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The Software-Cache Connection

This paper describes an adaptation of standard Fourier analysis techniques to the study of software-cache interactions.
The cache is viewed as a “‘black box’’ boolean signal generator, where “ones’’ correspond to cache misses and ‘‘zeros’’
correspond to cache hits. The spectrum of this time sequence is used to study the dynamic characteristics of complex
systems and workloads with minimal a priori knowledge of their internal organization. Line spectra identify tight loops
accessing regular data structures, while the overall spectral density reveals the general structure of instruction localities.

1. Introduction

Recent improvements in machine organization have re-
duced the number of processor cycles required to execute
individual instructions in high performance systems. The
cycle time itself has also been reduced by advances in
chip and packaging technology. Main storage access time
has not kept pace with these two trends, however, but has
remained almost constant for several years.

This has resulted in the so-called firite cache prob-
lem—a situation where efforts to increase system per-
formance are blocked by a bottleneck between the cache
and its backing store. For the foreseeable future, this
problem will be so severe that the per-instruction penalty
imposed by a finite cache may equal or even exceed the
average per-instruction execution time: i.e., half the
potential performance of current and projected systems
may be lost within electronic levels of the memory
hierarchy.

Traditional solutions to this problem involve ‘‘tuning’’
various parameters of cache and processor organiza-
tion—such as cache size, cache associativity, cache line
size, and processor pipeline depth—to the expected work
load. These hardware alternatives have been studied
extensively, and a substantial body of data exists describ-
ing their relation to finite cache penalty and work load.
Unfortunately, the technological trends noted above
leave little hope that this conventional methodology will
continue to produce satisfactory results.

The intent of modern processor design in this regard is
to minimize the delay caused by short range data and
address interlocks—no more than three or four refer-
ences. Our objective is to determine whether or not there
is any predictability to cache misses, especially at long
ranges. Such a capability would enable us to improve
cache performance through intelligent cache management
(replacement) or anticipatory line transfers (prefetching).

Long-range prediction would be of particular value in
constructing efficient dispatch and queueing strategies,
given the volatility of buffer miss ratio in contemporary
systems. For example, Fig. 1 shows how the buffer miss
ratio changes over time for a typical data base work load
and cache organization. The horizontal axis calibrates
time in terms of storage references, while the vertical axis
calibrates the buffer miss ratio over 100 references. The
degree of variation evident in this graph is characteristic
of such complex environments and cannot be explained
satisfactorily in terms of physical cache design parame-
ters alone.

We believe that software related events are the primary
cause of significant fluctuations in the buffer miss ratio,
and hence that the key to improving cache performance
lies in understanding the specific software mechanisms
involved. This paper reports our initial experimental
attempts to substantiate and quantify this intuitive thesis.
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2. The need for a closer look

We believe that a substantial fraction of the cache misses
that occur in modern systems are due to dynamic changes
in locality [1, 2]. Task switches are a clear indication of
such changes in locality, and intuition suggests the fol-
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lowing informal relation between cache misses and task
switches. Let A be the ‘‘steady state’’ value of the buffer
hit ratio (bhr) in a multitasking environment. Each time a
task switch occurs, we expect the sudden change in
locality of references to cause bhr(t) to drop from a
steady state level A to some smaller value A — a.
Thereafter, bhr (¢) should climb slowly back to the steady
state level A as the new locality becomes cache resident,
like the rise in voltage drop across a charging capacitor
(Fig. 2).

This model is discussed at length in reference [3]. As
will be seen, however, although this model correlates well
with experimental data, it reveals only part of the true
picture. Consider, for example, the variations in buffer
miss ratio over time shown in Fig. 1. There are over 150
task switches spread across the span of 360 000 refer-
ences covered by the horizontal (time) axis. The above-
noted intuitive model leads us to expect a sharp peak after
each pass through the dispatcher, followed by an expo-
nential decay back to a residual steady state.

Obviously, the phenomenon is much more complex,
and apparently more random, than anticipated. Not only
is it difficult to pick out specific instances of the ‘‘cache
capacitor’’ charging and discharging, it is even difficult to
find any obvious steady state!

In fact, the graph more closely resembles a plot of
sunspot activity, or perhaps a very noisy and poorly
grounded signal displayed on an oscilloscope. This analo-
gy prompted the idea of using signal analysis techniques
to try to separate the noise from the signal—assuming, of
course, that there is indeed any signal there.

Focusing on buffer miss ratio alone may be too simplis-
tic, since it is only a one parameter measure of the
cumulative effects of the mechanisms involved here. Our
thought is that the spectrum for the bmr will help separate
the dynamic effects of these various mechanisms, reveal-
ing periodic signals hidden in the visual noise of Fig. 1
[4, 5].

3. Representing the buffer miss ratio

Given an interval of time, the buffer miss ratio can be
calculated by dividing the number of misses occurring in
the interval by the total number of references occurring in
the interval. If we partition time into small intervals, 1(¢),
for ¢ varying from 1 to N, then we can define a function
bmr (t) relating the cache misses to time as

M)
M) + H@®)

where M(t) is the number of cache misses in interval ¢,
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and H(#) is the number of cache hits in interval ¢. The
question of representation is: How long should each
interval be?

Clearly, if too large an interval is selected, high fre-
quency information will be lost, or at least severely
attenuated. If too short an interval is selected, then there
will be large variations in the buffer miss ratio from one
interval to the next, and smoothing the data will be a
problem.

