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Approximate  Solution of Queueing  Networks  with 
Simultaneous  Resource  Possession 

Queueing networks  are  important as Performance models of computer and  communication systems  because the 
performance of these  systems  is usually principally  affected by contention for  resources. Exact numerical solution of a 
queueing network is usually only feasible  ifthe network has a product  form solution in the sense of Jackson.  An important 
network  characteristic  which  apparently precludes a product  form solution is simultaneous  resource possession, e.g., a 
job  holds  memory  and processor simultaneously. This paper  extends  previous  methods for approximate numerical 
solution of queueing networks  with  homogeneous jobs and simultaneous resource possession  to networks  with 
heterogeneous jobs and  simultaneous  resource possession. 

1. Introduction 
A major objective of computing systems (including  com- 
puter communication systems) development in the last 
two decades has been to promote  sharing of system 
resources. Sharing of resources necessarily leads to con- 
tention, i .e.,  queueing, for resources. Contention  and 
queueing  for resources are typically  quite difficult to 
quantify  when  estimating system performance. A major 
research topic in computing systems performance in the 
last two decades has been  solution  and  application of 
queueing  models. These models are usually networks of 
queues  because of the interactions of system resources. 
For general  discussion of queueing  network  models of 
computing systems, see Sauer and  Chandy [ 11 and recent 
special issues of Computing  Surveys [2] and Computer 
Dl. 

Much  of the attention in queueing  network research has 
been  given to models  with a product  form solution in the 
sense that 

solution  feasible  where a large  number of queues andlor 
jobs would otherwise make  numerical  solution  infeasible. 
Since the original  work  of Jackson [4], it  has  been  shown 
that  the  product  form  solution exists for  networks with 
heterogeneous jobs, several important  scheduling  disci- 
plines,  and state-dependent behavior [5-71. Efficient 
computational  algorithms  have  been  developed for these 
networks [8-113. 

However, there are a number of system characteristics 
which apparently preclude a product form  solution. 
Among the most  important of these is  simultaneous 
resource possession, i .e.,  a job’s activities  require  simul- 
taneous  possession of  more  than one resource, e.g., 
memory and processor. If there is significant  contention 
for only one of the simultaneously  held resources, then 
the model  may ignore the others. Otherwise,  one  must 
usually settle for an approximate  numerical  solution 
[12, 131 or simulation. 

P(S1, * . e ,  S,) = 
PI(S,) * * * P&f(S&$ 

G 
t This  paper focuses on approximate  numerical  solution 

of models  with  simultaneous resource possession in cases 
where P(Sl, a ,  SM) is the probability of a network state such as the one depicted in Fig. 1. In this case a job 
in a network  with M queues, Pm(Sm), m = 1 ,  . . a ,  M ,  is a holding  memory  may  simultaneously  also  hold the CPU 
factor corresponding to the probability of the state of or simultaneously also hold a disk. Further, requests for 
queue m, and G is a normalizing constant. The existence and releases of simultaneously  held resources are nested, 
of a product  form  solution for a model  makes  numerical Le., memory  is requested before the CPU is requested 
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and  released after a disk is released. With such  nesting 
one can transform the original  network into one of the 
form of Fig. 2. A solution of the transformed network can 
then  be interpreted as an approximate solution of the Terminals 

original network. The approximate solution will usually 
be  much less expensive than  simulation. It is quite 
difficult to estimate the error in the approximate solution, 
but empirical studies suggest the error is acceptable in 1 
many situations. Some of the influential  works  using  this - J 

approach for models  similar to this one are those of Figure 1 Queueing  network  model of interactive  computer 
Brandwajn  [14],  Brown  [15,  161, Courtois [17,  181, and  system. 
Keller [19]. This general approach can be  applied to other 
resources and to more than two simultaneously  held 
resources. For an introduction to previous work  using 
this approach, see the survey papers by Chandy  and 
Sauer [12,  131. Two other approaches to solution of this F;tZ , r - l ~  - - - - - - - ~ 

problem are those of Bard [20] and Jacobson and La- R0 

zowska [21]. Terminals Composite 

pMae;:s 0 rL“- , 
0 Disk I 

0 I 
I 
I c= 

Except for the work of  Bard  [201 and  Newsom  and 
Ward 1221, previous efforts have  assumed that jobs were I 
homogeneous.  Our interest here  is extending the above 
general approach to networks with heterogeneous jobs. 
Though  Bard’s approach applies to fairly general cases 
with heterogeneous jobs, we  find it less accurate than our 
approach for many cases; see the Appendix for further 
discussion.  Newsom  and  Ward attempted to extend 
Brown’s  work  [15, 161 to heterogeneous jobs. Though 
they  were able to extend the relevant equations, the result 
was  computationally impractical, as they discussed. Fur- 
ther, only two test cases were considered in their paper. 

In Section 2 we consider the model of Fig. 1 without 
memory contention in order to develop previous results 
onflow-equivalence, the basis of this work.  In Section 3 
we consider the model of  Fig. 1 with heterogeneous jobs 
where separate memory is dedicated to each type of job. 
In Section 4 we consider the case where the different 
types of jobs share memory.  Empirical results demon- 
strate the effectiveness of the methods used. 

2. Flow-equivalence 
A principal objective in the transformation of the network 
of Fig. 1 to the network of Fig. 2 is to obtain flow- 
equivalence, i.e., the flow of jobs through the composite 
queue of Fig. 2, given a specific  population of jobs in that 
queue, is equivalent to the flow  of jobs through the 
corresponding subnetwork of Fig.  1,  given the same 
population of jobs in the subnetwork. This can be ap- 
proached either by  using “Norton’s Theorem” for queue- 
ing networks, analogous to Norton’s Theorem for electri- 
cal circuits [23], or by  using concepts of weak-coupling 
of subnetworks [17].  We use the Norton’s  Theorem 
approach. 

