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This paper  deals with port  access control for local area  computer communication bus networks. Emphasizing properties 
of the algorithms  and  delay-throughput performance, we focus on two collision-free access control schemes recently 
proposed by Eswaran,  Hamacher, and Shedler.  We  also  provide u comparison of these schemes  to other available bus 
access  techniques. The performance analysis  is based on representation of the bus network as  a  closed queueing system 
with  nonpreemptive  priority service. 

1. Introduction 
There is a great deal of current interest in the develop- 
ment of local area networks of small to medium size 
computers as alternatives to shared mainframes. The 
trend has been  noted by Liebowitz [ l ,  21. Variable-length 
program  and data file transfers among the computers on 
such a network may require communication path band- 
widths of a few  megabits per second to provide accept- 
able system response. Bit-serial transmission facilities 
such as coaxial cables, twisted pairs of wires, or optical 
fibers are used for the geographically  limited environ- 
ments of business offices, hospitals, or manufacturing 
plant sites. 

Decentralized local area networks are usually  config- 
ured in a ring or bus  topology as described by Clark et al. 
[3] and by Chlamtac et  al. [4]. This paper focuses on  port 
access control for the bus  topology.  In particular, we 
describe  two access control schemes (denoted A1 and 
A2) recently proposed by Eswaran, Hamacher, and 
Shedler [5 ] .  The paper emphasizes properties of the 
algorithms  and delay-throughput performance of the 
schemes. We also provide some comparisons to other 
available  bus access techniques [6-101. 

2. Bus access control 
Let N be the number of ports (numbered 1,2,  * . ., N) on 
the bus network, as shown  in  Fig. 1. Message packet 

*A portion of this paper has been presented at the National Telecommunications 
Conference, Houston, Texas, November 30-December 4, 1980. 

traffic  on the passive bilateral bus is transmittedheceived 
by port J at bus tap B(J).  In addition to the bus, a one-way 
logic control wire also links the ports. Associated with 
each port J is a flip-flop, S(J) ,  called the send flip-flop. 
The  signal P(J) ,  called the OR-signal, tapped at the 
control wire input to port J is  the inclusive OR of the send 
flip-flops of all ports to the left of port J .  

The bus and control wire may be of the order of a 
kilometer in length. Because of this, care must  be taken in 
considering  how propagation delays affect access control. 
Our notation for propagation delays is as follows: T 
denotes end-to-end bus propagation delay, and R(J)  de- 
notes delay  from port J to port N on the control wire. For 
technical reasons, we actually must take T to be the end- 
to-end bus propagation delay  plus a small  (fixed) quanti- 
ty.  Signal propagation delay  along the control wire in- 
cludes gate delays, and we assume that propagation  delay 
along the control wire  is larger than along the bus. 

The control scheme A1 given below, implemented in 
the port interface logic of each port, achieves collision- 
free communication  among ports. Control scheme A2 
also achieves collision-free communication, and  in  addi- 
tion provides a bounded, guaranteed time to transmission 
for each port. Thus, control scheme A2 ensures that a 
packet which becomes available to a port for transmission 
will be transmitted and that transmission will  begin  within 
a bounded amount of time. The proofs given  in [5] of the 
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properties of control  schemes A1 and A2 require no 
assumptions  regarding the mechanism  by which packets 
arrive and become  available to  the individual ports  for 
transmission. In  particular,  any  port may have a  next 
packet  available for transmission  immediately after  the 
end of transmission of a current  packet. 

Specification of distributed control  scheme  AI  is in 
terms of an algorithm for  an individual port J .  We assume 
that packets  for transmission by port J ,  which arrive 
while an execution of the algorithm  by port J is in 
progress, queue externally.  Upon  completion of this 
execution of the algorithm, one of any  such  packets 
immediately becomes  available to  port J for transmission 
and the next  execution of the algorithm begins. 

Algorithm AI 

0 Set S ( J )  to 1. 
0 Wait for a time  interval R(J)  + T. 
0 Wait until the  bus  is  observed (by port J )  to be idle 

AND P(J) = 0; then begin transmission of the  packet, 
simultaneously  resetting S(J)  to 0. 

We shall see in Section 3 that, although control  scheme 
A1 provides collision-free communication  among the 
ports of a bus  network, in general it does not guarantee 
transmission access  for all ports.  The second control 
scheme, A2, does  provide a bounded,  guaranteed time to 
transmission for all ports.  Control  scheme A2 is obtained 
from scheme A1 by adding an initial wait for  the  bus  to be 
idle throughout  a  time  interval of length 2T. 

Algorithm  A2 

0 Wait until the  bus is observed (by port J )  to  be idle 

0 Set S(J)  to 1. 
0 Wait for a time  interval R(J) + T .  

Wait until the  bus  is  observed  (by  port J )  to be idle 
AND  P(J) = 0; then begin transmission of the  packet, 
simultaneously  resetting S(J)  to 0. 

throughout  a  time  interval of length 2T. 

If it is desirable for all ports  to  execute  exactly  the  same 
algorithm, then R(J) can be  replaced  by R(1) in either  AI 
or A2 without  altering the essential properties of control. 

