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Collision-Free Local Area Bus Network Performance

Analysis®

This paper deals with port access control for local area computer communication bus networks. Emphasizing properties
of the algorithms and delay-throughput performance, we focus on two collision-free access control schemes recently
proposed by Eswaran, Hamacher, and Shedler. We also provide a comparison of these schemes to other available bus
access techniques. The performance analysis is based on representation of the bus network as a closed queueing system

with nonpreemptive priority service.

1. Introduction

There is a great deal of current interest in the develop-
ment of local area networks of small to medium size
computers as alternatives to shared mainframes. The
trend has been noted by Liebowitz [1, 2]. Variable-length
program and data file transfers among the computers on
such a network may require communication path band-
widths of a few megabits per second to provide accept-
able system response. Bit-serial transmission facilities
such as coaxial cables, twisted pairs of wires, or optical
fibers are used for the geographically limited environ-
ments of business offices, hospitals, or manufacturing
plant sites.

Decentralized local area networks are usually config-
ured in a ring or bus topology as described by Clark et al.
[3] and by Chlamtac et al. {4]. This paper focuses on port
access control for the bus topology. In particular, we
describe two access control schemes (denoted Al and
A2) recently proposed by Eswaran, Hamacher, and
Shedler {5]. The paper emphasizes properties of the
algorithms and delay-throughput performance of the
schemes. We also provide some comparisons to other
available bus access techniques [6-10].

2. Bus access control
Let N be the number of ports (numbered 1,2, : - -, N) on
the bus network, as shown in Fig. 1. Message packet

*A portion of this paper has been presented at the National Telecommunications
Conference, Houston, Texas, November 30-December 4, 1980.

traffic on the passive bilateral bus is transmitted/received
by port J at bus tap B(J). In addition to the bus, a one-way
logic control wire also links the ports. Associated with
each port J is a flip-flop, S(J), called the send flip-flop.
The signal P(J), called the OR-signal, tapped at the
control wire input to port J is the inclusive OR of the send
flip-flops of all ports to the left of port J.

The bus and control wire may be of the order of a
kilometer in length. Because of this, care must be taken in
considering how propagation delays affect access control.
Our notation for propagation delays is as follows: T
denotes end-to-end bus propagation delay, and R(J) de-
notes delay from port J to port N on the control wire. For
technical reasons, we actually must take T to be the end-
to-end bus propagation delay plus a small (fixed) quanti-
ty. Signal propagation delay along the control wire in-
cludes gate delays, and we assume that propagation delay
along the control wire is larger than along the bus.

The control scheme Al given below, implemented in
the port interface logic of each port, achieves collision-
free communication among ports. Control scheme A2
also achieves collision-free communication, and in addi-
tion provides a bounded, guaranteed time to transmission
for each port. Thus, control scheme A2 ensures that a
packet which becomes available to a port for transmission
will be transmitted and that transmission will begin within
a bounded amount of time. The proofs given in [5] of the
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properties of control schemes Al and A2 require no
assumptions regarding the mechanism by which packets
arrive and become available to the individual ports for
transmission. In particular, any port may have a next
packet available for transmission immediately after the
end of transmission of a current packet.

Specification of distributed control scheme Al is in
terms of an algorithm for an individual port J. We assume
that packets for transmission by port J, which arrive
while an execution of the algorithm by port J is in
progress, queue externally. Upon completion of this
execution of the algorithm, one of any such packets
immediately becomes available to port J for transmission
and the next execution of the algorithm begins.

Algorithm Al

® Set S(J) to 1.

® Wait for a time interval R(J) + T.

® Wait until the bus is observed (by port J) to be idle
AND P(J) = 0; then begin transmission of the packet,
simultaneously resetting S(J) to 0.

We shall see in Section 3 that, although control scheme
Al provides collision-free communication among the
ports of a bus network, in general it does not guarantee
transmission access for all ports. The second control
scheme, A2, does provide a bounded, guaranteed time to
transmission for all ports. Control scheme A2 is obtained
from scheme A1l by adding an initial wait for the bus to be
idle throughout a time interval of length 27.

Algorithm A2

® Wait until the bus is observed (by port J) to be idle
throughout a time interval of length 27T.

e SetS(J)to 1.

Wait for a time interval R(J) + T.

® Wait until the bus is observed (by port J) to be idle
AND P(J) = 0; then begin transmission of the packet,
simultaneously resetting S(J) to 0.

If it is desirable for all ports to execute exactly the same
algorithm, then R(J) can be replaced by R(1) in either Al
or A2 without altering the essential properties of control.

