front-end dominated;
(3) uniform (@ = 1); (4) near-rear-end dominated; and (5)
rear-end dominated. The equilibrium mean cumulative
waiting times for these various instances are also com-
pared within the context of a specific example (under
which the parameters of the service time distribution are
chosen so that it will have the same first three moments as
a negative-exponential distribution with parameter u) as a
means of indicating the impact of the scaling factor on the
operation of such a system. The extension of these results
to systems with more general service time processes is
also discussed.

2. The two-queue tandem connection

We consider a system of two queues in tandem where
each station operates as a single channel (server) facility
and services messages (customers) in their order of
arrival (first-come-first-served priority discipline). Each
queue in the serial connection is assumed to have poten-
tially infinite waiting space; i.e., there is no limit on queue
size. We also assume for convenience that both queues
are originally empty so that the first customer to arrive
suffers zero waiting time in each. (See Fig. 1.)

The stochastic properties of such a tandem connection
are completely determined by the interarrival time pro-
cess at the first queue, designated {Tn}:;l, and the two
service time processes, designated {S f")}:;l and {S ﬁf’}:ﬂ,
respectively. These establish the evolution of the waiting
time processes at the individual queues of the system
according to the nonlinear recursions
W =0, W = WD+ sD )t

n+1i
2 _ n. — ) 2) _ ¢} (1)
W<l)—0’ Wg?#-l —(Wn +s(n) Tn+Wn +Sn
-wW —sOT =D, )

n+1
where W represents the waiting time of the nth custom-

(n=1),
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er a: the kth queue (k = 1, 2) and (¥)* = max {0, ¥} is the
positive rectification function.

We note that the first station of our tandem connection
can be treated as an isolated single server queue, since all
the information concerning its arrival process is con-
tained in the sequence {'rn};:l, and the subsequent history
of any customer leaving the queue has no effect upon its
operation. The waiting time process at the first queue as
indicated in (1) thus follows the usual single server
queuneing recursion, which can be formulated as (see, for
example, Loynes [3])

n +
w =0, Wi, = (1‘2;“5"" {Z s, - r,.)}) (n=1).)
J=r
The operation of the second queue of our tandem connec-
tion, however, is very much affected by the prior history
of its customers. The arrival process to this queue is
imparted a particular correlation structure by the queue-
ing process at the previous station, as indicated by the
defining recursions of (1). This correlation structure is in
general quite complicated and difficult to characterize,
thus making any attempt at a direct analysis of this
nonstandard system as an isolated queue prohibitively
complex.

If, however, the performance characteristic of primary
interest is the total delay suffered by a message in passing
through the tandem connection, one need not be con-
cerned with the details of internal operations but can deal
with global processes directly. We therefore concentrate
on formulations for the cumulative waiting time of cus-
tomers in the system, from which their delays can be
readily determined.

Letting ¢, denote the arrival epoch of the nth customer
to the system (0 <, =< ¢, <« - -), it can be easily shown
(see, for example, Tembe and Wolff [4]) that the depar-
ture epoch of the nth customer from the kth queue of a
tandem connection of length M (k = M, M = 1) can be
represented as

i i
T® = max {t'. + 2 8P+ 5@
Isi =i =< . <i=<n 1 o — J
12 M Jj=i J=i
n
4 e+ Zsj(_k)}. 3)
J=i

The total amount of time that the nth customer spends
waiting in a two-queue tandem connection (the cumula-
tive waiting time in our system) is then clearly

— wib @D 7T _, _ e @
A, =W/ +W7=T" -t —87"-8". (C))

The last equality of (4) can be expanded upon using (3) to
yield(n = 1)
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Figure 1 The two-queue tandem connection.

v n+1
A, = (max { max [z sy > 5@
rsv=n+li , J v J

1=<r=n
n +
-s0, =82, = Saf) ®

r

where 7 = ¢ — t, denotes the time between the ar-

n+1

rivals of the nth and (n + 1)th customers (interarrival

time) as before.

While the given expression (5) provides an algebraic
characterization, the stochastic behavior of the cumula-
tive waiting time process remains difficult to ascertain for
general service and interarrival time sequences. Indeed,
solutions to problems of this type have been obtained
only under very specific assumptions concerning these
underlying processes and their interrelationships (Burke
(51, Friedman [6], Rubin [7, 8], Boxma [9], Calo [1, 2}).
Some additional cases of interest are pursued here.

One particular and quite general result that is related to
several previous studies follows quite readily from (5)
when the first server is known to ‘‘dominate’’ the system,
ie., SV = 5% (as)forall n = 1and m = 1. In this
instance we have that

v n+1 n+l1
max {Z SJ(.‘) + 2 SJ@ } = > SJ(.”+ s?
r v r

r<v=n+1

which implies that
n +
tom (g Rap-of) -vn o

Hence for a front-end dominated tandem connection the
cumulative waiting time in the system is simply the
waiting time at the first queue (¢f. Tembe and Wolfe [4]).
The waiting time at the second queue will be precisely
zero for all customers. We note that this result can be
generalized to the case of a tandem connection of any
given length, wherein, if the system is front-end dominat-
ed, the waiting times at all queues but the first will be
precisely zero for all customers (Calo [10]). We note also
that no specific assumptions need be made regarding the
stochastic nature of the interarrival time or service pro-
cesses (except, of course, for the dominance relation) for
the indicated result (6) to hold. An instance of this very
general relationship arises naturally in a subsequent sec-
tion of this paper.
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3. The two-queue, nonuniform message channel
Our principal interest is in tandem connections of a
particular type, viz., message channels, for which the
successive service times experienced by any particular
customer are scaled versions of the same random vari-
able. In the present context this means that if we denote
the service sequence at our first queue by {S_ } _1, ie.,
S(1> = §, for each n, then S<2) aS, for each n, where a is
a posmve real constant. When a= l we have a Uniform
Message Channel (UMC) or Repeated-Service Tandem
Connection. Such systems have recently been studied,
and numerous results have been reported (Boxma [9)
deals with a two-queue UMC under Poisson arrivals, and
Calo [1, 2, 10, 11] deals with UMCs of any given length
M = 1 under several sets of assumptions). We concen-
trate here on specific instances of the two-queue, nonuni-
form message channel described above.

