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The  Software-Cache  Connection 

This paper  describes an adaptation of standard Fourier analysis  techniques to the study of software-cache  interactions. 
The cache is viewed as  a  “black box” boolean signal generator, where “ones” correspond to cache misses and “zeros” 
correspond to cache hits. The spectrum of this time  sequence is used to study the dynamic  characteristics of complex 
systems and workloads with minimal a priori knowledge of their internal organization. Line spectra identify  tight loops 
accessing regular data  structures, while the overall  spectral  density  reveals the general structure of instruction localities. 

1. Introduction 
Recent  improvements in machine  organization have  re- 
duced the number of processor  cycles required to  execute 
individual instructions in high performance systems.  The 
cycle  time itself has  also been reduced by advances in 
chip  and packaging technology. Main storage  access time 
has not kept  pace with these two trends,  however, but has 
remained  almost constant  for  several  years. 

This has resulted in the so-called Jinite  cache prob- 
lem-a situation where efforts to  increase  system  per- 
formance are blocked  by  a  bottleneck  between the  cache 
and its backing store. For the  foreseeable  future, this 
problem will be so severe  that  the per-instruction  penalty 
imposed by a finite cache may equal or even  exceed  the 
average  per-instruction  execution time: i .e. ,  half the 
potential  performance of current  and projected systems 
may be lost within electronic  levels of the memory 
hierarchy. 

Traditional  solutions to this  problem  involve  “tuning” 
various parameters of cache  and  processor organiza- 
tion-such as  cache  size,  cache associativity, cache line 
size, and  processor pipeline depth-to the  expected work 
load. These  hardware  alternatives  have been  studied 
extensively, and a substantial  body of data  exists describ- 
ing their  relation to finite cache penalty  and  work  load. 
Unfortunately, the technological trends noted above 
leave little hope that this  conventional  methodology will 
continue to  produce satisfactory results. 

The intent of modern  processor design in  this  regard is 
to minimize the delay caused by short range data  and 
address interlocks-no more  than  three or four refer- 
ences. Our objective is to  determine  whether  or not there 
is any  predictability to  cache misses,  especially at long 
ranges. Such a capability would enable us  to improve 
cache performance  through intelligent cache management 
(replacement) or anticipatory line transfers (prefetching). 

Long-range  prediction would be of particular  value in 
constructing efficient dispatch  and queueing  strategies, 
given the volatility of buffer miss ratio in contemporary 
systems. For example, Fig. 1 shows how the buffer miss 
ratio changes  over time for a  typical data  base  work load 
and cache organization. The horizontal  axis  calibrates 
time in terms of storage  references, while the vertical  axis 
calibrates the buffer miss ratio  over 1 0 0  references. The 
degree of variation  evident in this  graph is characteristic 
of such complex environments  and  cannot be  explained 
satisfactorily in terms of physical cache design parame- 
ters alone. 

We believe that software  related events  are  the primary 
cause of significant fluctuations  in the buffer miss ratio, 
and  hence that  the key to improving cache performance 
lies in understanding the specific software  mechanisms 
involved.  This paper  reports our initial experimental 
attempts  to  substantiate  and quantify  this  intuitive  thesis. 
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Figure 1 Buffer  miss ratio  computed  every 100 references. 
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Figure 2 The  capacitor  model. 

2. The  need  for a closer  look 
We believe that a substantial fraction of the  cache misses 
that  occur in modern systems are due  to dynamic changes 
in locality [ 1, 21. Task  switches  are a clear indication of 

878 such changes in locality, and intuition  suggests the fol- 

lowing informal  relation between  cache misses and task 
switches. Let A be  the  “steady  state” value of the buffer 
hit ratio (bhr) in a multitasking  environment. Each time a 
task switch occurs, we expect  the  sudden change in 
locality of references  to  cause bhr(t) to  drop  from a 
steady state level A to some  smaller  value A - a. 
Thereafter, bhr ( t )  should  climb slowly back to  the steady 
state level A as  the new  locality  becomes cache  resident, 
like the rise in voltage drop  across a  charging capacitor 
(Fig. 2 ) .  

This model is  discussed at length in reference [3]. As 
will be seen,  however, although  this  model correlates well 
with experimental data, it reveals only part of the  true 
picture. Consider,  for example, the variations in buffer 
miss  ratio over time shown in Fig. 1. There  are  over 150 
task  switches spread  across  the span of 360 000 refer- 
ences  covered by the horizontal  (time) axis.  The above- 
noted  intuitive  model leads  us  to  expect a sharp peak after 
each  pass through the  dispatcher, followed by an expo- 
nential  decay back  to a residual steady  state. 

Obviously, the  phenomenon is much  more complex, 
and  apparently  more random,  than anticipated. Not only 
is it difficult to pick out specific instances of the  “cache 
capacitor” charging and discharging, it is even difficult to 
find any obvious steady  state! 

In fact,  the graph  more  closely  resembles  a  plot of 
sunspot  activity,  or  perhaps a very noisy and poorly 
grounded signal displayed on  an oscilloscope. This analo- 
gy prompted the  idea of using signal analysis techniques 
to try to  separate  the noise from  the signal-assuming, of 
course,  that  there  is indeed any signal there. 

Focusing on buffer miss ratio  alone may be too simplis- 
tic, since it is only  a one  parameter  measure of the 
cumulative  effects of the mechanisms  involved here. Our 
thought is  that  the  spectrum  for  the bmr will help separate 
the  dynamic effects of these various  mechanisms,  reveal- 
ing periodic  signals  hidden in the visual  noise of Fig. 1 
14, 51. 

