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Approximate Solution of Queueing Networks with
Simultaneous Resource Possession

Queueing networks are important as performance models of computer and communication systems because the
performance of these systems is usually principally affected by contention for resources. Exact numerical solution of a
queueing network is usually only feasible if the network has a product form solution in the sense of Jackson. An important
network characteristic which apparently precludes a product form solution is simultaneous resource possession, e.g., a
Jjob holds memory and processor simultaneously. This paper extends previous methods for approximate numerical
solution of queueing networks with homogeneous jobs and simultaneous resource possession to networks with
heterogeneous jobs and simultaneous resource possession.

1. Introduction

A major objective of computing systems (including com-
puter communication systems) development in the last
two decades has been to promote sharing of system
resources. Sharing of resources necessarily leads to con-
tention, i.e., queueing, for resources. Contention and
queueing for resources are typically quite difficult to
quantify when estimating system performance. A major
research topic in computing systems performance in the
last two decades has been solution and application of
queueing models. These models are usually networks of
queues because of the interactions of system resources.
For general discussion of queueing network models of
computing systems, see Sauer and Chandy [1] and recent
special issues of Computing Surveys [2] and Computer
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Much of the attention in queueing network research has
been given to models with a product form solution in the
sense that
_ P(S) - P LS,)

b Sy = MM
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where P(S|, - - -, §, /) is the probability of a network state
in a network with M queues, P, (S ),m=1,: -+, M,isa
factor corresponding to the probability of the state of
queue m, and G is a normalizing constant. The existence
of a product form solution for a model makes numerical

solution feasible where a large number of queues and/or
jobs would otherwise make numerical solution infeasible.
Since the original work of Jackson [4], it has been shown
that the product form solution exists for networks with
heterogeneous jobs, several important scheduling disci-
plines, and state-dependent behavior [5-7]. Efficient
computational algorithms have been developed for these
networks [8-11].

However, there are a number of system characteristics
which apparently preclude a product form solution.
Among the most important of these is simultaneous
resource possession, i.e., a job’s activities require simul-
taneous possession of more than one resource, e.g.,
memory and processor. If there is significant contention
for only one of the simultaneously held resources, then
the model may ignore the others. Otherwise, one must
usually settle for an approximate numerical solution
[12, 13] or simulation.

This paper focuses on approximate numerical solution
of models with simultaneous resource possession in cases
such as the one depicted in Fig. 1. In this case a job
holding memory may simultaneously also hold the CPU
or simultaneously also hold a disk. Further, requests for
and releases of simultaneously held resources are nested,
i.e., memory is requested before the CPU is requested
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and released after a disk is released. With such nesting
one can transform the original network into one of the
form of Fig. 2. A solution of the transformed network can
then be interpreted as an approximate solution of the
original network. The approximate solution will usually
be much less expensive than simulation. It is quite
difficult to estimate the error in the approximate solution,
but empirical studies suggest the error is acceptable in
many situations. Some of the influential works using this
approach for models similar to this one are those of
Brandwajn [14], Brown {15, 16], Courtois [17, 18], and
Keller [19]. This general approach can be applied to other
resources and to more than two simultaneously held
resources. For an introduction to previous work using
this approach, see the survey papers by Chandy and
Sauer [12, 13]. Two other approaches to solution of this
problem are those of Bard [20] and Jacobson and La-
zowska [21].

Except for the work of Bard [20] and Newsom and
Ward [22], previous efforts have assumed that jobs were
homogeneous. Our interest here is extending the above
general approach to networks with heterogeneous jobs.
Though Bard’s approach applies to fairly general cases
with heterogeneous jobs, we find it less accurate than our
approach for many cases; see the Appendix for further
discussion. Newsom and Ward attempted to extend
Brown’s work [15, 16] to heterogeneous jobs. Though
they were able to extend the relevant equations, the result
was computationally impractical, as they discussed. Fur-
ther, only two test cases were considered in their paper.

In Section 2 we consider the model of Fig. 1 without
memory contention in order to develop previous results
on flow-equivalence, the basis of this work. In Section 3
we consider the model of Fig. 1 with heterogeneous jobs
where separate memory is dedicated to each type of job.
In Section 4 we consider the case where the different
types of jobs share memory. Empirical results demon-
strate the effectiveness of the methods used.

2. Flow-equivalence

A principal objective in the transformation of the network
of Fig. 1 to the network of Fig. 2 is to obtain flow-
equivalence, i.e., the flow of jobs through the composite
queue of Fig. 2, given a specific population of jobs in that
queue, is equivalent to the flow of jobs through the
corresponding subnetwork of Fig. 1, given the same
population of jobs in the subnetwork. This can be ap-
proached either by using ‘“Norton’s Theorem’’ for queue-
ing networks, analogous to Norton’s Theorem for electri-
cal circuits [23], or by using concepts of weak-coupling
of subnetworks [17]. We use the Norton’s Theorem
approach.
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Figure 1 Queueing network model of interactive computer
system.
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Figure 2 Computer system model with CPU and I/O disks
replaced by composite queue.
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Figure 3 CPU and disk subnetwork.

