
Charles H. Sauer

Approximate Solution of Queueing Networks with
Simultaneous Resource Possession

Queueing networks are important as Performance models of computer and communication systems because the
performance of these systems is usually principally affected by contention for resources. Exact numerical solution of a
queueing network is usually only feasible ifthe network has a product form solution in the sense of Jackson. An important
network characteristic which apparently precludes a product form solution is simultaneous resource possession, e.g., a
job holds memory and processor simultaneously. This paper extends previous methods for approximate numerical
solution of queueing networks with homogeneous jobs and simultaneous resource possession to networks with
heterogeneous jobs and simultaneous resource possession.

1. Introduction
A major objective of computing systems (including com-
puter communication systems) development in the last
two decades has been to promote sharing of system
resources. Sharing of resources necessarily leads to con-
tention, i .e., queueing, for resources. Contention and
queueing for resources are typically quite difficult to
quantify when estimating system performance. A major
research topic in computing systems performance in the
last two decades has been solution and application of
queueing models. These models are usually networks of
queues because of the interactions of system resources.
For general discussion of queueing network models of
computing systems, see Sauer and Chandy [11 and recent
special issues of Computing Surveys [2] and Computer
Dl.

Much of the attention in queueing network research has
been given to models with a product form solution in the
sense that

solution feasible where a large number of queues andlor
jobs would otherwise make numerical solution infeasible.
Since the original work of Jackson [4], it has been shown
that the product form solution exists for networks with
heterogeneous jobs, several important scheduling disci-
plines, and state-dependent behavior [5-71. Efficient
computational algorithms have been developed for these
networks [8-113.

However, there are a number of system characteristics
which apparently preclude a product form solution.
Among the most important of these is simultaneous
resource possession, i .e., a job’s activities require simul-
taneous possession of more than one resource, e.g.,
memory and processor. If there is significant contention
for only one of the simultaneously held resources, then
the model may ignore the others. Otherwise, one must
usually settle for an approximate numerical solution
[12, 131 or simulation.

P(S1, * . e , S,) =
PI(S,) * * * P&f(S&$

G
t This paper focuses on approximate numerical solution

of models with simultaneous resource possession in cases
where P(Sl, a , SM) is the probability of a network state such as the one depicted in Fig. 1. In this case a job
in a network with M queues, Pm(Sm), m = 1 , . . a , M , is a holding memory may simultaneously also hold the CPU
factor corresponding to the probability of the state of or simultaneously also hold a disk. Further, requests for
queue m, and G is a normalizing constant. The existence and releases of simultaneously held resources are nested,
of a product form solution for a model makes numerical Le., memory is requested before the CPU is requested

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.

894
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

i CHARLES H. SAUER IBM 1. RES. DEVELOP. 0 VOL. 25 0 NO. 6 NOVEMBER 1981

and released after a disk is released. With such nesting
one can transform the original network into one of the
form of Fig. 2. A solution of the transformed network can
then be interpreted as an approximate solution of the Terminals

original network. The approximate solution will usually
be much less expensive than simulation. It is quite
difficult to estimate the error in the approximate solution,
but empirical studies suggest the error is acceptable in 1
many situations. Some of the influential works using this - J

approach for models similar to this one are those of Figure 1 Queueing network model of interactive computer
Brandwajn [14], Brown [15, 161, Courtois [17, 181, and system.
Keller [19]. This general approach can be applied to other
resources and to more than two simultaneously held
resources. For an introduction to previous work using
this approach, see the survey papers by Chandy and
Sauer [12, 131. Two other approaches to solution of this F;tZ , r - l ~ - - - - - - - ~

problem are those of Bard [20] and Jacobson and La- R0

zowska [21]. Terminals Composite

pMae;:s 0 rL“- ,
0 Disk I

0 I
I
I c=

Except for the work of Bard [201 and Newsom and
Ward 1221, previous efforts have assumed that jobs were I
homogeneous. Our interest here is extending the above
general approach to networks with heterogeneous jobs.
Though Bard’s approach applies to fairly general cases
with heterogeneous jobs, we find it less accurate than our
approach for many cases; see the Appendix for further
discussion. Newsom and Ward attempted to extend
Brown’s work [15, 161 to heterogeneous jobs. Though
they were able to extend the relevant equations, the result
was computationally impractical, as they discussed. Fur-
ther, only two test cases were considered in their paper.

In Section 2 we consider the model of Fig. 1 without
memory contention in order to develop previous results
onflow-equivalence, the basis of this work. In Section 3
we consider the model of Fig. 1 with heterogeneous jobs
where separate memory is dedicated to each type of job.
In Section 4 we consider the case where the different
types of jobs share memory. Empirical results demon-
strate the effectiveness of the methods used.

2. Flow-equivalence
A principal objective in the transformation of the network
of Fig. 1 to the network of Fig. 2 is to obtain flow-
equivalence, i.e., the flow of jobs through the composite
queue of Fig. 2, given a specific population of jobs in that
queue, is equivalent to the flow of jobs through the
corresponding subnetwork of Fig. 1, given the same
population of jobs in the subnetwork. This can be ap-
proached either by using “Norton’s Theorem” for queue-
ing networks, analogous to Norton’s Theorem for electri-
cal circuits [23], or by using concepts of weak-coupling
of subnetworks [17]. We use the Norton’s Theorem
approach.

I

Figure 2 Computer system model with CPU and I/O disks
replaced by composite queue.

Disk

Figure 3 CPU and disk subnetwork.

Let us assume that there are two types of jobs, num-
bered 1 and 2. Extension to more than two types of jobs is
conceptually trivial. (Extension to more than a few job
types may be computationally prohibitive, as with other
queueing network problems.) Let the number of type k
jobs be Nk, k = 1, 2.

