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Adaptive Spectral Methods for Simulation Output
Analysis

This paper addresses two central problems in simulation methodology: the generation of confidence intervals for the
steady state means of the output sequences and the sequential use of these confidence intervals to control the run length.
The variance of the sample mean of a covariance stationary process is given approximately by p(0)/N, where p(f) is the
spectral density at frequency f and N is the sample size. In an earlier paper we developed a method of confidence interval
generation based on the estimation of p(0) through the least squares fit of a quadratic to the logarithm of the
periodogram. This method was applied in a run length control procedure to a sequence of batched means. As the run
length increased the batch means were rebatched into larger batch sizes so as to limit storage requirements. In this
rebatching the shape of the spectral density changes, gradually becoming flat as N increases. Quadratics were chosen as
a compromise between small sample bias and large sample stability.

In this paper we consider smoothing techniques which adapt to the changing spectral shape in an attempt to improve
both the small and large sample behavior of the method. The techniques considered are polynomial smoothing with the
degree selected sequentially using standard regression statistics, polynomial smoothing with the degree selected by cross
validation, and smoothing splines with the amount of smoothing determined by cross validation. These techniques were
empirically evaluated both for fixed sample sizes and when incorporated into the sequential run length control procedure.
For fixed sample sizes they did not improve the small sample behavior and only marginally improved the large sample
behavior when compared with the quadratic method. Their performance in the sequential procedure was unsatisfactory.
Hence, the straightforward quadratic technique recommended in the earlier paper is still recommended as an effective,
practical technique for simulation confidence interval generation and run length control.

1. Introduction

This paper is concerned with two major problems in the
statistical output analysis of single run, discrete event
simulations: generating confidence intervals for the
steady state mean of an output sequence and using these
confidence intervals to control the length of the simula-
tion. It discusses methods which can be incorporated into
simulation packages and used by typical practitioners.
Such methods must be completely automatic and have
few user specified control parameters. The paper is not
concerned with the problem of identifying and eliminating
the effects due to initialization bias: we assume that the
simulation is in steady state.

More specifically, we assume that the simulation gener-
ates a covariance stationary process {X(n), n = 1} with
mean p = E[X(n)] and spectral density p(f). Under
general conditions (see [1]) the sample mean, X, is, for
large samples, approximately normally distributed with
mean u and variance p(0)/N, where p(0) is the spectral
density at zero frequency and N is the sample size. The
factor p(0) measures not only the variance of each indi-
vidual observation but also the correlation between ob-
servations. Thus to place a confidence interval on p it is
sufficient to estimate p(0). The methods developed in this
paper use spectral analysis techniques to accomplish this.
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The problem of run length control is addressed by defin-
ing a sequential procedure which continues the simulation
until a confidence interval of desired accuracy is
obtained.

There are two reasons why it is often impractical to
store the entire output sequence. First, the length of the
sequence required to obtain the desired accuracy is
random, unknown in advance, and may be quite large.
Second, in complex models there may be the need to
analyze many such sequences. To avoid these problems
the method operates on a set of batch means which are
rebatched as N increases so as to occupy a relatively
small, fixed amount of storage. With batched data the
situation is conceptually the same as with unbatched
data. Let B be the batch size and N, be the number of
batches (N = BN,); then Variance (X) = p (0)/N,, where
pp(f) is the spectral density of the batch means. Thus to
generate a confidence interval it is sufficient to estimate
pg(0). Furthermore, pg( f) becomes flat (i.e., approaches
a constant) as the batch size increases.

In 2] we described a method for estimating p,(0)
through the application of polynomial regression to the
logarithm of the (averaged) periodogram of the batch
means. The degree of the polynomial (a quadratic was
recommended) was fixed in advance and was selected
based upon the results of empirical tests. This choice
represented a compromise between small and large sam-
ple behavior. For small samples a quadratic is required to
properly approximate log (pg(f)) so as to obtain an
unbiased estimate of p(0). However, for large samples a
quadratic is unnecessary due to the flattening of p,(f); a
linear function and ultimately a constant is adequate, and
they provide successively more stable estimates of p(0).