Let us assume that there are two types of jobs, num-
bered 1 and 2. Extension to more than two types of jobs is
conceptually trivial. (Extension to more than a few job
types may be computationally prohibitive, as with other
queueing network problems.) Let the number of type k
jobsbe N, k=1, 2.

The Norton’s Theorem approach to this problem is
straightforward. We would consider the network of Fig. 1
with the terminals queue ‘‘shorted,”’ e.g., with service
time set to zero. Qur intermediate objective is to obtain
the throughput through the ‘‘short.”” To obtain the de-
sired throughput, we need only solve the network of Fig.
3 to obtain the throughput through the outer loop. Let
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Figure 4 Computer system model with memory, CPU, and
disk replaced by composite queue.

R (n,, n,) be the throughput of type k jobs through the
outer loop of Fig. 3 given n, type 1 jobs and #, type 2 jobs
in that network, k = 1,2,n, =0, -+, N, n, =0, -,
N,. Then let the composite queue of Fig. 2 have service
rate w (n,, n)) = R(n, n) for type k jobs when there are
n, type 1 jobs and n, type 2 jobs in the composite queue.
Both types of jobs are in service simultaneously when
both types of jobs are present in the queue.

Since we have assumed for the moment that there is no
memory contention, the network of Fig. 2 is equivalent to
the network of Fig. 4. The network of Fig. 4 satisfies
product form if the original network satisfies product
Sform (assuming no memory contention). Several compu-
tational algorithms for product form networks apply to
the network of Fig. 4 if it satisfies product form [11].
However, composite queues with general functions of the
form g, (n,, n,), such as the ones we obtain below, do not
necessarily satisfy product form conditions.

Assuming that the network of Fig. 1 satisfies product
form (assuming no memory contention), then the
throughputs through the terminals are the same in the
network of Fig. 1 and the networks with the composite
queue (with nonzero service time at the terminals). Fur-
ther, the performance measures for the CPU and disk
queues can be obtained from the solutions of the net-
works of Fig. 2 and Fig. 3. Throughputs are immediately
available by flow arguments. Marginal queue length dis-
tributions and moments of queue length can be obtained
as weighted sums where the weights are the values of the
composite queue marginal queue length distribution. For
example, mean queue length of type k jobs at the CPU
can be obtained as

N M
Lycpy = > 2P (n,, n)L; cpu(By 1),
, n,=0 n,=0

where P(n,, n,) is the marginal probability of n, type 1
jobs and n, type 2 jobs in the composite queue and
L:,cpu("v n,) is the mean queue length of type k jobs at
the CPU in the network of Fig. 3, given n, type 1 jobs and
n, type 2 jobs in that network. Mean queueing times can
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be obtained by Little’s Rule. Utilizations can be obtained
either from throughputs or marginal queue length distri-
butions, depending on the characteristics of the individual
queues. For more discussion of individual queue mea-
sures see Sauer and Chandy [1, Section 6.3.3]. This entire
process is exact provided that the original network satis-
fies product form.

3. Dedicated resources

In this section we consider the case that the outer
resource in the nesting (memory in our example) is
managed so that different types of jobs have different
dedicated units of the resource. The inner resource in the
nesting (CPU or disk in our example) is shared among all
job types. This case is more tractable than the fully
shared resource case of Section 4.

Let us assume that memory is organized in T partitions
and that each job requires exactly one partition. In this
section we assume that there are T, partitions dedicated
to type 1 jobs and 7, partitions dedicated to type 2 jobs
T, +1,= T). We assume in this section that, within a
job type, memory is scheduled First-Come-First-Served
(FCFS), independent of the other type. The discussion in
this section extends directly to the more general memory
organizations considered by Brown for homogeneous
jobs [16].

Now we return to the case of interest, i.e., where there
is memory contention. Essentially the above process is
followed, but there are two new issues to be considered.
First, the solution of the network of Fig. 2 no longer gives
exact values for the measures for the network of Fig. 1.
This is easily demonstrated by example, but it is quite
difficult to characterize the amount of error.

The second issue is the solution of the network of Fig.
2. We can immediately transform the network of Fig. 2 to
that of Fig. 4 by recognizing that there will never be more
than T, type k jobs in the composite queue, k = 1, 2.
Thus, we can let the service rate function for the compos-
ite queue be

[Lk(nl, n2) = Rk(min (le "1)’ min (sz n2))5 (1)
where k =1,2,n =0, +,N,n, =0, N,

A composite queue with this rate function does not
necessarily satisfy product form. However, the network
of Fig. 4 with this rate function is easily solved by
considering the underlying Markov process. Many nu-
merical approaches apply readily to such a Markov
process. Gauss-Seidel iteration and the related methods
considered by Stewart [24] are obvious possibilities.
Brandwajn’s recent iterative method could be used [25].
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We, somewhat arbitrarily, choose to apply Herzog’s
method [26] to this problem; see [27] for details.