3. Representing  the  buffer  miss  ratio 
Given an interval of time,  the buffer miss ratio  can be 
calculated by dividing the  number of misses  occurring in 
the interval  by the  total number of references occurring in 
the interval. If we partition  time into small intervals, Z(t), 
for t varying from 1 to N ,  then we can define a  function 
bmr(t) relating the  cache misses to time as 

M(t )  
( M t )  + W t ) )  

where M(t )  is the number of cache misses in interval t ,  

’ 
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and H(t)  is  the  number of cache hits in interval t .  The 
question of representation is: How long should each 
interval be? 

Clearly, if too large an interval is selected, high fre- 
quency  information will be lost,  or  at  least  severely 
attenuated. If too  short  an interval is selected,  then  there 
will be large variations  in the buffer miss ratio from one 
interval to the  next,  and smoothing the  data will be a 
problem. 

We decided to  deal with the smallest  interval  size 
possible (one reference),  in which case bmr(t)  = M(t ) .  
Thus,  we define the boolean  miss  sequence M(t)  as  the 
series of zeros  and  ones representing the  net effect of 
passing a given reference  stream through a given cache 
organization. This phenomenon is  represented in M(t) by 
reflecting each  cache hit as a zero  and  each  cache miss as 
a one. Clearly, M(t )  will vary  depending on  cache organi- 
zation and becomes well defined only  when  a  particular 
cache  is specified. 

To  construct M(r) at this  level of detail, we first process 
a raw instruction trace  tape using a machine  simulator to 
generate a corresponding  reference  sequence R, where 
R(t)  is  the  address of the  tth  reference  to storage  pro- 
duced  by the machine  simulator. This reference sequence 
is then supplied as input to a cache simulator (which 
approximates the  cache  on a Systed370 Model 168-3) 
that  produces  the  desired miss sequence.  In  other  words, 
M(t)  = 0 if R(t) results in a cache hit, and M(t)  = 1 if R(t) 
results in a cache miss when  processed by a given cache 
simulator. 

4. Mathematical  background 
There  is little need for  an in-depth  review of the mathe- 
matics and  techniques  associated with discrete  Fourier 
transforms in this paper, given the number of excellent 
and widely available texts in this area [6-101. However, it 
may prove helpful to  present  the basic equations  as 
applied to our problem. 

Let M(t )  be a function relating cache misses and time. 
Then 

F(0)  = I_, M(t)e-’u‘dt 

is the  Fourier transform of M(t) ,  

+m 

S(0)  = F(0)  x F*(0)  = (F(w)12 

is the  spectrum of M(t) ,  and 

p ( T )  = M ( T )  x M ( T  - t )  
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is the  autocorrelation function of M(t) .  In particular, for T 

= 0, we have 

p(0) = variance = - I ~ ( w ) d o .  
1 +- 

2%- --cE 

Mathematically, then, S(w) describes how the variance 
of M(t )  is distributed over  the  frequency domain. 

However, we have  chosen M(t) to be a binary  se- 
quence,  and we therefore  can write 

m = M2(t) 

and 

MO = - C “ones.” 

Thus, 

number misses 
M(t) = = bmr, 

N 

bmr denoting the classical buffer (cache)  miss  ratio as we 
know it. 

1 
N 

Then,  the variance of M(t)  will be 
- 

V[M(t)]  = [M(t)  - bmr12 = M2(t)  - bmr’, 

which can  be rewritten  as 

V[M(t)]  = bmr - bmr2 = bmr(1 - bmr) 

and 

V[M( t ) ]  = bmr. 

Therefore,  the variance of the binary sequence M(t )  is, 
at a first order approximation, the  cache miss ratio. 
Hence  one  can think of the  spectrum  as showing how the 
cache miss ratio itself is distributed  over  the  frequency 
domain. 

5. Miss sequence  spectrum 
The transform of this  miss sequence  was  computed by 
applying a double  precision discrete  fast  Fourier  trans- 
form routine [ l l l .  Its  spectrum (Fig. 3) was calculated by 
averaging the sum of the  squares of the real and imaginary 
components of this transform  over  each 100 points in the 
frequency  domain. The vertical axis is logarithmic, as is 
conventional in this type of analysis, while the horizontal 
axis is linear and calibrated in normalized frequency  units 
from 0.0 to 0.5 cycles.  The  “time” in this  analysis is 
measured in successive  references, i .e . ,  first reference, 
second reference,  etc.  The normalized frequency scale 
(normalized to  the length of the  trace  measured in refer- 
ences) is therefore  expressed in occurrences  per refer- 
ence.  Some  event with frequency 115 happens  once  every 879 
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1 Normalized frequency 

Figure 3 Miss spectrum of Trace 1 .  

five references.  This  allows an easy  comparison  between 
spectra of traces of different lengths. Had we been in a 
position to  use actual  time,  then the frequency would 
have  been  expressed in hertz; however,  actual  time in 
seconds can only be computed by assuming  some specific 
machine and would have in this  case significantly restrict- 
ed the generality of the results  pertaining to software by 
introducing delays due  to a specific machine organiza- 
tion. 

On the other  hand, we  think  it will certainly be of value 
to  do such  an  analysis using a real time scale  and 
therefore focus on the effect of different machine organi- 
zations. 

This spectrum  contains many sharp spikes and is 
definitely not a flat line. This conveys information: Any 
departure of the spectrum  from the shape of white noise 
indicates  some  predictable  behavior in the time domain. 
Let us  consider a few specific features of interest  appear- 
ing  in this  spectrum. 