The Norton’s Theorem approach to this problem is
straightforward. We would consider the network of Fig. 1
with the terminals queue “shorted,” e.g., with service
time set to zero. Our intermediate objective is to obtain
the throughput through the “short.” To obtain the de-
sired throughput, we need only solve the network of Fig.
3 to obtain the throughput through the outer loop. Let 895

IBM J. RES. DEVELOP. VOL. 25 NO. 6 0 NOVEMBER 1981 CHARLES H. SAUER 1

Terminals Composite

Figure 4 Computer system model with memory, CPU, and
disk replaced by composite queue.

Rk(n,, n,) be the throughput of type k jobs through the
outer loop of Fig. 3 given n1 type 1 jobs and n, type 2 jobs
in that network, k = 1 , 2 , n , = 0, . -, N , , n2 = 0, e ,

N,. Then let the composite queue of Fig. 2 have service
rate pk(n,, n,) = Rk(n,, n,) for type k jobs when there are
n, type 1 jobs and n2 type 2 jobs in the composite queue.
Both types of jobs are in service simultaneously when
both types of jobs are present in the queue.

Since we have assumed for the moment that there is no
memory contention, the network of Fig. 2 is equivalent to
the network of Fig. 4. The network of Fig. 4 satisfies
product form if the original network satisfies product
form (assuming no memory contention). Several compu-
tational algorithms for product form networks apply to
the network of Fig. 4 if it satisfies product form [ll].
However, composite queues with general functions of the
form pk(n,, n,), such as the ones we obtain below, do not
necessarily satisfy product form conditions.

Assuming that the network of Fig. 1 satisfies product
form (assuming no memory contention), then the
throughputs through the terminals are the same in the
network of Fig. 1 and the networks with the composite
queue (with nonzero service time at the terminals). Fur-
ther, the performance measures for the CPU and disk
queues can be obtained from the solutions of the net-
works of Fig. 2 and Fig. 3. Throughputs are immediately
available by flow arguments. Marginal queue length dis-
tributions and moments of queue length can be obtained
as weighted sums where the weights are the values of the
composite queue marginal queue length distribution. For
example, mean queue length of type k jobs at the CPU
can be obtained as

where P(n, , n,) is the marginal probability of n , type 1
jobs and n, type 2 jobs in the composite queue and
L:,cpU(n,, n,) is the mean queue length of type k jobs at
the CPU in the network of Fig. 3, given n , type 1 jobs and
n2 type 2 jobs in that network. Mean queueing times can

be obtained by Little’s Rule. Utilizations can be obtained
either from throughputs or marginal queue length distri-
butions, depending on the characteristics of the individual
queues. For more discussion of individual queue mea-
sures see Sauer and Chandy [l , Section 6.3.31. This entire
process is exact provided that the original network satis-
fies product form.

3. Dedicated resources
In this section we consider the case that the outer
resource in the nesting (memory in our example) is
managed so that different types of jobs have different
dedicated units of the resource. The inner resource in the
nesting (CPU or disk in our example) is shared among all
job types. This case is more tractable than the fully
shared resource case of Section 4.

Let us assume that memory is organized in T partitions
and that each job requires exactly one partition. In this
section we assume that there are T, partitions dedicated
to type 1 jobs and T2 partitions dedicated to type 2 jobs
(TI + T, = T) . We assume in this section that, within a
job type, memory is scheduled First-Come-First-Served
(FCFS), independent of the other type. The discussion in
this section extends directly to the more general memory
organizations considered by Brown for homogeneous
jobs [161.

Now we return to the case of interest, i .e., where there
is memory contention. Essentially the above process is
followed, but there are two new issues to be considered.
First, the solution of the network of Fig. 2 no longer gives
exact values for the measures for the network of Fig. 1.
This is easily demonstrated by example, but it is quite
difficult to characterize the amount of error.

The second issue is the solution of the network of Fig.
2. We can immediately transform the network of Fig. 2 to
that of Fig. 4 by recognizing that there will never be more
than Tk type k jobs in the composite queue, k = 1, 2 .
Thus, we can let the service rate function for the compos-
ite queue be

&&, n2) = Rk(min (TI, nl), min V,, n2N, (1)

w h e r e k = 1 , 2 , n , = 0 ; . . , N , , n , = 0 ; * * , N 2 .

A composite queue with this rate function does not
necessarily satisfy product form. However, the network
of Fig. 4 with this rate function is easily solved by
considering the underlying Markov process. Many nu-
merical approaches apply readily to such a Markov
process. Gauss-Seidel iteration and the related methods
considered by Stewart [24] are obvious possibilities.
Brandwajn’s recent iterative method could be used [25].

IBM J. RES. DEVELOP. 0 VOL. 25 NO. 6 0 NOVEMBER 1981

We, somewhat arbitrarily, choose to apply Herzog’s
method [26] to this problem; see [27] for details.

Since it is diacult to characterize the error introduced
by the replacement of the subnetwork of Fig. 1 by the
composite queue, it is necessary to empirically evaluate
the approximate method. Ideally, one would run experi-
ments for a wide parameter space of models. In our
experiments we fixed several parameters (see Table 1)
and varied N , , N 2 , T I , and T2. Three pairs of values were
used for (N , , N J , (20, 2), (30, 3), and (40, 4). T, and T2
were chosen as follows. For a given (N , , N 2) pair, the
network was evaluated assuming no memory contention.
(All of the networks evaluated satisfy product form
except for memory contention.) One (T I , T2) pair was
chosen so that Tk, k = 1, 2, was approximately equal to
the mean memory queue length of type k jobs, Lk,Memory,
in the network without memory contention. In other

mean type k queue length at the terminals in the network
without memory contention. This should result in moder-
ate memory contention. The other two pairs were chosen
to have T 50% larger, i .e. , minimal memory contention,
and to have T 50% smaller, i .e., severe memory conten-
tion. Table 2 gives the nine parameter combinations.

words, Tk Nk - Lk,Teminals9 where Lk,Terminals is the

Reference values were obtained by simulation using the
Research Queueing Package (RESQ) [28, 291. Confidence
intervals were obtained using the regenerative method
[30]. A sequential stopping rule [31] was used to obtain a
relative width of 5% for the confidence interval for the
type-independent mean response time (mean time from
memory request to memory release for all jobs) at a 90%
confidence level. Table 2 also gives the CPU time in
seconds spent on these simulations on an IBM 370/168.
For each of the nine cases, the CPU time for approximate
solution was less than one-half second on a 168.