In addition, we assume that the service sequence
{S"}:’=1 consists of independent, identically distributed
(i.i.d.) random variables with common distribution func-
tion B(y) = Pr{§, < y} and mean value E{S} = (1/p) < =,
the interarrival sequence {7}~ consists of i.i.d. random
variables with common distribution function (y) =
Pr{r, < y} and mean value E{r} = (1/A\) < =, and that
these two sequences are mutually independent. Our point
of interest is in characterizing the cumulative waiting time
process of (5) under this set of assumptions.

The basic recursion that we shall be considering is thus

n+1
A= (max { max [z S, +a Z s ]
rsv=n+1

1=r=n

n +
—@+ DS, ~ 2 fj}) (=1, @)

We denote the elements of the sequence of cumulative
waiting time distribution functions by F,, ,(x) = Pr{A,
= x}, n = 0, where, clearly, F, ,(x) = 0for x <0, and, for
x = 0, we have

F ()= fm ) dB(y)G (x, y), (8)
G, (x,y)
Defining the random functions

[Z S;+a 2 Sj]—y}

10)

=Pr{iA,,, =x1S5,.,=y} (O=0. )

o, (y) = max { > S, max

rsv=n
r V!

and

n

h, D=0, 0)- 21

i

amn

r

it can be easily established from (7) and (9), by appropri-
ately exploiting the independence properties of the under-
lying sequences, that

G (x,y) = Pr {lxlla} h, ) = x} . (12)

These conditional distribution functions play a key role in
determining the characteristics of the equilibrium cumula-
tive waiting time, as is presently indicated.

It can be shown that there exists a function G(x, y) such
that

lim G (x,y) = G, y)
and

Fx) = ,}5‘; F(x) = J;o , dB(y)G(x, y) (13)

B

under appropriate stability conditions (see Appendix 1).
Further, from the defining equation for G (x, y) we can
develop an integral recursion in the following manner:

G, (x,y)=Pr { max h, () = x}

1=r<n

= Pr {max {hn+1,n+1(3’)’ max hr,"ﬂ(y)} = x}

h

n+l, n+1

N
+ max h, . (¥) n+1,n+1(y)) sx}

v

+

1=<r=n

max h, (SnJrl y—a$,,) )) Sx}

=PriS,., + @S, — - T+

+

|
£
e
[
|

max h, (SnJrl (v —aS,,) )) sx}

1=r=n

= J;O,w) dB(v)

| DG, (x + 7= v —(av ~ y)",
[(v+(@av—y)* —x)*,)

v+ (y —an)’),

and by applying the Dominated Convergence Theorem to
the iterated integrals (on the product space) it can be
shown that the limiting conditional distribution function
must obey

Gx,y) = fm - dB(»)
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. f d4(DGx + 71— v — (av — y)*,

(vt (av=y)"=2)".) v+ (y —an’). (14)
We have then an integral equation which along with (13)
determines the equilibrium cumulative waiting time distri-
bution. If we consider the case a = 1, i.e., a two-queue
uniform message channel, we obtain the appropriate form
of the integral equation developed in [2]. The solution
procedures for the uniform case, however, are not direct-
ly applicable to the more general, nonuniform, message
channel characterized by (14). Indeed, we have as yet not
been successful in developing methods of solving such
equations except under very specific assumptions regard-
ing the underlying interarrival and service processes.

An alternate form of Eq. (14) which lends itself more
readily to analysis arises when we consider systems that
are rear-end dominated. For this instance S = §" for
alln = 1and m = 1 so that

v n+1 n+1

max {2 SW4+ X s@ f= 3 §@ 450

r<v=n+1 r J v J , 4 v’

and thus from (5) the elements of the cumulative waiting
time process can be written (n = 1)

l=r=n

n +
A, = (max{ SP—-7)+ 8P~ sgil}) .19

Incorporating our assumptions concerning the interarriv-
al and service processes, and following the same proce-
dure as in the development of (14) but now instead of (11)
using

hE(y)= 2 (aS,~ 1)+ S, -, (16)

we can establish that the limiting conditional distribution
function must obey

G*x,y) = j dB(v)
[0,%)

: f dAMG*x + 7= (@ + Dv + y, )
[(a+1)—y—x)*,2) 17)

for rear-end dominated tandem connections. We note that
informally (17) can be obtained from (14) by simply
asserting that av = y over all appropriate regions of the
probability space. We pursue later the analysis of these
equations by the use of Laplace-Stieltjes transforms.

4. Poisson arrivals
When the additional assumption is imposed that the
arrivals to the system constitute a Poisson process,
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further progress can be made in solving the integral
equations of the previous section. In particular, expres-
sions for the Laplace-Stieltjes Transform (LST) of the
distribution function of the equilibrium cumulative wait-
ing time can be obtained that in certain instances yield
explicit results. Thus, as in the analysis of uniform
message channels or even standard GI/G/1 queues, the
memoryless nature of the negative-exponential interarriv-
al time distribution greatly simplifies the appropriate
analytical methods.