To illustrate the  manner in which events  occur when 
several ports  execute Algorithm A2 asynchronously  with 
respect to  each  other, we use time line diagrams as in Fig. 
2. This figure pertains  to a network with five ports  that 
are uniformly spaced along the  bus.  Each horizontal line 
is a  time axis (or  time line) for displaying events  at a 
particular port. Time increases  to  the right from  an 
assumed 0 origin, and  the unit of time is chosen  to be T. 
The vertical  axis represents  distance along the  bus, 
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Figure 1 Bus network and ports. 
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Figure 2 Time line diagram for five-port network. 

directed from left to right. For this five-port network,  the 
distance between  each of the  ports is 114 of the bus  length. 
The  slanted,  dashed  arrows which intersect  the  port time 
lines connect  the times at which the spatially  distributed 
ports  observe  the  occurrence of a  particular event (e .g . ,  
start of transmission,  setting of a  send flip-flop, etc.)  at 
some remote  port.  The  slopes of these  arrows  are consis- 
tent with the horizontal  time scale  and vertical  distance 
scale.  A  dashed arrow  emanates from an  event,  and  its 
effect propagates  towards  the head of the  arrow.  For 
example,  in Fig. 2, the leftmost  downward arrow indi- 
cates  that  the  start (at time t )  of transmission  by port 2 of 
its first packet  is  observed by port 4 at time t' and by  port 
5 at time t". While port 2 is transmitting  its first packet, a 
second  packet arrives  at time t"'. This packet becomes 
available to  port 2 at  the  end of transmission of its first 
packet, i .e.,  at time A,(2). [We denote by A,(J) the time 
at which the mth packet  becomes available to  port J for 
transmission.]  Immediately after  the completion of trans- 
mission of its first packet,  port 2 starts  the execution of 
Algorithm A2 again,  setting S(2) to 1 after observing the 
bus  to be idle throughout an interval of length 2T. After 
waiting for a time  interval R(2) + T, port 2 observes 
P(2) = 1. Therefore,  port 2 cannot begin transmission of 
its  second packet,  but must wait until it observes  that  port 
1 has  ended transmission and  that P(2) equals 0. Port 2 
begins transmission of its  second  packet  at  the time 
labeled "P(2) = 0 AND  bus idle." 905 
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Figure 3 Bus cycles for five-port network. 

3. Properties of control  schemes A1 and A2 
In this  section we indicate several properties of control 
schemes A1 and A2. Formal arguments  used to establish 
these properties are in [51. The strength of the control 
schemes  lies in these properties and the simplicity of the 
schemes. 

0 Collision avoidance 
We show that both A1 and A2 are collision-free by 
assuming that transmission  from two ports (Z and J )  
collide,  and then deducing a contradiction. Without loss 
of generality, suppose that Z < J .  Denote by B,(Z) [resp. 
B,(J)] the time at which  port Z [resp. port JI begins 
transmission of its mth [resp. nth] packet, and  assume 
that these transmissions collide. There are two cases: 
either B,(Z) > B,(J) + T or B,(Z) I B,(J) + T.  If B,(Z) 
occurs after B,(J) + T ,  port Z would have observed the 
bus to be  busy at time B,(Z) and therefore would not  have 
begun transmission.  In the case that B,(Z) I B,(J) + T, 
port J would have observed P(J) = 1 at time B,(J). This is 
because  port Z must  have set S(Z) to 1 for transmission of 
its mth packet no later than time t = B,(Z) - {R(Z) + T}. 
Therefore, port J would  not  have  begun  transmission. 
Thus we have 

Proposition I A bus  network  with distributed control 
A1 or A2  is collision-free. 

e Guaranteed time to transmission  under A2 
Although control scheme A1 is  collision-free, in general it 
does not provide a guaranteed time to transmission for all 
ports. It is easy to  see this by considering a three-port 
network in which a next packet is  available to each port 
immediately after it has finished  transmitting a current 
packet. In this case, port 3 never observes the bus to be 
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idle  and P(3) to be 0 simultaneously,  and thus never 
transmits. Ports 1 and 2 will alternate use of the bus. 

To illustrate that the initial  wait for the  bus to be  idle 
throughout a time interval of length 2T in control scheme 
A2 ensures transmission by all ports, again consider the 
bus  network  with three ports. Assume that port 2 is 
equidistant  from ports 1 and 3 and that all ports have  set 
their  flip-flops. Suppose port 1 transmits first. When 
transmission of the initial packet by port 1 ends at, say, 
time f ,  port 2 has set S(2)  and  has  waited for a time 
interval of length  R(2) + T, and port 3 has set S(3) and has 
waited  for a time interval of length R(3) + T. Then at time 
t + T/2, port 2 observes the  bus to be  idle  and  P(2) = 0. 
Therefore, it begins to transmit. Note that port 1 observes 
the bus to be  idle  throughout the time interval [ t ,  t + T]; 
but  then  it observes the  transmission by port 2, and 
consequently cannot yet set S(l) to 1 preparatory to 
transmitting its second packet. Port 3 observes the bus to 
be  idle  and P(3) = 0 at time T/2 following the end of 
transmission  by port 2 and  begins transmission. When 
each of the ports observes the bus to be  idle  (for a time 
interval of length  2T) after port 3 ends transmission, it 
sets its send  flip-flop,  and subsequent packet transmis- 
sions  from ports 1,  2,  and 3 proceed cyclically.  This 
discussion assumes packet  transmission  time  is  longer 
than R(l) + T, which  is  not restrictive in practice. 