To illustrate the manner in which events occur when
several ports execute Algorithm A2 asynchronously with
respect to each other, we use time line diagrams as in Fig.
2. This figure pertains to a network with five ports that
are uniformly spaced along the bus. Each horizontal line
is a time axis (or time line) for displaying events at a
particular port. Time increases to the right from an
assumed 0 origin, and the unit of time is chosen to be T.
The vertical axis represents distance along the bus,
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Figure 1 Bus network and ports.
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Figure 2 Time line diagram for five-port network.

directed from left to right. For this five-port network, the
distance between each of the ports is 1/4 of the bus length.
The slanted, dashed arrows which intersect the port time
lines connect the times at which the spatially distributed
ports observe the occurrence of a particular event (e.g.,
start of transmission, setting of a send flip-flop, etc.) at
some remote port. The slopes of these arrows are consis-
tent with the horizontal time scale and vertical distance
scale. A dashed arrow emanates from an event, and its
effect propagates towards the head of the arrow. For
example, in Fig. 2, the leftmost downward arrow indi-
cates that the start (at time ¢) of transmission by port 2 of
its first packet is observed by port 4 at time ¢’ and by port
5 at time ¢". While port 2 is transmitting its first packet, a
second packet arrives at time ¢”. This packet becomes
available to port 2 at the end of transmission of its first
packet, i.e., at time A,(2). [We denote by A () the time
at which the mth packet becomes available to port J for
transmission.] Immediately after the completion of trans-
mission of its first packet, port 2 starts the execution of
Algorithm A2 again, setting S(2) to 1 after observing the
bus to be idle throughout an interval of length 27. After
waiting for a time interval R(2) + 7, port 2 observes
P(2) = 1. Therefore, port 2 cannot begin transmission of
its second packet, but must wait until it observes that port
1 has ended transmission and that P(2) equals 0. Port 2
begins transmission of its second packet at the time
labeled “‘P(2) = 0 AND bus idle.”
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Figure 3 Bus cycles for five-port network.

3. Properties of control schemes At and A2

In this section we indicate several properties of control
schemes Al and A2. Formal arguments used to establish
these properties are in [S]. The strength of the control
schemes lies in these properties and the simplicity of the
schemes.

® Collision avoidance

We show that both Al and A2 are collision-free by
assuming that transmission from two ports (I and J)
collide, and then deducing a contradiction. Without loss
of generality, suppose that I < J. Denote by B, (I) [resp.
B,(J)] the time at which port I [resp. port J] begins
transmission of its mth [resp. nth] packet, and assume
that these transmissions collide. There are two cases:
either B (I) > B,(J) + Tor B (I) < B,(J) + T. If B, (])
occurs after B (J} + T, port I would have observed the
bus to be busy at time B, (/) and therefore would not have
begun transmission. In the case that B, (I) =< B (J) + T,
port J would have observed P(J) = 1 at time B, (J). This is
because port I must have set S(I) to 1 for transmission of
its mth packet no later than time ¢ = B_(I) — {R() + T}.
Therefore, port J would not have begun transmission.
Thus we have

Proposition 1 A bus network with distributed control
Al or A2 is collision-free.

® Guaranteed time to transmission under A2

Although control scheme Al is collision-free, in general it
does not provide a guaranteed time to transmission for all
ports. It is easy to see this by considering a three-port
network in which a next packet is available to each port
immediately after it has finished transmitting a current
packet. In this case, port 3 never observes the bus to be
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idle and P(3) to be 0 simultaneously, and thus never
transmits. Ports 1 and 2 will alternate use of the bus.

To illustrate that the initial wait for the bus to be idle
throughout a time interval of length 27 in control scheme
A2 ensures transmission by all ports, again consider the
bus network with three ports. Assume that port 2 is
equidistant from ports 1 and 3 and that all ports have set
their flip-flops. Suppose port 1 transmits first. When
transmission of the initial packet by port 1 ends at, say,
time ¢, port 2 has set S§(2) and has waited for a time
interval of length R(2) + T, and port 3 has set §(3) and has
waited for a time interval of length R(3) + T. Then at time
t + T2, port 2 observes the bus to be idle and P(2) = 0.
Therefore, it begins to transmit. Note that port 1 observes
the bus to be idle throughout the time interval [z, r + T];
but then it observes the transmission by port 2, and
consequently cannot yet set S(1) to 1 preparatory to
transmitting its second packet. Port 3 observes the bus to
be idle and P(3) = O at time 7/2 following the end of
transmission by port 2 and begins transmission. When
each of the ports observes the bus to be idle (for a time
interval of length 27T) after port 3 ends transmission, it
sets its send flip-flop, and subsequent packet transmis-
sions from ports 1, 2, and 3 proceed cyclically. This
discussion assumes packet transmission time is longer
than R(1) + T, which is not restrictive in practice.