I 

Figure 2 Computer  system  model with CPU and I/O disks 
replaced by composite  queue. 

Disk 

Figure 3 CPU and  disk  subnetwork. 

Let us assume that there are two types of jobs, num- 
bered 1 and 2. Extension to more than two types of jobs is 
conceptually  trivial. (Extension to more  than a few job 
types may  be computationally prohibitive, as with other 
queueing  network  problems.) Let the number of type k 
jobs be Nk, k = 1, 2. 

The Norton’s Theorem approach to this problem is 
straightforward. We would consider the network of Fig. 1 
with the terminals queue “shorted,” e.g., with service 
time set to zero. Our intermediate objective is to obtain 
the throughput  through the “short.” To obtain the de- 
sired throughput, we need only solve the network of Fig. 
3 to obtain the throughput through the outer loop. Let 895 
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Terminals Composite 

Figure 4 Computer  system  model  with  memory,  CPU,  and 
disk  replaced by composite  queue. 

Rk(n,, n,) be the throughput of type k jobs through the 
outer loop of Fig. 3 given n1 type 1 jobs and n, type 2 jobs 
in that  network, k = 1 ,  2 ,  n ,  = 0, . -, N , ,  n2 = 0, e ,  

N,. Then  let the composite queue of Fig. 2 have  service 
rate pk(n,, n,) = Rk(n,, n,) for type k jobs when there are 
n, type 1 jobs  and n2 type 2 jobs in the composite queue. 
Both types of jobs  are in service simultaneously when 
both types of jobs  are  present in the queue. 

Since we have assumed  for the moment that there is no 
memory contention, the network of Fig. 2 is equivalent to 
the  network of Fig. 4. The network of Fig. 4 satisfies 
product  form if the original network  satisfies  product 
form (assuming no memory contention).  Several compu- 
tational algorithms for  product form  networks apply to 
the network of Fig. 4 if it satisfies product form [ll]. 
However,  composite queues with  general  functions of the 
form pk(n,, n,), such as  the  ones we  obtain  below, do not 
necessarily satisfy  product  form  conditions. 

Assuming that the  network of Fig. 1 satisfies product 
form (assuming no memory  contention),  then  the 
throughputs through the terminals are the same in the 
network of Fig. 1 and the networks with the  composite 
queue (with nonzero  service  time at  the terminals).  Fur- 
ther,  the performance  measures for  the  CPU and disk 
queues can be obtained  from the solutions of the net- 
works of Fig. 2 and  Fig. 3. Throughputs are immediately 
available by flow arguments. Marginal queue length dis- 
tributions and  moments of queue length can be obtained 
as weighted sums where the weights are  the values of the 
composite queue marginal queue length distribution. For 
example, mean queue length of type k jobs  at  the CPU 
can be obtained as 

where P(n, ,  n,) is the marginal probability of n ,  type 1 
jobs and n, type 2 jobs in the composite queue and 
L:,cpU(n,, n,) is  the  mean queue length of type k jobs  at 
the CPU in the network of Fig.  3, given n ,  type 1 jobs and 
n2 type 2 jobs in that  network. Mean queueing times can 

be obtained by Little’s Rule. Utilizations can  be obtained 
either  from  throughputs or marginal queue length distri- 
butions,  depending on the characteristics of the individual 
queues. For more  discussion of individual queue mea- 
sures  see  Sauer and  Chandy [ l ,  Section 6.3.31. This entire 
process is exact  provided  that the original network  satis- 
fies  product  form. 

3. Dedicated resources 
In this section  we  consider the  case  that the outer 
resource in the nesting (memory in our example) is 
managed so that different types of jobs have different 
dedicated  units of the resource. The inner  resource in the 
nesting (CPU or disk in our example)  is  shared among all 
job  types. This case is  more  tractable  than  the fully 
shared  resource case of Section 4. 

Let us assume  that memory is organized in T partitions 
and that each job requires  exactly one partition. In this 
section we assume that  there  are T,  partitions  dedicated 
to type 1 jobs and T2 partitions  dedicated  to  type 2 jobs 
(TI + T, = T ) .  We assume in this  section that, within a 
job  type, memory is  scheduled  First-Come-First-Served 
(FCFS),  independent of the  other  type.  The discussion in 
this section extends directly to  the more general memory 
organizations considered by Brown  for homogeneous 
jobs [161. 

Now we return to  the case of interest, i .e.,  where  there 
is memory contention.  Essentially the  above process is 
followed, but there are two  new  issues to  be considered. 
First, the solution of the network of Fig. 2 no longer gives 
exact values for  the measures for  the network of Fig. 1. 
This  is easily demonstrated by example,  but  it is quite 
difficult to characterize  the  amount of error. 

The second  issue  is the solution of the  network of Fig. 
2.  We can immediately transform  the  network of Fig. 2 to 
that of Fig. 4 by recognizing that  there will never be more 
than Tk type k jobs in the composite queue, k = 1, 2 .  
Thus, we can let the service rate function for the compos- 
ite queue be 

&&, n2) = Rk(min (TI, nl), min V,, n2N, (1) 

w h e r e k = 1 , 2 , n , = 0 ; . . , N , , n , = 0 ; * * , N 2 .  