Since the simulation point estimates are not exact, and
a confidence interval does not necessarily contain the
corresponding true value, it is not clear how accuracy of
the approximation values should be judged. The following
criteria are somewhat arbitrary and may be more strin-
gent than required by many applications. Given a per-
formance measure v from the approximation, let us
construct an interval (v - 6, v + 6) such that it is the
smallest interval that (partially) overlaps the simulation
confidence interval for this measure. If 6 5 0.05 x v, then
the approximation value is considered satisfactory; if 6 5
0.10 X V, then the approximation value is considered in
error; and if 6 > 0.10 x v, then the approximation value is
considered severely in error.

These criteria were applied to the approximation re-
sults for all queues (terminals, memory, CPU, and disks)

Table 1 Parameters fixed for all experiments.

Mean think time: type 1-5 seconds, type 2-10 seconds.
(exponential distribution, “Infinite Server” discipline)

Mean number of CPU-I/O cycles: type 1-10, type 2-20.
(geometric distribution)

Mean CPU service time: type 1-10 ms, type 2-100 ms.
(exponential distribution, Processor Sharing discipline)

Four identical disks with same parameters for each type:
Branching probabilities from CPU to disk: 0.25.
Mean disk service time: 35 ms.

(exponential distribution, FCFS discipline)

Table 2 Dedicated memory parameter combinations.

Case Simulation time
(SI

1
2

20
20
20
30
30
30
40
40
40

2 4 2
2 3 1
2 1 1
3 7 2
3 5 1
3 2 1
4 14 4
4 9 3
4 5 1

403
525
330
507
594
442
603
984
816

for both type-dependent and type-independent measures
of utilization, throughput, mean queue length and mean
queueing time. (The memory queueing time is defined as
time from request until release.) The approximation re-
sults were satisfactory for all nine parameter combina-
tions for all measures except for type-dependent CPU
utilization. The type 1 CPU utilization was underestimat-
ed and in error for all nine combinations. The type 2 CPU
utilization was overestimated and in error for all combina-
tions except combination 3, where the type 2 CPU
utilization was satisfactory. Table 3 gives the approxima-
tion values and simulation confidence intervals for type-
independent CPU utilization (U) and mean response
times (memory queueing time Q) and type-dependent
mean response times. The achieved accuracy seems more
than adequate for most applications, and the approxima-
tion solutions required roughly three orders of magnitude
less computation than the simulations.

4. Shared resources
In this section we consider the case that the outer
resource in the nesting (memory in our example) is
managed so that different types of jobs share the same 897

IBM J . RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981 CHARLES H. SAUER

Table 3

Case

1
2
3
4
5
6
7
8
9

Dedicated memory performance measures.

UCPU QMernory

0.60 (0.59, 0.61) 1.08 (1 . 0 6 , 1 . 1 1)
0.62 (0.60, 0.63) 0.95 (0.91, 0.95)

0.49 (0.48, 0.50) 4.79 (4.64, 4.87)
0.84 (0.83, 0.85) 1.28 (1.24, 1.30)
0.80 (0.79, 0.81) 1.42 (1.37, 1.44)
0.69 (0.69, 0.71) 4.23 (4.09, 4.30)
0.96 (0.96, 0.97) 1.83 (1.79, 1.87)
0.95 (0.95, 0.96) 2.00 (1.98, 2.07)
0.87 (0.87, 0.88) 2.69 (2.65, 2.78)

Ql,Mernory

0.80 (0.77, 0.80)
0.93 (0.90, 0.95)
4.83 (4.68, 4.93)
1.06 (1.03, 1.08)
1.17 (1.13, 1.19)
4.10 (3.97, 4.17)
1 S O (1.47, 1.54)
1.69 (1.67, 1.74)
2.33 (2.30, 2.42)

units of that resource. Thus, all types of jobs share
exactly the same simultaneously held resources. This
case is, perhaps, more important than the dedicated
resource case. Unfortunately, the shared resource case
also seems more difficult. The difficulty is in transforming
the network of Fig. 2 to that of Fig. 4, to avoid the
relatively expensive solution of the network of Fig. 2. The
difficulty of this transformation depends on the memory
scheduling discipline; for some of the most interesting
disciplines an accurate transformation does not seem
feasible.

For strictly preemptive priority, the appropriate trans-
formation seems, assuming type 1 jobs have higher priori-
ty, to use

pk(nl, n2) = R,(min (T, n,), min (T - min (T , n,) , n,)), (2)

k = 1, 2. Corresponding to Eq. (l), Eq. (2) gives a simple
and intuitively reasonable basis for selecting a specific
Rk(il, i2) to use for pk(n,, n,) when n, + n, > T.