Since it is difficult to characterize the error introduced
by the replacement of the subnetwork of Fig. 1 by the
composite queue, it is necessary to empirically evaluate
the approximate method. Ideally, one would run experi-
ments for a wide parameter space of models. In our
experiments we fixed several parameters (see Table 1)
and varied N, N,, T,, and T,. Three pairs of values were
used for (N,, N,), (20, 2), (30, 3), and (40, 4). T, and T,
were chosen as follows. For a given (N,, N,) pair, the
network was evaluated assuming no memory contention.
(All of the networks evaluated satisfy product form
except for memory contention.) One (T, T,) pair was
chosen so that T,, k = 1, 2, was approximately equal to
the mean memory queue length of type & jobs, Lk’Memory,
in the network without memory contention. In other
WOI'dS, T, k = N, k- Lk,Terminals’ where Lk,Terminals is the
mean type k queue length at the terminals in the network
without memory contention. This should result in moder-
ate memory contention. The other two pairs were chosen
to have T 50% larger, i.e., minimal memory contention,
and to have T 50% smaller, i.e., severe memory conten-
tion. Table 2 gives the nine parameter combinations.

Reference values were obtained by simulation using the
Research Queueing Package (RESQ) {28, 29]. Confidence
intervals were obtained using the regenerative method
[30]. A sequential stopping rule [31] was used to obtain a
relative width of 5% for the confidence interval for the
type-independent mean response time (mean time from
memory request to memory release for all jobs) at a 90%
confidence level. Table 2 also gives the CPU time in
seconds spent on these simulations on an IBM 370/168.
For each of the nine cases, the CPU time for approximate
solution was less than one-half second on a 168.

Since the simulation point estimates are not exact, and
a confidence interval does not necessarily contain the
corresponding true value, it is not clear how accuracy of
the approximation values should be judged. The following
criteria are somewhat arbitrary and may be more strin-
gent than required by many applications. Given a per-
formance measure v from the approximation, let us
construct an interval (v — 8, v + 8) such that it is the
smallest interval that (partially) overlaps the simulation
confidence interval for this measure. If § = 0.05 X », then
the approximation value is considered satisfactory; if 6 <
0.10 X », then the approximation value is considered in
error; and if § > 0.10 X p, then the approximation value is
considered severely in error.

These criteria were applied to the approximation re-
sults for all queues (terminals, memory, CPU, and disks)
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Table 1 Parameters fixed for all experiments.

Mean think time: type 1—5 seconds, type 2-—10 seconds.
(exponential distribution, ‘‘Infinite Server”’ discipline)

Mean number of CPU-I/O cycles: type 1—10, type 2—20.
(geometric distribution)

Mean CPU service time: type 1—10 ms, type 2—100 ms.
(exponential distribution, Processor Sharing discipline)

Four identical disks with same parameters for each type:
Branching probabilities from CPU to disk: 0.25.
Mean disk service time: 35 ms.
(exponential distribution, FCFS discipline)

Table 2 Dedicated memory parameter combinations.

Case N T T

. 1 5 Simulation time

(s)

403
525
330
507
594
442
603
984
816

—
LD BN N = WA

OO0 ~1 N bW =
Sbh WL WNDRN
ST QN R Y

for both type-dependent and type-independent measures
of utilization, throughput, mean queue length and mean
queueing time. (The memory queueing time is defined as
time from request until release.) The approximation re-
sults were satisfactory for all nine parameter combina-
tions for all measures except for type-dependent CPU
utilization. The type 1 CPU utilization was underestimat-
ed and in error for all nine combinations. The type 2 CPU
utilization was overestimated and in error for all combina-
tions except combination 3, where the type 2 CPU
utilization was satisfactory. Table 3 gives the approxima-
tion values and simulation confidence intervals for type-
independent CPU utilization (U) and mean response
times (memory queueing time Q) and type-dependent
mean response times. The achieved accuracy seems more
than adequate for most applications, and the approxima-
tion solutions required roughly three orders of magnitude
less computation than the simulations.

4. Shared resources

In this section we consider the case that the outer
resource in the nesting (memory in our example) is
managed so that different types of jobs share the same
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Table 3 Dedicated memory performance measures.

Case UCPU QMemory Ql,Memory QZ.Memory
1 0.62 (0.60, 0.63) 0.95 (0.91, 0.95) 0.80 0.77, 0.80) 4.66 (4.49, 5.09)
2 0.60 (0.59, 0.61) 1.08 (1.06, 1.11) 0.93 (0.90, 0.95) 5.08 (4.71, 5.31)
3 0.49 (0.48, 0.50) 4.79 (4.64, 4.87) 4.83 (4.68, 4.93) 4.09 (3.86, 4.31)
4 0.84 (0.83, 0.85) 1.28 (1.24, 1.30) 1.06 (1.03, 1.08) 7.59 (6.70, 7.64)
5 0.80 0.79, 0.81) 1.42 (1.37, 1.44) 1.17 (1.13, 1.19) 9.13 (8.42, 9.69)
6 0.69 0.69, 0.71) 4.23 (4.09, 4.30) 4.10 (3.97, 4.17) 6.44 (6.08, 6.95)
7 0.96 (0.96, 0.97) 1.83 (1.79, 1.87) 1.50 (1.47, 1.549) 13.30 (12.15, 14.10)
8 0.95 (0.95, 0.96) 2.00 (1.98, 2.07) 1.69 (1.67, 1.74) 12.46 (11.98, 13.26)
9 0.87 (0.87, 0.88) 2.69 (2.65, 2.78) 2.33 (2.30, 2.42) 14.47 (13.48, 15.15)
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units of that resource. Thus, all types of jobs share
exactly the same simultaneously held resources. This
case is, perhaps, more important than the dedicated
resource case. Unfortunately, the shared resource case
also seems more difficult. The difficulty is in transforming
the network of Fig. 2 to that of Fig. 4, to avoid the
relatively expensive solution of the network of Fig. 2. The
difficulty of this transformation depends on the memory
scheduling discipline; for some of the most interesting
disciplines an accurate transformation does not seem
feasible.