If we let ()(z) denote the Laplace-Stieltjes transform of
the equilibrium cumulative waiting time distribution and
define

Hz,y) = f[ o e “G(x, y)dx, (18)

then it follows from (13) that

W) =z j

[0,

) dB(y)H(z, y). 19

By transforming both sides of the integral equation of
(14), identifying the interarrival time distribution explicit-
lyas d(v) = 1 — e ™ (r = 0), and using (18) we obtain

(z - NH(z,y) = A f dBWe ™M b 4 (y = an’)
0.%)

Y J. dB(v)e_z[”H“"_”mH(z, v+ (y —an’).
0.%) 20)

This not particularly transparent relationship forms the
basis of our subsequent analysis.

If we consider for the moment the special case of a
rear-end dominated system, then from an appropriate
transformation of (17) we obtain the somewhat simpler
version below:

(z — NH(z, y) = Aeé™ f dB(v)e MY H(\, v)

[0,

- zyJ’ dB —z(a+1)vH , .
e 0 (v)e @z, v 1)

An explicit solution for )(z) is now most readily obtained
by introducing an additional transformation of the form

I'(z, s) = f[ o dB(y)e "H(z, y), (22)

so that from (19)
Wz) = zI(z, 0). (23)

Transforming both sides of (21) then according to (22) we
have
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(z — NIz, 5) = Ay(s — T\, Aa + 1)
= An(s — )(z, z(a + 1)), (24)

where
() = f[ B 25)

represents the LST of the service time distribution. Since
(24) holds for general values of s (provided the given
transforms remain well defined), it holds for s = z(a + 1),
in which case we must have

An(z(a + 1) — \)

Iz, z(a + 1)) = D@

T\, AMa + 1)),

where
D, (2) =z — N\ + Ap(az). (26)

This then determines I'(z, s) as

r@, s) = —
z,8) = ——
Z-\

: [n(s — A - (s —z)

M@+ 1) = M) )‘)] IO\ Ma + 1)

D (2)

@7
and allows us to write }(z) from (23) as
0 = zZ'\, Ma + 1)) A
Da(z) zZ— A\
AD @)n(—N) — n(—2)An(z(a +1)—N\)} (28)

for all values of z for which the relevant transforms exist.
Noting that €}(z) must obey the boundary condition Q(0)
= 1, and applying this fact to (28) by taking the limit as z
goes to zero, we find that

(1 - ap)
An(=N)

where p = (Mu) denotes the traffic intensity at the first
queue of our tandem connection. This finally determines
the LST of the equilibrium cumulative waiting time
distribution as

F(\, NMa + 1)) =

D (2)n(—\) — n(—2)An(zla + 1)—)\)

MNz) = Q , (29
(@) = Q,2) @~ =N (29)
where
_z(1 ~ ap)
Q. (2) = ————Da @ (30)

represents the LST of the equilibrium waiting time distri-
bution in a standard M/G/1 queue with the same service
time distribution as our dominant server (second queue).

Equation (29) provides the solution that we had sought
in a quite usable form. We can, for example, differentiate
(29) and take the limit as z goes to zero to obtain the
equilibrium mean cumulative waiting time as

Na’E{S%} —1'(=N)—n(—NE{S} ]
200 — ap) 7(—\) ’

EA)} = +@+ 1 [

(E2V)

where

7'(=\) = —f

[0,

) ye™dB(y) .

The equilibrium mean sojourn time in the system (end-to-
end delay) is then simply

AG’E{S%}
=—+t@a+1)——— . (32)
2(1 - ap) 7(=N)
The equilibrium mean waiting times or sojourn times at
each of the individual queues of the connection are also
easily derivable from the above as are other parameters of
interest.

E{J.} A

We have thus obtained a fairly complete characteriza-
tion of the operation of a rear-end dominated system
faced with Poisson arrivals without having to make any
assumptions concerning the service time distribution.
Unfortunately, the same techniques of solution are not as
effective in dealing with more general cases.

5. Analysis of the simplified model

In the previous sections of this paper we have presented
various results at various levels of generality concerning
the behavior of two-queue tandem connections. Now we
consider the analysis of a specific model in which we
incorporate the assumptions of previous sections along
with a further assumption concerning the nature of the
service process. Much of our prior effort is directly
applicable, but quite a bit of additional work is also
required. It is a characteristic of these types of queueing
problems that they do not yield easily to analysis.

As before, our model consists of two single-server
queues in tandem subject to a Poisson arrival stream at
the first queue and providing service according to scaled
versions of the same sequence of random variables. We
now specifically assume as well that the service time
distribution function is that of a two-level discrete ran-
dom variable, i.e., S, equals b, with probability p, or b,
with probability p, = 1 — p,, where for convenience we
require that 0 = b, = b, < «. The mean value of the
elements of the service sequence will thus obey

ES,}=pb, + b, =V (33)

according to our definitions.
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The Laplace-Stieltjes transform of the distribution
function of the equilibrium cumulative waiting time for
messages in the system in question can be written as

Wz) = z{p H,(2) + p,H(2}} (34)

following Eq. (19), where the notation Hj(z) = H(z, bj),
j =1, 2, has been used for convenience. Relationships
involving these transforms can be developed from (20),
which under our particular service time assumptions
becomes

(z - NH(z,y) = A\p,e Mot @O b+ (y — ab)*)
+ Ap,e NI b+ (y - aby))

— Ap,e @G b+ (y — ab)h)

— }\pze-zlbﬁ(abz—y)*lﬂ(z’ bz +(y~ ab2)+)_

(33)

The precise form that this equation takes in any given
situation obviously depends upon relationships among
the parameter y, the scaling factor a, and the service
levels b, and b,. Several different cases must be examined
individually.