We decided to deal with the smallest interval size
possible (one reference), in which case bmr(f) = M(?).
Thus, we define the boolean miss sequence M(t) as the
series of zeros and ones representing the net effect of
passing a given reference stream through a given cache
organization. This phenomenon is represented in M(z) by
reflecting each cache hit as a zero and each cache miss as
a one. Clearly, M(t) will vary depending on cache organi-
zation and becomes well defined only when a particular
cache is specified.

To construct M(¢) at this level of detail, we first process
a raw instruction trace tape using a machine simulator to
generate a corresponding reference sequence R, where
R(®) is the address of the th reference to storage pro-
duced by the machine simulator. This reference sequence
is then supplied as input to a cache simulator (which
approximates the cache on a System/370 Model 168-3)
that produces the desired miss sequence. In other words,
M(t) = 0if R(r) results in a cache hit, and M(¢) = 1if R(?)
results in a cache miss when processed by a given cache
simulator.

4. Mathematical background

There is little need for an in-depth review of the mathe-
matics and techniques associated with discrete Fourier
transforms in this paper, given the number of excellent
and widely available texts in this area [6-10]. However, it
may prove helpful to present the basic equations as
applied to our problem.

Let M(r) be a function relating cache misses and time.
Then

Yo .
Flw) = f_w M@e "'dr

is the Fourter transform of M(z),
S(w) = F(w) X FXw) = |[Fe)f
is the spectrum of M(s), and

p(r) = M(7) X M(7 - 1)
L S de
27 V-
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is the autocorrelation function of M(¢). In particular, for 7
= 0, we have

1 +%
p(0) = variance = — f S(w)dw.
27 J-=

Mathematically, then, S(w) describes how the variance
of M(¢) is distributed over the frequency domain.

However, we have chosen M(¢Y) to be a binary se-
quence, and we therefore can write

M = M)
and
MO = L 2. “ones.”
N
Thus,
M = number misses -

N

bmr denoting the classical buffer (cache) miss ratio as we
know it.

Then, the variance of M(r) will be

VIM®)] = [MGt) — bmrP = MX(t) — bm?*,

which can be rewritten as
VIM@)] = bmr — bmr* = bmr(1 — bmr)
and

VIM(1)] = bmr.

Therefore, the variance of the binary sequence M(?) is,
at a first order approximation, the cache miss ratio.
Hence one can think of the spectrum as showing how the
cache miss ratio itself is distributed over the frequency
domain.

5. Miss sequence spectrum

The transform of this miss sequence was computed by
applying a double precision discrete fast Fourier trans-
form routine [11]. Its spectrum (Fig. 3) was calculated by
averaging the sum of the squares of the real and imaginary
components of this transform over each 100 points in the
frequency domain. The vertical axis is logarithmic, as is
conventional in this type of analysis, while the horizontal
axis is linear and calibrated in normalized frequency units
from 0.0 to 0.5 cycles. The ‘‘time’’ in this analysis is
measured in successive references, i.e., first reference,
second reference, etc. The normalized frequency scale
(normalized to the length of the trace measured in refer-
ences) is therefore expressed in occurrences per refer-
ence. Some event with frequency 1/5 happens once every
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Figure 3 Miss spectrum of Trace 1.

five references. This allows an easy comparison between
spectra of traces of different lengths. Had we been in a
position to use actual time, then the frequency would
have been expressed in hertz; however, actual time in
seconds can only be computed by assuming some specific
machine and would have in this case significantly restrict-
ed the generality of the results pertaining to software by
introducing delays due to a specific machine organiza-
tion.

On the other hand, we think it will certainly be of value
to do such an analysis using a real time scale and
therefore focus on the effect of different machine organi-
zations.

This spectrum contains many sharp spikes and is
definitely not a flat line. This conveys information: Any
departure of the spectrum from the shape of white noise
indicates some predictable behavior in the time domain.
Let us consider a few specific features of interest appear-
ing in this spectrum.

There is a clear spike in the middle of the spectrum, at a
normalized frequency of 0.25. This corresponds to a
period of four references. The simulated machine was a
double-word wide, so that four references access
32 bytes. This happens to be the line size of the simulated
cache, and we therefore suspected that this spike was
related to the cache line size. To check this experimental-
ly, we developed a cache model with a 64-byte line and
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Figure 4 Miss spectrum for cache model with 64-byte line.

computed the Fourier transform and spectrum of its
associated miss sequence in the manner described above.
Figure 4 shows that the spike in the middle has decreased
in amplitude, as expected.

Indeed, the amplitude of this spike is almost exactly
halved. As will be seen later, this observation is a strong
indication that the spike is caused by long bursts of purely
sequential references. Further, the spikes at frequencies
0.125 and 0.375 are clearer on Fig. 4 than on Fig. 3 and are
of about the same amplitude as the vestigial spike at 0.25.

This indicates that some sequential reference activity
remains significant, even when doubling cache line size.

In changing the cache model from a 32-byte line to a 64-
byte line, we noticed that the spikes at frequencies
0.0772, 0.0908, 0.1539, 0.1819, 0.2017, 0.2728, 0.3639,
0.3847, 0.4547, and 0.4617 decreased significantly. The
spikes at frequencies 0.1667 and 0.3333 (its harmonic)
decreased only slightly, which indicates weak sensitivity
to the line size. In addition, a spike at 0.23 appeared on
the spectrum associated with a 64-byte line cache that
was not significantly above the noise level for the 32-byte
line spectrum.