There is a clear  spike in the middle of the spectrum, at a 
normalized frequency of 0.25. This corresponds  to a 
period of four  references. The simulated machine was a 
double-word  wide, so that  four references access 
32 bytes.  This  happens to  be  the line size of the simulated 
cache, and  we  therefore suspected  that this  spike  was 
related to  the cache line size. To  check this  experimental- 

880 ly,  we  developed a cache model with a 64-byte line  and 

Jormalized frequency 

Figure 4 Miss spectrum for cache model with 64-byte line. 

computed  the Fourier transform  and  spectrum of its 
associated miss sequence in the manner  described  above. 
Figure 4 shows that  the spike in the middle has decreased 
in amplitude, as  expected. 

Indeed, the  amplitude of this  spike is almost  exactly 
halved. As will be  seen  later, this  observation  is a strong 
indication that  the spike  is caused by long bursts of purely 
sequential  references. Further,  the spikes at frequencies 
0.125 and 0.375 are clearer on Fig. 4 than on Fig. 3 and are 
of about  the same amplitude as the vestigial spike at 0.25. 

This  indicates that some  sequential  reference activity 
remains significant, even when doubling cache line size. 

In changing the  cache model from a 32-byte line to a 64- 
byte  line,  we  noticed  that the spikes at frequencies 
0.0772,  0.0908, 0.1539, 0.1819, 0.2017, 0.2728, 0.3639, 
0.3847, 0.4547, and 0.4617 decreased significantly. The 
spikes at frequencies 0.1667 and 0.3333 (its harmonic) 
decreased only slightly, which indicates  weak sensitivity 
to the line size.  In  addition, a spike at 0.23 appeared on 
the  spectrum  associated  with a 64-byte line cache  that 
was  not significantly above  the noise level for  the 32-byte 
line spectrum. 

A closer look at  these values  shows that we have 
actually uncovered three harmonic  series stemming from 
three  distinct low frequency  fundamentals, as shown in 
Table 1. 
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Figure 5 Data miss spectrum for Trace 1. 

Furthermore,  the  extreme low frequency  part of this 
spectrum is obviously not  flat, rising far  above  the 
spectral  level associated with white  noise. We interpret 
this as evidence that low frequency  events  have quite 
predictable effects on  the buffer miss ratio. Since the 
frequency of occurrence of software events is commensu- 
rate with  this  range, it should be possible to anticipate the 
misses triggered by certain software events. 

Filtered  sequences 
One of the  advantages of spectral analysis is that it 
permits the  use of filters to isolate events of specific 
frequencies. We thought it would be  instructive to  see 
what  time  domain events  correspond  to specific frequen- 
cy domain  spikes, and  also  to  see what  happens  when the 
miss sequence  is partitioned  according to reference 
type-i.e., separated  into disjoint instruction  and data 
miss sequences. 

Frequency domain  filtering 
The harmonic series discussed above piqued our curios- 
ity, and we decided to  use a frequency domain filter to 
study  them  further. A special cache simulation was 
performed that zeroed out  every  one (or miss) due  to  an 
instruction fetch.  The resulting data miss sequence  was 
then converted  into  the  spectrum  shown in Fig. 5 in the 
usual manner. Note  that again several significant, sharp 
spikes are readily  visible. 

In fact,  the  spectral  pattern is remarkably similar to 
that shown in Fig. 3, which implies that  most of the  spikes 

INormalized frequency 

Figure 6 Instruction miss spectrum of Trace 1. 

Table 1 Harmonic series. 

Series A B C 

Fundamental 0.0772  0.0908  0.1667 

1st harmonic  0.1536  0.1819  0.3333 
2nd harmonic  0.2308  0.2728 
3rd  harmonic  0.3086  0.3639 
4th  harmonic  0.3847  0.4547 
5th  harmonic  0.4617 

are  due  to  data  movement as opposed  to instruction 
fetches. This  was a surprise; we had expected periodic 
components in the  instruction  sequence, but  not in the 
data  sequence.  Not only does  the  data  spectrum indicate 
periodic components,  but  the instruction spectrum (Fig. 
6)  is devoid of such  features. 

The  reader familiar  with filter theory knows that it 
wsuld  be costly in computing  time and difficult in general 
to design a sufficiently narrow  bandpass filter in the time 
domain, with sharp enough cutoff frequencies,  to isolate 
only that  part of the time  domain signal that gives  birth to 
a spike  in the  frequency  domain.  The  advantage of using 
the  discrete  Fourier transform and a digital computer  is 
that it is very easy  to  work in the  frequency domain, on 
the transform itself. 

The  discrete  Fourier transform of the  data miss se- 
quence  was  set to zero  at all frequencies except  those 

I. VOLDMAN AND 

881 

LEE W. HOEVEL IBM J. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981 



lNormalized frequency Normalized frequency 

I Time 

I I 

t 
Listing: 
last 10 instructions 
last 5 modules 

Figure 7 Procedure for generating filtered,  zero-one sequence. 

falling  within the spikes of the A harmonic series them- 
selves. This filtered transform was then converted back 
into the time  domain  using an inverse fast Fourier trans- 
form, resulting in a signal  whose amplitude varied  be- 
tween 0.0 and 0.135. 

After  studying this filtered  time  domain  signal, we 
decided to generate a filtered, zero-one sequence using 
the following  algorithm: 

If the original data miss sequence contained a miss at 
a position in  which the value of the filtered  signal  was 
at or above an arbitrary threshold value (0.120), then 
a one  was generated; otherwise a zero was generat- 
ed. 

Our rationale was that such a high value  in the filtered 
signal corresponded to a badly  deformed one, and there- 
fore to a filtered miss. The logical “anding” with the 
original sequence was used to eliminate spurious ones 
resulting  from side effects of the narrow  filtering itself. 

We then produced a list of reference addresses and 
responsible instructions for each one remaining  in the 
sequence of confirmed  misses generated by the above 
filtering process. 882 
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A complete description of this entire process can be 
seen on Fig. 7. 