For strictly preemptive priority, the appropriate trans-
formation seems, assuming type 1 jobs have higher priori-
ty, to use

w(ny, 1) = Ry(min (T, n,), min (T - min (T, n,), n,)), )

k = 1, 2. Corresponding to Eq. (1), Eq. (2) gives a simple
and intuitively reasonable basis for selecting a specific
R, (), i)) to use for p,(n,, n,) when n +n,>T.

For other disciplines, such as FCFS or non-preemptive
priority, there seems to be no comparably simple or
intuitively reasonable basis for the transformation. The
problem is that the representation of memory and the
nested subnetwork by a function of the form u (n,, n,)
discards essential state information. For the FCFS disci-
pline we investigated a number of weighted sum ap-
proaches, e.g., equal weights:

and Ward attempts this transformation, we are skeptical
of its accuracy until it has been subjected to significant
empirical evaluation.)

For these reasons, we accepted the expense of solving
the network of Fig. 2. This allows us to simply use u,(n,,
n,) = R,(n,, n,). Herzog’s method [26] does not easily
extend to the network of Fig. 2. Since the underlying
Markov process is not a two-dimensional birth and death
process, Brandwajn’s recent method [25] does not apply.
However, Gauss-Seidel iteration and the related methods
considered by Stewart [24] do apply. We choose to use
Gauss-Seidel iteration. Implementation details are given
in [27]. With non-preemptive priority there are no further
difficulties. With FCFS there is the problem that the
Markov states of the network of Fig. 2 must include
information on the ordering of jobs in the memory queue,
and thus the number of states is too large for numerical
solution to be feasible. For this reason, we introduce
another approximation, representing FCFS scheduling by
random scheduling. With random scheduling, ordering
information is not required for a Markov process repre-
sentation, and numerical solution is feasible.

Besides scheduling, there is another issue of interest in
the shared resource case which is a minor consideration
in the dedicated resource case: The different job types
may require different amounts of resource. So let us now
consider T to be the number of abstract units of memory

min(T ;) available and A,, k¥ = 1, 2, to be the number of units

> R (min (T — t, n), 1) required by each type k job. When different types of jobs

_e=T-min(T,n)) have different resource requirements, First-Fit (FF)

wilnys my) = min (T, n) + min (T, n,) + 1 = T ’ scheduling is usually more interesting than FCFS. FF is

ntnz=T k=12 Q)

but all approaches attempted resulted in severe underes-
timates of response times. (Since the method of Newsom
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the same as FCFS except that a satisfiable request is
satisfied even when a job ahead in the queue must wait
because its request is greater than the number of units
currently available. This issue has little impact on the
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difficulty of numerical solution of the network of Fig. 2.
The more general memory organizations considered by
Brown are easily incorporated in the iterative solution of
the network of Fig. 2 [27].

Tables 4 and 5 summarize the cases considered in
empirical evaluation of these methods. There are six
groups of nine cases, with one case in each of those
groups corresponding to one of the cases of Table 2. The
first three groups have the same memory requirement for
each job type. In the second three groups the second job
type requires four times as much memory as the first. The
first group has FCFS scheduling. The second and fifth
groups have non-preemptive priority scheduling with
type 1 jobs having higher priority. The third and sixth
groups have non-preemptive priority scheduling with
type 2 jobs having higher priority. The fourth group has
FF scheduling. In Table 4 the column headed ‘‘App.”’
gives the number of CPU seconds required for the
approximate solution on a 370/168. Similarly, the column
headed “‘Sim.’’ gives the simulation CPU time. The four
columns under “‘Ind. Errors” give the numbers of type-
independent errors and severe errors for utilization (U),
throughput (R), mean queue length (L), and mean queue-
ing time (Q). (The maximum number of errors for a given
measure is seven, one per queue.) Similarly the remaining
four columns give the numbers of type-dependent errors.
(The maximum number of errors for a given measure is
fourteen, two per queue.) Table 5 has the same format as
Table 3. It gives the approximation values and simulation
confidence intervals for CPU utilization and mean re-
sponse times. Measures with errors and severe errors are
preceded by ‘‘e’’ and ‘‘s,”’ respectively.