The  analysis  needed to obtain the best (least upper) 
bound for the guaranteed time to transmission  is  some- 
what tedious. In order to suggest  how long transmission 
of  an available packet can  be delayed, we consider a 
specific  five-port  network  and suppose that the time to 
transmit  any packet is P, where P > R(1) + T. 
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Figure 3 shows a series of events which  give rise to a 
worst-case time to transmission for port 5.  We assume 
that at time A,(5) a first packet becomes available to port 
5 for transmission. Although port 5 observes the bus to be 
idle at this time, port 4 begins transmission of a packet at 
time B,(4), and the transmission is observed by port 5 just 
before A,(5) + 2T, so that port 5 is unable to set S(5) to 1. 
Successively, ports 4, 1 ,  2, and 3 transmit packets. At 
time t + 2T = S,(5), port 5 has observed the bus to be  idle 
throughout a time interval of length 2Tand now sets S(5). 
It then waits for a time interval of length R(5) + T = T ,  at 
which  time it observes P(5) = 1, because port 4 has set 
S(4) to 1. Port 4 cannot begin transmission after setting 
S(4) and  waiting for a time interval of length R(4) + T 
[since  it observes P(4) = 1 because port 3 has set S(3), 
etc.]. Eventually, ports 1,  2, 3, and 4 each transmit a 
packet before port 5 observes the bus to be  idle  and 
P(5) = 0. Finally, port 5 begins transmission. Note that 
with this series of events, all ports other than port 5 
transmit two packets after time A,@)  before port 5 begins 
transmission of its packet. 

The example of Fig. 3 generalizes easily to the N-port 
case. A detailed analysis of the general situation estab- 
lishes 

Proposition 2 If the time to transmit a packet is P ,  the 
guaranteed time to transmission for port J in a bus 
network  with control scheme A2 is bounded above by 

J 

(J + 6)T + T(1, J )  + R(J)  + ( N  + J - l)P + x R ( i ) ,  
i= 2 

where T( 1 ,  J )  is the propagation delay along the bus from 
port 1 to port J .  

If NT and NR(1) are very small  relative to P (which 
would  be the case in  many practical situations), then the 
above  bound is approximately NP for port 1 and 
(2N - l )P  for port N .  

Delay-throughput performance under AI 
The fact that control scheme A1 does not  provide a 
guaranteed time to transmission leads us to a consider- 
ation of the actual delay-throughput characteristics of Al. 
In an earlier paper [ l  1 1 ,  we modeled a bus network with 
control scheme A1 as a closed queueing system with 
nonpreemptive priority service. Our analysis of the bus 
network emphasizes throughput and  delay experienced 
by individual ports. 

Definition of the model 
The closed  queueing system (see Fig. 4) provides service 
to N stochastically nonidentical jobs (ports) labeled 
1,2, . . -, N .  The queueing system comprises N + 1 single 
server service  centers (denoted 0, 1, * . ., N )  which can 

I I 
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I 

Figure 4 Queueing model for N-port network. Center 0 pro- 
vides nonpreemptive packet transmission service. Service at 
center 0 is according to priority ordering of ports. Service at each 
of centers 1 through N represents a time delay at its associated 
Port. 

provide service concurrently. Center 0 (bus) provides 
exponentially distributed nonpreemptive service (packet 
transmission) of duration W ,  to each of the Njobs. Center 
J (J = 1,  2, . . ., N) provides service only to  job J .  Upon 
completion of service to  job J at center 0, with  probability 
pJ (0 I pJ < 1) job J joins the queue at center 0, and  with 
probability 1 - pJ moves to center J where  (with no 
queueing delay) service begins. Service at center 0 is 
according to a fixed  priority ordering of jobs, lower 
labeled jobs having  higher priority. With respect to this 
priority scheme, a job joining a nonempty queue at center 
0 upon  completion of service at center 0 does not contend 
for the next center 0 service. Exponentially distributed 
service of duration WJ at  center J (J > 0) represents a 
time  delay associated with the availability to port J of a 
next packet for transmission. The interpretation of the 
routing  from center 0 is that with  probability pJ,  upon 
completion of packet transmission service, a next packet 
immediately becomes available to port J for transmission. 

Note that although the model does not  explicitly  incor- 
porate the quantities R(J) + T ,  the priority rule effectively 
preserves the order of port access to the bus in the 
network. There is, however, a situation in  which the bus 
access assignment  in the model is different  from that in 
the network. Suppose that upon  completion of a packet 
transmission, two or more ports have packets available. 907 
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According to  the priority  rule  in the model, the leftmost 
port, L, among  them  gains access  to  the  bus.  In  the 
network, however,  port L may not gain access  to  the bus 
if it has waited for a time  interval less  than R(L) + T.  This 
occurs infrequently because  the time intervals R(J)  + T 
are very  much  smaller than  other time  intervals (e .g . ,  
packet transmission  times) in the  network. 

We make the following probabilistic  assumptions: 

1. Successive service  times at  center 0 [resp. 1,2,  ., N] 
form a sequence of independent  random variables, 
identically and exponentially  distributed as Wo [resp. 

2. Service  times at  the  centers  are independent of the 

3. The  sequences in (1) are mutually  independent. 

Specijication of response  times 
Denote  the increasing sequence of service completion 
times  (irrespective of center identity) by {T, : n 2 O } .  For 
J = 1, 2, ., N a n d  t 2 0, let 

W , ,  * . *, WNI; 

routing of jobs  from  center 0; 

2 if job J is in service  at  center 0, 

Z,(t) = 1 if job J is queued  for service at  center 0, 

0 if job J is in service at center J ,  

at time t and  for n 2 0 set 

z, = (zl(Tn), * * - 9  zJTn)). 
It is easy  to  check  that  the  process {(Z,, 7,) : n ? 0) is  an 
irreducible Markov renewal process with finite state 
space, E.  This  means (cf . ,  e .g . ,  Cinlar [12], p. 313) that 
{(Z,, 7,) : n 2 0) satisfies 

P{Z,+, = Z,  Tn+l - 7, 5 I zo, * * *, 2,; To, * * ’, Tn) 

- - P{Z,,+, = Z, Tn+l - 7, 5 t I zn> 
with probability one  for all n ? 0, z E E ,  and t z 0. 
Moreover,  the  discrete time  Markov  chain (2, : n 2 0) is 
irreducible. 