The analysis needed to obtain the best (least upper)
bound for the guaranteed time to transmission is some-
what tedious. In order to suggest how long transmission
of an available packet can be delayed, we consider a
specific five-port network and suppose that the time to
transmit any packet is P, where P > R(1) + T.
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Figure 3 shows a series of events which give rise to a
worst-case time to transmission for port 5. We assume
that at time A ,(5) a first packet becomes available to port
5 for transmission. Although port 5 observes the bus to be
idle at this time, port 4 begins transmission of a packet at
time B, (4), and the transmission is observed by port 5 just
before A (5) + 27, so that port 5 is unable to set S(5) to 1.
Successively, ports 4, 1, 2, and 3 transmit packets. At
time t + 2T = §,(5), port 5 has observed the bus to be idle
throughout a time interval of length 27 and now sets S(5).
It then waits for a time interval of length R(5) + T = T, at
which time it observes P(5) = 1, because port 4 has set
S(4) to 1. Port 4 cannot begin transmission after setting
S(4) and waiting for a time interval of length R@) + T
[since it observes P(4) = 1 because port 3 has set S(3),
etc.]. Eventually, ports 1, 2, 3, and 4 each transmit a
packet before port 5 observes the bus to be idle and
P(5) = 0. Finally, port 5§ begins transmission. Note that
with this series of events, all ports other than port 5
transmit two packets after time A (5) before port 5 begins
transmission of its packet.

The example of Fig. 3 generalizes easily to the N-port
case. A detailed analysis of the general situation estab-
lishes

Proposition 2 If the time to transmit a packet is P, the
guaranteed time to transmission for port J in a bus
network with control scheme A2 is bounded above by

J

J+eT+7T1, )+ RN+ WN+J-1DP + ZR(i),
i=2

where T(1, J) is the propagation delay along the bus from

port 1 to port J.

If NT and NR(1) are very small relative to P (which
would be the case in many practical situations), then the
above bound is approximately NP for port 1 and
(2N — 1P for port N.

® Delay-throughput performance under Al

The fact that control scheme Al does not provide a
guaranteed time to transmission leads us to a consider-
ation of the actual delay-throughput characteristics of Al.
In an earlier paper [11], we modeled a bus network with
control scheme Al as a closed queueing system with
nonpreemptive priority service. Our analysis of the bus
network emphasizes throughput and delay experienced
by individual ports.

Definition of the model

The closed queueing system (see Fig. 4) provides service
to N stochastically nonidentical jobs (ports) labeled
1,2, - -, N. The queueing system comprises N + 1 single
server service centers (denoted 0, 1, - - -, N) which can
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Figure 4 Queueing model for N-port network. Center 0 pro-
vides nonpreemptive packet transmission service. Service at
center 0 is according to priority ordering of ports. Service at each
of centers 1 through N represents a time delay at its associated
port.

provide service concurrently. Center O (bus) provides
exponentially distributed nonpreemptive service (packet
transmission) of duration W to each of the N jobs. Center
J(J =1,2,- -+, N)provides service only to job J. Upon
completion of service to job J at center 0, with probability
p,;(0 = p, <1)job J joins the queue at center 0, and with
probability 1 — p, moves to center J where (with no
queueing delay) service begins. Service at center 0 is
according to a fixed priority ordering of jobs, lower
labeled jobs having higher priority. With respect to this
priority scheme, a job joining a nonempty queue at center
0 upon completion of service at center 0 does not contend
for the next center 0 service. Exponentially distributed
service of duration W, at center J (J > 0) represents a
time delay associated with the availability to port J of a
next packet for transmission. The interpretation of the
routing from center 0 is that with probability p,, upon
completion of packet transmission service, a next packet
immediately becomes available to port J for transmission.

Note that although the model does not explicitly incor-
porate the quantities R(J) + T, the priority rule effectively
preserves the order of port access to the bus in the
network. There is, however, a situation in which the bus
access assignment in the model is different from that in
the network. Suppose that upon completion of a packet
transmission, two or more ports have packets available.
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According to the priority rule in the model, the leftmost
port, L, among them gains access to the bus. In the
network, however, port L may not gain access to the bus
if it has waited for a time interval less than R(L) + T. This
occurs infrequently because the time intervals R(J) + T
are very much smaller than other time intervals (e.g.,
packet transmission times) in the network.

We make the following probabilistic assumptions:

1. Successive service times at center O {resp. 1,2, - -, N]
form a sequence of independent random variables,
identically and exponentially distributed as W, [resp.
W, Wl

2. Service times at the centers are independent of the
routing of jobs from center 0;

3. The sequences in (1) are mutually independent.

Specification of response times
Denote the increasing sequence of service completion
times (irrespective of center identity) by {r_: n = 0}. For
J=1,2,--+, Nand ¢t = 0, let

2 if job J is in service at center 0,
Z(t) =1 if job Jis queued for service at center 0,
0 if job J is in service at center J,

at time ¢ and for n = 0 set
Z =(Z(1), " " Z[(T)).