We were  greatly surprised to find that all 162 misses 
selected by this filter originate from the same instruction, 
a Compare  Logical Immediate (CLI). Almost  all of the 
actual addresses corresponding to these misses reference 
the bottom of memory  and are offset exactly 32 bytes 
from the adjacent miss addresses. This part of the memo- 
ry is known  to contain a set of data  structures, called  Unit 
Control  Blocks  (UCBs)  in system programmer jargon, 
which represent Input/Output devices for the operating 
system. 

Subsequent analysis showed that the  CLI instruction 
was part of a tight loop of ten instructions that indeed was 
doing a sequential search for a specific byte in a specific 
UCB.  In addition, we found that this event (the start of a 
UCB lookup)  only happens twice on Trace 1, both 
occurrences falling  in the second half  of the trace. 

This experiment demonstrates the power of spectral 
analysis as a tool for discovering and dissecting software 
and cache problems. 

Data miss sequence 
Recall the two relatively large spikes appearing at fre- 
quencies 0.167 and 0.333 in Figs. 4 and 5 and listed in 
column C of Table 1. They correspond to respective 
periods of six references and three references; on the 
simulated  machine, this is equivalent to 1.5 and 0.75 
cache  lines. The other very sharp spikes on the spectrum 
do not  fall on periods that correspond to primitive  multi- 
ples of either references or cache lines. 

Before  drawing  any conclusions on spike semantics, 
however, we felt that it  would  be desirable to have  an 
independent element of  comparison--i.e.,  an instruction 
trace reflecting a different  work load. 

Trace 2 was intended to capture typical  commercial 
“batch” processing executed under the same operating 
system  used to generate the Trace 1 benchmark. As 
before, a zero-one miss sequence was produced, pro- 
cessed by the fast Fourier transform, and converted into 
the spectrum shown  in  Fig. 8. 

One can see five  significant spikes on this picture, with 
the following reference periods: 8, 5, 4, 2.7, and 2.5. 
Again,  we  have two harmonic sequences: the spikes at 
periods 8,4, and 2.66; and the spikes at periods 5 and 2.5. 

Our  colleague, Thomas R. Puzak, suggested that it 
might be  helpful to filter out those references generated 
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I Normalized  frequency 

Figure 8 Data miss  spectrum of Trace 2. 

by the MVCL instruction. The cache simulator was 
modified to report all  MVCL-based references as cache 
hits, and the spectrum of the resulting reference sequence 
is  shown in Fig. 9. Observe that one of the series of 
harmonics (those spikes at frequencies 0.125, 0.250, and 
0.375, corresponding to periods 8,4,  and 2.7) disappeared 
entirely, while the other was essentially unaffected.  This 
suggests that these spikes are related to purely sequential 
use and  movement of data. In general, we speculate that 
such a pattern of spikes, with periods closely related to 
the line size of the cache, are associated with serial 
processing of data and instructions (serial processing 
need  not  be sequential; random data can be accessed 
serially, as in control block  chaining). 

It  is natural to question whether this spectrum is 
characteristic of batch processing per se, or only of some 
specific events in a particular trace sample capturing only 
a fraction of a second in real time. In a study made after 
the main results for this paper were obtained, we found 
that spikes do happen on a local basis. More  specifically, 
they are related to tight loops into regular data structures, 
and the spectral analysis should be conducted on small 
sections of trace (16K references). 

It is our contention that the data miss spectra (by small 
sections) are a general signature for the type of data 
reference activity occurring in a given  work load, and 
hence  can  be  used to discriminate between work loads 

) 0.08 0.16 0.24 0.32 0.40 0.48 

rlormalizedfrequency 

Figure 9 Data miss  spectrum of Trace 2 with MVCL effects 
removed. 

that are intuitively perceived as  ditferent-even when 
conventional statistics fail to reveal any  distinguishing 
characteristics. 

Spectral synthesis To further our understanding of the 
meaning of the spectral lines in these previous experi- 
ments, we followed a suggestion  from  Shmuel  Winograd 
(who  has  helped us avoid several pitfalls throughout this 
study) that we focus on the properties of certain synthetic 
sequences. 

We first constructed a building  block sequence, rn(t), of 
period 4, i.e., 

m(r) = “lOOolO0O1O0O - a ’ ’  

and of length 50 OOO. The spectrum of this periodic 
function will contain a regular pattern of spectral lines at 
normalized frequencies r/4 (for r = 0 to 3), as explained  in 
Appendix  A. 

All  of these spectral lines will have the same height, 
which is determined by the total number of ones in the 
time  domain. Because the time is measured in successive 
references, i.e., first reference, second reference, * a ,  

nth reference, the frequencies will  be measured in  num- 
ber of occurrences per reference. In other words, a 
normalized frequency of 0.25 (1/4) should  be read as 
meaning  one occurrence of an event every four refer- 
ences. The term “normalized” implies that the number of 883 
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Figure 10 Spectrum for M(t)  with subsequences 50 OOO points 
long with  period four. 

occurrences of some event  on a trace (frequency)  has 
been normalized to the length of the trace  expressed in 
references. 

We then constructed a miss sequence M(t) using eight 
such m(t) subsequences, shifted one from another by a 
uniformly random  number of references not  greater  than 
3000. The Fourier  transform for M(t) will be  the sum of 
the Fourier transforms for  each of the m(t) building block 
sequences, with each spectral line shifted in phase by 
e - i r2~qJ4  

where qi is si modulo(4), si is the relative shift for building 
block number i ,  and r = 0, 1, 2 ,  3 is the integer multiplier 
used to identify a particular  spectral line (the  harmonic 
number). 