For other disciplines, such as FCFS or non-preemptive
priority, there seems to be no comparably simple or
intuitively reasonable basis for the transformation. The
problem is that the representation of memory and the
nested subnetwork by a function of the form p,(n,, n,)
discards essential state information. For the FCFS disci-
pline we investigated a number of weighted sum ap-
proaches, e.g., equal weights:

min(T,nz)

C R,(min (T - t , n,) , t)

min (T, n,) + min (T, n,) + 1 - T '

n, + n, L T , k = 1 , 2, (3)

but all approaches attempted resulted in severe underes-
timates of response times. (Since the method of Newsom

Fk(n,, ",) =
t=T-min(T,n,)

QZ.Memory

4.66 (4.49, 5.09)
5.08 (4.71, 5.31)
4.09 (3.86, 4.31)
7.59 (6.70, 7.64)
9.13 (8.42, 9.69)
6.44 (6.08, 6.95)

13.30 (12.15, 14.10)
12.46 (11.98, 13.26)
14.47 (13.48, 15.15)

and Ward attempts this transformation, we are skeptical
of its accuracy until it has been subjected to significant
empirical evaluation.)

For these reasons, we accepted the expense of solving
the network of Fig. 2. This allows us to simply use p,(n,,
n,) = R,(nl, n,). Herzog's method [261 does not easily
extend to the network of Fig. 2. Since the underlying
Markov process is not a two-dimensional birth and death
process, Brandwajn's recent method [25] does not apply.
However, Gauss-Seidel iteration and the related methods
considered by Stewart [241 do apply. We choose to use
Gauss-Seidel iteration. Implementation details are given
in [27]. With non-preemptive priority there are no further
difficulties. With FCFS there is the problem that the
Markov states of the network of Fig. 2 must include
information on the ordering ofjobs in the memory queue,
and thus the number of states is too large for numerical
solution to be feasible. For this reason, we introduce
another approximation, representing FCFS scheduling by
random scheduling. With random scheduling, ordering
information is not required for a Markov process repre-
sentation, and numerical solution is feasible.

Besides scheduling, there is another issue of interest in
the shared resource case which is a minor consideration
in the dedicated resource case: The different job types
may require different amounts of resource. So let us now
consider T to be the number of abstract units of memory
available and A,, k = 1 , 2, to be the number of units
required by each type k job. When different types of jobs
have different resource requirements, First-Fit (FF)
scheduling is usually more interesting than FCFS. FF is
the same as FCFS except that a satisfiable request is
satisfied even when a job ahead in the queue must wait
because its request is greater than the number of units
currently available. This issue has little impact on the

IBM J. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981

difficulty of numerical solution of the network of Fig. 2.
The more general memory organizations considered by
Brown are easily incorporated in the iterative solution of
the network of Fig. 2 [27].

Tables 4 and 5 summarize the cases considered in
empirical evaluation of these methods. There are six
groups of nine cases, with one case in each of those
groups corresponding to one of the cases of Table 2. The
first three groups have the same memory requirement for
each job type. In the second three groups the second job
type requires four times as much memory as the first. The
first group has FCFS scheduling. The second and fifth
groups have non-preemptive priority scheduling with
type 1 jobs having higher priority. The third and sixth
groups have non-preemptive priority scheduling with
type 2 jobs having higher priority. The fourth group has
FF scheduling. In Table 4 the column headed “App.”
gives the number of CPU seconds required for the
approximate solution on a 370/168. Similarly, the column
headed “Sim.” gives the simulation CPU time. The four
columns under “Ind. Errors” give the numbers of type-
independent errors and severe errors for utilization (V),
throughput (R), mean queue length (L), and mean queue-
ing time (Q). (The maximum number of errors for a given
measure is seven, one per queue.) Similarly the remaining
four columns give the numbers of type-dependent errors.
(The maximum number of errors for a given measure is
fourteen, two per queue.) Table 5 has the same format as
Table 3. It gives the approximation values and simulation
confidence intervals for CPU utilization and mean re-
sponse times. Measures with errors and severe errors are
preceded by “e” and “s,” respectively.

Generally speaking, the accuracy is good, though not
as uniformly good as for the dedicated memory cases.
The priority cases seem as free of errors as the dedicated
memory cases, but case 14 (FCFS) and cases 42 and 45
(FF) have many errors. Even for these three cases the
accuracy would likely be sufficient for many applications.
The CPU time comparisons, though still quite favorable,
are not as good because of the relatively “brute-force”
iterative methods used for the solution of the network of
Fig. 2.

5. Summary
We have shown how the “Norton’s Theorem” approach
to approximate solution of queueing networks with simul-
taneous resource possession can be extended to networks
with heterogeneous jobs. We have empirically demon-
strated the accuracy of the approach and shown that the
approximation is typically two orders of magnitude less
expensive than simulation. Both the accuracy and ex-

Table 4 a) Shared memory parameter combinations and error
summary for First Come First Served memory scheduling and
homogeneous memory requirements (1 unit).

Case N , N2 Run time Ind. errors Dep. errors

T App. Sim. U R L Q U R L Q

~~~~~ 

______ 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 

20 
20 
20 
30 
30 
30 
40 
40 
40 

2 6 1 379 
2 4 1 733 
2 2 2 971 
3 9 I 422 
3 6 8 876 
3 3 9 1394 
4 18 20 669 
4 12 23 1185 
4 6 28 1343 

0 0 0 0 2 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  
1 0 0 0 4 0 0 0  
1 0 5 2 3 0 5 3  
0 0 0 0 0 0 0 0  
0 0 0 0 2 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  

Table 4(b) Shared memory parameter combinations and  error 
summary for priority memory scheduling (type 1 has higher 
priority)  and homogeneous memory requirements (1 unit). 

~~~ 

Case N , N 2 Run time Ind. errors Dep. errors
~~

T App. Sim. U R L Q U R L Q

19 20 2 6 1
20 20 2 4 1
21 20 2 2 2
22 30 3 9 7
23 30 3 6 7
24 30 3 3 8
25 40 4 18 18
26 40 4 12 21
21 40 4 6 26

319
604
819
594

1076
834
806
178
680

0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 2 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

Table 4(c) Shared memory parameter combinations and error
summary for priority memory scheduling (type 2 has higher
priority) and homogeneous memory requirements (1 unit).