In this paper we consider adaptive methods which
select the degree of the polynomial according to the shape
of the periodogram. The idea is to adapt to the changing
shape of p,(f) and achieve both a more flexible proce-
dure in the small sample region and improved large
sample stability. The methods investigated for selecting
the degree of the polynomial include standard sequential
regression procedures and cross validation. Smoothing
splines, a richer class of approximating functions which
by their very nature are adaptive, were also considered.
The amount of smoothing was chosen by cross validation.
All of these methods can be completely automated and do
not require a user’s qualitative or graphical interpretation
of the data.

Although we concentrate on the application of these

methods to batched data, they are also applicable to
unbatched data. With unbatched data, as the sample size
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N increases, the smoothing is done over intervals (0, £,),
where g, — 0. In this case the assumption is that
log (p(f)) can be approximated by a polynomial in the
interval (0, £,). Analogous to the batched case, p(f)
converges to a constant (p(0)) in the interval (0, ¢,)) as N
increases. Experiments we have performed have shown
the methods to be insensitive to whether or not the data
are batched. Furthermore, if the data are batched, they
are insensitive to the particular batching protocol.

The organization of the paper is as follows. Section 2
contains a brief review of the fixed degree quadratic
method, the batching procedure, and the method of run
length control. In Section 3 the adaptive procedures are
described. Section 4 contains experimental results on
these adaptive methods and their comparison to the
quadratic method in both fixed length simulations and as
applied in the run length control procedure. Section §
summarizes the results and contains recommendations
for practical applications.

We also point out that, although we are motivated by
its potential use in simulation experiments, this method-
ology has much wider applicability. The paper addresses
the general statistical problem of generating confidence
intervals for the mean of a serially correlated, covariance
stationary time series.

2. A fixed degree method

We assume the simulation generates a sample X(1), - - -,
X(N) from a covariance stationary sequence and that we
are interested in placing a confidence interval on the
mean p = E[X(n)]. Let y(k) denote the covariance
function at lag k£ and assume that

©

2 k< (1
k=—o
so that the process has a finite, continuous spectral
density defined by (see for example [3])

p(f) = 2 (k) cos mfk). )
k=—x

For large values of N the variance of the sample mean X

is approximately p(0)/N (see [1]).

We consider methods of estimating p(0) which do not
require storing the entire sequence X(1), - - -, X(N).
Suppose N = BN, and that we batch the sequence into
contiguous, nonoverlapping batches of size B. Let X (m)
denote the mean of the mth batch, i.e.,

B
X (m) = (/B) 2 X(m— DB+j),m=1,-- N, (3

J=1

Notice that {X g(m), m = 1}is also a covariance stationary
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sequence with mean u and a spectral density which we
denote by p(f) (the relationship between p(f) and p4(f)
is given in [2]). Since

N N3

X=(UN) 2 X(j) = (IINp 2 X m), @)
Jj=1 m=1

the approximate variance of X is both P(O)/N and p,(0)/N,

and in fact p4(0) = p(0)/B.

In [2] we described a method for estimating p,(0) by
fitting a polynomial to the logarithm of the averaged
periodogram of the batch means. For completeness that
method is outlined here. We consider such estimates
preferable to classical windowed spectral estimates be-
cause the windowed estimates of p,(0) will be biased low
for the type of spectra peaked at zero which are usually
encountered in simulations (see [2] for additional discus-
sion).

Let I(n/Np) be the periodogram of the batch means,
ie.,

Np 2
InINy = | X Xy(j)e >m0=0wNs LN, §)
j=1

where i = (=1)'”. Let f, = (4n — 1)/2N,, and define
J(f,) = log {I(@2n = 1INy + IQnIN}2). )

The quantity J(f)) is the logarithm of the average of
I(1/Ny) and I(2/Np), J(f,) is the logarithm of the average
of I(3/Ny) and I(4/N,), etc. If 0 < n, m < N,/4, then
J(f,) has the following approximate properties (see [3]
and [4]):

EU(f)] = log (pg(f)) — 0.270,
Variance [J(f,)] =~ 0.645, @
Covariance [J(f), J(f,)] = 0.0, n# m.