Ifa < 1, i.e., the first queue gives longer service times
to each customer than the second, then (10) can be
conveniently rewritten as

{Sv—y—(l—a)zsj}).

The second term in the above formulation can be easily
shown to obey the following inequalities:

<Ta<x {sv —y-(-a) 2 sj.])+

< <max {as, - y}) = (ab, - y)",

S=v=n

o, (y)= > S, + (max

r=v=n

the latter resulting from the fact that for every n, S, =< b,.
Hence, for y = ab,, we must have that

g, (=25,

which in turn implies from (11) and (12) that
G,(x, y) = Priw®

n+l1 = 'x}'

The above indicates that, conditioned on sufficiently large
services being given in the first queue, the waiting time at
the second queue will be zero. Therefore, in this specific
region of the underlying probability space, the conditional
distribution function sequence will converge to the distri-
bution function of the waiting time in the first queue
(which under our assumptions is an instance of a standard
M/G/1 system). From (18) then, we can now write
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1-p

H(z, y) = e H*z) (y=aby), (36)
where

D*@) =z — A + \p,e ' + Ape ™, 37
and

p = NE{S} = \p b, + Ap,b, (38

is simply the traffic intensity at the first queue. Equation
(36) follows directly from classical results for the LST of
the equilibrium waiting time in a standard M/G/1 queue
(see, for example, Kleinrock [12]).

Using the above development and (35), we can deter-
mine that fora < 1,

Hy(z) = H*(z) (39
and
z - NVH,(2) = \pe M HO, b2 - a)
— Ap,e ' H(z, b,[2 - a])
+ )\pze—)\[bz+(abz—bl)+] H*O\)
_ )\pze—z[bzﬂabz——b])"]H*(Z)‘
(40)

This latter relation (40) cannot yet be used to establish an
explicit expression for H (z). The effects on our analysis
of the size of the scaling factor, a, with respect to the
sizes of the service levels, b, and b,, must be considered
in some detail before we can proceed further.

Clearly, the support of the random variable S, is the
closed interval [b,, b,], while the support of the random
variable a$_is the closed interval [ab,, ab,]. Hence, if our
scaling factor, a, has a value in the interval [0, bl/bZ]’ the
system is front-end dominated and readily solved. For
this situation, then, the LST we have been seeking is
simply [refer to (6)}

_ _z1-p
WNz) = QI(Z) = _W y a €10, bl/bz] 41)
with concomitant mean value
AE{S%}
EA )} = EW"} = ———— | €0, b/b]. (42
A} = EW.} 2= p) a €10, b/b,l. (42)

The second moment of the service time distribution is, of
course, E{S%} = p,bf + pzbg under our assumptions.

If we now consider the system scaling factor to have a
value such that
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b,+ Nb, b + N+ )b,
a , 43)
b, + Nb, " b, + (N + )b,

for some nonnegative integer N, and we define the
indexed functions

h(z) = H(z, y,), (44)
where y, = b, + nbl(l — a), then we have from (35) that
@=Nh @) =\p,eh, (N + Np,e NPT ()
- )‘ple—wlhnﬂ(z)
~ Ap,e e TH O ¥ (z) 45)
for0 = n < N and
h(2) = H*(2) “6)

for n = (N + 1). We have thus constructed a recursion
with a known boundary condition that can theoretically
be solved quite straightforwardly for A(z), which by
definition equals the desired H (z), for a in any of a
collection of disjoint intervals whose union is the interval
(b,/b,, 1). The difficulty with this procedure is that the
closer the scaling factor gets to the value ‘‘one,” the
larger the number of elements in the finite recursion. The
procedure can thus become quite tedious.

For small values of N, however, the calculation is quite
readily performed. For example, with N = 0, i.e.,

E(b1 2b1]
b, b +b,]|’

it follows from (46) that 4,(z) = H*(z), so that (45)
immediately yields

@ ~ Nhy(2) = I\p,e ™ + Np,e e M ()
_D\ple—zbl + )\pze—zabze—z(bz—bl)]H*(Z)’
which in turn establishes from (34) that

4]

(z-N
ple—)\bl + pze—)\abze—)\(bz—b,) ,
b, =y D*(2)
pP.e + p,e

WUz) = Q,(2) {pz +

—Mpe ™ + pze““’"e""’f"“]” . @)
where (},(z) is the LST of the distribution of the equilibri-
um waiting time at the first queue, as in (41). The
equilibrium mean cumulative waiting time can then be

determined from (47) as

E{A} = W)}

+ p] {(abz - bl)p2

_ A= ppet - )
A ple_)‘b‘+ pze’_>‘l’2 ’(48)

where E{W‘} is the mean waiting time at the first queue,
as in (42). A more general development is given in
Appendix 2, where an explicit solution is also exhibited
for the case N = 1, and this is already seen to be
somewhat complicated algebraically.