It follows that  the  continuous time process 

x = {X@) : t 2 0) 

defined by 

x ( t )  = z,, if 7, 5 t < T,+, 

is an irreducible  semi-Markov process with state  space E .  
The holding times  in X are exponentially  distributed (with 
parameters  depending  only on  the  current  state),  and  the 
process is a continuous time  Markov  chain  when p ,  = 0, 
J = 1, 2, . * *, N. If p ,  > 0 for at least  one J ,  however, 
jumps in X from a state  to  the  same  state  can  occur.  For 

908 example, jumps  from i = (2,0, . ., 0) to i occur i f p l  > 0. 
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We denote  the  one-step transition  matrix of the embed- 
ded  (discrete time)  Markov  chain {X(T,) : n ? 0) by 
R = (r,), and  let q be  the  vector of (rate) parameters  for 
the exponentially  distributed  unconditional holding times 
in X. 

The  response times for  job J are specified in terms of 
four subsets of the  set E : A‘;), A‘;), BY’, and BY’, 
J = 1,2,  a ,  N. The  sets A‘:’ and A:) [resp. By’ and Bf’] 
determine  when to  start  [resp.  terminate]  the clock mea- 
suring response times for  job J .  These  subsets of E are 

A‘;“ = {(xl, * e ,  xN)  E E : x, # l}, 

A? = {(xl, . . ., x N )  E E : x, # 0},  

B:“) = {(xl, . . -, x N )  E E : x1 = . . . = xN = 0 orx, # o), 
and 

BY’ = {(xl, * * *, xN)  E E : xJ = 2). 

For n ? 1, denote  the  start  [resp. termination]  time of the 
nth response time for  job J by Sy!l [resp. T y ’ ] .  Setting 
T(J)  = 0 for J = 1, 2, * . 3, N ,  

s:) = inf{.rk > T:) : ~ ( 7 , )  E A:), x ( T ~ - ~ )  E AY’), n 2 o 
and 

T I I J ’ = ~ ~ ~ { T ~ ~ s , ~ _ ~ : x ( T ~ ) E B ~ “ ) , x ( T ~ - ~ ) E B I J ’ } , ~ ~ ~ .  

Then the  nth  response time for  job J is 
R ( J )  = T ( J )  - ( J )  

n n s n - 1 .  

For t ? 0 let L(t)  denote  the  last  state visited by the 
semi-Markov process X before  jumping to X @ ) ,  and  set 

V(t)  = (L(t) ,  X ( 0 ) .  

The  process V = {V(t)  : t z 0) has a finite state  space, F ,  
which consists of all pairs (i,  j )  of states of X for which  a 
one-step  transition from i to j can  occur with positive 
probability. For  job J ,  define two  subsets S”’ and T”’ of 
F according to 
s(J)  = { ( i , j )  E F : i E A:’, j E A:’) 

and 

T”’ = { ( i , j )  E F : i E B ; ) ,  j E BIJ)} .  (1) 

The  entrances of V to S‘,’ [resp. T‘,’] correspond  to  the 
starts [resp.  terminations] of response times for  job J .  

A  key observation is that  the  process 

{(x(s:)), R Y ~ J  : n 2 01 
is a regenerative process (Smith [13]) in discrete time. 
(Heuristically,  a stochastic  process  is regenerative if 
there  exists a sequence of random time points  at which 
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the process probabilistically restarts.)  The regenerative 
property guarantees (see Miller [14]) that  the  sequence {I?:’ : n 2 1) converges in distribution to a random 
variable R”’, the limiting response time for  job J .  

Since X is an irreducible, finite state semi-Markov 
process, it is a  regenerative process in continuous time. 
The regenerative structure  ensures  that  the  “steady 
state” of the  process is determined (as a ratio of expected 
values) by the  behavior of the  process in a cycle, i .e . ,  
between  any two  successive regeneration  points. Our 
analysis is based on  the selection of a  particular sequence 
of regeneration  points (returns  to a fixed state, j o )  for X. 
Entrances of the  process X to  state j o  correspond  to  the 
starts of response times for a  particular job, J,, with a 
lower priority job, KO, in service at  center 0, and  no  other 
jobs in queue  at  center 0. For each quantity of interest, 
we establish  a  ratio  formula in terms of cycles defined by 
the  returns  to  state jo. We then apply  computational 
results of the kind developed  by Hordijk, Iglehart, and 
Schassberger [15] for  discrete time and  continuous time 
Markov chains. 

Analysis of the bus network model can be based  on 
other  sequences of regeneration  points. It  is,  however, 
computationally advantageous  to use cycles defined by 
state j o  since only the  jump matrix R and  vector q of the 
underlying semi-Markov process X (rather  than  the  corre- 
sponding quantities for  the  process V) are needed.  More- 
over, in order  to  compute delay characteristics  for all 
ports, only a single matrix  inversion is required. 