We estimate p(0) by fitting a smooth function to J(f).
The sequence J(f,) is used because it has a constant
variance and an approximately symmetric distribution.
These points are discussed more fully in [2], and a figure
illustrating these properties is given there. We empirically
checked the variance of J( fn) and confirmed the theoreti-
cal variance. We also checked and confirmed the assump-
tion that the J(f))’s are uncorrelated.

The following method for estimating p4(0) and generat-
ing a confidence interval for u was developed in [2]. Let
gg(f) = log (pg(f).

1. Calculate I(n/Np) forn = 1, - - -, 2K and J(f) forn =
1, cee, K.

2. Using ordinary least squares fit a polynomial of degree
d,g(f) =31_ja.f" 10J(f)+0270forn=1,- -, K.
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3. Let the resulting least squares estimate of a, be 4.
Under the assumption that g4 (f) is a polynomial of
degree d for 0 < f < 2K/N,, 4, is an unbiased estimate
of log (p(0)). i

4. Estimate p,(0) by p,(0) = C (K, d)e®, where C (K, d)
is a constant chosen to make p,(0) approximately
unbiased. The function C,(K, d) is discussed in [2].

5. Finally, a confidence interval for u is generated by
assuming that

X — W(pyO)NY" ®)

has a r-distribution with C,(K, d) degrees of freedom,
where C,(K, d) is also discussed in [2]. This is the
distribution of the ¢ random variable whose denomina-
tor squared has the same coefficient of variation as
PO)/N,.

In [2] the parameters K = 25 and d = 2 were recom-
mended. For these parameters C,(25, 2) = 7 degrees of
freedom. However, if a linear fit was sufficient to produce
an unbiased estimate of p,(0), then this equivalent de-
grees of freedom would increase to C(25, 1) = 18, andifa
constant was adequate, C,(25, 0) = 77. Furthermore in [2]
we showed that

lim Bp,(f) = p(0),
B—x

so that for large batch sizes p,(f) is nearly flat and the
quadratic fit is unnecessary. Thus the potential exists for
increasing the stability of $,(0) by successively removing
the quadratic and linear terms from the regression as the
shape of p,(f) changes. Section 3 describes several
methods which attempt to achieve this.

We now briefly describe the batching and run length
control procedures. The batching is done in a straightfor-
ward manner. We store between L and 2L batches and
assume there are always a sufficient number of batches to
generate K independent values of J(f,). The procedure
generates an increasing sequence of batch sizes which are
successive powers of two. If the current batch size is B,
then enough observations are collected until 2L such
batches are obtained. At that point the number of batches
is halved by doubling the batch size and forming )—(2 (=
X D) + X002, - - -, X,(L) = (X, 2L — 1) + X, 2L)N2.
The subsequent observations are stored in batches of size
2B until further rebatching is necessary. The procedure
requires at most 2L storage locations. In the experiments
described below we chose L = 100 to reflect the practical
need for economy of storage in simulation applications.
However, as previously mentioned, the methods are
insensitive to the batching scheme.

The run length control procedure operates on a relative
confidence interval half-width criterion. A sequence of
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checkpoints, Jysdps s Fmax is generated, where Jmax is
the maximum run length and represents a cost constraint.
At each checkpoint a confidence interval is generated. If
the relative half-width of the confidence interval (confi-
dence interval width divided by 2 | X |) is less than a
prespecified value, &, the simulation is terminated. Other-
wise it is continued to the next checkpoint. In [2] we
suggested generating the checkpoints according to the
formula j, = min (1.5 X j , j_. ). These geometrically
increasing checkpoints reduce the degradation in confi-
dence interval coverage inherent in such a sequential pro-
cedure. We evaluate the adaptive methods using this run
length control procedure with 90% confidence intervals
and £ = 0.05, 0.10, 0.15, and 0.20. This range of accura-

cies seems reasonable for most practical applications.