A closer look at these values shows that we have
actually uncovered three harmonic series stemming from
three distinct low frequency fundamentals, as shown in
Table 1.
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Figure 5 Data miss spectrum for Trace 1.

Furthermore, the extreme low frequency part of this
spectrum is obviously not flat, rising far above the
spectral level associated with white noise. We interpret
this as evidence that low frequency events have quite
predictable effects on the buffer miss ratio. Since the
frequency of occurrence of software events is commensu-
rate with this range, it should be possible to anticipate the
misses triggered by certain software events.

® Filtered sequences

One of the advantages of spectral analysis is that it
permits the use of filters to isolate events of specific
frequencies. We thought it would be instructive to see
what time domain events correspond to specific frequen-
cy domain spikes, and also to see what happens when the
miss sequence is partitioned according to reference
type—i.e., separated into disjoint instruction and data
miss sequences.

Frequency domain filtering

The harmonic series discussed above piqued our curios-
ity, and we decided to use a frequency domain filter to
study them further. A special cache simulation was
performed that zeroed out every one (or miss) due to an
instruction fetch. The resulting data miss sequence was
then converted into the spectrum shown in Fig. 5 in the
usual manner. Note that again several significant, sharp
spikes are readily visible.

In fact, the spectral pattern is remarkably similar to
that shown in Fig. 3, which implies that most of the spikes
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Figure 6 Instruction miss spectrum of Trace 1.

Table 1 Harmonic series.

Series A B C
Fundamental 0.0772 0.0908 0.1667
1st harmonic 0.1536 0.1819 0.3333
2nd harmonic 0.2308 0.2728
3rd harmonic 0.3086 0.3639
4th harmonic 0.3847 0.4547
Sth harmonic 0.4617

are due to data movement as opposed to instruction
fetches. This was a surprise; we had expected periodic
components in the instruction sequence, but not in the
data sequence. Not only does the data spectrum indicate
periodic components, but the instruction spectrum (Fig.
6) is devoid of such features.

The reader familiar with filter theory knows that it
would be costly in computing time and difficult in general
to design a sufficiently narrow bandpass filter in the time
domain, with sharp enough cutoff frequencies, to isolate
only that part of the time domain signal that gives birth to
a spike in the frequency domain. The advantage of using
the discrete Fourier transform and a digital computer is
that it is very easy to work in the frequency domain, on
the transform itself.

The discrete Fourier transform of the data miss se-
quence was set to zero at all frequencies except those
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Figure 7 Procedure for generating filtered, zero-one sequence.

falling within the spikes of the A harmonic series them-
selves. This filtered transform was then converted back
into the time domain using an inverse fast Fourier trans-
form, resulting in a signal whose amplitude varied be-
tween 0.0 and 0.135.

After studying this filtered time domain signal, we
decided to generate a filtered, zero-one sequence using
the following algorithm:

If the original data miss sequence contained a miss at
a position in which the value of the filtered signal was
at or above an arbitrary threshold value (0.120), then
a one was generated; otherwise a zero was generat-
ed.

Our rationale was that such a high value in the filtered
signal corresponded to a badly deformed one, and there-
fore to a filtered miss. The logical ‘‘anding’ with the
original sequence was used to eliminate spurious ones
resulting from side effects of the narrow filtering itself.

We then produced a list of reference addresses and
responsible instructions for each one remaining in the
sequence of confirmed misses generated by the above
filtering process.
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A complete description of this entire process can be
seen on Fig. 7.

We were greatly surprised to find that all 162 misses
selected by this filter originate from the same instruction,
a Compare Logical Immediate (CLI). Almost all of the
actual addresses corresponding to these misses reference
the bottom of memory and are offset exactly 32 bytes
from the adjacent miss addresses. This part of the memo-
ry is known to contain a set of data structures, called Unit
Control Blocks (UCBs) in system programmer jargon,
which represent Input/Output devices for the operating
system.

Subsequent analysis showed that the CLI instruction
was part of a tight loop of ten instructions that indeed was
doing a sequential search for a specific byte in a specific
UCB. In addition, we found that this event (the start of a
UCB lookup) only happens twice on Trace 1, both
occurrences falling in the second half of the trace.

This experiment demonstrates the power of spectral
analysis as a tool for discovering and dissecting software
and cache problems.

Data miss sequence

Recall the two relatively large spikes appearing at fre-
quencies 0.167 and 0.333 in Figs. 4 and § and listed in
column C of Table 1. They correspond to respective
periods of six references and three references; on the
simulated machine, this is equivalent to 1.5 and 0.75
cache lines. The other very sharp spikes on the spectrum
do not fall on periods that correspond to primitive multi-
ples of either references or cache lines.

Before drawing any conclusions on spike semantics,
however, we felt that it would be desirable to have an
independent element of comparison—i.e., an instruction
trace reflecting a different work load.

Trace 2 was intended to capture typical commercial
“‘batch” processing executed under the same operating
system used to generate the Trace 1 benchmark. As
before, a zero-one miss sequence was produced, pro-
cessed by the fast Fourier transform, and converted into
the spectrum shown in Fig. 8. )

One can see five significant spikes on this picture, with
the following reference periods: 8, 5, 4, 2.7, and 2.5.
Again, we have two harmonic sequences: the spikes at
periods 8, 4, and 2.66; and the spikes at periods 5 and 2.5.