Analysis for response times 
Select Jo and KO with 1 5 Jo < KO 5 N .  Now let 
~ o = ( ~ ~ , ~ ~ ~ , x ~ ) € A ~ ) w i t h x ~ o = l , x ’  = 2 , a n d x ; = O  
for i # J,, KO, and  take X(0) = jo. Because of the 

 nonpreemptive priority service discipline at  center 0, 
X(T,) = j o  implies that X ( T ~ - ~ )  = io, where io = (x1 . . *, 

xN) with xKO = 2 and xi = 0 for i # KO. Thus,  successive 
entrances of the  process X to  statej,  correspond  to  starts 
of response  times for  job Jo such that  job KO is in service 
at center 0, and job i is in service at  center i, i # J,, KO. 
Set Po = 0 and  denote  the time of the  kth  entrance of X to 
state j o  by Pk, k z 1 .  Also define ak = P k - l ,  k z 1 .  

KO 

Let {V,  : k 2 0} be  the embedded jump chain of V and 
for  convenience  designate state (io, jo) E F as  state 0. 
Denote by {yk : k z l} the lengths in discrete time  units of 
the successive  0-cycles  (successive returns  to  the fixed 
state 0) for {V,  : k 2 0). (These correspond  to  the 
successive entrances of {X(T,) : n 2 0) to  statej, from io.) 
Now fix J .  The  number of response times for  job J in the 
first 0-cycle of V is 
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N ( J )  = 
V I -  1 

1 c l{”kEsq f ( 2 )  
k=O 

where l{VkES~~)J = 1 if Vk E S‘J’ and 0 otherwise,  and  the 
sum of the  response times in the first 0-cycle is 

N,(J) 
y:J‘ = 1 R f ) .  (3) 

k= 1 

Denote the analogous  quantities in the  mth 0-cycle by 
NE’ and YE),  rn 2 1.  Since X is a  regenerative process, V 
is also.  It follows that  the pairs of random variables 
{(NY’, Yy’)  : k 2 1) are  independent  and identically 
distributed (i.i.d.). Standard arguments (cf. Iglehart  and 
Shedler [16], Appendix 2)  establish the  ratio formula 

E{R ”) = E{ Y :J’)IE{N ?’I. (4) 

We now show how to calculate the quantities on  the 
righthand side of Eq. (4). 

Recall that R is the  one-step transition  matrix of the 
embedded  Markov  chain {X(T,) : n 2 0) and  denote by 
the matrix obtained  by  setting the j o  column of R equal  to 
0. (We assume  a fixed enumeration of the  states of X and 
that  the jo  column corresponds  to  state j,.) We  consider 
vectors  to be  column vectors, view a  real-valued  (measur- 
able) function such  as f having  domain E in this  way, and 
denote it by f. In addition, 0 denotes  the  Hadamard 
product of vectors; Le., for  vectors u = (ul, u2, . . ., uk) 
and v = (ul, ut, . . e ,  uk), the symbol u 0 v denotes  the 
vector (u ,u l ,  u p 2 ,  * , ukuk). The  component of the 
vector u corresponding to  state j is denoted by [ulj. 

Let f be  a  real-valued  function  with  domain F.  An 
argument  analogous to  that used to obtain Theorem (3.1) 
of [15] for  discrete time  Markov chains  shows  that 

E { ‘2’ f(X(Tk)? x(Tk+l)) = [(I - OR)-lglj0, 
k=O I (5 )  

where I is the identity  matrix and  for k E E ,  

d k )  = f ( k ,  m)rkm. 
mEE 

We use  this  result to calculate the quantity E{Ny’}. 
Take f to be the  indicator function of the  set S(J’: for 

equals 1 if (xl, * * ., xN) E A:’ and (x i ,  ., x;) E Af’, 
and  equals 0 otherwise.  Then 

( X I ,  . . .> xN, x;’ . . ’ 9  X;) E F,f(xl, . . ’ 9  x N ~  * * *)X;) 

V I - 1  

NY’  f(X(Tk)7 x ( T k + l ) )  
k=O 

and Eq. (5) gives 

EWIJ’I = [(I - ,R)”gljo, (6) 9091 
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where for k E E ,  

0 otherwise. 

Similarly, for a real-valued f having domain E and YICf) 
defined by 

$1 

Y 1 V )  = / f(X(s))ds,  
0 

it can  be shown (cf. Theorem (3.10) of [ 151 for  continuous 
time Markov  chains) that 

E{YICf)l  = [(I - ( f o  q-l)ljo, (7) 

We use  this  result to calculate the  quantity E {   Y y ) } .  For 
(xI . ., x,,,) E E take f to  be  the function defined by 

1 ifx.  = 1 ,  
f(Xl, * . ., x,,,) = 

0 otherwise, 

and  observe  that 

It then  follows  directly from  Eq. (7) that 

In much the  same  way, P{R”’ = 0) can be calculated. 
Observe that R Y )  = 0 if and only if V(SY’)  E D”’, where 
D ( J )  = {(x], a ,  x,,,) E E : xJ # 1 and fork # J ,  x, = 0},  

D y ’  = {(xl, . ., x,,,) E E : xJ = 2 and  for k # J ,  xk = 0},  

and 
D(J) = {(xl, * . ., xN,  X;, . * *, xL) E F : 

(X], * * ., X,,,) E D y ’ ,  (x;, * . ., X;) E Dy’} .  

It  is  easy  to  show (using the  fact  that {V, : k 2 0) is  an 
irreducible,  finite-state  Markov  chain) that  the pairs of 
random variables { ( M y ) ,  N y ) )  : k 2 l} are i.i.d., where 
E{NY’}  is given  by Eq. (6) and 

Moreover, 

P{R‘J’ = 0) = E { M y ) } / E { N y ) } .  