3. Three adaptive methods

In Sections 1 and 2 we saw that the log of the spectrum,
g5(f), begins with a shape which is characteristic of the
process {X(n)} but as B increases becomes progressively
smoother and eventually flat. Because of this there is the
potential to obtain both a more robust small sample and a
more stable large sample estimate of p(0) by having a
fitting procedure which adapts to this changing shape. In
this section we discuss three such procedures. Two of
them apply polynomial regression but select the degree of
the polynomial adaptively. One uses standard regression
statistics, the other cross validation. The third applies
smoothing splines with the amount of smoothing deter-
mined by cross validation. The third approach is appeal-
ing a priori not only because it is adaptive but also
because it offers a class of fitting functions richer than the
polynomials.

® Sequential regression

As described above, there is motivation to first examine
the log of the averaged periodogram and determine what
degree polynomial is required to adequately describe its
shape and then fit that degree rather than to always use a
quadratic. For small B a quadratic, or perhaps even a
higher degree polynomial, is required to approximate
g5(f). We experimented with the inclusion of a cubic in
the adaptive polynomial procedures. However, it provid-
ed very little improvement in the small sample region and
detracted significantly from the overall performance be-
cause of the large variance of the estimate it generates;
C,(25, 3) = 3 equivalent degrees of freedom. Hence it is
not included in the polynomial procedures, and we at-
tempt only to improve the large sample stability by using
polynomials of degrees d = 0, 1, or 2.

The first approach to this problem is through the
application of standard polynomial regression theory
(see, for example, [5]). Let £,(f), £,(f), and £,(f) be the
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least squares polynomials of degree 0, 1, and 2, respec-
tively, and let ss(1) and ss(2) be the usual error sum of
squares associated with the linear and quadratic terms,
ie.,

ss(d) = 18£) IF = g, (£) 1P, ©)

where || ||* indicates the sum of squares of the components
of the vector. In this case, since the variance of J(f)) is a
known constant, 0.645, the tests are based on the statis-
tics ss(d )/0.645 for d = 1 and 2. The statistic ss(d )/0.645 is
used to test the hypothesis that a, the coefficient of the
term of degree d, is equal to zero. Under the assumptions
that g,(f) is a polynomial of degree d — 1 and the errors
are approximately normally distributed, the statistic
55(d)/0.645 has approximately a x° distribution with one
degree of freedom. Let xf(qﬁ) denote the inverse distribu-
tion function of a x* random variable with one degree of
freedom.

The first adaptive method, which we call sequential
regression, is a standard procedure for the selection of the
degree in polynomial regression (see {6]). In this proce-
dure there is the desire to choose as low a degree as is
consistent with the data in the interest of having as simple
a function as is consistent with the data. Hence the test is
sequentially applied at some high significance level, ¢ (¢
= 1 — a, where « is the probability of a Type I error).
Specifically such a test takes the form:

If  55(2)/0.645 = xX($), choose d = 2;

if  55)/0.645 < Xf(¢)
and s5(1)/0.645 = Xf(qS), choose d = 1;

if  55(2)/0.645 < x3(¢)
and ss(1)/0.645 < x:(¢) choose d = 0.

The parameter ¢ regulates the behavior of the procedure.
For small values of ¢ the power of the tests is high against
linear or quadratic alternatives, and it is relatively diffi-
cult to drop these terms. However, with a small ¢, once
gg(f) is flat, degrees d = 1 and d = 2 are selected rather
frequently (with probabilities ¢(1 — ¢) and (1 — ¢),
respectively) resulting in a large asymptotic variance for
bg(0). For large values of ¢ the linear and quadratic terms
are dropped more readily. Once dropped, the probability
is low that they will be reinstated into the regression. This
results in a smaller asymptotic variance. We experiment-
ed with this procedure at a number of significance levels
but report only the results for ¢ = 0.90.

® Polynomial selection with cross validation

The previous method of polynomial degree selection is
dependent upon distributional assumptions which are
only approximate and contains a significance test parame-
ter which must be set in an experimental fashion. The
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Figure 1 Closed queueing network model.

method we now describe is free of these shortcomings. It
selects the polynomial degree which is in some real sense
most consistent with the data. The method is known as
cross validation, or PRESS (see [3, 7, 8]).