The spectrum for M(t) is  shown in Fig. 10. It is a known 
property of a spectrum to be symmetric about frequency 
0.5. This is why we only  plot a spectrum from 0 to 0.5. 
The periodicity of the “building block”  sequences is,  as 
expected, reflected by a spike at  the fundamental  fre- 
quency of 0.25. This implies that  the spectral line at 0.25 
on the  spectrum for  Trace 2 is the result of one  or more 
occurrences of an  event which manifests itself by a long 
(compared to  the period) sequence of misses at  every four 
references. 

Indeed, we have just identified such a phenomenon in 
884 the previous  section: the execution of MVCL instructions 
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Figure 11 Spectrum for M ( f )  with subsequences 50 OOO points 
long with  period five. 

that move a significant number of bytes.  This confirms 
the intuitive notion  and  general methodology described 
above, and holds out  the hope that we may eventually be 
able to  “read” underlying behavioral patterns in the miss 
spectrum of actual  trace tapes. 

A similar computation using 8 subsequences of internal 
periodicity 5 (there is nothing magic about  the number 8; 
it ended up being the needed  number to fill 360 000 
points) and length 50 OOO produces the spectrum  shown in 
Fig. 1 1 .  It exhibits  spikes at 0.20 and 0.40 similar to  those 
found on the data miss spectrum of Trace 2 (Fig. 8). The 
sum of the spectra in Figs. 10 and 1 1 ,  then,  captures most 
of the significant features of the  Trace 2 spectrum. 

We thus have  shown that  the  pattern of spectral lines in 
the spectrum of an  actual  tape  can be synthesized rather 
easily, and that  these lines can  be explained as manifesta- 
tions of infrequent  software events of relatively long 
duration that exhibit a very  regular miss pattern within 
each  occurrence. 

Impact of periodic  sequences With so many spectral 
lines showing up on the  data miss sequence of Trace 1, 
one  cannot  help  but  wonder how many misses  they 
represent. Using the  same filtering procedure  described 
earlier,  we  produced a miss sequence, whose spectrum is 
shown in Fig. 12, with all the  spectral lines filtered out. 

We started with 14 450 data misses on  the spectrum of 
Fig. 5, and we are left with 8228 misses in Fig. 12. 
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Therefore, all the periodic phenomena corresponding to 
the spectral spikes represent a total of  6222 data misses; 
Le., 43 percent of the total number of data misses. 

Therefore, 43 percent of all data misses  on this tape 
exhibit a very periodic and thus predictable behavior. A 
mechanism  using this information  could therefore elimi- 
nate a substantial fraction of all data misses in similar 
programming environments. 

Instruction miss sequence 
We define  an instruction fetch miss sequence M(t)  as a 
series of zeros and ones that represents the net  effect of 
passing a given reference stream through a given cache 
organization. If M(t)  = 1, then the tth reference was  an 
instruction fetch that resulted in a cache miss.  If M(t)  = 0, 
then the tth reference was either not an instruction fetch 
or resulted in a cache hit. 

The cache simulation  used  with Trace 1 was  again 
modified  in such a way that all misses not due to pure 
sequential instruction fetches were reported as cache 
“hits” ( i .e . ,  zeroed out). This resulted in an instruction 
miss sequence whose associated spectrum is shown in 
Fig.  6. It is clear that the instruction miss spectrum differs 
markedly  from the data miss spectrum. 

In particular, it has an obvious dip in the low frequen- 
cies.  The frequency of the minimum is equal to 0.035 
cycle (a period of  28.5 references). Between 0.5 and  0.08 
cycle (periods between 2 and  12.5 references) the spec- 
trum  is  roughly  flat. Then from  0.08 to 0.035 (periods 
from  12.5 to 28.5 references) it decreases before again 
increasing sharply over the low frequencies (periods 
greater than 28.5 references). 

The  basic question is  how to interpret the physical 
significance  of  this dip. We decided that a reasonable 
approach  would  be to find a method of synthesizing time 
sequences with  similar spectra in the frequency domain. 
To do this, it is necessary to understand the statistical 
properties of the instruction stream, such as the distribu- 
tion of inter-miss distances, etc. 

6. Statistical  properties of inter-miss  distances 
Figure 13 shows the histogram of the inter-miss distances 
for Trace 3,  which spans a million storage references. The 
distribution of those distances falling between one and 16 
references appears to be a classical “bell-shaped curve.” 
The shape of the distribution curve over larger inter-miss 
distances is less obvious. The same  histogram plotted on 
log-log paper (Fig. 14) shows, as expected, that when the 
distance  becomes larger, the number of intervals in these 
ranges decreases. This means that our experimental esti- 

INormalized frequency 

Figure 12 Miss spectrum of Trace 1 with  all spectral lines 
filtered out. 
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Figure 13 Histogram of inter-miss distances for Trace 3.  

mate of the distribution becomes increasingly  unreliable 
as the inter-miss distance increases. 

However, a reflection on the physical nature of the 
underlying  phenomenon  allows us to devise some reason- 
able hypothesis. 885 
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Figure 14 Distributions of inter-miss distances. 
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Figure 15 Synthetic miss sequence. 

Underlying  model 
Our  hypothesis  is that the distribution of inter-miss 
distances  is  bi-modal. As a matter of fact, the  underlying 
model could be as follows: 886 

1. VOLDMAN AND LEE W. HOEVEL 

INormalized frequency 

Figure 16 Synthetic miss sequence with average inter-miss 
distance within a burst of six references. 

1. The small inter-miss distances are “bursts” of instruc- 
tion  fetch  misses that occur after any  sudden  change in 
locality, e .g . ,  dispatches, subroutine calls. 

2. The  large  inter-miss distances are “gaps” of long 
duration  occurring  between context switches, without 
any  imbedded I-fetch misses. 