Case N , N 2 Run time Ind. errors Dep. errors

T App. Sim. U R L Q U R L Q

28
29
30
31
32
33
34
35
36

2 0 2 6 1
2 0 2 4 1
2 0 2 2 1
3 0 3 9 6
3 0 3 6 7
3 0 3 3 8
40 4 18 17
40 4 12 19
40 4 6 23

439
708

1394
634

1375
1507
613

1087
1623

0 0 0 0 1 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

899

IBM J . RES. DEVELOP. a VOL. 25 a NO. 6 0 NOVEMBER 1981 CHARLES H. SAUER

900

Table 4(d) Shared memory parameter combinations and error
summary for First Fit memory scheduling and heterogeneous
memory requirements (type 1 jobs require 1 memory unit, type 2
jobs require 4 memory units).

pense should be acceptable in many applications, but
some applications will require better accuracy or lower
expense.

Case N , N , Run time Ind. errors Dep. errors

T App. Sim. U R L Q U R L Q

37 20 2 11 3 401
38 20 2 7 4 493
39 20 2 4 4 2048
40 30 3 14 23 1049
41 30 3 9 25 1518
42 30 3 5 21 3302
43 40 4 27 58 524
44 40 4 18 84 1731
45 40 4 9 87 2271

0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 5 1 1 0 7 1 3 2
0 0 0 0 2 0 0 0
0 0 1 1 0 0 1 1
0 0 0 3 3 0 5 9

Table 4(e) Shared memory parameter combinations and error
summary for priority memory scheduling (type 1 has higher
priority) and heterogeneous memory requirements (type 1 jobs
require 1 memory unit, type 2 jobs require 4 memory units).

Case N , N2 Run time Ind. errors Dep. errors

T App. Sim. U R L Q U R L Q

46 2 0 2 1 1 1 4 0 1 0 0 0 0 2 0 0 0
41 2 0 2 7 1 4 6 7 0 0 0 0 2 0 0 0
48 20 2 4 1 1 5 3 3 0 0 0 0 2 0 0 0
49 30 3 14 7 8 5 4 0 0 0 0 2 0 0 0
50 3 0 3 9 8 1 3 0 0 0 0 0 0 2 0 0 0
51 3 0 3 5 5 1 0 8 1 0 0 0 0 2 0 0 0
52 40 4 27 19 6 2 4 0 0 0 0 2 0 0 0
53 40 4 18 23 7 2 6 0 0 0 0 2 0 0 0
54 4 0 4 9 17 4 2 6 0 0 0 0 2 0 0 0

Table 4(f) Shared memory parameter combinations and error
summary for priority memory scheduling (type 2 has higher
priority) and heterogeneous memory requirements (type 1 jobs
require 1 memory unit, type 2 jobs require 4 memory units).

Case N , N , Run time Ind. errors Dep. errors

T App. Sim. U R L Q U R L Q

55 20 2 11 3 437
56 20 2 7 4 2260
57 20 2 4 3 2519
58 30 3 14 21 1326
59 30 3 9 22 2956
60 30 3 5 5 989
61 40 4 27 53 409
62 40 4 18 74 2460
63 40 4 9 66 2797

0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 2 0 0 0

CHARLES H. SAUER

Though the focus has been on the memory contention
model of Fig. 1, our discussion applies directly to other
examples of simultaneous resource possession and to
more than two simultaneously held resources, as in the
homogeneous job case. Similarly, though we have as-
sumed the network satisfies product form except for the
simultaneous resource possession, the approach applies
readily to non-product form networks which are amena-
ble to flow-equivalence approximate solution.

Appendix: Bard’s method
Bard’s method for handling memory contention provides
a very simple iterative approach [20]. The principal
advantage of the approach is that it is very inexpensive.
The method is generally less accurate than the methods
we have described.

A fundamental assumption of the approach is that, if
there is sufficient memory on the average for a given type
of job, then that job never waits for memory. The types of
jobs are partitioned into “trivial” and “non-trivial”
types; it is assumed that trivial jobs never wait for
memory. Our discussion here assumes all jobs are non-
trivial jobs.

Let there be K job types. The following discussion
assumes A, = 1, k = 1, * -, K . It is simple to extend the
discussion to avoid that assumption. From Little’s Rule
one can reasonably say that the mean number of type k
jobs holding memory is

where H , is the mean time type k jobs spend holding
memory and W, is the mean time type k jobs spend
waiting for memory. Thus

K

1 *kQ
H k 5 T. (A21

k = l ,,Terminals + wk -k Hk

If (A2) results in a strict inequality, then it is assumed that
there is no memory contention. This can clearly result in
noticeable errors if the left-hand side of (A2) is nearly as
large as the right-hand side. If (A2) results in an equality,
then one must solve that equation for W,, k = 1, * . a , K .
This solution depends on memory scheduling. Bard con-
siders two cases, FCFS and “Fair-Share,” a discipline
used in the IBM VMl370 operating system. We ignore the
Fair-Share discipline. The approach does not apply to FF

IBM J. RES. DEVELOP. VOL. 25 NO. 6 NOVEMBER 1981

Table 5(a) Shared memory performance measures for First Come First Served memory scheduling and homogeneous memory
requirements.