Generally speaking, the accuracy is good, though not
as uniformly good as for the dedicated memory cases.
The priority cases seem as free of errors as the dedicated
memory cases, but case 14 (FCFS) and cases 42 and 45
(FF) have many errors. Even for these three cases the
accuracy would likely be sufficient for many applications.
The CPU time comparisons, though still quite favorable,
are not as good because of the relatively *‘brute-force’
iterative methods used for the solution of the network of
Fig. 2.

5. Summary

We have shown how the ‘‘Norton’s Theorem’’ approach
to approximate solution of queueing networks with simul-
taneous resource possession can be extended to networks
with heterogeneous jobs. We have empirically demon-
strated the accuracy of the approach and shown that the
approximation is typically two orders of magnitude less
expensive than simulation. Both the accuracy and ex-
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Table 4(a) Shared memory parameter combinations and error
summary for First Come First Served memory scheduling and
homogeneous memory requirements (1 unit),

Case N, N, Run time Ind. errors  Dep. errors
T App. Sim. U R L Q UR L ¢Q

10 20 2 6 1 37%9 0 0 0 0 2 0 0 O
11 20 2 4 1 733 0 0 0 0 1 0 0 O
12 20 2 2 2 977 0 0 0 0 0O 0 0 O
133 3 9 7 422 1 0 0 0 4 0 0 O
14 30 3 6 8 876 1 0 5 2 3 0 5 3
15 30 3 3 9 1394 0 0 0 0 0 0 0 O
16 40 4 18 20 69 0 0 0 0 2 0 0 O
17 40 4 12 23 118 0 0 0 0 1 ¢ 0 O
18 40 4 6 28 1343 0 0 0 0 0 0 0 O

Table 4(b) Shared memory parameter combinations and error
summary for priority memory scheduling (type 1 has higher
priority) and homogeneous memory requirements (1 unit).

Case N, N, Run time Ind. errors  Dep. errors
T App. Sim. U R L Q U R L Q

19 20 2 6 1 319 0 0 0 0 2 0 O O
20 20 2 4 1 604 0 0 0 0 2 0 0 O
20 20 2 2 2 819 0 0 0 0 0 0 O O
22 3 3 9 7 594 0 0 0 0 2 0 0 O
23 30 3 6 7 1076 0 0 0 0 1 0 0 O
24 30 3 3 8 834 0 0 0 0 1 O 1 1
25 40 4 18 18 806 0 0 0 0 2 0 0 O
26 40 4 12 21 77 0 0 0 0 1 0 O O
27 40 4 6 26 680 0 0 0 0 0 0 0 O

Table 4(c) Shared memory parameter combinations and error
summary for priority memory scheduling (type 2 has higher
priority) and homogeneous memory requirements (1 unit).

Case N, N, Run time Ind. errors Dep. errors
T App. Sim. U R L Q UR L (@

28 20 2 6 1 439 0 0 0 0 1 0 0 O
29 20 2 4 1 708 0 0 0 0 2 0 O O
30 20 2 2 1 13% 0 0 0 0 0 0 0 O
31 30 3 9 6 634 0 0 0 0 2 0 0 O
32 30 3 6 7 1375 0 0 0 0 2 0 O O
33 30 3 3 8 1507 0 0 06 0 0 0 0 O
34 40 4 18 17 613 0 0 0 0 2 0 O O
35 40 4 12 19 1087 0 0 0 O 1 O O O
36 40 4 6 23 1623 0 0 0 0 0 O O O
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Table 4(d) Shared memory parameter combinations and error
summary for First Fit memory scheduling and heterogeneous
memory requirements (type 1 jobs require 1 memory unit, type 2
jobs require 4 memory units).

Case N, N, Run time Ind. errors Dep. errors

T App. Sim. U R L Q UR L Q
37 20 2 11 3 401 0 0 0 0 2 0 0 O
38 20 2 7 4 493 0 0 0 0 2 0 0O
39 20 2 4 4 2048 0 0 0 0 2 0 00
40 30 3 14 23 1049 0 0 0 0 2 0 0O
41 30 3 9 25 1518 0 0 0 O 2 0 0 O
42 30 3 S 21 3302 0 0 5 1 10 7 13 2
43 40 4 27 58 524 0 0 0 0 2 0 0 O
44 40 4 18 8 1731 0 0 1 1 0 O 1 1
45 40 4 9 87 2271 0 0 0 3 3 0 5 9

Table 4(¢) Shared memory parameter combinations and error
summary for priority memory scheduling (type 1 has higher
priority) and heterogeneous memory requirements (type 1 jobs
require 1 memory unit, type 2 jobs require 4 memory units).

Case N, N, Run time Ind. errors  Dep. errors
T App. Sim. U R L Q U R L 0Q
46 20 2 11 1 401 0 0 0 0 2 0 0 O
47 20 2 7 1 467 0 0 0 0 2 0 0 O
48 20 2 4 1 1533 0 0 0 0 2 0 0 O
49 30 3 14 7 84 0 0 0 0 2 0 0 O
50 30 3 9 8 1300 0 0 0 0 2 0 0 O
51 30 3 5 5 108 0 0 0 0 2 0 0 O
52 40 4 27 19 624 0 0 0 0 2 0 0 O
53 40 4 18 23 726 0 0 0 0 2 0 0 O
54 40 4 9 17 426 0 0 0 0 2 0 0 O

Table 4(f) Shared memory parameter combinations and error
summary for priority memory scheduling (type 2 has higher
priority) and heterogeneous memory requirements (type 1 jobs
require 1 memory unit, type 2 jobs require 4 memory units).