91 0 It follows directly from  Eq. (5) that 
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E { M y ’ }  = [(I - ,R)”hlj0, (10) 

where for k E E ,  

‘km if k E D y ) ,  
h(k) = 

rnEDY) 

0 otherwise. 

Analysis for  expected queue  length  and throughput 
Since X is a regenerative process, 

X( t )  * x 
as t + m, where j denotes  convergence in  distribution. 
(The  random  variable X is the  “steady  state” of the 
regenerative process.) Define a function c having domain 
E and  range (0, 1 ,  . . ., N }  according to 

for (Xl ,  . . -, XN) E E .  For t 2 0, c(X(t))  is  the number of 
jobs waiting or in service at  center 0 at time t ,  and Qo, the 
“steady  state”  expected  queue length at center 0, is the 
quantity E{c(X)}. 

Properties of regenerative processes (cf. Crane and 
Iglehart [17]) ensure  that  the pairs of random variables 
{(Y,(c), a,) : k 2 1) are i.i.d. and  that 

and 

E b l 1  = [(I - oR)-’(l o q-’)lj0, (13) 

where 1 is  the function  identically equal  to  one. 

We define the  “steady  state”  throughput, U ,  of the  bus 
to be the limiting probability that  the  bus is busy; i .e.,  U is 
the quantity E { b ( X ) } ,  where 

0 ifx,  = . . . = x,,, = 0, 

1 otherwise. 
b(x,,  * * e ,  xN) = 

[For t 2 0, b(X(t)) equals 1 if there  is a job in  service at 
center 0 at time t ,  and  equals 0 otherwise.]  Since X is a 
regenerative process,  the pairs of random variables 
{Yk(b),  a,) : k 2 1) are i.i.d. and 

U = E { Y l ( b ) } / E { a l } .  (14) 

It follows directly from  Eq. (7) that 

E{Yl(b) l  = [(I - 0 q-’)lj0, (15) 

and E{a,} is given by Eq. (13). 
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I Throughput 

Figure 5 Delay-throughput characteristics for three-port net- 
work. 

Figure 5 shows typical results  for a three-port  network. 
The  abscissa is throughput,  and  the  ordinate is delay, 
measured by E{R'J'} in normalized  units of E{ WJ = 1.  To 
generate these particular curves, calculations were  made 
for various  values of E{ W1} = E{W,} = E{ W,}, with 
p I  = p 2  = p 3  = 0. For example, throughput  is 0.47 when 
E{W,} = E{ W,} = E{W,} = 5.0; throughput  is 0.79 when 
E{WJ = E{W,} = E{W3} = 2.0. 

Consideration of the delay-throughput curves  for  the 
three-port  network leads  to  the following conclusions. As 
throughput increases  above 0.8, E{Rc3)} begins to  increase 
very  rapidly, while E{R"'} and E{R("} remain near 1. In 
the limiting case of throughput equal  to 1 ,  corresponding 
to E{ W1} = E{ W,} = E{ W,} = 0, it  is  easy to argue directly 
(cf. the example in Section 3) that E{R"'} = E{R'2'} = 1 
and port 3 does  not gain access  to  the  bus (E{R(3)} = 00). 
In this situation, transmissions  by ports 1 and 2 alternate. 
Note  that E{R'2'} actually attains  values larger  than 1 
when  throughput is  close  to, but less  than, 1;  see [ 113 for a 
discussion of this  unintuitive phenomenon. 

In an  N-port  network operating under control scheme 
Al ,  ports 1 and 2 experience  response times that  are 
qualitatively similar to  the  response times they experi- 
ence in a three-port  network, including the limiting case 
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Figure 6 Delay-throughput characteristics for five-port net- 
work. 

(throughput = 1) in which  transmissions  by the  two  ports 
alternate.  Ports 3 through N behave like port 3 of the 
three-port case, with E{R'3'} < E{R'4'} < * < E{R'"} 
over  the full range of throughput  achievable  when 
E{ W1} = E{ W,} = . . . = E{ WN}. For  throughput  equal  to 
1 ,  all ports J 2 3 are denied access to the  bus. Figure 6 
shows  results for a five-port network. Calculations  were 
made for various values of E{ W1} = E{ W,} = . . . = E{ W5} 
with p 1  = p 2  = . . . = p5 = 0. 

Note  that  our definition of throughput  pertains to  the 
d a t a h s  being busy. This  means  that  throughput  can be 1 
when ports 1 and 2 alternate  use of the  bus, keeping it 
busy all of the time. The  control wire is  also part of the 
total  communication  facility; and since it  does not carry 
packets, it is  clear  that  the  total facility is  never fully 
utilized for  data transmission  in the  conventional commu- 
nication system  sense. 

Simulation for response  times 
The analysis of the previous section yields an  assessment 
of the performance of control  scheme A1 in terms of the 
expected  response  times  for individual ports.  It is also of 
interest (in particular  for  comparison with the  guaranteed 
transmission  time  provided  by control  scheme A2) to 
study the variability of port  response  times. This can  be 91 1 
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done by discrete  event simulation of the model, e .g . ,  in 
terms of percentiles of the limiting response time  distribu- 
tions. 

The  stochastic setting for  response times we have 
developed  provides  a  basis for simulation of the  bus 
network model (cf. Iglehart and  Shedler [161, Section 10). 
Letfbe a  real-valued  (measurable)  function  with  domain 
[0, + m). We assume  throughout  that P{R'J' E D ( f ) }  = 0, 
where Dcf )  is  the  set of discontinuities of the function f. 
Then  the goal of the simulation is estimation of 

kJ'(f) = Ecf(R"')}. 