If a = 1, a similar series of considerations must be
made concerning the relative values of the scaling factor
and the service levels. With a € [bz/b], ) the system is
rear-end dominated and the more general results of
Section 4 apply, but with B(y) = p,U(y — b)) + p,U(y —
b,), where U(x) denotes the unit step function. Hence,
from (29) we have

WNz) = Qa(z)

zb zb.
p]e ! + p2€ 2

- 3D (z) — A
{ a() p'e)\bl +pze)\b2

. [ple)\b,e—z(a+l)b2 + pzexbze—z(a+l)b2]} ’ (49)

where Qa(z) has been previously defined in (30); and,
from (31), the equilibrium mean cumulative waiting time
becomes

A} = A\E[S?)
= 21 - ap)
=Mby—by)
pp,ll — ¢ 1
+a+ b, - by p, + pe e (50)

We note that the above, particularly Eq. (50), can be
easily renormalized so that in effect the service process at
the second queue is taken as {S"}le, while the service
process at the first queue is {(1/a)S }_,, an operation
that is often convenient when comparing different sys-
tems. The equilibrium mean value, for instance, then
becomes

B4y = 2880
721 -p
1 ppoll — ¢ a 5]
+ (1+_)(b2— l) B2 ;Ab—b) ’
a p2 + ple a ( 2 I (51)

and this expression can now be compared with (42),
which can be interpreted as representing the same system
but with the positions of the two servers reversed.

If we now consider the system scaling factor to have a
value such that :
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[bz +(N+ Db, b, + Nb, ) 52)

b, + (N + )b, " b, + Nb,

for some nonnegative integer N, and we define the
indexed functions

h(2) = Hz, y,), (53)

where now, however, y | = b, + (b, — ab, — n(a — 1)
b)" (n = 0) and y, = b,, then we have from (35) that

— —\aby MYn—Yn+1)
(z — Mh,(z) = \pe """ h (N

+ )\pze_)‘“bze_)‘(bz"y”)Hz()\)

_Z“blez()’n ~Ynt1) h

—Ape 1@

_ )\pze—zabz e—z(bz—yn)Hz(z) (54)
for 0 = n < (N '+ 1); also hy(z) = H,(z), and
h(z) = H/(2) (55)

for n = N + 2. This recursion thus involves both H\(2)
and H,(z) as boundary conditions, and indeed must be
solved for both transforms. Hence its analysis is some-
what more complex than that of the previously consid-
ered recursion of (45). Nevertheless, theoretically we can
obtain explicit expressions for the relevant transforms for
the scaling factor, a, in any of a collection of disjoint
intervals whose union is the interval (1, b,/b)). The
difficulty as before is that the closer the scaling factor
approaches unity the more complex the analysis.

A general development of a solution procedure is given
in Appendix 3, where explicit expressions are also de-
rived for the case N = 0 for both the Laplace-Stieltjes
transform, €(z), and the equilibrium mean value, E{4_}.
These are seen to be considerably more complicated than
the complementary results for the regions where a < 1.
We note that, as before, equations like (A47) can be easily
renormalized so that they are referenced to the service
time of the more dominant server (in this case the
second). Solutions for larger values of N can be devel-
oped in much the same way, but no illuminating results
have as yet been obtained by doing so. The complexities
of the resulting equations tend to mask any evolutionary
factors that might be exploited in projecting the solution
closer to its limiting form at the value a = 1.

In Table 1 we present a compendium of results con-
cerning the manner in which the equilibrium mean cumu-
lative waiting time depends upon the scaling factor (a).
Each of the indicated equations has been developed
above (or in the accompanying Appendices) except for
the one describing the uniform case (a = 1), which is
easily obtainable from results in [2]. All the equations
have also been normalized so that service times are taken
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with respect to the more dominant server; hence, the first
two describe a two-queue tandem connection with $¢" =
S, and Sﬁ? = aS (a < 1), while the last two describe such
a system with Sn‘) = (1/a)§, and Sf!2> =S8, (a > 1), using
the notation of Section 2. These pairs of equations as
exhibited are thus complementary and can be used to
compare instances of the same system but with the
positions of the two servers reversed.

In order to provide more concrete performance com-
parisons, the equilibrium mean cumulative waiting time
was evaluated numerically by computer program for a
particular example of interest. The results of such a
calculation for differing values of the service time scaling
factor are shown in Table 2. For the purposes of this
example, the parameters of the service time distribution
have been chosen so that it will have the same first three
moments as a negative-exponential distribution with pa-
rameter . In particular this determines p,, p,, b, and b,
as indicated below:

2-V2

2+ V2

4 7p2 -

4
1 1
b, = — [2— \/5];b2=—[2+ \/2']
7 M
The table compares the normatized mean wait uE{A_} as
a function of the traffic intensity p for five values of the
scaling factor a, each in a different performance subinter-
val of its range.

p]“

As can be seen from the table, the waiting time is
smallest for the front-end dominated system. Also, for
any given scaling factor, the waiting time is less when the
first server tends to give longer service times than the
second, than for the complementary case (e.g., compare
the columns for a = 1/4 and ' = 1/4 in Table 2). The
maximum waiting time occurs for the uniform case, with
the waiting time decreasing monotonically as the system
becomes either more front-end or more rear-end dominat-
ed. The relative difference between the minimum (front-
end dominated) and maximum (uniform) values, while
quite significant for low traffic intensities, decreases
substantially as the traffic intensity increases. Hence the
value of the scaling factor tends to become less and less
important as the system tends toward instability, as one
would expect.

The same general types of behavior exhibited by the
equilibrium mean cumulative waiting time in the above
example would probably apply in systems with more
complex service time distributions. These remain, how-
ever, quite difficult to analyze directly. We note that in
principle, once we have the integral equation of (14) and




Table 1 Equilibrium mean cumulative waiting time equations.