Experiments 

The high frequency cutoff 
We construct a synthetic miss sequence M(t)  using 200 
subsequences of exponentially distributed length with 
mean equal to 1025 references. These subsequences are 
shifted  from one another by exponentially distributed 
shifts of  mean 665 references. Each subsequence is 
populated by ones, with inter-one distance Erlang-distrib- 
uted  with 18 degrees of freedom, and thus with a mean  of 
18 references. 

The total length of the resulting synthetic sequence is 
360 OOO references, which  is the same as Trace 1. Its 
spectrum is shown in  Fig. 15. 

It is clear that this  method produces a low frequency 
dip. However, this  dip is narrower than the one in  Fig. 6. 
The  cutoff frequency, on the high frequency  side of the 
dip, defined as the point where the curve cut the flat  level 
portion of the spectrum, will  be called  the  “high frequen- 
cy  cutoff.” Its value is 0.055. This corresponds to a lag of 
about 18 references, which is the average inter-miss 
distance  within a burst of misses. 
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Figure 17 Spectrum of miss sequence with average length of a  burst of  misses equal to 100 references (a)  and to 25 references (b). 

To check this hypothesis, we  built another synthetic 
miss sequence, identical in every respect to the first one, 
with the exception that the “average inter-miss distance 
within a burst” is  six references. 

The  resulting spectrum is shown  in  Fig. 16, and  indeed 
exhibits a dip with a high  cutoff frequency value around 
0.16, which corresponds to a lag  of six references. 

Therefore, the high frequency cutoff  value of the dip 
is the inverse of the mean  value of the inter-miss 
distance within a burst of misses. 

Figure 17(a) illustrates the spectrum of such a miss 
sequence  with the average length of a burst of misses 
equal to a hundred references. The high frequency cutoff 
point  did  not move, but the low frequency cutoff point 
moved  away  from the ordinate axis to a value of 0.001, 
which corresponds to a lag of 100 references. 

A similar experiment was conducted for a burst length 
of 25 references, producing the spectrum shown  in  Fig. 
17(b). The low frequency cutoff  point is equal to 0.02, 
which corresponds to a lag  of  50 references. 

Let HCO be the notation for “high frequency cutoff’ 
and IMD denote the mean inter-miss distance (expressed 
in references).  Then 

1 

IMD 
HCO = = . 

At this point, we began to employ a more syitematic 
approach involving three successive sets of experiments. 
In all of them, the average gap  length  was  held constant at 
665 references (with an exponential distribution). 

The low frequency cutoff 
Observe that in  Fig. 6 the actual dip is more symmetrical 
than those synthesized up to now.  Some  more structure 
should therefore be added in  such a way that it  affects the 
extreme low frequency part of the spectrum. 

For the first set of experiments, the inter-miss distance 
was  fixed at an average of six references, while the 
average  length of a burst was varied from 25 to 1025 
references. The low frequency cutoff  value  was  measured 
for each  point  and plotted against the average length of a 
burst. 

We constructed a second set of synthetic sequences, 
keeping the average inter-miss distance constant (nine 
references) and varying the length of a burst of misses. 

This  was repeated twice, changing the inter-miss dis- 
tance  first to nine  and then to 18 references. 
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Figure 18 Family of curves. 

A family of three  curves,  parameterized by the inter- 
miss distance value,  is shown in Fig. 18. It is easy  to 
recognize a set of parabolas,  and indeed a curve fit 
provides us with the following three  equations (with L C 0  
denoting the low frequency  cutom: 

1 
L C 0  
- =  7.1 X (bUrst)0’S2 , 

1 - 
- =  8.91 X , 
L C 0  

1 
L C 0  
- =  19.73 X (bUrst)0’49 . 

From  this we  deduce  that a more  general  relationship for 
the low frequency cutoff value (LCO) is 

where ZMD denotes  the  average inter-miss  distance. 

In other  words,  the low frequency cutoff value is 
directly related  to  both  the average length of a burst 
of misses and  the  average inter-miss  distance within 
a  burst. 

Mean values 

Mean burst length Now combining Eqs. (1) and (2), we 
can  derive  an  expression  for  the mean  length of a  burst: 

aaa 

J.  VOLDMAN AND LEE W. HOEVEL 

Residual “noise level” The last  variable in this model is 
the average  value of the gap between  successive  bursts of 
instruction fetch misses.  Keeping the  average values of 
both the  burst  and  the inte‘r-miss distance  constant  at, 
respectively, 1 0 0  and 9 references,  the value of the  gap 
was increased  from 100 references  to 1025 references. We 
found that  the values of the cutoff frequencies (both high 
and low) are not affected by this,  except when the average 
gap value is equal to 100 references. 

We can  explain  this  anomaly. Consider  that if the gap 
between the  bursts of misses is  too  short, it becomes 
difficult to distinguish between “two  successive misses 
within a burst”  and  “the last  miss of a burst followed by 
the first miss of the following burst.” This changes  the 
mean values of the inter-miss distance and burst length 
because two  bursts  too close to  one  another will be 
treated as a single long burst with at least  one long inter- 
miss distance  occurring within the long burst. 

Notwithstanding the  above  exception,  the most notice- 
able effect of varying the mean gap length from 200 to 
1000 references is a  vertical downward shift of the 
spectrum. Using the flat level of the high frequency part 
as a  reference  level, it is possible to derive a linear 
relationship between  the value of this reference “noise 
level” and the total  number of misses. 

Let MI be the number of misses, NL the  reference 
noise level,  and Cw a constant  that  depends  on  the  type of 
data window used in smoothing the  spectrum. (With 
smoothing in the  frequency  domain, Cw = 1.0, whereas 
using the Welch Segmentation  Method  gives Cw = 1.66.) 
We used  regression  analysis to determine the relationship 
between  these  variables,  based on experimental data. 
This  resulted  in the following equation: 

MZ = 362 000 X lo3 X NL X e,. 