For  example, to estimate  the percentile P{R"' 5 x} 
(x fixed), take f ( t )  = l,oJl(t), where lL0,$) equals 1 if 
t 5 x and  equals 0 otherwise. Recall that is the 
limiting response time for  job J .  

Although the  regenerative method of Crane and Igle- 
hart [17] cannot be  applied directly, point estimates  and 
confidence intervals for kJ'(f) can be  obtained  from a 
single simulation run  according  to  the following proce- 
dure. 

Algorithm R:  response  time  simulation 

1. Select J ,  and KO with 1 I Jo 5 KO I N .  Now let 
j o  = (xl, . . -, x N )  with xJn = 1, x = 2, and xi  = 0 for 
i # J,, KO. Begin the simulation  with X(0)  = j,. 

2. Carry  out  the simulation of X for a fixed number, n, of 
cycles  (having random length) defined by the  succes- 
sive entrances of X to  the  state j,. 

3. In  each  cycle  measure all the  response times for  job J .  
4. For k 2 1 ,  denote  the  number of response times for  job 

J observed in the  kth  cycle by N Y ) ,  and  compute 
the  sum Y'l'cf) of the quantities f (RZ))  for  response 
times RE) in the  kth  cycle. 

5 .  Take  as a point estimate (based on n cycles) for kJ'(f) 
the quantity 

Kn 

y ( f )  = Yy)cf)/Ny), 
where Yy'( f )  and Ny) are sample means  over  the 
cycles. 

6 .  Take  as a lOO(1 - 2 9 %  confidence  interval (based  on 
n cycles) for r'J'cf) the interval 

f'u) 2 z~-~s,/(N,, - ( J )  n f 1. 
Here zI-y = W 1  (1 - y), where @ ( a )  is the distribution 
function of a standardized (mean zero, variance one) 
normal random variable. The quantity s,, is 

where sI1, sZ2, and sI2 are  the usual  unbiased estimates' 
for  var { Y Y ) ( f ) } ,  var {NY)} ,  and cov { Y y ) ( f ) ,  N y ) } ,  re- 

91 2 spectively. 

This  estimation procedure  rests  on  the  observation  that 
the pairs of random variables {IVY),  YY) ( f ) ) :  k 2 1)  
are i.i.d. Moreover, provided that E{ If(R"')I} < 00, 

ECf(R"')} = E{ Y y ' ( f ) } / E { N ~ ' } .  

Confidence intervals  for r'J'(f) are based on  the  central 
limit theorem 

where u2 is  the  variance of Y y ' c f )  - kJ'(f) N,") and 
N(0, 1 )  is a standardized normal random variable. 

4. Comparisons  to  other  control  schemes 
In this  section we briefly discuss five access  control 
schemes  for local area  bus  networks  that  have been 
developed  recently by others. All  of the  schemes  assume 
bit-serial transmission in the  megabitkecond range on a 
passive  bilateral bus. We denote  the end-to-end bus 
propagation  delay  by T ,  and  when  there  is fixed or 
maximum packet transmission time, we denote it by P. 

Ethernet 
The  Xerox  Ethernet  system [6] allows  collisions, detects 
them,  and  adjusts  retry times  randomly. In more detail, a 
port  that begins transmitting a packet  after  it  observes  the 
line to be idle can  detect  whether  or not some  other 
transmission  begins to interfere  with its  transmitted sig- 
nal. If a collision is  detected,  the  port  stops  its transmis- 
sion,  and  after a random waiting period,  attempts  retrans- 
mission. The  parameters of the probability  distributions 
that  are used to  determine  the waiting periods in the 
individual ports  are  adjusted if more  than  one  retry is 
necessary.  The  stochastic  nature of the  retry waiting 
periods and  the  dynamic  changes  to  the distributions 
themselves are  intended  to  achieve a reduction of colli- 
sions,  especially following the  end of transmission of a 
packet.  The  Ethernet  control  is  thus  asynchronous and 
distributed,  as  are A1 and A2, but it is not collision-free. 
Also, it  is possible, but unlikely, for a port  to be.blocked 
indefinitely from transmitting a packet without collision. 
The  control is efficient in the  sense  that  the collision-retry 
strategy wastes only a small amount of usable line trans- 
mission capacity when  the line is lightly loaded. Control 
schemes A1 and A2 also  waste small amounts of usable 
line transmission capacity during the various waiting 
intervals. 

HXDP 
In the Honeywell HXDP  system [ 7 ] ,  access  control  is 
distributed and  requires more hardware  than  Ethernet 
access  control;  but  HXDP  is collision-free and provides 
bounded,  guaranteed time to transmission.  A coded glob- 
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al clock signal is  used to step  each  port synchronously 
through the line access  control algorithm. This signal is 
transmitted on  the  broadcast  bus itself by using a special 
line-signal sequence  that  cannot  be confused  with packet 
data signals. Access  control is built around a 256-bit 
vector  stored in each  port.  The global  clock signal steps 
each of the  ports through its  respective  vector,  one  step 
for  every termination of a line usage  interval. There is 
exactly one  port with a  1 at  any  vector  address; this 
signifies that  the  port may use the line during the next 
usage interval.  During  this interval,  the distinguished port 
transmits a packet if one is available to  it,  and  then 
transmits the clock signal. If there is no  packet available, 
the  port immediately transmits  the clock  signal, thus 
effecting transfer of access  control  to  the next port.  The 
number of 1’s in a port’s vector  determines  its  fraction of 
bus  usage  intervals  during a complete  sweep through the 
vector.  Using  this scheme with N ports,  an N-bit access 
vector in each  port,  and a maximum packet transmission 
time of P ,  then ( N  - l)P is  the  (bounded)  guaranteed time 
to transmission. 