. bl
Front-end dominated a€ |0, b—
2

2 2
EA} = Ap,b] + p,b3]

201 - p)

b 2b
Near front-end dominated ae (—-1— R L ]
b, b, +b,
Mp p2 + b2] 1 - “Mbr=bppy _ g~Mabr=bp)
EA)}= —11 22 P +p,p, jlab, - b) - d-pe n-e ]
20 - p) p, + pze—x(bz—b.)

Uniform a=1

Ap,b> + p b2 -
E{Am} = __p_ll—pz_z]_ +p, {(bz _ bl) _ a-p - e—wl(bz—bl)]}

21 -p AD,

w, = N1 - pe ™

b
Near rear-end dominated a'le (—1 s 2b1 :|
b, b +b,
2 2
EiA] - Ap,b] + p,bl]
21 -p

a~ by _ - a Vby—
.ex by b‘)[l — \a lple )‘b'(bz _ abl)] + Pl[e)‘ (by—aby) _ -1

+mm{a+fwh—h)

“ly—a a=lgp,— -
pl[P1 +pzexa (by bl)] +pze>\ by b')[l -\ 1p1e~xb,(b2 - ab)]

PN -yt a” b)) ¢ — 1] — a”'p (b, - ab,) }

o . —
p\Ip, + p,e @?] + p M "y~ g 'pe b, - ab))]

b
Rear-end dominated a '€ ( 0, —'—}
2

x[p b2 + b2] 1-— —)\a_](bz-bl)
EA )= 2221 TR0y +pp )+ a b, - b,)‘[—e—'T“—]
2(1 _ P) P2 + Pleﬂ)‘a (by—by)

Table 2 Mean wait for different scaling factors.

B T T

0.1 0.11111 0.12134 0.28784 0.16199 0.12535
0.2 0.25000 0.26766 0.61611 0.32475 0.27883
0.3 0.42857 0.45152 0.99763 0.52881 0.47236
0.4 0.66667 0.69332 1.45312 0.79405 0.72577
0.5 1.00000 1.02919 2.01907 1.15624 1.07479
0.6 1.50000 1.53090 2.76745 1.68682 1.59085
0.7 2.33333 2.36536 3.86516 2.55251 2.44061
0.8 4.00000 4.03275 5.81190 4.25332 4.12408
0.9 9.00000 9.03320 11.10666 9.28927 9.14126
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the concomitant transform equation of (20) for systems
with Poisson arrivals, the assumption of any discrete
service time distribution with a finite support will lead to
equations like (35) except with correspondingly more
than two levels represented. Such equations could then
be solved in subintervals determined by relationships
among the values of the scaling factor (a) and the allowa-
ble service times (bv b,, - - -, b, for a discrete distribu-
tion with L levels) in much that same way as has been
demonstrated for the simplest, nontrivial such instance (L
= 2). The degree of complexity of the problem, however,
increases markedly as L increases.

Concluding remarks

In this paper we have presented a number of results
concerning the analysis of two-queue, tandem connec-
tions. Some have been quite general, but most have dealt
with message channels that incorporate discrete service
time distributions in their structure and are subject to
Poisson arrivals. Solution procedures have been devel-
oped in some detail for the particular case of such a
system with but two service levels. This type of service
time distribution arises in models for packet-switching
systems that support two packet classes—one for interac-
tive traffic (short) and the other for file transfers (long),
for example.

While much of the work done here seems difficult to
generalize further, it does provide a basis for a firmer
understanding of the properties of nonuniform message
channels. Indeed, to this author’s knowledge, these ef-
forts represent the first analytical characterization of the
performance of any member of this class of nonstandard
queueing models. There remain, therefore, many interest-
ing problems to consider in subsequent studies.

Appendix 1: Convergence considerations

From their definitions as probabilities the functions
G, (x, y) are obviously bounded

n=90

x € [0, ») (AD
y € [0, «).

0=Gx,y)=1

They are also monotone nonincreasing in # for each (x, y)
as we proceed to show. With

o, (y) = max{z Sj, max [z Sj +a z SJ] - y}

and
hm(y) =0, () - > Tis

we have that
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Gox, ) = P,{ _max h, . (¥) = x}. (A2)

1

Consider for n > 1

max hr,n+ 1( y)

t=r=n+1

= max {hl,n+1(y)’ Zglflsan)il hr,n+l(y)}

= max hr,n+1(y)

2=r=n+1

but, because of the independence of the underlying
random variables,

max k. (y)~ max h_(y),

2=<r=n+1

i.e., they are identically distributed. This then directly
implies that for each (x, y)and n = 0

G, y)=Gx,y). (A3)
We also have from the defining equations that

G, (>, y)=1,

G, ® =F" (x)=Pr{w, =i, (A4

where we note that Fi}ll (x) is an element from the
distribution function sequence of a standard GI/G/1
queue.

Since for every pair of nonnegative real numbers (x, y)
the sequence {G (x, ¥)}.—, is bounded and monotone, it
must converge. Hence there exists a G(x, y) such that

lim G (x,y) = G(x,y)
for every pair (x, y). Further, since the G, (x, y) are
bounded, we can apply the Dominated Convergence

Theorem to obtain

F(x)

lim F (x) = lim ) dB(y)G (x, y)

[0,

il

f dB(y)G(x, y). (AS)
[0,)

While we now have an expression for the equilibrium
cumulative waiting time distribution function in terms of
the limiting conditional distribution function, we note that
the condition

max (1, a)E{S} < E{7} (A6)

must be imposed for Eq. (AS) to be meaningful. For this
case the system is stable (Loynes [3]), and the cumulative
waiting time process will converge honestly in distribu-
tion (independently of initial conditions).