Case UCPU

10 0.62 (0.60, 0.63) 0.90
11 0.61 (0.60, 0.62) 1.08
12 0.54 (0.53, 0.54) 2.57
13 0.84 (0.82, 0.84) 1.29
14 ' 0.82 (0.83, 0.85) e1.62
15 ' 0.71 (0.69, 0.71) 3.75
16 0.96 (0.95, 0.96) 1.82
17 0.95 (0.95, 0.96) 1.99
18 0.90 (0.90, 0.90) 3.49

~

QMemory Q1,Memory

(0.87, 0.91) 0.75 (0.73, 0.76)
(1.05, 1.10) 0.93 (0.91, 0.95)
(2.46, 2.59) 2.45 (2.35, 2.47)
(1.20, 1.26) I .08 (1 .oo, 1.04)
(1.40, 1.47) S I .42 (1.20, 1.26)
(3.60, 3.78) 3.59 (3.44, 3.62)
(1.78, 1.87) 1 S O (1.47, 1.54)
(1.94, 2.03) 1.68 (1.64, 1.71)
(3.44, 3.61) 3.24 (3.19, 3.35)

Q2,Mulemory

4.73 (4.34, 4.93)
4.60 (4.46, 4.88)
4.98 (4.85, 5.12)
7.48 (6.95, 7.92)
6.89 (6.87, 7.47)
6.87 (6.79, 7.01)

13.40 (12.41, 14.00)
12.49 (11.63, 12.74)
9.33 (9.23, 9.81)

Table 5(b) Shared memory performance measures for priority memory scheduling (type 1 has higher priority) and homogeneous
memory requirements.

Case UCPU QMemory Ql,Memory Q2,Memory

19 0.62 (0.60, 0.64) 0.90 (0.88, 0.93) 0.75 (0.74, 0.77) 4.74 (4.39, 5.02)
20 0.61 (0.60, 0.62) 1.05 (1.03, 1.08) 0.91 (0.89, 0.93) 4.78 (4.39, 4.81)
21 0.50 (0.49, 0.50) 2.16 (2.11, 2.22) 1.91 (1.86, 1.95) 9.45 (9.35, 10.23)

23 0.82 (0.81, 0.82) 1.53 (1.50, 1.58) 1.31 (1.29, 1.35) 7.63 (7.27, 7.92)
24 0.59 (0.59, 0.60) 2.77 (2.78, 2.91) 2.32 (2.32, 2.43) e22.49 (24.07, 27.30)
25 0.96 (0.95, 0.96) 1.82 (1.78, 1.86) 1 S O (1.47, 1.53) 13.41 (12.64, 14.15)
26 0.95 (0.95, 0.96) 1.95 (1.91, 2.00) 1.63 (1.59, 1.67) 12.85 (12.17, 13.53)
27 0.82 (0.81, 0.82) 2.67 (2.58, 2.70) 2.25 (2.19, 2.28) 19.37 (17.84, 2.13)

22 0.84 (0.82, 0.84) 1.28 (1.24, 1.30) 1.07 (1.04, 1.09) 7.53 (6.78, 7.61)

Table 5(c) Shared memory performance measures for priority memory scheduling (type 2 has higher priority) and homogeneous
memory requirements.

Case

28 0.62
29
30

0.61
0.55

31 0.84
32 0.82
33
34

0.73

35
0.96
0.95

36 0.91

__
UCPU

(0.62, 0.65)
(0.60, 0.62)
(0.54, 0.55)
(0.84, 0.86)
(0.81, 0.82)
(0.73, 0.74)
(0.95, 0.96)
(0.95, 0.96)
(0.91, 0.92)

0.90
1.09
2.79
1.29
1.66
4.25
1.82
2.01
3.83

QMemory Q, ,Memory

(0.90, 0.94) 0.75 (0.75, 0.78)
(1.04, 1.09) 0.95 (0.91, 0.95)
(2.68, 2.81) 2.73 (2.62, 2.76)
(1.27, 1.34) 1.08 (1.06, 1.11)
(1.59, 1.67) 1.47 (1.41, 1.48)
(4.22, 4.44) 4.22 (4.19, 4.40)
(1.75, 1.83) I S O (1.45, 1.51)
(1.94, 2.04) 1.69 (1.64, 1.72)
(3.78, 3.97) 3.64 (3.58, 3.77)

QZ,Memory

4.72 (4.56, 5.11)
4.51 (4.16, 4.53)
3.78 (3.60, 3.75)
7.46 (7.24, 8.1 1)
6.65 (6.22, 6.67)
4.77 (4.74, 4.98)

13.40 (12.06, 13.78)
12.39 (1 1.68, 12.97)
7.84 (7.72, 8.18)

Table 5(d) Shared memory performance measures for First Come First Served memory scheduling and heterogeneous memory
requirements.

Case

37
38
39
40
41
42
43
44
45

UCPU

0.62 (0.60, 0.63)
0.60 (0.61, 0.63)
0.52 (0.52, 0.53)
0.84 (0.83, 0.84)
0.80 (0.80, 0.81)
0.66 (0.66, 0.67)
0.96 (0.96, 0.97)
0.95 (0.95, 0.96)
0.85 (0.78, 0.86)

QMemory

0.91 (0.86, 0.90)
1.02 (0.97, 1.01)
1.96 (1.99, 2.09)
1.34 (1.37, 1.44)
I .69 (1.59, 1.67)

s.2.48 (2.75, 2.84)
1.83 (1.79, 1.88)

e2.05 (2.21, 2.32)
2.71 (2.53, 2.61)

Q1,Memory

0.76 (0.72, 0.75)
0.86 (0.80, 0.84)
1.74 (1.78, 1.88)
1.13 (1.17, 1.23)
1.47 (1.37, 1 . 4 4)

s2.12 (2.45, 2.53)
1.51 (1.48, 1.54)

s1.74 (1.92, 2.01)
2.33 (2.18, 2.26)

4.72
5.18
7.52
7.36
7.64

s15.34
13.34
12.28

e16.29

Q2,Memory

(4.29, 4.82)
(5.10, 5.71)
(6.95, 7.28)
(6.81, 7.32)
(7.51, 8.07)

(11.57, 12.02)
(12.09, 14.13)
(11.13, 11.87)
(14.13, 15.08)

90 '1

IBM J . RES. DEVELOP. VOL. 25 NO. 6 NOVEMBER 1981 CHARLES n. SAUER

Table 5(e) Shared memory performance measures for priority memory scheduling (type 1 has higher priority) and heterogeneous
memory requirements.