Recall that all of the  above  synthetic  sequences have a 
constant  length of 360 000 references-i.e., have  the 
same length as  Trace 1. Clearly  this equation  is param- 
eterized in terms of the length (L)  of the trace within the 
accuracy  and  size of our samples: 

MI = L X lo3 X NL X c,. 
Then, 

- =  bmr = lo3 X NL X C,. 
L 

Thus,  the level of the flat portion of the  spectrum is 
proportional to the  average buffer miss  ratio of the 
instruction fetch trace. 
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Figure 19 Instruction miss spectrum on a log-log scale. 

Mean  gap  length Now, if Nburst is the total  number of 
bursts on a trace,  then 

L = (m + bUrSt)Nburst. 

Expressing the number of misses as  the  average length 
of a burst, divided by the average  inter-miss distance 
within a burst, plus a corrective  factor  for  gaps, we have 

,- 
burst 

= (m + 2)Nburst* 

Now we have four equations  which, given the  spectrum 
of the instruction fetch miss sequence, define the main 
mean values characterizing the  structure of an instruction 
fetch miss sequence. Recalling that LC0 and HCO de- 
note,  respectively, low cutoff frequency  and high cutoff 
frequency, it  is possible to successively compute 

- HCO 
burst = (E) ; then, 

L X NL X c, X 103 
Nburst = 1 

2 + -  
L - gap = - - burst. (5 )  

Nburst 

Model  validation 
If we go back to  the original instruction fetch miss 
sequence of Trace 1 and  its  spectrum (Fig. 6), we  can 
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Figure 20 Recreated instruction miss spectrum of Fig. 6. 

apply the  above  equations  to a real  case.  For  ease of 
measurement,  Fig. 6 has  been  redrawn on a log-log scale 
(Fig. 19) to  improve resolution in the low frequency 
range. 

Using this  graph, we find the level of the flat portion of 
the  spectrum, which we called the noise  level, to  be  equal 
to 3.3 X 

This fixes the low cutoff frequency value at 0.006 and 
the high cutoff frequency  at 0.08. Therefore, 

1 
0.08 

IMD = - = 12.5 references  and 

- (:::)2 burst = - = 178 references;  then, 

3.3 X 10-~ X lo3 X 360 000 
Nburst = 2 + 0.08 x 178 

= 732 and 

360 OOO 
732 

gap = - - 178 = 313 references. 

It is interesting to  use  these values to  see  to what extent 
the  spectrum  shown in Fig. 6 can be recreated by our 
model. The result  can  be seen on Fig. 20, and  its  shape 
reasonably  validates this analytical  formulation. 
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Figure 21 Spectrum  of  frequency  modulated pulse. 

Frequency modulation 
The  model described above can be  given another inter- 
pretation which  might shed a different  light  upon the 
observed  phenomenon. 

The  spectrum in Fig. 6 can  be  thought of as being  made 
of two  different parts: 

1. A low frequency “bump” or spike of the (sin x)/x type. 
This  is the transform of a burst of misses, perceived as 
a deformed  rectangular  signal. And  we  did indeed find 
in our previous experiences that the width of this  (sin 
x)/x function  was  most sensitive to the length of a 
burst. 

2. A high frequency  semi-rectangular part, starting at the 
bottom of the dip. A closer look shows that this curve 
has the classical shape of a damped  oscillation. 

Now, if p T  is a rectangular  pulse of duration 2T, one 
may show  that the transform of the frequency-modulated 
signal, 

p,(t)ejB?, is 

where K denotes the Fresnel integral 

890 

Figure 21 displays the shape of the spectrum obtained 
from this equation. It has a semi-rectangular form, with a 
superimposed  damped oscillation, and  is centered around 
a camer frequency w0, with a maximum frequency  excur- 
sion  of 2PT. 

This  is a close  analog to the spectrum we are studying, 
at least over the  higher frequencies. 

We do  not  claim that these above equations represent 
an exact mathematical model  of the  spectrum of the 
observed  phenomenon.  In general, it is  very  difficult to 
come  up  with a closed  form for the spectrum of a complex 
signal that is  itself frequency modulated by another 
complex,  and in this case stochastic, signal. 

Thus, with the understanding that an  expression  for  the 
spectrum would involve either Bessel  functions or Fres- 
nel functions, we experimentally  fitted  the  spectrum of 
the  instruction fetch misses of Trace 3 (Model 168,  32K 
cache) with a combination of Fresnel functions  similar to 
expression (6). 

Given the computational  package  available to us, it was 
easier for us to compute the Fresnel function K(x)  defined 
as 

x if 

K(x) = - I e dt .  
6 O f i  

Then, i f f  denotes the normalized  frequency  and b a 
constant, it  is  possible to fit the following curve on the 
high frequency  portion of the Trace 3 spectrum in Fig. 22: 

= b[Ki ) + K( )] 200f - 12 113 - 200f 

with 

b = 0.04. 

This  formulation  is  analogous to expression (6) but 
involves a K(x)  Fresnel function  defined  slightly  different- 
ly  from the one involved in expression (6) .  

Further, it  is easy to  fit a sin xlx function to the low 
frequency  (close to frequency zero) portion of the spec- 
trum.  The  specific  formulation of this  function  is 

F2cf)  = 330 x 
sin (2.rrf x 330) 

2nf x 330 
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Figure 22 Miss spectrum of Trace 3. 

for the frequency of straight line instruction fetch  (SLIF) 
misses,  when a change of locality occurs.  In  other  words 
the sequential  misses will be  more frequent in a context 
switch.  This also explains  why the density of SLIF misses 
within a burst is proportional to the line size (Eq. 7 ) .  