Appendix 2: Solution in subintervals of [0, 1)
If we consider the recursion given as (45) and introduce
some subsidiary notation by defining
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e,N) = Ap,e M (\) + Ap,e e eI,

n+1
(A7)
along with
Ape
B@) == (A8)
and
e-—zabz
an(z) = %_ e—z(bz—b])ezbl(l—a)n’ (A9)

we have that for0 = n < N
h(2) =@z —N"'e,\) - B@h,, (@) — a (@H*(2). (A10)

In this form, the recursion admits the obvious solution

N
h@=z-N"2 )" @0
k=n

N
- 2 VB @e@H @)
k=n
+ (=)VN T hy (2), (A11)

so that, in particular,

N
H@=z-N0"2 1)@ + H*®
k=0

N
. {(_1)N+IBN+1(Z) _ Z (_l)kBk(Z)ak(Z)}
k=0
(A12)
follows from (A11) by simply noting that H,(z) = hy(2)
and b, (2) = H *(z) as indicated in (44) and (46). Now,
using (34), (36), (39), (A12) and a considerable amount of
algebra it can be straightforwardly established that

o0\(2

Q@) = Q,2) “— D@ (A13)
where

Q,(2) = Z(I;*;Z)p ) (Al4)
as in (41);

D*z) =z — N + Apje ™ + Ap,e (A15)
as in (37);

D(2) =z~ \+ \pe ™ (A16)

represents a ‘‘partial’’ transform as in Calo [2]; and

N
0x@ = p,D,@D*@) 2 (—\p,e” )iz — WV £\
k=0 1-p

+pz - W'D (@)

+ p (= pe YWD ()

_ )\plpze—zabze—z(bz—bl)

Iz = OV = (_)\ple—zabl)zvﬂl (A17)

We note that (A14)—(A17) establish the desired transform
Q(z), except for the set of positive real constants
{e, )}, which have yet to be determined.

These (N + 1) unknowns can be obtained by appealing
to analyticity arguments for the Laplace-Stieltjes trans-
form Q(z). Thus, since the denominator of (A13) has a
zero of order (N + 1) at the point z = \, it must follow
that

dv
lim — @\ =0

- »=0,1,2,--+,N) (A18)
2\ dz

in order for (z) to remain finite at that point. The above,
(A18), represents a system of (N + 1) independent, linear
equations in the unknowns {5n0‘)}:]=o and can therefore
theoretically be solved straightforwardly by classical
methods. Pragmatically, the calculations involved be-
come increasingly tedious as N increases. We note that
(A13) has an additional zero at some value of z that we
shall designate as w,, where D ,(w,) = 0 (D,(z) can be
shown to have a unique real root for Re(z) = 0 as in Calo
[2]). A direct calculation readily yields Q,(w,) = 0 as
required.

For the simplest case, N = 0, we have only one
unknown constant &,(A) to determine. This follows from
the single equation Q,(\) = 0 as

I-p —-zb —xab; —N(by—b)
\) = 14 ao; 20
g,(\) p]e')‘b' " pze_)‘bz [pe j X e ]
(A19)
and €(z) is then given by
02 = 0,2) {pz 4 P { D SN
(z—-N (1 - p)
_ )\[ple_Zb' + pze—zabze—z(bz—bl)]}} (AZO)

as indicated by (A13) and (A17). We note that this of
course duplicates the result of (47) obtained earlier.

For the case N = 1 the transform of interest, as given
by the appropriate expansions of (A13) and (A17), be-
comes

p
Q2 = Q,(2) {,,2 + m
Xe) —on, &N
< dID* — 0 _ zby _ 1N
{ @ [(Z Na-p ™ a5 ]
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+ (—)\ple_Zb‘)z _ )\pze—zabze—z(bz—bl)

[z = M = (=ape ] H
D@ '

(A21)

As indicated by (A18) we now have two equations to
solve for the two constants g(\) and &,(A); namely, Q,(\)
=0, and Q;(\) = 0. The first gives

1-p
ple—x‘b; n pze—)\bz

. [ple_)‘b‘ + pze—)\abze—x(bz—bl)ex(l—a)bl], (A22)

e\ =

and the second gives

1-p {e_)‘b‘ £,(\)
P pze_)‘[” a-p

c) + d()\)},
(A23)

g\ = ”
where
¢ = p,[1 = Ap b ™" = \p,be ]

— [p,e™ + p,e \p,b,(a + 1) — ]
and
d(\) = p,{eM“™P -

— Ap,lab, + b, — b, + 2ab e NPt brmbitaby

Ap,b(a + 2)e P

The constant ¢i(A\) can then be explicitly obtained by
incorporating (A22) into (A23). A rather formidable
expression for {)(z) finally follows from (A21) by includ-
ing these values for the constants in that equation.

Appendix 3: Solution in subintervals of (1, )
If we consider the recursion given as (54) and introduce
some subsidiary notation by defining

E,,O\) — )\ple—)\ableh(yn—ynu) hn+l(}\)’

+ Apye e MW (), (A24)
along with

)\p e—zb,
B(z) = —;l—_')\— (A25)
and

)\p e—zabz
a(z) = —2—— N e 2@ b (A26)

7 —

we have thatfor0 = n <= N

|
Mz

(—1"B @) @H (2)
k

i

+ (=N N hy, (@), (A28)
so that, in particular,

N
Hy2) =@z - N2 -)B@eN

k=0
N

- H,@ 2 (-8 2)a2)
k=0

+ (VN U hy,, (2) (A29)

follows from (A28) by simply noting that H,(z) = h(z) as
indicated just before (55). Now, from (54) and (A24) with
n = N + 1 we can obtain

_ -1
hy @ = (2 =N ey (N
_ Hl(Z))\ple—zablez(bz—bl)e—z(a—l)bl(N+1)
_ HZ(Z))\pze—zabze—z(a—l)bl(N+l) (A30)

by using the fact that 4 (z) = H/(z) forn = N + 2, as
indicated by (55). Also, from (54), (A24), and (55), but
with n = N + 2 this time, we get

D,@H,(2) = e5,,(N) — Ap,e *Pe " H (2), (A31)
where we have let
D@ =z — A+ Ape (A32)

for notational convenience.