Case N, N, Run time Ind. errors Dep. errors
T App. Sim. U R L Q U R L Q
55 20 2 11 3 437 0 0 0 0 2 0 0 O
56 20 2 7 4 2260 0 0 0 0 2 G O O
57 20 2 4 3 2519 0 0 0 0 2 0 O O
58 30 3 14 21 1326 0 0 0 0 2 0 0 O
59 3 3 9 2 26 0 0 0 0 2 0 0 O
60 30 3 5 5 989 0 0 0 0 2 0 O O
61 40 4 27 53 409 0 0 0 0 2 0 0 O
62 40 4 18 74 2460 0 O O 0 2 0 O O
63 40 4 9 66 2797 06 0 0 0 2 0 O O
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pense should be acceptable in many applications, but
some applications will require better accuracy or lower
expense.

Though the focus has been on the memory contention
model of Fig. 1, our discussion applies directly to other
examples of simultaneous resource possession and to
more than two simultaneously held resources, as in the
homogeneous job case. Similarly, though we have as-
sumed the network satisfies product form except for the
simultaneous resource possession, the approach applies
readily to non-product form networks which are amena-
ble to flow-equivalence approximate solution.

Appendix: Bard’s method

Bard’s method for handling memory contention provides
a very simple iterative approach [20]. The principal
advantage of the approach is that it is very inexpensive.
The method is generally less accurate than the methods
we have described.

A fundamental assumption of the approach is that, if
there is sufficient memory on the average for a given type
of job, then that job never waits for memory. The types of
jobs are partitioned into “‘trivial”’ and ‘‘non-trivial”
types; it is assumed that trivial jobs never wait for
memory. Our discussion here assumes all jobs are non-
trivial jobs.

Let there be K job types. The following discussion
assumes A, = 1, k=1, - -, K. It is simple to extend the
discussion to avoid that assumption. From Little’s Rule
one can reasonably say that the mean number of type k
jobs holding memory is

H,
+ W, + H,

N, 0
k,Terminals

, k=1,---K,  (AD

where H, is the mean time type k jobs spend holding
memory and W, is the mean time type k jobs spend
waiting for memory. Thus

d H
2N, . =T. (A2)
k=1 Qk,Terminals + Wk + Hk

If (A2) results in a strict inequality, then it is assumed that
there is no memory contention. This can clearly result in
noticeable errors if the left-hand side of (A2) is nearly as
large as the right-hand side. If (A2) results in an equality,
then one must solve that equation for W,ok=1+- K
This solution depends on memory scheduling. Bard con-
siders two cases, FCFS and ‘‘Fair-Share,”” a discipline
used in the IBM VM/370 operating system. We ignore the
Fair-Share discipline. The approach does not apply to FF
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Table 5(a) Shared memory performance measures for First Come First Served memory scheduling and homogeneous memory

requirements.

Case UCPU QMemory Ql "Memory QZ ,Memory

10 0.62 (0.60, 0.63) 0.90 (0.87, 0.91) 0.75 (0.73, 0.76) 4.73 (4.34, 4.93)
11 0.61 (0.60, 0.62) 1.08 (1.05, 1.10) 0.93 (0.91, 0.95) 4.60 (4.46, 4.88)
12 0.54 (0.53, 0.54) 2.57 (2.46, 2.59) 2.45 - (2.35,2.47) 4.98 4.85, 5.12)
13 0.84 (0.82, 0.84) 1.29 (1.20, 1.26) 1.08 (1.00, 1.04) 7.48 (6.95, 7.92)
14 © 0.82 (0.83, 0.85) el.62 (1.40, 1.47) s1.42 (1.20, 1.26) 6.89 (6.87, 7.47)
15 " 0.71 0.69, 0.71) 3.75 (3.60, 3.78) 3.59 (3.44, 3.62) 6.87 (6.79, 7.01)
16 0.96 (0.95, 0.96) 1.82 (1.78, 1.87) 1.50 (1.47, 1.54) 13.40 (12.41, 14.00)
17 0.95 (0.95, 0.96) 1.99 (1.94, 2.03) 1.68 (1.64, 1.71) 12.49 (11.63, 12.74)
18 0.90 (0.90, 0.90) 3.49 (3.44, 3.61) 3.24 (3.19, 3.35) 9.33 (9.23, 9.81)

Table 5(b) Shared memory performance measures for priority memory scheduling (type 1 has higher priority) and homogeneous
memory requirements.