Our colleague, Thomas R. Puzak, suggested that it
might be helpful to filter out those references generated
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Figure 8 Data miss spectrum of Trace 2.

by the MVCL instruction. The cache simulator was
modified to report all MVCL-based references as cache
hits, and the spectrum of the resulting reference sequence
is shown in Fig. 9. Observe that one of the series of
harmonics (those spikes at frequencies 0.125, 0.250, and
0.375, corresponding to periods 8, 4, and 2.7) disappeared
entirely, while the other was essentially unaffected. This
suggests that these spikes are related to purely sequential
use and movement of data. In general, we speculate that
such a pattern of spikes, with periods closely related to
the line size of the cache, are associated with serial
processing of data and instructions (serial processing
need not be sequential; random data can be accessed
serially, as in control block chaining).

It is natural to question whether this spectrum is
characteristic of batch processing per se, or only of some
specific events in a particular trace sample capturing only
a fraction of a second in real time. In a study made after
the main results for this paper were obtained, we found
that spikes do happen on a local basis. More specifically,
they are related to tight loops into regular data structures,
and the spectral analysis should be conducted on small
sections of trace (16K references).

It is our contention that the data miss spectra (by small
sections) are a general signature for the type of data
reference activity occurring in a given work load, and
hence can be used to discriminate between work loads
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Figure 9 Data miss spectrum of Trace 2 with MVCL effects
removed.

that are intuitively perceived as different—even when
conventional statistics fail to reveal any distinguishing
characteristics.

Spectral synthesis  To further our understanding of the
meaning of the spectral lines in these previous experi-
ments, we followed a suggestion from Shmuel Winograd
(who has helped us avoid several pitfalls throughout this
study) that we focus on the properties of certain synthetic
sequences.

We first constructed a building block sequence, m(t), of
period 4, i.e.,

m() = *100010001000 - - -’

and of length 50 000. The spectrum of this periodic
function will contain a regular pattern of spectral lines at
normalized frequencies r/4 (for r = 0 to 3), as explained in
Appendix A.

All of these spectral lines will have the same height,
which is determined by the total number of ones in the
time domain. Because the time is measured in successive
references, i.e., first reference, second reference, - - -,
nth reference, the frequencies will be measured in num-
ber of occurrences per reference. In other words, a
normalized frequency of 0.25 (1/4) should be read as
meaning one occurrence of an event every four refer-
ences. The term ‘‘normalized’’ implies that the number of

J. VOLDMAN AND LEE W. HOEVEL

883



884

Probability density of bmr variance
S

L

Probability density of bmr variance

0’ J | (

0 0.08 0.16 0.24 0.32 0.40 0.48

Normalized frequency

Figure 10 Spectrum for M(?) with subsequences 50 000 points
long with period four.

occurrences of some event on a trace (frequency) has
been normalized to the length of the trace expressed in
references.

We then constructed a miss sequence M(z) using eight
such m(¢) subsequences, shifted one from another by a
uniformly random number of references not greater than
3000. The Fourier transform for M(?) will be the sum of
the Fourier transforms for each of the m(¢) building block
sequences, with each spectral line shifted in phase by

e —ir2-rrq,-/4’

where g, is 8, modulo(4), §; is the relative shift for building
block number i, and r = 0, 1, 2, 3 is the integer multiplier
used to identify a particular spectral line (the harmonic
number).

The spectrum for M(?) is shown in Fig. 10. It is a known
property of a spectrum to be symmetric about frequency
0.5. This is why we only plot a spectrum from 0 to 0.5.
The periodicity of the ‘‘building block’’ sequences is, as
expected, reflected by a spike at the fundamental fre-
quency of 0.25. This implies that the spectral line at 0.25
on the spectrum for Trace 2 is the result of one or more
occurrences of an event which manifests itself by a long
(compared to the period) sequence of misses at every four
references.

Indeed, we have just identified such a phenomenon in
the previous section: the execution of MVCL instructions
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Figure 11 Spectrum for M(r) with subsequences 50 000 points
long with period five.

that move a significant number of bytes. This confirms
the intuitive notion and general methodology described
above, and holds out the hope that we may eventually be
able to ‘‘read’’ underlying behavioral patterns in the miss
spectrum of actual trace tapes.

A similar computation using 8 subsequences of internal
periodicity 5 (there is nothing magic about the number 8;
it ended up being the needed number to fill 360 000
points) and length 50 000 produces the spectrum shown in
Fig. 11. It exhibits spikes at 0.20 and 0.40 similar to those
found on the data miss spectrum of Trace 2 (Fig. 8). The
sum of the spectra in Figs. 10 and 11, then, captures most
of the significant features of the Trace 2 spectrum.

We thus have shown that the pattern of spectral lines in
the spectrum of an actual tape can be synthesized rather
casily, and that these lines can be explained as manifesta-
tions of infrequent software events of relatively long
duration that exhibit a very regular miss pattern within
each occurrence.

Impact of periodic sequences With so many spectral
lines showing up on the data miss sequence of Trace 1,
one cannot help but wonder how many misses they
represent. Using the same filtering procedure described
earlier, we produced a miss sequence, whose spectrum is
shown in Fig. 12, with all the spectral lines filtered out.

We started with 14 450 data misses on the spectrum of
Fig. 5, and we are left with 8228 misses in Fig. 12.
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Therefore, all the periodic phenomena corresponding to
the spectral spikes represent a total of 6222 data misses;
i.e., 43 percent of the total number of data misses.