By using (A31) in (A30) we can obtain an expression for
hy ., ,(2) in which the only unknown function is H,(z). This
expression can then be used in turn in (A29) to establish
that
D (2) N+1

I A _ 1Kk
@ - ND,@) ,EO CUE@eM)

—za z(by—by)

_)\ple b IN+2 e (by—b)

+ Ep42(N) (A33)
[ z -\ } Dz N*?

Hyz) =

after some algebraic manipulation, where
_ ~zab ~zab:
D (z) =z~ N+ A\pje ™" + Ap,e” ¥, (A34)

as in (26). We can now combine (A31) with (34) in order to
get (U(z) in terms of H,(z) only, and then employ (A33) to
establish that

o2
= teet———— N A

h@ =@ =N M) - Bk, @D - a@H@). a2 O8O T8, o (433
In this form, the recursion admits the obvious solution where

N

1 —

h(@=@-N" 2 DB @) N Q@ = 2= ap) (A36)

k=n D (2) 927

S. B. CALO|

IBM J. RES. DEVELOP. ® VOL. 25 @ NO. 6 ® NOVEMBER 1981




928

S. B. CALO

as in (30);
N+1

ik a8
Q@) = D,(@)(2) go @ - MV e ")k(lj—ap)
En1 () N2
1 - ap) {p,D 20z — N
+ ¢(Z)[—)\ple_zabl]N+2€Z(b2_bl)} (A37)
is the numerator function; and
#2) = p,[D,(2) — Ap,e” e ) (A38)

has been defined for notational convenience. We note
that (A35)-(A38) establish the desired transform €(z),
except for the set of positive real constants {sn()\)'}lr:’:oz,
which have yet to be determined.

These (N + 3) unknowns can be obtained by appealing
to the properties of the Laplace-Stieltjes transform ()(z).
From their respective definitions as transforms of equili-
brium distribution functions, it follows that ((0) = Q¢ (0) = 1,
which then implies that

00 = (-0 (—rpy) (A39)

from (A35). Also, since the denominator of (A35) has a
zero of order (N + 2) at the point z = \, it follows that

v

. d
lim — On@ =0

” r»=0,1,2,---, N+ 1) (A40)
2z dz

in order for €)(z) to remain finite at that point. The above,
(A40) along with (A39), then represents a system of (N +
3) independent, linear equations in the unknowns
{e,M}*2 and can therefore theoretically be solved
straightforwardly by classical methods. Pragmatically,
the calculations involved become increasingly tedious as
N increases. We note that (A35) has an additional zero at
some value of z that we shall designate as w,, where
D (w,) = 0 (D,(z) can be shown to have a unique real root
for Re(z) = 0 as in Calo [2]). A direct calculation readily
yields @, ,(w,) = 0 as required.

For the simplest case, N = 0, the transform of interest,
as given by the appropriate expansions of (A35) and
(A37), becomes

&z) CXLY)
(z-MN (1 -ap

¢(Z) —zb
+——— (—\pe®

@ M ) T

[ D (z) + (z)e=br~b
'D(@  (z-ND,

WNz) = Q,(2) {

1)

: (—)\Ple‘za”l)z] (18%02,5} . (A4

As indicated by (A39) and (A40), we now have three
equations to solve for the constants g(\), €,(A), and &,(\):
namely, 0i(0) = —\’p,, Q,(\) = 0, and Q/(\) = 0. The
first gives

p,e,(\) +pp,e, (M) + pfsz()\) = (1 — ap); (A42)
the second yields
£,(N) = g, (A43)

and the third provides

a &'(\) ,
g\ = £,(M)e "[Dl(x) o T Di(N) — lel()\)]

_ 82()\))\Ple-)\[abl +by,—by]

d'(N)
. W —Qab, +b,—-b)| (A44)
A simultaneous solution of (A42)-(A44) then explicitly
establishes the three constants. These turn out to be

- ~hab, (1 — ap)
g\ = 71 —\p e b, — ab))] i
—aby (1 — ap)
\) = A(by—aby)
g(\) =e a0y
_ (I —ap)

where we have defined

d(N) = p; + pp,e"

+ p, PN~ Np e M (b, — ab)]  (A46)

for notational convenience. These equations along with
(A41) establish the desired transform. The equilibrium
mean cumulative waiting time then follows from

E{A} = —-Q0),
which in this case becomes
Aa*E{S%}

E{A} 2 —ap T m {a+ Db, - b) I, + I},

(A47)
where

b,—b. —\ab
Iy = %7 [1 — ap e™%b, — ab))]

+ p][e)\(bz—abl) -1 -1,
2 —a
I, =p, {[K - (b, + abz)] [ — 1] - (b, — abl)},

and

my = p,e" " [1 = Ap e b, — ab)]

+pylp, + Py,
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We note that the first term of (A47) is just the mean
waiting time in a standard M/G/1 queue with the same
service time distribution as our second server, as in (50).
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