It is easy to check that the process {(Zn, 7,):n=0}is an
irreducible Markov renewal process with finite state
space, E. This means (cf., e.g., Cinlar [12], p. 313) that
{(Z,, 7)) : n = 0} satisfies

P{Z

n+1 =z,7,

p— - PRI . DI
el = T =1 2, s Zy} Tos s Toh

= P{Zn+1 =z, Tn+1 - Tn =1 | Zn}

with probability one for all »n = 0, z € E, and t = 0.
Moreover, the discrete time Markov chain {Z : n = 0} is
irreducible.

It follows that the continuous time process
X={X(»:t=0}
defined by

X =2, ifr,=t<r7,,

is an irreducible semi-Markov process with state space E.
The holding times in X are exponentially distributed (with
parameters depending only on the current state), and the
process is a continuous time Markov chain when p , =0,
J=1,2,--+, N. If p, > 0 for at least one J, however,
jumps in X from a state to the same state can occur. For
example, jumps fromi = (2,0, - - -, 0) toi occurif p, > 0.
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We denote the one-step transition matrix of the embed-
ded (discrete time) Markov chain {X(7)) : n = 0} by
R= (r‘.j), and let q be the vector of (rate) parameters for
the exponentially distributed unconditional holding times
in X,

The response times for job J are specified in terms of
four subsets of the set E : A)’, AY, BY, and BY,
J=1,2,: -, N.Thesets A(IJ) and A‘ZJ) [resp. Bi“ and B;J)]
determine when to start [resp. terminate] the clock mea-
suring response times for job J. These subsets of E are

A(IJ)={(xl,~ X)) EE:x; # 1},

A ={&x), - x)EE:x, # 0},

BY ={(x;, -, x) EE:x,=---=x\,=0o0rx, # 0},
and

B;J) ={(x, - x) EE:x, =2}

For n = 1, denote the start [resp. termination] time of the
nth response time for job J by §¢ [resp. T"]. Setting
T =0forJ=1,2,--, N,

SV =inf{r, > TV : X(r) € AV, X(r,_) € AV}, n=0
and
T =inf{r, =SV : X(r)€BY, X(r,_)€B},n=1.
Then the nth response time for job J is

O~ W) o
RO =19 -89

For t = 0 let L(¢) denote the last state visited by the
semi-Markov process X before jumping to X(z), and set
V(n) = (L), X(9)).

The process V = {V(¢) : t = 0} has a finite state space, F,
which consists of all pairs (i, j) of states of X for which a
one-step transition from i to j can occur with positive
probability. For job J, define two subsets .S Dand 7Y of
F according to

SV ={G,HeEF:i€ A, jeal}
and
TV ={G,))eF:ieBY, jeB} 0

The entrances of V to S [resp. T”)] correspond to the
starts [resp. terminations] of response times for job J.

A key observation is that the process

{X(S$), R ) :n =0}

.
is a regenerative process (Smith [13]) in discrete time.

(Heuristically, a stochastic process is regenerative if
there exists a sequence of random time points at which
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the process probabilistically restarts.) The regenerative
property guarantees (see Miller [14]) that the sequence
{R;’) : n = 1} converges in distribution to a random
variable RY”, the limiting response time for job J.

Since X is an irreducible, finite state semi-Markov
process, it is a regenerative process in continuous time.
The regenerative structure ensures that the ‘‘steady
state’’ of the process is determined (as a ratio of expected
values) by the behavior of the process in a cycle, i.e.,
between any two successive regeneration points. Qur
analysis is based on the selection of a particular sequence
of regeneration points (returns to a fixed state, j,) for X.
Entrances of the process X to state j, correspond to the
starts of response times for a particular job, Jy, with a
lower priority job, K, in service at center 0, and no other
jobs in queue at center 0. For each quantity of interest,
we establish a ratio formula in terms of cycles defined by
the returns to state j,. We then apply computational
results of the kind developed by Hordijk, Iglehart, and
Schassberger [15] for discrete time and continuous time
Markov chains.

Analysis of the bus network model can be based on
other sequences of regeneration points. It is, however,
computationally advantageous to use cycles defined by
state j, since only the jump matrix R and vector q of the
underlying semi-Markov process X (rather than the corre-
sponding quantities for the process V) are needed. More-
over, in order to compute delay characteristics for all
ports, only a single matrix inversion is required.