0 BRAM 
BRAM [8] is actually a family of four related  decentral- 
ized access  protocols.  Two of these are collision-free, and 
one of them, called fair  BRAM, is  described  here. All 
ports  must  monitor the  bus continuously. Whenever a 
message is  observed  on  the  bus,  the  number of the 
transmitting  port  (contained in the message) is noted in 
each of the  other  ports. Assume that a  number of ports 
have  packets available for transmission  and are deferring 
to  an ongoing transmission from  port J .  Each waiting port 
Z computes  the value H(Z, J )  = (Z - J + N) mod N and 
waits TH(Z, J )  time  units after  it  observes  the  end of 
transmission from  port J .  If the  bus,  as  observed by port 
I ,  has not become busy after TH(Z, J )  time units,  then  port 
Z transmits. Since  the H ( K ,  J )  values are distinct for all K 
(1 I K 5 N ) ,  there are no collisions. If we assume  that 
port J does not contend  for permission to transmit 
immediately after  it  has used the  bus,  there is bounded 
guaranteed  time to transmission for all ports.  In particu- 
lar,  assuming NT << P, the bound is approximately 
(N - 1)P. 

0 Spaniol  proposal 
An interesting  variation on  the  Ethernet  access protocol 
has been proposed by  Spaniol [9]. A slotted  Ethernet is 
developed in which all ports must use a fixed-length 
packet slot P >> T.  Collisions may occur if more than 
one  port  attempts to transmit in an  open slot. If a collision 
occurs, it is detectable in the initial portion of the  slot, 
and the remaining (major)  part of the slot is used in a time- 
division multiplexed  mode to  schedule  subsequent slot 
allocations for  the colliding packets.  Each of the N ports 

has a predetermined  time  position  in  this  scheduling 
interval in which it signifies that it is a  participant in the 
collision. The  slots immediately following the collision 
slot are  then claimed  by these  ports using a simple 
priority rule,  and  no collisions can  occur until each of 
these  ports  has  transmitted  its  packet.  The  slot immedi- 
ately following the  last of these  is  open  and  any  port may 
now attempt to transmit.  Either  no  port  transmits,  exactly 
one  port  tries  and is successful,  or  two  or more ports 
attempt  to transmit and a collision occurs.  In  the  latter 
case,  the time  division  multiplexed  arbitration  referred to 
above is used. Note  that a particular  packet collides at 
most once, and no  port is delayed  longer than  2NP time 
units in achieving a successful transmission. The bound is 
actually dependent  on  the priority scheme  and ranges 
from ( N  + l)P to 2NP. 

0 Mark  proposal 
Mark [lo]  has  studied  the  use of a separate  control wire 
for  access  control  synchronization,  and  has  adapted a 
collision-free access  technique originated  by Rothauser 
and Wild  [18] to the two-path  bus environment.  The 
control  path  operates  as a bilateral bus with bit-time 
intervals that  are longer than  the  bus propagation  delay T.  
Access  is  determined by bit-serial port  address compari- 
sons  on  the  control  path using address of length I log, N I 
bits. The  port with the highest  numbered address wins. 
There is no  lockout of lower  address  ports  because all 
ports voluntarily do not contend  for  subsequent  data  slots 
after  they have  transmitted until the  control  path goes 
idle. When the  control  path  goes idle, the  end of the 
current cycle of serving all active  ports with  a data slot 
has been reached;  and all ports can again contend  for 
access.  Address bit reversal  can be  used on  successive 
cycles of operation if it is desired  to  remove  the effects of 
priority that  are induced  by address values. There is a 
bounded guaranteed time to transmission  with or without 
the  address  reversal  action.  The bound on transmission 
access is ( N  - l)P if address  reversal is used;  and, 
depending on  port  address  values,  the bound  ranges  from 
( N  - l)P to 2(N - 1)P if address  reversal is not  used. 
Because of the flexibility in assigning port  addresses, a 
multiple priority request  system can  be  implemented as 
discussed in [19]. 

The first two of the  above five schemes  for  bus  access 
control  have  been  implemented,  and a version of the 
Mark proposal is currently being  implemented [19]. To 
our knowledge, BRAM and  the Spaniol proposal  have not 
been  implemented. 

Concluding remarks 
The control schemes A1 and A2 described in this paper 
are distributed, have  no global  clock signaling, and  are 91 3 
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collision-free. However, in addition to the single, shared- 
bus  communication path, they  require a separate logic 
control wire to propagate a one-way  logic  signal  from one 
end of the bus to the other. In  this last respect, our 
schemes are in the same class as that of Mark [lo, 191. 

I Our use of the control wire path assists in the  implemen- 
tation of collision-free operation, but at an expense that is 
potentially less than the bit-vector approach of HXDP [7] 
or the address/priority manipulations  required by BRAM 
[81, Spaniol 191, and  Mark [lo, 191. 

It should  be  noted that the way  in  which  we  use  the 
control wire bears some structural resemblance to the 
decentralized  daisy  chain techniques of conventional 
digital  bus access control methods as discussed by Thur- 
ber et  al. [20]. However, a closer examination  shows that 
our open-loop use of a logic control wire  is  much  simpler 
than  the closed-loop daisy chain. Indeed, as Vranesic [21] 
has  recently discussed, there are some subtle timing 
problems  involved  with  implementing the closed-loop 
chain.  None of these problems exist in our situation. 
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