Therefore, 43 percent of all data misses on this tape
exhibit a very periodic and thus predictable behavior. A
mechanism using this information could therefore elimi-
nate a substantial fraction of all data misses in similar
programming environments.

& Instruction miss sequence

We define an instruction fetch miss sequence M(?) as a
series of zeros and ones that represents the net effect of
passing a given reference stream through a given cache
organization. If M(z) = 1, then the rth reference was an
instruction fetch that resulted in a cache miss. If M(¢) = 0,
then the rth reference was either not an instruction fetch
or resulted in a cache hit.

The cache simulation used with Trace 1 was again
modified in such a way that all misses not due to pure
sequential instruction fetches were reported as cache
“hits” (i.e., zeroed out). This resulted in an instruction
miss sequence whose associated spectrum is shown in
Fig. 6. It is clear that the instruction miss spectrum differs
markedly from the data miss spectrum.

In particular, it has an obvious dip in the low frequen-
cies. The frequency of the minimum is equal to 0.035
cycle (a period of 28.5 references). Between 0.5 and 0.08
cycle (periods between 2 and 12.5 references) the spec-
trum is roughly flat. Then from 0.08 to 0.035 (periods
from 12.5 to 28.5 references) it decreases before again
increasing sharply over the low frequencies (periods
greater than 28.5 references).

The basic question is how to interpret the physical
significance of this dip. We decided that a reasonable
approach would be to find a method of synthesizing time
sequences with similar spectra in the frequency domain.
To do this, it is necessary to understand the statistical
properties of the instruction stream, such as the distribu-
tion of inter-miss distances, etc.

6. Statistical properties of inter-miss distances

Figure 13 shows the histogram of the inter-miss distances
for Trace 3, which spans a million storage references. The
distribution of those distances falling between one and 16
references appears to be a classical ‘‘bell-shaped curve.”
The shape of the distribution curve over larger inter-miss
distances is less obvious. The same histogram plotted on
log-log paper (Fig. 14) shows, as expected, that when the
distance becomes larger, the number of intervals in these
ranges decreases. This means that our experimental esti-
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Figure 13 Histogram of inter-miss distances for Trace 3.

mate of the distribution becomes increasingly unreliable
as the inter-miss distance increases.

However, a reflection on the physical nature of the
underlying phenomenon allows us to devise some reason-
able hypothesis.
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Figure 15 Synthetic miss sequence.

& Underlying model

Our hypothesis is that the distribution of inter-miss
distances is bi-modal. As a matter of fact, the underlying
model could be as follows:

J. VOLDMAN AND LEE W. HOEVEL

Figure 16 Synthetic miss sequence with average inter-miss
distance within a burst of six references.

1. The small inter-miss distances are ‘‘bursts’’ of instruc-
tion fetch misses that occur after any sudden change in
locality, e.g., dispatches, subroutine calls.

2. The large inter-miss distances are ‘‘gaps’’ of long
duration occurring between context switches, without
any imbedded I-fetch misses.

& Experiments

The high frequency cutoff

We construct a synthetic miss sequence M(z) using 200
subsequences of exponentially distributed length with
mean equal to 1025 references. These subsequences are
shifted from one another by exponentially distributed
shifts of mean 665 references. Each subsequence is
populated by ones, with inter-one distance Erlang-distrib-
uted with 18 degrees of freedom, and thus with a mean of
18 references.

The total length of the resulting synthetic sequence is
360 000 references, which is the same as Trace 1. Its
spectrum is shown in Fig. 15.

It is clear that this method produces a low frequency
dip. However, this dip is narrower than the one in Fig. 6.
The cutoff frequency, on the high frequency side of the
dip, defined as the point where the curve cut the flat level
portion of the spectrum, will be calied the ‘high frequen-
cy cutoff.”’ Its value is 0.055. This corresponds to a lag of
about 18 references, which is the average inter-miss
distance within a burst of misses.
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Figure 17 Spectrum of miss sequence with average length of a burst of misses equal to 100 references (a) and to 25 references b).

To check this hypothesis, we built another synthetic
miss sequence, identical in every respect to the first one,
with the exception that the ‘‘average inter-miss distance
within a burst” is six references.

The resulting spectrum is shown in Fig. 16, and indeed
exhibits a dip with a high cutoff frequency value around
0.16, which corresponds to a lag of six references.

Therefore, the high frequency cutoff value of the dip
is the inverse of the mean value of the inter-miss
distance within a burst of misses.

Let HCO be the notation for *‘high frequency cutoff”’
and IMD denote the mean inter-miss distance (expressed
in references). Then

1

HCO = ——. (1)
IMD

The low frequency cutoff

Observe that in Fig. 6 the actual dip is more symmetrical
than those synthesized up to now. Some more structure
should therefore be added in such a way that it affects the
extreme low frequency part of the spectrum.

We constructed a second set of synthetic sequences,

keeping the average inter-miss distance constant (nine
references) and varying the length of a burst of misses.
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Figure 17(a) illustrates the spectrum of such a miss
sequence with the average length of a burst of misses
equal to a hundred references. The high frequency cutoff
point did not move, but the low frequency cutoff point
moved away from the ordinate axis to a value of 0.001,
which corresponds to a lag of 100 references.

A similar experiment was conducted for a burst length
of 25 references, producing the spectrum shown in Fig.
17(b). The low frequency cutoff point is equal to 0.02,
which corresponds to a lag of 50 references.