A composite queue with this rate function does not 
necessarily satisfy  product  form. However,  the network 
of Fig. 4 with this rate function  is easily solved by 
considering the underlying Markov  process. Many nu- 
merical approaches  apply  readily to  such a Markov 
process. Gauss-Seidel iteration  and  the  related  methods 
considered by Stewart [24] are obvious possibilities. 
Brandwajn’s recent iterative  method could be used [25].  
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We,  somewhat  arbitrarily, choose  to apply  Herzog’s 
method [26] to this  problem; see [27] for details. 

Since it is  diacult  to  characterize  the  error introduced 
by the replacement of the  subnetwork of Fig. 1 by the 
composite queue,  it  is  necessary to empirically evaluate 
the approximate  method.  Ideally, one would run  experi- 
ments for a wide parameter  space of models. In  our 
experiments we fixed several  parameters  (see Table 1) 
and  varied N , ,   N 2 ,   T I ,  and T2. Three pairs of values  were 
used for ( N , ,   N J ,  (20, 2), (30, 3), and (40, 4). T,  and T2 
were chosen as follows. For a given ( N , ,   N 2 )  pair,  the 
network  was  evaluated  assuming no memory contention. 
(All of the  networks evaluated  satisfy product form 
except  for memory  contention.)  One ( T I ,  T2) pair  was 
chosen so that Tk, k = 1, 2,  was approximately equal  to 
the mean memory queue length of type k jobs, Lk,Memory, 
in the network without memory contention.  In  other 

mean type k queue length at  the terminals in the network 
without  memory contention.  This should  result in moder- 
ate memory contention.  The  other  two pairs  were chosen 
to have T 50% larger, i .e. ,  minimal memory contention, 
and to  have T 50% smaller, i .e.,  severe memory  conten- 
tion. Table  2  gives the nine parameter combinations. 

words, Tk Nk - Lk,Teminals9 where Lk,Terminals is  the 

Reference  values were obtained  by simulation using the 
Research  Queueing  Package  (RESQ) [28, 291. Confidence 
intervals  were  obtained using the regenerative method 
[30]. A  sequential  stopping  rule [31] was used to obtain a 
relative width of 5% for the  confidence  interval for the 
type-independent mean response time  (mean  time  from 
memory request  to memory  release for all jobs)  at a 90% 
confidence level.  Table 2 also gives the  CPU time in 
seconds  spent on these simulations on an IBM 370/168. 
For  each of the nine cases,  the  CPU time for approximate 
solution  was  less than one-half second on a 168. 

Since the simulation point estimates are not exact, and 
a confidence interval does not  necessarily  contain the 
corresponding true value, it is  not  clear how accuracy of 
the approximation values should be judged. The following 
criteria are somewhat arbitrary  and may be  more  strin- 
gent  than  required  by many applications.  Given  a  per- 
formance  measure v from  the approximation,  let us 
construct  an interval (v - 6, v + 6) such  that it is  the 
smallest interval that (partially) overlaps  the simulation 
confidence interval for this  measure. If 6 5 0.05 x v, then 
the  approximation  value is considered satisfactory; if 6 5 
0.10 X V, then the approximation  value is considered in 
error;  and if 6 > 0.10 x v, then the approximation  value is 
considered  severely in error. 

These criteria were applied to  the approximation  re- 
sults for all queues (terminals, memory,  CPU,  and disks) 

Table 1 Parameters fixed for all  experiments. 

Mean think  time: type 1-5 seconds,  type 2-10 seconds. 
(exponential  distribution,  “Infinite Server” discipline) 

Mean number of CPU-I/O cycles: type 1-10, type 2-20. 
(geometric distribution) 

Mean CPU service time: type 1-10 ms,  type 2-100 ms. 
(exponential  distribution, Processor Sharing  discipline) 

Four identical disks with same  parameters for each  type: 
Branching probabilities  from CPU  to disk: 0.25. 
Mean disk service time: 35 ms. 

(exponential  distribution, FCFS discipline) 

Table 2 Dedicated  memory parameter  combinations. 

Case Simulation  time 
(SI 

1 
2 

20 
20 
20 
30 
30 
30 
40 
40 
40 

2  4  2 
2  3 1 
2 1 1 
3 7 2 
3 5 1 
3 2 1 
4 14 4 
4 9 3 
4 5 1 

403 
525 
330 
507 
594 
442 
603 
984 
816 

for both  type-dependent and type-independent  measures 
of utilization, throughput, mean queue length and  mean 
queueing  time. (The memory  queueing  time is defined as 
time from request until release.)  The approximation re- 
sults  were  satisfactory for all nine parameter combina- 
tions for all measures  except  for type-dependent CPU 
utilization. The  type 1 CPU utilization was underestimat- 
ed  and in error  for all nine  combinations. The  type 2 CPU 
utilization was overestimated  and in error  for all combina- 
tions except combination 3, where  the  type 2 CPU 
utilization was  satisfactory.  Table  3  gives the approxima- 
tion values and simulation confidence intervals  for type- 
independent CPU utilization ( U )  and mean response 
times  (memory  queueing  time Q)  and type-dependent 
mean response times. The achieved accuracy  seems more 
than adequate  for most  applications, and  the approxima- 
tion solutions  required roughly three  orders of magnitude 
less  computation than  the simulations. 

4. Shared  resources 
In this  section we consider the  case  that  the  outer 
resource in the nesting  (memory  in our example) is 
managed so that different types of jobs  share  the  same 897 
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Table 3 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Dedicated memory  performance  measures. 