Case

46 0.62
47 0.61
48 0.52
49 0.84
50 0.80
51 0.65
52 0.96
53 0.95
54 0.85

UCPU

(0.60, 0.63)
(0.60, 0.62)
(0.52, 0.53)
(0.82, 0.84)
(0.80, 0.81)
(0.65, 0.66)
(0.95, O.%)
(0.95, 0.96)
(0.83, 0.85)

__
0.91
0.97
1.85
I .32
1.55
2.19
1.83
1.97
2.23

QMemory Ql,Memory

(0.86, 0.90) 0.76 (0.72, 0.75)
(0.94, 0.99) 0.81 (0.79, 0.83)
(1.81, 1.90) I .62 (1.58, 1.67)
(1.27, 1.33) 1.11 (1.06, 1.11)
(1.52, 1.60) 1.32 (1.30, 1.36)
(2.14, 2.25) 1.80 (1.76, 1.85)
(1.75, 1.84) 1.51 (1.46, 1.52)
(1.89, 1.98) I .65 (1.59, 1.66)
(2.14, 2.25) 1.82 (1.74, 1.83)

Q2,Mernory

4.72 (4.29, 4.82)
5.28 (4.85, 5.47)
8.22 (7.99, 8.47)
7.43 (6.87, 7.54)
8.21 (7.86, 8.61)

18.44 (17.69, 19.44)
13.35 (11.57, 13.32)
12.77 (11.83, 13.18)
2.96 (19.26, 21.77)

Table 5(f) Shared memory performance measures for priority memory scheduling (type 2 has higher priority) and heterogeneous
memory requirements.

Case

55
56
57
58
59
60
61
62
63

UCPU
~

0.62 (0.60, 0.62) 0.91
0.60 (0.59, 0.60) 1.32
0.54 (0.53, 0.54) 2.98
0.83 (0.83, 0.84) 1.41
0.81 (0.80, 0.81) 2.24
0.65 (0.65, 0.66) 2.19
0.96 (0.95, 0.97) 1.83
0.95 (0.95, 0.95) 2.30
0.88 (0.87, 0.88) 5.29

-
QMemory QI,Memory

(0.87, 0.92) 0.76 (0.74, 0.77)
(1.25, 1.31) 1.18 (1.11, 1.17)
(2.75, 2.88) 2.92 (2.67, 2.81)
(1.34, 1.41) 1.21 (1.14, 1.20)
(2.14, 2.26) 2.08 (1.99, 2.10)
(2.13, 2.24) 1.80 (1.75, 1.84)
(1.81, 1.90) 1.51 (1.49, 1.56)
(2.20, 2.32) 2.01 (I .92, 2.02)
(5.08, 5.33) 5.23 (5.02, 5.26)

___-_____
Q2,Memory

4.70 (4.27, 4.77)
4.59 (4.52, 4.74)
4.06 (4.10, 4.25)
7.08 (6.78, 7.29)
5.66 (5.55, 5.77)

18.44 (17.58, 19.36)
13.32 (12.51, 14.39)
10.93 (10.61, 1 I .20)
6.26 (6.17, 6.34)

Table A1 Shared memory performance measures (Bard's method).

Case UCPU QMemory Ql,Memory Q2,Memory
__"

10
11
12
13
14
15
16
17
18

0.64 (0.60, 0.63)
0.64 (0.60, 0.62)
0.51 (0.53, 0.54)

e0.90 (0.82, 0.84)
eO.90 (0.83, 0.85)
0.70 (0.69, 0.71)
1.00 (0.95, 0.96)
1.00 (0.95, O.%)
0.94 (0.90, 0.90)

e0.80
s0.80
e2.87
s1.01
s1.01
3.87

e1.63
S I .63
e3.18

(0.87, 0.91)
(1.05, 1.10)
(2.46, 2.59)
(1.20, 1.26)
(1.40, 1.47)
(3.60, 3.78)
(1.78, 1.87)
(1.94, 2.03)
(3.44, 3.61)

s0.67 (0.73, 0.76)
s0.67 (0.91, 0.95)
e2.73 (2.35, 2.47)
s0.85 (1.00, 1.04)
s0.85 (1.20, 1.26)
3.71 (3.44, 3.62)

s1.34 (1.47, 1.54)
s1.34 (1.64, 1.71)
e2.96 (3.19, 3.35)

e4.07
e4.07
s5.74
s5.33
s5.33
7.10

e11.51
11.51
e8.47

(4.34, 4.93)
(4.46, 4.88)
(4.85, 5.12)
(6.95, 7.92)
(6.87, 7.47)
(6.69, 7.01)

(12.41, 14.00)
(11.63, 12.74)
(9.23, 9.81)

or priority disciplines of the sort we have considered.
With FCFS, Bard assumes that all job types have the
same mean wait for memory, W.

The iteration proceeds by assuming values for Hk, k =
1, . a , K. When (A2) results in an equality, it becomes a
nonlinear equation in a single unknown, which Bard
suggests solving by Newton's method. Once W has been
obtained, then one can obtain the mean number of each

902 type of job holding memory from expression (AI). Those

values can, in turn, be used to obtain new values for Hk,
k = 1, e , K. The iteration terminates, hopefully, when
there is little change in the mean response times, (W +
Hk), k = 1, *, K. Bard suggests using the mean time
spent in service as the initial estimate for Hk, and that the
initial value W = 0 be used with Newton's method. The
iteration is not guaranteed to converge; Bard considers
the iteration to have converged if successive values for
the type-dependent mean response times do not vary by
more than 5%.