At this point, we began to employ a more systematic
approach involving three successive sets of experiments.
In all of them, the average gap length was held constant at
665 references (with an exponential distribution).

For the first set of experiments, the inter-miss distance
was fixed at an average of six references, while the
average length of a burst was varied from 25 to 1025
references. The low frequency cutoff value was measured
for each point and plotted against the average length of a
burst.

This was repeated twice, changing the inter-miss dis-
tance first to nine and then to 18 references.
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Figure 18 Family of curves.

A family of three curves, parameterized by the inter-
miss distance value, is shown in Fig. 18. It is easy to
recognize a set of parabolas, and indeed a curve fit
provides us with the following three equations (with LCO
denoting the low frequency cutoff):

1 —_—
— =T71X (burst)o'52 R

LCO

1 __
—— =891 x (bursn)™>,
LCO

1 I
—— =19.73 x (burst)®*® .
LCO

From this we deduce that a more general relationship for
the low frequency cutoff value (LCO) is

Y _ b x G @

LCO

where IMD denotes the average inter-miss distance.
In other words, the low frequency cutoff value is
directly related to both the average length of a burst

of misses and the average inter-miss distance within
a burst.

Mean values

Mean burst length  Now combining Eqs. (1) and (2), we
can derive an expression for the mean length of a burst:

HCO\?
burst = |——| . 3)
LCO
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Residual ‘‘noise level’”’ The last variable in this model is
the average value of the gap between successive bursts of
instruction fetch misses. Keeping the average values of
both the burst and the inter-miss distance constant at,
respectively, 100 and 9 references, the value of the gap
was increased from 100 references to 1025 references. We
found that the values of the cutoff frequencies (both high
and low) are not affected by this, except when the average
gap value is equal to 100 references.

We can explain this anomaly. Consider that if the gap
between the bursts of misses is too short, it becomes
difficult to distinguish between ‘‘two successive misses
within a burst’” and ‘‘the last miss of a burst followed by
the first miss of the following burst.”” This changes the
mean values of the inter-miss distance and burst length
because two bursts too close to one another will be
treated as a single long burst with at least one long inter-
miss distance occurring within the long burst.

Notwithstanding the above exception, the most notice-
able effect of varying the mean gap length from 200 to
1000 references is a vertical downward shift of the
spectrum. Using the flat level of the high frequency part
as a reference level, it is possible to derive a linear
relationship between the value of this reference ‘‘noise
level” and the total number of misses.

Let MI be the number of misses, NL the reference
noise level, and C_ a constant that depends on the type of
data window used in smoothing the spectrum. (With
smoothing in the frequency domain, C,, = 1.0, whereas
using the Welch Segmentation Method gives C, = 1.66.)
We used regression analysis to determine the relationship
between these variables, based on experimental data.
This resulted in the following equation:

MI = 362000 x 10° x NL x C,.

Recall that all of the above synthetic sequences have a
constant length of 360 000 references—i.e., have the
same length as Trace 1. Clearly this equation is param-
eterized in terms of the length (L) of the trace within the
accuracy and size of our samples:

MI =L x 10° x NL x C,.
Then,

MI 3
— =bmr = 10° X NL x C,_. @)

Thus, the level of the flat portion of the spectrum is
proportional to the average buffer miss ratio of the
instruction fetch trace.
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Figure 19 Instruction miss spectrum on a log-log scale.

Mean gap length  Now, if N, is the total number of

burst
bursts on a trace, then

L = (gap + Eurst)Nb

urst’

Expressing the number of misses as the average length
of a burst, divided by the average inter-miss distance
within a burst, plus a corrective factor for gaps, we have

burst
= IMD +t2 Nburst'

Now we have four equations which, given the spectrum
of the instruction fetch miss sequence, define the main
mean values characterizing the structure of an instruction
fetch miss sequence. Recalling that LCO and HCO de-
note, respectively, low cutoff frequency and high cutoff
frequency, it is possible to successively compute

HCO\?
burst = (——) ; then,
LCO

L x NL x C, x 10°

Nburst = 1 HCO 2° and
24+ —— X |——

IMD <LCO>

gap = — burst. (5)

burst

® Model validation
If we go back to the original instruction fetch miss
sequence of Trace 1| and its spectrum (Fig. 6), we can
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Figure 20 Recreated instruction miss spectrum of Fig. 6.

apply the above equations to a real case. For ease of
measurement, Fig. 6 has been redrawn on a log-log scale
(Fig. 19) to improve resolution in the low frequency
range.

Using this graph, we find the level of the flat portion of
the spectrum, which we called the noise level, to be equal
to 3.3 X 1077,

This fixes the low cutoff frequency value at 0.006 and
the high cutoff frequency at 0.08. Therefore,

1
IMD = —— = 12.5 references and
0.08
0.08 \2
burst = |—— ) = 178 references; then,
0.006
3.3 x 107° x 10° x 360 000
urst = = 732 and
2 + 0.08 x 178
___ 360000
gap = — 178 = 313 references.

It is interesting to use these values to see to what extent
the spectrum shown in Fig. 6 can be recreated by our
model. The result can be seen on Fig. 20, and its shape
reasonably validates this analytical formulation.
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Figure 21 Spectrum of frequency modulated pulse.

® Frequency modulation

The model described above can be given another inter-
pretation which might shed a different light upon the
observed phenomenon.