This last variable is proportional to the line size in the 
cache. The mean  length of a burst  is inversely  proportion- 
al to  the size of the  cache  and  independent of the size of 
the line. 

Furthermore,  we  have  demonstrated in the first part of 
this paper  the  existence of periodic data misses, caused 
by tight loops into regular data  structures,  and we provid- 
ed a tool, based  on filtering of miss sequences, which 
identifies easily and  very accurately  these  pieces of code. 

In general, we  observed  that  the main mechanisms 
behind cache misses are well identified, or easily identifi- 
able,  software events. 
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Appendix A 
Let  us first construct a building block sequence, m(t) ,  of 
period 8, i .e.,  

m(t) = “10000000100OOOOO10 . . a ’ ’  

and of length 50 OOO. 

The  discrete  Fourier transform of this  periodic  function 
is given by 

X(k)  = 1 m(t)e-2“izk  , 

with t = 0, 1 ,  2, . a ,  N - 1 .  One  property of this  binary 
sequence is  that  each m(t) value is  zero  except  for  those 
values of t which are multiples of 8, in which case it is 
equal to  one. Then lei t be 8u and let M be NI8; the  above 
equation  can be rewritten as 

N-1  f 

t=o 

Two  cases  are now  possible  depending on  whether k is 
a multiple of M. In this example, M is equal  to 6250 
references. Then in the  case  where k = n X 6250, i .e . ,  k 
= 0, 6250, 12 500, 1 8  750, the  exponent of the  exponen- 
tial is equal to a multiple of 2 ~ ,  and  the exponential is 
therefore  equal to  one.  Then X(k)  is a sum of M ones  and 
thus equal to M ,  which happens to be  the  number of 
periodic misses. Hence, we have  sharp  spikes of equal 
height at  those values of k which would correspond  to 
normalized frequencies kI50 OOO = 0, 0.125,0.250, 0.375. 
(This can  be  read as 018, 118, 218, and 318.) 

Now, in the  other  case  where k is not a multiple of 
6250, the equation giving X(k)  can  be thought of as being 
the transform of the binary sequence of length 6250: 

m‘(u) = “ 1 1 1 1 1 1 1 1 1 1 1  . a ’ ’  

Equation (Al) then  can be rewritten  as 
1 2 M - l  

X(k)  = 1 + e-2“iG + + . . . + 7, 

which is of the  form 
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X(k) = 1 + z + z2 + z3 + . . . + Z M ” .  

The case where z was equal to  one was treated  above. 
Hence z is different from one,  and X(k)  is equal  to 

M 
1 - e - 2 ~ i Q  

X(k) = I ’  
1 - e - 2 ~ i G  

The  numerator of this  expression is obviously zero, and 
hence X(k)  is  zero  for  any k which is not a multiple of 6250 
references. 

In summary, the transform of a binary sequence of 
length N ,  periodic  with  period p ,  is made of spikes at 
normalized frequencies: Olp, Up,   2lp,  . . e ,  p - Up.  
The value U p  is called the fundamental frequency, 
and the  others,  the harmonics of such  frequency.  It is 
a property of the transform to be  symmetric  about 
frequency 0.5.  Therefore, we usually compute  the 
spectrum  from  frequency zero  to  frequency 0.5, and 
only half of those spikes are usually shown. 

We next try to  answer the following question:  What 
will be the  shape of the  spectrum of a binary sequence 
made up of a small number of non-overlapping  periodic 
subsequences, each shifted  from one  another by a  ran- 
dom  number of references? 

We  will use the  fact  that  the  Fourier transform is a 
linear operator.  For  the  sake of simplicity, we assume 
that the first subsequence  starts  at  the  zero origin of time 
and is therefore  identical to  the  one analyzed  above. Then 
the resulting transform for this  composite sequence will 
be the sum of the transforms of each  subsequence. So we 
start with the transform of the first subsequence, i .e . ,  
spikes at 0, 0.125,  0.250, and 0.375. [This spectrum will 
itself be convolved with a very narrow sin xlx function, 
coming from the finite length (50 000) of this  subse- 
quence,  and  therefore not much different from  the  spec- 
trum  computed above.] 

To  this transform one will add  the transform of the 
second  periodic subsequence. This second  subsequence 
is identical to  the first but shifted  in the time  domain  by 
some number 6 of references. The  distance of the first 
point of the second subsequence,  counted  from  the origin 
of time, is thus N + 8, while the total  length of the 
composite sequence is 2N + 8. 

A theorem of the  Fourier transform theory  states  that a 
shift of N + 6,  in the time domain,  amounts  to a 
multiplication of the transform by 

k 
e - i ( N + S ) 2 ~  2N+S 

Now p ,  denoting the period within the  subsequence, 
spikes would appear  for values of k equal  to r (2N + S)Ip, 
r being an integer with values 0, 1 ,  2 ,  . -, p - 1. 
Therefore, one  can rewrite the  above  expression  as 

T 

e -ir(N+S)2 7 

Now, in general, 

8 = a p + q  

and 
Y 

e - i r ( a p + q ) 2 ~ l p  - - e-2nir - 
P .  

This  shows that  the  phase shift depends only on the  ratio 
qlp and  on  the  value of r .  For r = 0, that  is,  for  the  dc 
term,  the shift is null. For r = 1, which corresponds  to  the 
fundamental, the angle is 27rqqlp. Thus  spikes will be 
unequally affected by the random phase shifts, and, 
bearing in mind that  they were  equal at  the beginning, 
their final respective heights will be different once all 
transforms have been added  to  the first one. 
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