UCPU QMernory 

0.60 (0.59, 0.61) 1.08 ( 1 . 0 6 ,   1 . 1 1 )  
0.62 (0.60, 0.63) 0.95 (0.91, 0.95) 

0.49  (0.48, 0.50) 4.79 (4.64, 4.87) 
0.84 (0.83, 0.85) 1.28 (1.24, 1.30) 
0.80 (0.79, 0.81) 1.42 (1.37, 1.44) 
0.69  (0.69, 0.71) 4.23 (4.09, 4.30) 
0.96 (0.96, 0.97) 1.83 (1.79, 1.87) 
0.95 (0.95, 0.96) 2.00 (1.98, 2.07) 
0.87 (0.87, 0.88) 2.69 (2.65, 2.78) 

________ 
Ql,Mernory 

0.80 (0.77, 0.80) 
0.93 (0.90, 0.95) 
4.83 (4.68, 4.93) 
1.06 (1.03, 1.08) 
1.17 (1.13, 1.19) 
4.10 (3.97, 4.17) 
1 S O  (1.47, 1.54) 
1.69 (1.67, 1.74) 
2.33 (2.30, 2.42) 

units of that resource. Thus, all types of jobs share 
exactly the same  simultaneously  held resources. This 
case is, perhaps, more  important  than the dedicated 
resource case. Unfortunately, the shared resource case 
also  seems  more  difficult. The difficulty  is in transforming 
the  network of  Fig. 2 to that of  Fig. 4, to avoid  the 
relatively  expensive  solution of the network of Fig. 2. The 
difficulty  of this  transformation depends on the memory 
scheduling  discipline; for some of the most  interesting 
disciplines an accurate transformation does not  seem 
feasible. 

For strictly  preemptive  priority,  the appropriate trans- 
formation seems, assuming type 1 jobs have  higher  priori- 
ty, to use 

pk(nl, n2) = R,(min (T,  n,), min (T  - min (T ,  n,) ,  n,)), (2) 

k = 1, 2. Corresponding to Eq. (l), Eq. (2) gives a simple 
and  intuitively  reasonable  basis  for  selecting a specific 
Rk(il, i2) to use for pk(n,, n,) when n, + n, > T.  

For other disciplines,  such as FCFS or non-preemptive 
priority, there seems to be  no comparably  simple or 
intuitively reasonable basis for the transformation. The 
problem  is that the representation of  memory  and the 
nested  subnetwork by a function of the form p,(n,, n,) 
discards essential state information. For the FCFS disci- 
pline  we  investigated a number of weighted  sum  ap- 
proaches, e.g., equal weights: 

min(T,nz) 

C R,(min (T - t ,  n,) ,  t )  

min (T,  n,)  + min (T,  n,) + 1 - T ' 

n, + n, L T ,  k = 1 ,  2,  (3) 

but all approaches attempted resulted in severe underes- 
timates of response times.  (Since  the  method of Newsom 

Fk(n,, ",) = 
t=T-min(T,n,) 

QZ.Memory 

4.66 (4.49, 5.09) 
5.08 (4.71, 5.31) 
4.09 (3.86, 4.31) 
7.59 (6.70, 7.64) 
9.13 (8.42, 9.69) 
6.44 (6.08, 6.95) 

13.30 (12.15, 14.10) 
12.46 (11.98, 13.26) 
14.47 (13.48, 15.15) 

and  Ward attempts this transformation, we are skeptical 
of its accuracy  until it has  been  subjected to significant 
empirical  evaluation.) 

For these reasons, we accepted the expense of  solving 
the  network of  Fig. 2. This  allows us to simply  use p,(n,, 
n,) = R,(nl, n,). Herzog's  method [261 does not  easily 
extend to the  network of  Fig. 2.  Since  the  underlying 
Markov process is  not a two-dimensional  birth  and death 
process, Brandwajn's recent method [25] does  not  apply. 
However,  Gauss-Seidel iteration and the related  methods 
considered by Stewart [241 do apply. We choose to use 
Gauss-Seidel iteration. Implementation  details are given 
in [27]. With non-preemptive  priority there are no further 
difficulties.  With FCFS there is the problem that the 
Markov states of the network of Fig. 2 must  include 
information on the ordering ofjobs in the  memory queue, 
and thus the number of states is too large for numerical 
solution to be feasible. For this reason, we introduce 
another approximation, representing FCFS scheduling by 
random  scheduling. With random  scheduling,  ordering 
information  is  not  required  for a Markov process repre- 
sentation, and  numerical  solution is feasible. 

Besides  scheduling, there is another issue of interest in 
the  shared resource case which  is a minor  consideration 
in the  dedicated resource case:  The  different job types 
may require  different amounts of resource. So let us now 
consider T to be the number of abstract units of memory 
available  and A,, k = 1 ,  2, to be the number of units 
required by each type k job. When  different types of jobs 
have  different resource requirements, First-Fit (FF) 
scheduling  is  usually  more  interesting  than FCFS. FF is 
the  same as FCFS except that a satisfiable request is 
satisfied  even  when a job ahead in the queue  must wait 
because its request is greater than the number of units 
currently available.  This issue has little  impact on the 
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difficulty  of  numerical  solution of the network of Fig. 2. 
The more general memory organizations considered by 
Brown are easily incorporated in the iterative solution of 
the network of Fig. 2  [27]. 