The spectrum in Fig. 6 can be thought of as being made
of two different parts:

1. Alow frequency ‘‘bump’’ or spike of the (sin x)/x type.
This is the transform of a burst of misses, perceived as
a deformed rectangular signal. And we did indeed find
in our previous experiences that the width of this (sin
x)/x function was most sensitive to the length of a
burst,

2. A high frequency semi-rectangular part, starting at the
bottom of the dip. A closer look shows that this curve
has the classical shape of a damped oscillation.

Now, if p, is a rectangular pulse of duration 2T, one
may show that the transform of the frequency-modulated
signal,

P 0™ is

F(w)[K(ZBT ~ ) . K(ZBT - w )J ’ ©
2B V2B

where K denotes the Fresnel integral

X
K(x) = J’ e ™2 dr and
0
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Fw) = | /{E ¢ ~u4B

Figure 21 displays the shape of the spectrum obtained
from this equation. It has a semi-rectangular form, with a
superimposed damped oscillation, and is centered around
a carrier frequency w,, with a maximum frequency excur-
sion of 28T

This is a close analog to the spectrum we are studying,
at least over the higher frequencies.

We do not claim that these above equations represent
an exact mathematical model of the spectrum of the
observed phenomenon. In general, it is very difficult to
come up with a closed form for the spectrum of a complex
signal that is itself frequency modulated by another
complex, and in this case stochastic, signal.

Thus, with the understanding that an expression for the
spectrum would involve either Bessel functions or Fres-
nel functions, we experimentally fitted the spectrum of
the instruction fetch misses of Trace 3 (Model 168, 32K
cache) with a combination of Fresnel functions similar to
expression (6).

Given the computational package available to us, it was
easier for us to compute the Fresnel function K(x) defined
as
X it

£ a.

Vir Vi

Then, if f denotes the normalized frequency and b a
constant, it is possible to fit the following curve on the
high frequency portion of the Trace 3 spectrum in Fig. 22:

F(f) = b[K(200f3— 12) + K(113 —3 ZOOf)}

K(x) =

with
b = 0.04.

This formulation is analogous to expression (6) but
involves a K(x) Fresnel function defined slightly different-
ly from the one involved in expression (6).

Further, it is easy to fit a sin x/x function to the low
frequency (close to frequency zero) portion of the spec-
trum. The specific formulation of this function is

sin Qaf x 330)

F(f) = 330 x
) 27f x 330
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But now the linear combination of both F ,and F, is a
reasonable match for the overall shape of the instruction
fetch miss spectrum shown in Fig. 6. The generalization,
therefore, is that all such spectra can be decomposed into
two distinct parts:

1. A low frequency sin x/x spike, caused by the percep-
tion of the envelope of a burst of misses to be a
deformed rectangular signal of substantial length (330
references in this case).

2. A high frequency step function, characteristic of fre-
quency modulated signals, with a damped oscillation
which can be accounted for by a Fresnel function. This
captures our intuitive perception of misses within a
burst as a set of frequency modulated pulses.

Hence, the high frequency cutoff is further understood
to be a lower bound for the frequency of sequential
instruction-fetch misses, after a change of locality has
occurred.

7. Physical interpretation

The above analysis shows that most of the information
about the structure of the instruction fetch miss sequence
can be read off its spectrum.

It is now time to close the loop and relate these data to
the physical parameters of either the cache or program
behavior.

® Line size and mean burst length

By keeping the size of the cache constant at 64K, and
varying the size of the line from 32 bytes to 128 bytes, we
find the following two relations for the Trace 3:

IMD = 0.39 x L_and %)
1

—— =71X1L, 8
LCco s ®

where L_denotes the line size of the cache.

Both variables, IMD and LCO, can be substituted in
Eq. (2), yielding

7.1L_\2
burst = ( S ) and
0.39L_

burst = 331 references.

This result is obviously independent of the size of the
line in the cache.

The above analysis can be summed up by saying that
while the inter-miss distance is proportional to the

IBM J. RES. DEVELOP. ® VOL. 25 ® NO. 6 ® NOVEMBER 1981

size of the cache line, the length of a burst of misses
following a context switch is independent of this very
line size.

® Mean burst length and cache size

Now keeping the size of the cache line constant at 128
bytes, we vary the size of the cache from 32K to 256K.
For each value we compute the mean length of the burst
using Eq. (3). These computations are made for four
points (32K, 64K, 128K, 256K) and a curve fit on the
results, which provides us with the following equation
relating the size of the cache to the length of the burst.
Let C be the size of the cache, expressed in K (1024
bytes); then,

20 000
C,+4’

®

burst =

with C denoting the cache size.

Hence the average length of a burst is inversely
proportional to the size of the cache, and is not
dependent on the size of the line.

Obviously the constant 20 000 should relate to the
instruction stream itself, but further investigations are
necessary to prove this point.

8. Conclusions

In summary, this dip is indicative of two distinct distribu-
tions of straight line instruction misses: (1) the distribu-
tion of bursts themselves; and (2) the distribution of
individual straight line instruction misses within a burst
(Fig. 22). Note that if the bursts are widely separated, yet
have a high miss density within each burst, then these two
distributions will have disjoint spectra, leading to the
peculiar dip noted above. The time domain interpretation,
then, is

® Each subroutine call or context switch triggers a burst
of instruction fetches, with subsequent misses expo-
nentially distributed within that burst.

® Then, for a while (gap), there are no instruction fetch
misses. The length of these gaps is also an exponential
distribution.

® Then another subroutine is called and triggers a new
burst of instruction fetch misses, and the process
repeats itself.