Analysis for response times

Select J, and K with 1 = J, < K, = N. Now let
Vo =@, XY E A(zj") with x}o =1, x}(o =2,andx; =0
dfor i # Jy K, and take X(0) = j,. Because of the
fnonpreemptive priority service discipline at center 0,
X(7) = j, implies that X(r,_,) = i,, where iy = (x, - - -,
x,) with X, = 2 and x, = 0 for i # K. Thus, successive
entrances of the process X to state j, correspond to starts
of response times for job J,, such that job K is in service
at center 0, and job i is in service at center i, i # J, K|,.
Set B, = 0 and denote the time of the kth entrance of X to
state j, by B,, k = 1. Also define o, = 8,_,, k= 1.

Let {V, : k£ = 0} be the embedded jump chain of V and
for convenience designate state (iy» Jo) € F as state 0.
Denote by {y, : k = 1} the lengths in discrete time units of
the successive 0-cycles (successive returns to the fixed
state 0) for {V, : k = 0}. (These correspond to the
successive entrances of {X(7,) : n = 0} to state j, from i,.)
Now fix J. The number of response times for job J in the
first 0-cycle of V is
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v~ 1

NY = 2 lyesn s )
k=0

where Ly cqo = 1if V, €S “ and 0 otherwise, and the
sum of the response times in the first 0-cycle is
NI(J)
vy’ = 2 RY. )
k=1
Denote the analogous quantities in the mth 0-cycle by
N Z’ and Y(,f ,m = 1. Since X is a regenerative process, V
is also. It follows that the pairs of random variables
{NY, ¥ : k = 1} are independent and identically
distributed (i.i.d.). Standard arguments (¢f. Iglehart and
Shedler [16], Appendix 2) establish the ratio formula

ERY} = E{YVYENY}. @)

We now show how to calculate the quantities on the
righthand side of Eq. (4).

Recall that R is the one-step transition matrix of the
embedded Markov chain {X(Tn) : n = 0} and denote by oR
the matrix obtained by setting the j; column of R equal to
0. (We assume a fixed enumeration of the states of X and
that the j; column corresponds to state j,.) We consider
vectors to be column vectors, view a real-valued (measur-
able) function such as f having domain E in this way, and
denote it by f. In addition, o denotes the Hadamard
product of vectors; i.e., for vectors u = (s uyy - 0y uy)
and v = (v, v,, * * *, v,), the symbol u ° v denotes the
vector (uv,, uv,, * -, ww,). The component of the
vector u corresponding to state j is denoted by [u]j.

Let f be a real-valued function with domain F. An
argument analogous to that used to obtain Theorem (3.1)
of [15] for discrete time Markov chains shows that

31
E { 2 fX(r), X(TM))} = [~ R'g], 5)
k=0
where I is the identity matrix and for £ € E,

gky = 2 flk, mr,,.
meE
We use this result to calculate the quantity E{N(]J’}.
Take f to be the indicator function of the set $*’; for
(xl’ T X x;, - "xIIV) c F9f(x]5 T X x;, . "XI,V)

equals 1if (x,, - - -, x,) € A(IJ) and (x;, * - -, x) € AY,
and equals 0 otherwise. Then
7 =1
N = 3 fx(z), X(5,, )
k=0
and Eq. (5) gives
EN} =10 - R gl ©)
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where for k € E,

2 r, ifkea?,
mea?
glh) =
0 otherwise.

Similarly, for a real-valued fhaving domain E and Y,(f)
defined by

B1
v = | s,

it can be shown (¢f. Theorem (3.10) of [15] for continuous
time Markov chains) that

E{Y,(N} =@ - R €-qN], Y
We use this result to calculate the quantity E{Y'"}. For
(x, -+ -, x,) € E take fto be the function defined by
1 ifx, =1,
fy, - xy) =

0 otherwise,

and observe that

By N
f(X(s))ds = 2R,
0 ' k=1

It then follows directly from Eq. (7) that

n — -1 -1
E{Y"} =@ - R (Eoq )] (8)
Combining Egs. (4), (6), and (8), we obtain E{R"’}.

In much the same way, P{RY’ = 0} can be calculated.
Observe that R,(IJ) = 0 if and only if V(§ flj)) e DY, where
Di” ={(x;, - x)EE:x,# landfork #J, x, =0}
DY’ ={(x, -, xy) EE:x,=2andfork#J, x,=0},
and

D(J) = {(x], ceex xl

N Xt X)) EF

' ' J
&y x) €DV (), x) e DY

It is easy to show (using the fact that {V, : k = 0} is an
irreducible, finite-state Markov chain) that the pairs of
random variables {(M;J), Nﬁc])) : k = 1} are i.i.d., where
E{N Y)} is given by Eq. (6) and

@ -1
M = 2 1y iy
k=0
Moreover,
P{RY = 0} = EiMVYEN). )

It follows directly from Eq. (5) that
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EM} = (@~ R 7'h,, (10)

where for k € E,

> r, ifkeD?,
meDy)
h(k) = .
0 otherwise.