CHARLES H. SAUER IBM 1. RES. DEVELOP. a VOL. 25 a NO. 6 a NOVEMBER 1981

We tried Bard’s method as just described for cases 10-
18 of Tables 4 and 5. Table A1 corresponds to Table 5 for
these cases. The accuracy was significantly worse than
with the Norton’s Theorem approach, but still adequate
for some applications. Bard’s method is most attractive
for larger problems than our test cases, e.g., problems
with more job types and larger populations, where the
Norton’s Theorem approach would be prohibitively ex-
pensive for most applications. Bard’s method remains
very inexpensive even for much larger problems.

References
1. C. H. Sauer and K. M. Chandy, Computer System Perform-

ance Modeling, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1981.

2. Computing Surveys 10 (September 1978).
3. Computer 13 (April 1980).
4. J. R. Jackson, “Jobshop-like Queueing Systems,” Manage.

Sci. 10, 131-142 (1%3).
5. F. Baskett, K. M. Chandy, R. R. Muntz, and F. Palacios-

Gomez, “Open, Closed, and Mixed Networks of Queues
with Different Classes of Customers,” J . ACM 22, 248-260
(April 1975).

6. K. M. Chandy, J. H. Howard, and D. F. Towsley, “Product
Form and Local Balance in Queueing Networks,” J . ACM
24,250-263 (April 1977).

7. D. F. Towsley, “Queueing Network Models with State-
Dependent Routing,” J . ACM 27, 323-337 (April 1980).

8. J. P. Buzen, “Computat:onal Algorithms for Closed Queue-
ing Networks with Exponential Servers,” Commun. ACM
16, 527-531 (September 1973).

9. M. Reiser and S . S. Lavenberg, “Mean Value Analysis of
Closed Multichain Queueing Networks,” J . ACM 27, 313-
322 (April 1980).

10. K. M. Chandy and C. H. Sauer, “Computational Algorithms
for Product Form Queueing Networks,” Commun. ACM 23,
573-583 (October 1980).

11 . C. H. Sauer, “Computational Algorithms for State-Depen-
dent Queueing Networks,” Research Report RC-8698, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, February 1981.

12. K. M. Chandy and C. H. Sauer, “Approximate Methods for
Analysis of Queueing Network Models of Computer Sys-
tems,” Computing Surveys 10, 263-280 (September 1978).

13. C. H. Sauer and K. M. Chandy, “Approximate Solution of
Queueing Models of Computer Systems,” Computer 13,25-
32 (April 1980).

14. A. Brandwajn, “A Model of a Time Sharing Virtual Memory
System Solved Using Equivalence and Decomposition
Methods,” Acta Inforrnatica 4, 11-47 (1974).

15. R. M. Brown, “An Analytic Model of a Large Scale Interac-
tive System Including the Effects of Finite Main Memory,”
Master’s Thesis, Department of Computer Sciences, Uni-
versity of Texas, Austin, TX, 1974.

16. R. M. Brown, J. C. Browne, and K. M. Chandy, “Memory
Management and Response Time,” Commun. ACM 20,153-
165 (March 1977).

IBM J. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981

17. P. J. Courtois, “Decomposability, Instabilities, and Satura-
tion in Multiprogramming Systems,” Commun. ACM 18,

18. P. J. Courtois, Decomposability: Queueing and Computer
System Applications, Academic Press, Inc., New York,
1977.

19. T. W. Keller, “Computer Systems Models with Passive
Resources,” Ph.D. Thesis, University of Texas, Austin, TX,
1976.

20. Y. Bard, “An Analytic Model of the VW370 System,” IBM
J . Res. Develop. 22, 498-508 (September 1978).

21. P. A. Jacobson and E. D. Lazowska, “The Method of
Surrogate Delays: Simultaneous Resource Possession in
Analytic Models of Computer Systems,” Technical Report
80-04-03, Department of Computer Science, University of
Washington, December 1980.

22. B. R. Newsom and R. G. Ward, “Effects of Finite Memory
on the Performance of a Large Scale Multiprogrammed
Batch Computer System,” Proc. CMG X , Dallas, 1979
(Computer Measurement Group, Inc., P.O. Box 26063,
Phoenix, AZ 85068).

23. K. M. Chandy, U. Herzog, and L. Woo, “Parametric
Analysis of Queuing Networks,” IBM J . Res. Develop. 19,
36-42 (January 1975).

24. W. J. Stewart, “A Comparison of Numerical Techniques in
Markov Modeling,” Commun. ACM 21, 144-151 (February
1978).

25. A. Brandwajn, “An Iterative Solution of Two-Dimensional
Birth and Death Processes,” Oper. Res. 27, 595-605 (May-
June 1979).

26. U. Herzog, L. Woo, and K. M. Chandy, “Solution of
Queuing Problems by a Recursive Technique,” IBM J . Res.
Develop. 19,295-300 (May 1975).

27. C. H. Sauer, “Numerical Solution of Some Multiple Chain
Queueing Networks,” Research Report RC-8986, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, August 1981.

28. C. H. Sauer and E. A. MacNair, “Queueing Network
Software for Systems Modeling,” Software-Practice and
Experience 9, 369-380 (May 1979).

29. Charles H. Sauer, Edward A. MacNair, and Silvio Salza, “A
Language for Extended Queuing Networks,” IBM J . Res.
Develop. 24, 747-755 (November 1980).

30. D. L. Iglehart, “The Regenerative Method for Simulation
Analysis,’’ Current Trends in Programming Methodology,
Volume III: Software Modeling and Its Impact on Perform-
ance, K. M. Chandy and R. T. Yeh, Eds., Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1978.

31. S . S . Lavenberg and C. H. Sauer, “Sequential Stopping
Rules for the Regenerative Method of Simulation,” IBM J .
Res. Develop. 21, 545-558 (November 1977).

371-377 (July 1975).

Received February 9, 1981; revised June 2, 1981

The author is located at the ZBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

903 I

CHARLES H. SAUER I I