Tables 4 and 5 summarize the cases considered in 
empirical evaluation of these methods. There are six 
groups of nine cases, with one case in each of those 
groups corresponding to one of the  cases of Table 2. The 
first three groups have the same  memory requirement for 
each job type. In the second three groups the second job 
type requires four times as much memory as the first. The 
first  group has FCFS scheduling. The second  and fifth 
groups have non-preemptive priority scheduling  with 
type 1 jobs having  higher priority. The third  and  sixth 
groups have non-preemptive priority scheduling  with 
type 2 jobs having  higher priority. The fourth group has 
FF scheduling. In Table 4 the column  headed “App.” 
gives the number of CPU seconds required for the 
approximate  solution on a 370/168. Similarly, the column 
headed “Sim.” gives the simulation  CPU  time.  The four 
columns under “Ind. Errors” give the numbers of type- 
independent errors and severe errors for utilization (V), 
throughput (R),  mean queue length (L),  and  mean queue- 
ing  time (Q). (The  maximum  number of errors for a given 
measure  is seven, one per queue.) Similarly the remaining 
four  columns  give the numbers of type-dependent errors. 
(The maximum number of errors for a given measure is 
fourteen, two per queue.) Table 5 has the same format as 
Table 3. It gives the approximation  values  and  simulation 
confidence intervals for CPU  utilization  and  mean re- 
sponse times. Measures with errors and severe errors are 
preceded by “e” and “s,” respectively. 

Generally speaking, the accuracy is good,  though  not 
as uniformly  good as for the dedicated memory cases. 
The priority cases seem as free of errors as the dedicated 
memory cases, but case 14 (FCFS) and cases 42 and 45 
(FF) have  many errors. Even for these three cases the 
accuracy would  likely  be  sufficient for many applications. 
The CPU  time comparisons, though  still quite favorable, 
are not as good because of the relatively “brute-force” 
iterative methods used for the solution of the network of 
Fig. 2. 

5. Summary 
We have shown  how the “Norton’s Theorem” approach 
to approximate solution of queueing networks with  simul- 
taneous resource possession can be extended to networks 
with heterogeneous jobs. We have  empirically  demon- 
strated the accuracy of the approach and  shown that the 
approximation  is typically two orders of magnitude less 
expensive than simulation.  Both the accuracy and ex- 

Table 4 a )  Shared memory parameter combinations and error 
summary for First Come First Served memory scheduling and 
homogeneous memory requirements (1 unit). 

Case N ,  N2 Run time Ind. errors Dep. errors 

T App. Sim. U R L Q U R L Q 

~~~~~ 

______ 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 

20 
20 
20 
30 
30 
30 
40 
40 
40 

2 6 1 379 
2 4 1 733 
2 2 2 971 
3 9 I 422 
3 6 8 876 
3 3 9 1394 
4 18 20 669 
4 12 23 1185 
4 6 28 1343 

0 0 0 0 2 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  
1 0 0 0 4 0 0 0  
1 0 5 2 3 0 5 3  
0 0 0 0 0 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  

Table 4(b) Shared memory parameter combinations and  error 
summary for priority memory scheduling (type 1 has higher 
priority)  and homogeneous memory requirements (1 unit). 

~~~ 

Case N ,   N 2  Run time Ind. errors Dep. errors 
~~ 

T App. Sim. U R L Q U R L Q 

19 20 2 6 1 
20 20 2 4 1 
21 20 2 2 2 
22 30 3 9 7 
23 30 3 6 7 
24 30 3 3 8 
25 40 4 18 18 
26 40 4 12 21 
21 40 4 6 26 

319 
604 
819 
594 

1076 
834 
806 
178 
680 

0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 1 0 1 1  
0 0 0 0 2 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  

Table 4(c) Shared memory parameter combinations and error 
summary for priority memory scheduling (type 2 has higher 
priority)  and homogeneous memory requirements (1 unit). 

Case N ,   N 2  Run time Ind. errors Dep. errors 

T App. Sim. U R L Q U R L Q 

28 
29 
30 
31 
32 
33 
34 
35 
36 

2 0 2  6 1 
2 0 2  4 1 
2 0 2  2 1 
3 0 3  9 6 
3 0 3  6 7 
3 0 3  3 8 
40 4 18  17 
40 4 12 19 
40 4 6 23 

439 
708 

1394 
634 

1375 
1507 
613 

1087 
1623 

0 0 0 0 1 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  
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Table 4(d) Shared memory parameter combinations and error 
summary for First Fit memory scheduling and heterogeneous 
memory requirements (type 1 jobs require 1 memory unit, type 2 
jobs require 4 memory units). 

pense  should  be acceptable in  many  applications,  but 
some  applications will require better accuracy or lower 
expense. 

Case N ,   N ,  Run time Ind. errors Dep. errors 

T App.  Sim. U R L Q U R L Q 

37 20 2 11 3 401 
38 20 2 7 4 493 
39 20 2 4 4 2048 
40 30 3 14 23 1049 
41 30 3 9 25 1518 
42 30 3 5 21 3302 
43 40 4 27 58 524 
44 40 4 18 84 1731 
45 40 4 9 87 2271 

0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 5  1 1 0 7 1 3 2  
0 0 0 0 2 0 0 0  
0 0 1   1 0 0   1 1  
0 0 0 3 3 0 5 9  

Table 4(e) Shared memory parameter combinations and error 
summary for priority memory scheduling (type 1 has higher 
priority) and heterogeneous memory requirements (type 1 jobs 
require 1 memory unit, type 2 jobs require 4 memory units). 

Case N ,  N2 Run time Ind. errors Dep. errors 

T App. Sim. U R L Q U R L Q 

46 2 0 2 1 1  1 4 0 1 0 0 0 0 2 0 0 0  
41 2 0 2 7  1 4 6 7 0 0 0 0 2 0 0 0  
48  20 2 4 1 1 5 3 3 0 0   0 0  2 0 0  0 
49 30 3 14 7 8 5 4 0 0  0 0  2 0 0 0 
50 3 0 3  9 8 1 3 0 0 0 0 0 0 2 0 0 0  
51 3 0 3  5 5 1 0 8 1 0 0 0 0 2 0 0 0  
52 40 4 27 19 6 2 4 0 0  0 0  2 0 0 0 
53 40 4 18 23 7 2 6 0  0 0 0  2 0 0 0 
54 4 0 4  9 17 4 2 6 0 0 0 0 2 0 0 0  

Table 4(f) Shared memory parameter combinations and error 
summary for priority memory scheduling (type 2 has higher 
priority)  and heterogeneous memory requirements (type 1 jobs 
require 1 memory unit, type 2 jobs require 4 memory units). 