Analysis for expected queue length and throughput
Since X is a regenerative process,

XHD=>X

as t — o, where = denotes convergence in distribution.
(The random variable X is the ‘‘steady state’” of the
regenerative process.) Define a function ¢ having domain
E and range {0, 1, - - -, N} according to

N
Clxys - X\ = .z:ll{xj#()}
j=

for (x,, - - -, X,) € E. Fort =0, c(X(9) is the number of
jobs waiting or in service at center 0 at time ¢, and O, the
“steady state’’ expected queue length at center 0, is the
quantity E{c(X)}.

Properties of regenerative processes (cf. Crane and
Iglehart [17]) ensure that the pairs of random variables
{(Y(c), @) : k = 1} are i.i.d. and that

Q, = E{Y, (O} E{a,}. an
Equation (7) implies that

E{Y,©}=[d - R coq ], (12)
and

E{a} = [T - R 'Aeq )], (13)

where 1 is the function identically equal to one.

We define the *‘steady state’’ throughput, U, of the bus
to be the limiting probability that the bus is busy; i.e., U'is
the quantity E{b(X)}, where

0 ifx, =" =x,=0,

b(x

b Xy

1 otherwise.

[For ¢t = 0, b(X(?)) equals 1 if there is a job in service at
center 0 at time ¢, and equals 0 otherwise.] Since X is a
regenerative process, the pairs of random variables
{Y,(b), @) : k = 1} are i.i.d. and

U = E{Y,(O)}/E{a,}. (14)
It follows directly from Eq. (7) that

EY,®)} =10 - R 'bogq )], (15)
and E{a,} is given by Eq. (13).
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Figure 5 Delay-throughput characteristics for three-port net-
work.

Figure S shows typical results for a three-port network.
The abscissa is throughput, and the ordinate is delay,
measured by E{R"} in normalized units of E{W,} =1.To
generate these particular curves, calculations were made
for various values of E{W} = E{W,} = E{W.}, with
p, = P, = p, = 0. For example, throughput is 0.47 when
E{W} = E{W,} = E{W.} = 5.0; throughput is 0.79 when
E{W} = E{W,} = E{W.} = 2.0.

Consideration of the delay-throughput curves for the
three-port network leads to the following conclusions. As
throughput increases above 0.8, E{R®} begins to increase
very rapidly, while E{R""} and E{R®} remain near 1. In
the limiting case of throughput equal to 1, corresponding
to E{W } = E{W,} = E{W,} = 0, it is easy to argue directly
(cf. the example in Section 3) that E{R"} = E{R?} = 1
and port 3 does not gain access to the bus (E{R®} = o).
In this situation, transmissions by ports 1 and 2 alternate.
Note that E{R®} actually attains values larger than 1
when throughput is close to, but less than, 1; see [11] fora
discussion of this unintuitive phenomenon.

In an N-port network operating under control scheme
Al, ports 1 and 2 experience response times that are
qualitatively similar to the response times they experi-
ence in a three-port network, including the limiting case
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Figure 6 Delay-throughput characteristics for five-port net-
work.

(throughput = 1) in which transmissions by the two ports
alternate. Ports 3 through N behave like port 3 of the
three-port case, with E{R®} < E{R*} < - - - < E{R™}
over the full range of throughput achievable when
E{W } = E{W,} = - - - = E{W}. For throughput equal to
1, all ports J = 3 are denied access to the bus. Figure 6
shows results for a five-port network. Calculations were
made for various values of E{W } = E{W,} = - - - = E{W}
withp, =p,=---=p,=0.

Note that our definition of throughput pertains to the
databus being busy. This means that throughput can be 1
when ports 1 and 2 alternate use of the bus, keeping it
busy all of the time. The control wire is also part of the
total communication facility; and since it does not carry
packets, it is clear that the total facility is never fully
utilized for data transmission in the conventional commu-
nication system sense.

Simulation for response times

The analysis of the previous section yields an assessment
of the performance of control scheme Al in terms of the
expected response times for individual ports. It is also of
interest (in particular for comparison with the guaranteed
transmission time provided by control scheme A2) to
study the variability of port response times. This can be
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done by discrete event simulation of the model, e.g., in
terms of percentiles of the limiting response time distribu-
tions. '

The stochastic. setting for response times we have
developed provides a basis for simulation of the bus
network model (cf. Iglehart and Shedler [16], Section 10).
Let f be a real-valued (measurable) function with domain
[0, + ®). We assume throughout that P{RY’ € D(f)} = 0
where D(f) is the set of discontinuities of the function f.
Then the goal of the simulation is estimation of

rAf) = EfRD).