Case UCPU QMemory Ql »>Memory Q2,Memory

19 0.62 (0.60, 0.64) 0.90 (0.88, 0.93) 0.75 0.74, 0.77) 4.74 (4.39, 5.02)
20 0.61 (0.60, 0.62) 1.05 (1.03, 1.08) 0.91 (0.89, 0.93) 4.78 (4.39, 4.81)
21 0.50 (0.49, 0.50) 2.16 (2.11, 2.22) 1.91 (1.86, 1.95) 9.45 (9.35, 10.23)
22 0.84 (0.82, 0.84) 1.28 (1.24, 1.30) 1.07 (1.04, 1.09) 7.53 (6.78, 7.61)
23 0.82 (0.81, 0.82) 1.53 (1.50, 1.58) 1.31 (1.29, 1.35) 7.63 (7.27, 7.92)
24 0.59 (0.59, 0.60) 2.77 (2.78, 2.91) 2.32 (2.32,2.43) e22.49 (24.07, 27.30)
25 0.96 (0.95, 0.96) 1.82 (1.78, 1.86) 1.50 (1.47, 1.53) 13.41 (12.64, 14.15)
26 0.95 (0.95, 0.96) 1.95 (1.91, 2.00) 1.63 (1.59, 1.67) 12.85 (12.17, 13.53)
27 0.82 (0.81, 0.82) 2.67 (2.58, 2.70) 225 (2.19, 2.28) 19.37 (17.84, 2.13)

Table 5(c) Shared memory performance measures for priority memory scheduling (type 2 has higher priority) and homogeneous
memory requirements.

Case UCPU QMemory Q1 ;Memory QZ,Memory

28 0.62 (0.62, 0.65) 0.90 (0.90, 0.94) 0.75 (0.75, 0.78) 4.72 (4.56, 5.11)
29 0.61 (0.60, 0.62) 1.09 (1.04, 1.09) 0.95 (0.91, 0.95) 4.51 (4.16, 4.53)
30 0.55 (0.54, 0.55) 2.79 (2.68, 2.81) 2.73 (2.62, 2.76) 3.78 (3.60, 3.75)
31 0.84 (0.84, 0.86) 1.29 (1.27, 1.34) 1.08 (1.06, 1.11) 7.46 (7.24, 8.11)
32 0.82 (0.81, 0.82) 1.66 (1.59, 1.67) 1.47 (1.41, 1.48) 6.65 (6.22, 6.67)
33 0.73 (0.73, 0.74) 4.25 (4.22, 4.44) 4.22 (4.19, 4.40) 4.77 (4.74, 4.98)
34 0.96 (0.95, 0.96) 1.82 (1.75, 1.83) 1.50 (1.45, 1.51) 13.40 (12.06, 13.78)
35 0.95 (0.95, 0.96) 2.01 (1.94, 2.04) 1.69 (1.64, 1.72) 12.39 (11.68, 12.97)
36 0.91 (0.91, 0.92) 3.83 (3.78, 3.97) 3.64 (3.58, 3.77) 7.84 (7.72, 8.18)

Table 5(d) Shared memory performance measures for First Come First Served memory scheduling and heterogeneous memory

requirements.

Cas € UCPU QMemory Ql Memory Q2,Memory

37 0.62 (0.60, 0.63) 0.91 (0.86, 0.90) 0.76 0.72, 0.75) 4.72 (4.29, 4.82)
38 0.60 0.61, 0.63) 1.02 (0.97, 1.01) 0.86 (0.80, 0.84) 5.18 (5.10, 5.71)
39 0.52 (0.52, 0.53) 1.96 (1.99, 2.09) 1.74 (1.78, 1.88) 7.52 (6.95, 7.28)
40 0.84 (0.83, 0.84) 1.34 (1.37, 1.44) 1.13 (1.17, 1.23) 7.36 (6.81, 7.32)
41 0.80 (0.80, 0.81) 1.69 (1.59, 1.67) 1.47 (1.37, 1.449) 7.64 (7.51, 8.07)
42 0.66 (0.66, 0.67) 5.2.48 (2.75, 2.84) s2.12 (2.45, 2.53) s15.34 (11.57, 12.02)
43 0.96 (0.96, 0.97) 1.83 (1.79, 1.88) 1.51 (1.48, 1.54) 13.34 (12.09, 14.13)
44 0.95 (0.95, 0.96) €2.05 (2.21, 2.32) s1.74 (1.92, 2.01) 12.28 (11.13, 11.87)
45 0.85 (0.78, 0.86) 2.71 (2.53, 2.61) 2.33 (2.18, 2.26) el16.29 (14.13, 15.08)
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Table 5(¢) Shared memory performance measures for priority memory scheduling (type 1 has higher priority) and heterogeneous
memory requirements.

Case UCPU QMemory Ql "Memory Q2,Memory

46 0.62 (0.60, 0.63) 0.91 (0.86, 0.90) 0.76 (0.72, 0.75) 4.72 (4.29, 4.82)
47 0.61 (0.60, 0.62) 0.97 (0.94, 0.99) 0.81 (0.79, 0.83) 5.28 (4.85, 5.47)
48 0.52 0.52, 0.53) 1.85 (1.81, 1.90) 1.62 (1.58, 1.67) 8.22 (7.99, 8.47)
49 0.84 (0.82, 0.84) 1.32 (1.27, 1.33) 1.11 (1.06, 1.11) 7.43 6.87, 7.54)
50 0.80 (0.80, 0.81) 1.55 (1.52, 1.60) 1.32 (1.30, 1.36) 8.21 (7.86, 8.61)
51 0.65 (0.65, 0.66) 2.19 (2.14, 2.25) 1.80 (1.76, 1.85) 18.44 (17.69, 19.44)
52 0.96 (0.95, 0.96) 1.83 (1.75, 1.84) 1.51 (1.46, 1.52) 13.35 (11.57, 13.32)
53 0.95 (0.95, 0.96) 1.97 (1.89, 1.98) 1.65 (1.59, 1.66) 12.77 (11.83, 13.18)
54 0.85 (0.83, 0.85) 2.23 (2.14, 2.25) 1.82 (1.74, 1.83) 2.96 (19.26, 21.77)