Case N ,   N ,  Run time Ind. errors Dep. errors 

T App.  Sim. U R L Q U R L Q 

55 20 2 11 3 437 
56 20 2 7 4 2260 
57 20 2 4 3 2519 
58 30 3 14 21 1326 
59 30 3 9 22 2956 
60 30 3 5 5 989 
61 40 4 27 53 409 
62 40 4 18 74 2460 
63 40 4 9 66 2797 

0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 2 0 0 0  

CHARLES H. SAUER 

Though  the  focus has been on the memory  contention 
model  of  Fig. 1, our discussion  applies  directly to other 
examples of simultaneous resource possession  and to 
more  than  two  simultaneously  held resources, as in the 
homogeneous job case. Similarly,  though we have as- 
sumed the network  satisfies product form except for  the 
simultaneous resource possession, the approach applies 
readily to non-product  form networks which are amena- 
ble to flow-equivalence  approximate  solution. 

Appendix: Bard’s method 
Bard’s  method  for  handling  memory contention provides 
a very  simple iterative approach [20]. The principal 
advantage of the approach is that it is  very  inexpensive. 
The  method  is  generally less accurate than the methods 
we have described. 

A fundamental  assumption of the approach is that, if 
there is  sufficient  memory on the average for a given  type 
of job, then that job never waits for memory.  The types of 
jobs are partitioned into “trivial” and “non-trivial” 
types; it is  assumed that trivial jobs never  wait  for 
memory.  Our  discussion here assumes all jobs are non- 
trivial jobs. 

Let there be K job types. The following  discussion 
assumes A, = 1, k = 1, * -, K .  It is  simple to extend the 
discussion to avoid that assumption.  From  Little’s  Rule 
one can  reasonably  say that the mean number of type k 
jobs holding  memory  is 

where H ,  is the mean  time type k jobs spend  holding 
memory  and W, is the mean time  type k jobs spend 
waiting for memory.  Thus 

K 

1 *kQ 
H k  5 T.  (A21 

k = l  ,,Terminals + wk -k Hk 

If (A2) results in a strict inequality,  then  it  is  assumed  that 
there is  no  memory contention. This  can  clearly  result in 
noticeable errors if the left-hand side of (A2) is nearly as 
large as the right-hand  side. If (A2) results in an equality, 
then one must  solve that equation for W,, k = 1, * . a ,  K .  
This  solution depends on memory  scheduling.  Bard  con- 
siders  two cases, FCFS and “Fair-Share,” a discipline 
used  in the IBM VMl370 operating system. We ignore the 
Fair-Share  discipline.  The approach does not  apply to FF 
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Table 5(a) Shared memory performance measures for First Come First Served memory scheduling and homogeneous memory 
requirements. 

Case UCPU 

10 0.62 (0.60, 0.63) 0.90 
11 0.61 (0.60,  0.62) 1.08 
12  0.54 (0.53,  0.54) 2.57 
13  0.84 (0.82,  0.84) 1.29 
14 ' 0.82 (0.83,  0.85) e1.62 
15 ' 0.71 (0.69,  0.71) 3.75 
16  0.96 (0.95,  0.96) 1.82 
17  0.95 (0.95,  0.96) 1.99 
18 0.90 (0.90,  0.90) 3.49 

~ 

QMemory  Q1,Memory 

(0.87,  0.91) 0.75 (0.73, 0.76) 
(1.05, 1.10) 0.93 (0.91, 0.95) 
(2.46, 2.59) 2.45 (2.35, 2.47) 
(1.20,  1.26) I .08  (1 .oo, 1.04) 
(1.40,  1.47) S I  .42 (1.20,  1.26) 
(3.60,  3.78) 3.59 (3.44, 3.62) 
(1.78,  1.87) 1 S O  (1.47,  1.54) 
(1.94,  2.03) 1.68  (1.64,  1.71) 
(3.44,  3.61) 3.24 (3.19, 3.35) 

Q2,Mulemory 

4.73  (4.34,  4.93) 
4.60 (4.46, 4.88) 
4.98  (4.85,  5.12) 
7.48 (6.95,  7.92) 
6.89  (6.87,  7.47) 
6.87 (6.79, 7.01) 

13.40  (12.41,  14.00) 
12.49  (11.63,  12.74) 
9.33 (9.23, 9.81) 

Table  5(b) Shared memory performance measures for priority memory scheduling (type 1 has higher priority) and homogeneous 
memory requirements. 