For example, to estimate the percentile P{RY = x}
(x fixed), take f(v) = [0»1(’)’ where 1[0 x](t) equals 1 if
t = x and equals 0 otherwise. Recall that RV is the
limiting response time for job J.

Although the regenerative method of Crane and Igle-
hart [17] cannot be applied directly, point estimates and
confidence intervals for r*( f) can be obtained from a
single simulation run according to the following proce-
dure.

Algorithm R: response time simulation

1. Select J and K, with 1 = = K, = N. Now let
Jo= Gps e ,xN)Wlthx = 1 x —2 and x, = 0 for
i # J,, K, Begin the s1mulat10n w1th X©0) = j,

2. Carry out the simulation of X for a fixed number, »n, of
cycles (having random length) defined by the succes-
sive entrances of X to the state j,,.

3. In each cycle measure all the response times for job J.

4. For k = 1, denote the number of response times for job
J observed in the kth cycle by N v ' and compute
the sum Y(J )(f ) of the quantities f(RZ)) for response
times RY in the kth cycle.

5. Take as a point estimate (based on n cycles) for I )
the quantity

;.(J)(f) = -Y(J)(f)/NU)

where i’;’)( f) and N;J) are sample means over the
cycles.

6. Take as a 100(1 — 2vy)% confidence interval (based on
n cycles) for r’(f) the interval

1
Ne)) ), T
Ff) = zl_ysn/(Nn n?).

Here z,_ = ®~! (1 — ), where ®(-) is the distribution
function of a standardized (mean zero, v\ariance one)
normal random variable. The quantity s _is

N
5, = Isyy = 2805y, + DU 07

where S1p $520
for var {Y’(f)}, var {N “%, and cov {Y(f), NV}, re-
spectively.
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and s, are the usual unbiased estimates’

This estimation procedure rests on the observation that
the pairs of random variables {N f), Y 2”( N k= 1}
are i.i.d. Moreover, provided that E{|f(RY)|} < =,

E{f(RV)} = E{YV(N)VE{N ).

Confidence intervals for r*( f) are based on the central
limit theorem

R O - FOEN T} > N, 1),

where ¢? is the variance of Yi”(f) - r(”( f) NI(J) and
N(, 1) is a standardized normal random variable.

4. Comparisons to other control schemes

In this section we briefly discuss five access control
schemes for local area bus networks that have been
developed recently by others. All of the schemes assume
bit-serial transmission in the megabit/second range on a
passive bilateral bus. We denote the end-to-end bus
propagation delay by 7, and when there is fixed or
maximum packet transmission time, we denote it by P.

® Ethernet

The Xerox Ethernet system [6] allows collisions, detects
them, and adjusts retry times randomly. In more detail, a
port that begins transmitting a packet after it observes the
line to be idle can detect whether or not some other
transmission begins to interfere with its transmitted sig-
nal. If a collision is detected, the port stops its transmis-
sion, and after a random waiting period, attempts retrans-
mission. The parameters of the probability distributions
that are used to determine the waiting periods in the
individual ports are adjusted if more than one retry is
necessary. The stochastic nature of the retry waiting
periods and the dynamic changes to the distributions
themselves are intended to achieve a reduction of colli-
sions, especially following the end of transmission of a
packet. The Ethernet control is thus asynchronous and
distributed, as are Al and A2, but it is not collision-free.
Also, it is possible, but unlikely, for a port to be.blocked
indefinitely from transmitting a packet without collision.
The control is efficient in the sense that the collision-retry
strategy wastes only a small amount of usable line trans-
mission capacity when the line is lightly loaded. Control
schemes Al and A2 also waste small amounts of usable
line transmission capacity during the various waiting
intervals. .

® HXDP

In the Honeywell HXDP system [7], access control is
distributed and requires more hardware than Ethernet
access control; but HXDP is collision-free and provides
bounded, guaranteed time to transmission. A coded glob-
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al clock signal is used to step each port synchronously
through the line access control algorithm. This signal is
transmitted on the broadcast bus itself by using a special
line-signal sequence that cannot be confused with packet
data signals. Access control is built around a 256-bit
vector stored in each port. The global clock signal steps
each of the ports through its respective vector, one step
for every termination of a line usage interval. There is
exactly one port with a 1 at any vector address; this
signifies that the port may use the line during the next
usage interval. During this interval, the distinguished port
transmits a packet if one is available to it, and then
transmits the clock signal. If there is no packet available,
the port immediately transmits the clock signal, thus
effecting transfer of access control to the next port. The
number of 1’s in a port’s vector determines its fraction of
bus usage intervals during a complete sweep through the
vector. Using this scheme with N ports, an N-bit access
vector in each port, and a maximum packet transmission
time of P, then (N — 1)P is the (bounded) guaranteed time
to transmission.