Table 5(f) Shared memory performance measures for priority memory scheduling (type 2 has higher priority) and heterogeneous
memory requirements.

Case UCPU QMemory Ql ;Memory QZ. Memory

55 0.62 (0.60, 0.62) 0.91 (0.87, 0.92) 0.76 (0.74, 0.77) 4.70 4.27, 477
56 0.60 0.59, 0.60) 1.32 (1.25, 1.31) 1.18 (1.11, 1.17) 4.59 (4.52, 4.74)
57 0.54 (0.53, 0.54) 2.98 (2.75, 2.88) 2.92 (2.67, 2.81) 4.06 4.10, 4.25)
58 0.83 (0.83, 0.84) 1.41 (1.34, 1.41) 1.21 (1.14, 1.20) 7.08 (6.78, 7.29)
59 0.81 (0.80, 0.81) 2.24 (2.14, 2.26) 2.08 (1.99, 2.10) 5.66 (5.55, 577
60 0.65 (0.65, 0.66) 2.19 (2.13, 2.24) 1.80 (1.75, 1.84) 18.44 (17.58, 19.36)
61 0.96 (0.95, 0.97) 1.83 (1.81, 1.90) 1.51 (1.49, 1.56) 13.32 (12.51, 14.39)
62 0.95 0.95, 0.95) 2.30 (2.20, 2.32) 2.01 (1.92, 2.02) 10.93 (10.61, 11.20)
63 0.88 (0.87, 0.88) 5.29 (5.08, 5.33) 5.23 (5.02, 5.26) 6.26 (6.17, 6.34)
Table Al Shared memory performance measures (Bard’s method).

Case UCPU QMemory Ql ;Memory Qz‘Memory

10 0.64 (0.60, 0.63) €0.80 (0.87, 0.91) s0.67 (0.73, 0.76) e4.07 (4.34, 4.93)
11 0.64 (0.60, 0.62) s0.80 (1.05, 1.10) 50.67 (0.91, 0.95) e4.07 (4.46, 4.88)
12 0.51 (0.53, 0.54) e2.87 (2.46, 2.59) e2.73 (2.35, 2.47) s5.74 (4.85, 5.12)
13 €0.90 (0.82, 0.84) s1.01 (1.20, 1.26) s0.85 (1.00, 1.04) s5.33 (6.95, 7.92)
14 €0.90 (0.83, 0.85) s1.01 (1.40, 1.47) s0.85 (1.20, 1.26) s5.33 6.87, 7.47)
15 0.70 (0.69, 0.71) 3.87 (3.60, 3.78) 3N (3.44, 3.62) 7.10 6.69, 7.01)
16 1.00 (0.95, 0.96) el.63 (1.78, 1.87) s1.34 (1.47, 1.54) ell.51 (12.41, 14.00)
17 1.00 (0.95, 0.96) s1.63 (1.94, 2.03) sl.34 (1.64, 1.71) 11.51 (11.63, 12.74)
18 0.94 (0.90, 0.950) e3.18 (3.44, 3.61) €2.96 (3.19, 3.35) e8.47 (9.23, 9.81)
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or priority disciplines of the sort we have considered.
With FCFS, Bard assumes that all job types have the
same mean wait for memory, W.

The iteration proceeds by assuming values for H,, k =
1, - - -, K. When (A2) results in an equality, it becomes a
nonlinear equation in a single unknown, which Bard
suggests solving by Newton’s method. Once W has been
obtained, then one can obtain the mean number of each
type of job holding memory from expression (Al). Those

CHARLES H. SAUER

values can, in turn, be used to obtain new values for H,,
k=1, - - -, K. The iteration terminates, hopefully, when
there is little change in the mean response times, (W +
H), k=1, K. Bard suggests using the mean time
spent in service as the initial estimate for H,, and that the
initial value W = 0 be used with Newton’s method. The
iteration is not guaranteed to converge; Bard considers
the iteration to have converged if successive values for
the type-dependent mean response times do not vary by
more than 5%.
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We tried Bard’s method as just described for cases 10—

18 of Tables 4 and 5. Table Al corresponds to Table 5 for
these cases. The accuracy was significantly worse than
with the Norton’s Theorem approach, but still adequate
for some applications. Bard’s method is most attractive
for larger problems than our test cases, e.g., problems
with more job types and larger populations, where the
Norton’s Theorem approach would be prohibitively ex-
pensive for most applications. Bard’s method remains
very inexpensive even for much larger problems.
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