Case UCPU QMemory  Ql,Memory  Q2,Memory 

19  0.62 (0.60,  0.64) 0.90 (0.88, 0.93) 0.75  (0.74,  0.77)  4.74  (4.39,  5.02) 
20  0.61 (0.60, 0.62) 1.05 (1.03, 1.08) 0.91 (0.89,  0.93)  4.78 (4.39, 4.81) 
21 0.50 (0.49, 0.50) 2.16  (2.11,  2.22)  1.91  (1.86,  1.95) 9.45 (9.35, 10.23) 

23  0.82 (0.81,  0.82)  1.53 (1.50, 1.58)  1.31 (1.29, 1.35)  7.63  (7.27,  7.92) 
24  0.59 (0.59, 0.60) 2.77 (2.78, 2.91)  2.32  (2.32,  2.43)  e22.49  (24.07,  27.30) 
25 0.96 (0.95, 0.96)  1.82  (1.78,  1.86) 1 S O  (1.47,  1.53)  13.41  (12.64,  14.15) 
26 0.95  (0.95,  0.96)  1.95  (1.91,  2.00)  1.63  (1.59,  1.67)  12.85  (12.17,  13.53) 
27 0.82 (0.81,  0.82)  2.67  (2.58,  2.70) 2.25 (2.19, 2.28)  19.37  (17.84,  2.13) 

22  0.84 (0.82,  0.84)  1.28  (1.24,  1.30)  1.07 (1.04, 1.09) 7.53  (6.78, 7.61) 

Table 5(c) Shared memory performance measures for priority memory scheduling (type 2 has higher priority) and homogeneous 
memory requirements. 

Case 

28  0.62 
29 
30 

0.61 
0.55 

31 0.84 
32  0.82 
33 
34 

0.73 

35 
0.96 
0.95 

36  0.91 

__ 
UCPU 

(0.62,  0.65) 
(0.60,  0.62) 
(0.54, 0.55) 
(0.84,  0.86) 
(0.81, 0.82) 
(0.73,  0.74) 
(0.95,  0.96) 
(0.95, 0.96) 
(0.91,  0.92) 

0.90 
1.09 
2.79 
1.29 
1.66 
4.25 
1.82 
2.01 
3.83 

QMemory Q, ,Memory 

(0.90, 0.94) 0.75  (0.75,  0.78) 
(1.04, 1.09) 0.95 (0.91, 0.95) 
(2.68,  2.81) 2.73  (2.62,  2.76) 
(1.27, 1.34) 1.08  (1.06, 1.11) 
(1.59, 1.67) 1.47  (1.41,  1.48) 
(4.22, 4.44) 4.22  (4.19,  4.40) 
(1.75,  1.83) I S O  (1.45, 1.51) 
(1.94, 2.04) 1.69  (1.64,  1.72) 
(3.78, 3.97) 3.64  (3.58,  3.77) 

QZ,Memory 

4.72 (4.56, 5.11) 
4.51  (4.16,  4.53) 
3.78  (3.60,  3.75) 
7.46  (7.24,  8.1 1) 
6.65 (6.22, 6.67) 
4.77  (4.74,  4.98) 

13.40  (12.06,  13.78) 
12.39 (1 1.68, 12.97) 
7.84  (7.72,  8.18) 

Table 5(d) Shared memory performance measures for First Come First Served memory scheduling and heterogeneous memory 
requirements. 

Case 

37 
38 
39 
40 
41 
42 
43 
44 
45 

UCPU 

0.62 (0.60, 0.63) 
0.60  (0.61,  0.63) 
0.52 (0.52,  0.53) 
0.84  (0.83,  0.84) 
0.80  (0.80,  0.81) 
0.66  (0.66,  0.67) 
0.96 (0.96, 0.97) 
0.95  (0.95,  0.96) 
0.85  (0.78,  0.86) 

QMemory 

0.91 (0.86, 0.90) 
1.02 (0.97, 1.01) 
1.96  (1.99,  2.09) 
1.34  (1.37,  1.44) 
I .69 (1.59, 1.67) 

s.2.48 (2.75, 2.84) 
1.83  (1.79,  1.88) 

e2.05 (2.21, 2.32) 
2.71 (2.53, 2.61) 

Q1,Memory 

0.76 (0.72, 0.75) 
0.86  (0.80,  0.84) 
1.74  (1.78,  1.88) 
1.13  (1.17,  1.23) 
1.47 (1.37, 1 . 4 4 )  

s2.12  (2.45,  2.53) 
1.51 (1.48,  1.54) 

s1.74 (1.92, 2.01) 
2.33 (2.18, 2.26) 

4.72 
5.18 
7.52 
7.36 
7.64 

s15.34 
13.34 
12.28 

e16.29 

Q2,Memory 

(4.29, 4.82) 
(5.10, 5.71) 
(6.95,  7.28) 
(6.81,  7.32) 
(7.51, 8.07) 

(11.57,  12.02) 
(12.09,  14.13) 
(11.13,  11.87) 
(14.13,  15.08) 
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Table 5(e) Shared memory performance measures for priority memory scheduling (type 1 has higher priority) and heterogeneous 
memory requirements. 

Case 

46  0.62 
47  0.61 
48  0.52 
49 0.84 
50 0.80 
51  0.65 
52 0.96 
53 0.95 
54  0.85 

UCPU 

(0.60, 0.63) 
(0.60, 0.62) 
(0.52,  0.53) 
(0.82, 0.84) 
(0.80, 0.81) 
(0.65, 0.66) 
(0.95, O.%) 
(0.95, 0.96) 
(0.83,  0.85) 

__ 
0.91 
0.97 
1.85 
I .32 
1.55 
2.19 
1.83 
1.97 
2.23 

QMemory  Ql,Memory 

(0.86, 0.90) 0.76  (0.72,  0.75) 
(0.94,  0.99) 0.81  (0.79,  0.83) 
(1.81,  1.90) I .62 (1.58, 1.67) 
(1.27, 1.33) 1.11 (1.06, 1.11) 
(1.52,  1.60) 1.32 (1.30,  1.36) 
(2.14,  2.25) 1.80  (1.76,  1.85) 
(1.75, 1.84) 1.51 (1.46, 1.52) 
(1.89,  1.98) I .65  (1.59, 1.66) 
(2.14,  2.25) 1.82  (1.74,  1.83) 

Q2,Mernory 

4.72  (4.29,  4.82) 
5.28  (4.85,  5.47) 
8.22  (7.99,  8.47) 
7.43  (6.87,  7.54) 
8.21  (7.86,  8.61) 

18.44  (17.69,  19.44) 
13.35  (11.57,  13.32) 
12.77  (11.83,  13.18) 
2.96  (19.26,  21.77) 

Table 5(f) Shared memory performance measures  for priority memory scheduling (type 2 has higher priority) and heterogeneous 
memory requirements. 