® BRAM

BRAM (8] is actually a family of four related decentral-
ized access protocols. Two of these are collision-free, and
one of them, called fair BRAM, is described here. All
ports must monitor the bus continuously. Whenever a
message is observed on the bus, the number of the
transmitting port (contained in the message) is noted in
each of the other ports. Assume that a number of ports
have packets available for transmission and are deferring
to an ongoing transmission from port J. Each waiting port
I computes the value H(I, J) = (I — J + N) mod N and
waits TH(I, J) time units after it observes the end of
transmission from port J. If the bus, as observed by port
I, has not become busy after TH(I, J) time units, then port
I transmits. Since the H(K, J) values are distinct for all K
(1 = K = N), there are no collisions. If we assume that
port J does not contend for permission to transmit
immediately after it has used the bus, there is bounded
guaranteed time to transmission for all ports. In particu-
lar, assuming N7 << P, the bound is approximately
(N - 1)P.

® Spaniol proposal

An interesting variation on the Ethernet access protocol
has been proposed by Spaniol [9]. A slotted Ethernet is
developed in which all ports must use a fixed-length
packet slot P >> T. Collisions may occur if more than
one port attempts to transmit in an open slot. If a collision
occurs, it is detectable in the initial portion of the slot,
and the remaining (major) part of the slot is used in a time-
division multiplexed mode to schedule subsequent slot
allocations for the colliding packets. Each of the N ports
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has a predetermined time position in this scheduling
interval in which it signifies that it is a participant in the
collision. The slots immediately following the collision
slot are then claimed by these ports using a simple
priority rule, and no collisions can occur until each of
these ports has transmitted its packet. The slot immedi-
ately following the last of these is open and any port may
now attempt to transmit. Either no port transmits, exactly
one port tries and is successful, or two or more ports
attempt to transmit and a collision occurs. In the latter
case, the time division multiplexed arbitration referred to
above is used. Note that a particular packet collides at
most once, and no port is delayed longer than 2NP time
units in achieving a successful transmission. The bound is
actually dependent on the priority scheme and ranges
from (N + 1)P to 2NP.

® Mark proposal

Mark [10] has studied the use of a separate control wire
for access control synchronization, and has adapted a
collision-free access technique originated by Rothauser
and Wild [18] to the two-path bus environment. The
control path operates as a bilateral bus with bit-time
intervals that are longer than the bus propagation delay 7.
Access is determined by bit-serial port address compari-
sons on the control path using address of length | log, N |
bits. The port with the highest numbered address wins.
There is no lockout of lower address ports because all
ports voluntarily do not contend for subsequent data slots
after they have transmitted until the control path goes
idle. When the control path goes idle, the end of the
current cycle of serving all active ports with a data slot
has been reached; and all ports can again contend for
access. Address bit reversal can be used on successive
cycles of operation if it is desired to remove the effects of
priority that are induced by address values. There is a
bounded guaranteed time to transmission with or without
the address reversal action. The bound on transmission
access is (N — 1)P if address reversal is used; and,
depending on port address values, the bound ranges from
(N — )P to 2(N — 1P if address reversal is not used.
Because of the flexibility in assigning port addresses, a
multiple priority request system can be implemented as
discussed in [19].

The first two of the above five schemes for bus access
control have been implemented, and a version of the
Mark proposal is currently being implemented [19]. To
our knowledge, BRAM and the Spaniol proposal have not
been implemented.

Concluding remarks
The control schemes Al and A2 described in this paper
are distributed, have no global clock signaling, and are
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collision-free. However, in addition to the single, shared-
bus communication path, they require a separate logic
control wire to propagate a one-way logic signal from one
end of the bus to the other. In this last respect, our
schemes are in the same class as that of Mark [10, 19)].
Our use of the control wire path assists in the implemen-
tation of collision-free operation, but at an expense that is
potentially less than the bit-vector approach of HXDP [7]
or the address/priority manipulations required by BRAM
[8], Spaniol [9], and Mark [10, 19].

It should be noted that the way in which we use the
control wire bears some structural resemblance to the
decentralized daisy chain techniques of conventional
digital bus access control methods as discussed by Thur-
ber et al. [20]. However, a closer examination shows that
our open-loop use of a logic control wire is much simpler
than the closed-loop daisy chain. Indeed, as Vranesic [21]
has recently discussed, there are some subtle timing
problems involved with implementing the closed-loop
chain. None of these problems exist in our situation.
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