A simple relationship exists between the average length
of the burst, the inter-miss distance within a burst, and
the low frequency cutoff value. In addition the high
frequency cutoff value is the inverse of the inter-miss
distance, and therefore the arrival rate of misses, if
references are to be taken as a measure of time. Thus, the
high frequency cutoff can be interpreted as a lower bound
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Figure 22 Miss spectrum of Trace 3.

for the frequency of straight line instruction fetch (SLIF)
misses, when a change of locality occurs. In other words
the sequential misses will be more frequent in a context
switch. This also explains why the density of SLIF misses
within a burst is proportional to the line size (Eq. 7).

This last variable is proportional to the line size in the
cache. The mean length of a burst is inversely proportion-
al to the size of the cache and independent of the size of
the line.

Furthermore, we have demonstrated in the first part of
this paper the existence of periodic data misses, caused
by tight loops into regular data structures, and we provid-
ed a tool, based on filtering of miss sequences, which
identifies easily and very accurately these pieces of code.

In general, we observed that the main mechanisms
behind cache misses are well identified, or easily identifi-
able, software events.
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Appendix A
Let us first construct a building block sequence, m(r), of
period 8, i.e.,

m(t) = **100000001000000010 - - -
and of length 50 000.

The discrete Fourier transform of this periodic function

is given by

N-1 1
XK = 2 me NE,

=0
witht =0,1,2, -+, N — 1. One property of this binary
sequence is that each m(¢} value is zero except for those
values of ¢ which are multiples of 8, in which case it is
equal to one. Then let ¢ be 8« and let M be N/8; the above
equation can be rewritten as

1
8u

wlz
M

X(k) — e—Z‘n’iW k
u=0
and
Mol w
X(k) = emimk (A1)

u=0

1l

Two cases are now possible depending on whether k is
a multiple of M. In this example, M is equal to 6250
references. Then in the case where k = n X 6250, i.e., k
= 0, 6250, 12 500, 18 750, the exponent of the exponen-
tial is equal to a multiple of 27, and the exponential is
therefore equal to one. Then X(k) is a sum of M ones and
thus equal to M, which happens to be the number of
periodic misses. Hence, we have sharp spikes of equal
height at those values of k¥ which would correspond to
normalized frequencies £/50 000 = 0, 0.125, 0.250, 0.375.
(This can be read as 0/8, 1/8, 2/8, and 3/8.)

Now, in the other case where k is not a muiltiple of
6250, the equation giving X(k) can be thought of as being
the transform of the binary sequence of length 6250:

m'(u) = 11111111111 - - -

Equation (A1) then can be rewritten as
L 2 M-1
X(k) =14+ e—2‘rrlM + e-zmb_l 4o+ e—ZmT’

which is of the form
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XW=1+z+2Z+2+ - +2"".

The case where z was equal to one was treated above.
Hence z is different from one, and X(k) is equal to

M

1= 3_2‘"'1\7
Xk)= ——71.

1 - e—21‘riﬁ

The numerator of this expression is obviously zero, and
hence X(k) is zero for any k& which is not a multiple of 6250
references.

In summary, the transform of a binary sequence of
length N, periodic with period p, is made of spikes at
normalized frequencies: O/p, 1/p, 2/p, - - -, p — 1/p.
The value 1/p is called the fundamental frequency,
and the others, the harmonics of such frequency. It is
a property of the transform to be symmetric about
frequency 0.5. Therefore, we usually compute the
spectrum from frequency zero to frequency 0.5, and
only half of those spikes are usually shown.

We next try to answer the following question: What
will be the shape of the spectrum of a binary sequence
made up of a small number of non-overlapping periodic
subsequences, each shifted from one another by a ran-
dom number of references?

We will use the fact that the Fourier transform is a
linear operator. For the sake of simplicity, we assume
that the first subsequence starts at the zero origin of time
and is therefore identical to the one analyzed above. Then
the resulting transform for this composite sequence will
be the sum of the transforms of each subsequence. So we
start with the transform of the first subsequence, i.e.,
spikes at 0, 0.125, 0.250, and 0.375. [This spectrum will
itself be convolved with a very narrow sin x/x function,
coming from the finite length (50 000) of this subse-
quence, and therefore not much different from the spec-
trum computed above.]

To this transform one will add the transform of the
second periodic subsequence. This second subsequence
is identical to the first but shifted in the time domain by
some number 6 of references. The distance of the first
point of the second subsequence, counted from the origin
of time, is thus N + §, while the total length of the
composite sequence is 2N + 8.

A theorem of the Fourier transform theory states that a
shift of N + 6, in the time domain, amounts to a
multiplication of the transform by

k
e—l(N+8)2‘rr IN+S
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Now p, denoting the period within the subsequence,
spikes would appear for values of &£ equal to r(2N + 8)/p,
r being an integer with values 0, 1, 2, - -+, p — 1.
Therefore, one can rewrite the above expression as

™
e—lr(N+8)2 » .

Now, in general,
d=ap + q
and

q
e—-ir(ap+q)21r/p — e—Z'm'r ; .

This shows that the phase shift depends only on the ratio
g/p and on the value of r. For r = 0, that is, for the dc
term, the shift is null. For r = 1, which corresponds to the
fundamental, the angle is 2ug/p. Thus spikes will be
unequally affected by the random phase shifts, and,
bearing in mind that they were equal at the beginning,
their final respective heights will be different once all
transforms have been added to the first one.
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