Case 

55 
56 
57 
58 
59 
60 
61 
62 
63 

UCPU 
~ 

0.62 (0.60, 0.62)  0.91 
0.60  (0.59, 0.60) 1.32 
0.54  (0.53,  0.54)  2.98 
0.83 (0.83, 0.84)  1.41 
0.81  (0.80, 0.81) 2.24 
0.65  (0.65, 0.66) 2.19 
0.96  (0.95,  0.97)  1.83 
0.95 (0.95,  0.95)  2.30 
0.88  (0.87,  0.88)  5.29 

- 
QMemory  QI,Memory 

(0.87, 0.92) 0.76  (0.74, 0.77) 
(1.25,  1.31)  1.18 (1.11, 1.17) 
(2.75, 2.88)  2.92 (2.67, 2.81) 
(1.34,  1.41) 1.21 (1.14,  1.20) 
(2.14,  2.26)  2.08 (1.99, 2.10) 
(2.13, 2.24)  1.80  (1.75,  1.84) 
(1.81, 1.90) 1.51  (1.49,  1.56) 
(2.20,  2.32)  2.01 ( I  .92,  2.02) 
(5.08,  5.33)  5.23  (5.02,  5.26) 

___-_____ 
Q2,Memory 

4.70 (4.27, 4.77) 
4.59  (4.52,  4.74) 
4.06 (4.10, 4.25) 
7.08  (6.78,  7.29) 
5.66 (5.55, 5.77) 

18.44 (17.58, 19.36) 
13.32 (12.51,  14.39) 
10.93 (10.61, 1 I .20) 
6.26 (6.17, 6.34) 

Table A1 Shared memory performance measures (Bard's method). 

Case UCPU QMemory  Ql,Memory  Q2,Memory 
__" 

10 
11 
12 
13 
14 
15 
16 
17 
18 

0.64 (0.60, 0.63) 
0.64 (0.60, 0.62) 
0.51 (0.53, 0.54) 

e0.90  (0.82,  0.84) 
eO.90 (0.83,  0.85) 
0.70  (0.69,  0.71) 
1.00 (0.95,  0.96) 
1.00 (0.95, O.%) 
0.94  (0.90, 0.90) 

e0.80 
s0.80 
e2.87 
s1.01 
s1.01 
3.87 

e1.63 
S I  .63 
e3.18 

(0.87, 0.91) 
(1.05,  1.10) 
(2.46,  2.59) 
(1.20,  1.26) 
(1.40,  1.47) 
(3.60,  3.78) 
(1.78, 1.87) 
(1.94,  2.03) 
(3.44,  3.61) 

s0.67  (0.73,  0.76) 
s0.67  (0.91,  0.95) 
e2.73  (2.35,  2.47) 
s0.85 (1.00, 1.04) 
s0.85 (1.20, 1.26) 
3.71  (3.44,  3.62) 

s1.34  (1.47,  1.54) 
s1.34 (1.64,  1.71) 
e2.96 (3.19,  3.35) 

e4.07 
e4.07 
s5.74 
s5.33 
s5.33 
7.10 

e11.51 
11.51 
e8.47 

(4.34,  4.93) 
(4.46,  4.88) 
(4.85, 5.12) 
(6.95, 7.92) 
(6.87,  7.47) 
(6.69, 7.01) 

(12.41,  14.00) 
(11.63,  12.74) 
(9.23,  9.81) 

or priority  disciplines  of the sort we have considered. 
With FCFS, Bard assumes that all job types have the 
same  mean  wait for memory, W. 

The iteration proceeds by  assuming  values  for Hk, k = 
1, . a ,  K. When (A2) results in an equality, it  becomes a 
nonlinear equation in a single  unknown,  which  Bard 
suggests  solving  by Newton's method.  Once W has been 
obtained,  then  one can obtain the mean  number of each 

902 type of job holding  memory  from expression (AI). Those 

values can, in turn, be  used to obtain new values for Hk, 
k = 1, e ,  K. The iteration terminates, hopefully, when 
there is  little  change  in the mean response times, (W + 
Hk), k = 1, *, K. Bard  suggests  using  the mean  time 
spent in service as the initial estimate for Hk,  and that the 
initial  value W = 0 be  used  with  Newton's  method.  The 
iteration  is  not  guaranteed to converge; Bard considers 
the iteration to have  converged if successive values  for 
the  type-dependent  mean response times  do  not  vary by 
more  than 5%. 
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We tried Bard’s  method as  just described for cases 10- 
18 of Tables 4 and 5.  Table A1 corresponds to Table 5 for 
these cases. The accuracy was  significantly  worse  than 
with the Norton’s Theorem approach, but  still adequate 
for  some applications. Bard’s  method  is  most attractive 
for  larger  problems than our test cases, e.g., problems 
with  more job types and  larger populations, where  the 
Norton’s  Theorem approach would  be prohibitively ex- 
pensive for most  applications.  Bard’s  method  remains 
very  inexpensive  even for much  larger  problems. 
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