For a degree d let ¢ anl f) be the least squares polyno-
mial of degree d obtained by excluding the point at f,. The
cross validation sum of squares for degree d is defined by

K
Ed) = X @,(f) - I (10)
n=1
The method of cross validation chooses from amongst a
set of possible degrees that one which minimizes Ez(d).
We applied cross validation to select the degree where at
each checkpoint in the sequential procedure the set d = 0,
1, or 2 was considered.

® Smoothing splines with cross validation

The third method applied was the method of cubic
smoothing splines (see [9]) with the amount of smoothing
chosen by cross validation. This method of smoothing
was suggested by Wahba and Wold in [10]; see also [11-
14]. The smoothing cubic spline g(f) is the solution to
the optimization problem

fx

minimize | (¢'/)df an
i
K

such that 2. (e(f,) — J(f,)’ = S, (12)
n=1

where g is restricted to have two continuous, square
integrable derivatives. The listing of a FORTRAN pro-
gram to compute g (f) can be found in [15]. The parame-
ter S controls the amount of smoothing: the larger S the
smoother the function g((f) and for some § |, ifs=S§,
then g, (f) is the least squares straight line fit to J(£)). In
the notation of the two previous subsections, for § = § |,
gyf) = 2,(f). If § = 0, then the spline interpolates the
points J(f). The parameter § is analogous to the degree
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of the polynomial in polynomial regression; increasing §
corresponds to decreasing d. By applying smoothing
splines we have at our disposal a much richer class of
smoothing functions than the low order polynomials.
They can place curvature as represented by the square of
the second derivative either locally or globally as needed.
However, corresponding to the question of what degree
polynomial is the question of what value of the smoothing
parameter S. As suggested in [10] we chose S by cross
validation. Let g gal f) be the smoothing spline for param-
eter § with the point f, excluded. The cross validation
error sum of squares corresponding to S is defined as

K
EXS) = 2 (g,,(f) — I’ (13)

n=1

We choose the spline g,(f) whose cross validation error
sum of squares is minimized. This is the third adaptive
method. It will choose, on the average, a smoother and
smoother curve as the batch size increases.

We actually implemented an approximation to the
method of cross validation described above. We consid-
ered the set of values {S:S = kS,, k = 0.40, 0.45, 0.50,
-+ -, 1.30}, where S, is the error sum of squares of the
quadratic, i.e.

K N 2
Sz = Z (gZ(fn) - J(fn)) * (14)
n=1

The smoothing spline from amongst this set which mini-
mized E*(S) was chosen. This corresponds to a range of
functions about the quadratic extending on the one hand
to the linear and on the other to functions much less
smooth than the quadratic. The actual estimate of p,(0)
was obtained by letting p,(0) = exp {2,4(0)}, where £4(0)
=gg(f) — f,8' ¢(f)), and $* was the value of S chosen by
the cross validation. The intercept £,(0) is thus obtained
by the linear extrapolation of z.(f) from f, using the
derivative of g(f) at f}.

4. Experimental results

® Models studied and description of experiments

The choice of models and output sequences studied in
this paper directly reflects our interest in the performance
modeling of computer systems. We conducted experi-
mental studies on models of the general form shown in
Fig. 1. They are simple closed queueing network models
of interactive computer systems. The parameters of these
models are the same as in [2], and a detailed description
of them may be found there. We considered two models
of this type, Models A and B, and for each model we
studied a waiting time sequence at a congested queue and
the sequence of system response times. The spectra of
these processes are shown in [2].
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Table 1

Fixed sample size simulation results for response time process in Model A, u = 41.2.

Run
length

d=0 d=1

d

=2 Splines
with cross

validation

Sequential
regression

Regression
with cross
validation

Coverage
Width
Var (width)

Coverage
Width
Var (width)

Coverage
Width
Var (width)

Coverage
Width
Var (width)

Coverage
Width
Var (width)

7.39
2.25

0.94
6.22
1.02

0.90
5.00
0.43

0.90
3.92
0.29

0.94
3.11
0.24

0.94
3.00
0.24

Coverage
Width
Var (width)

Coverage
Width
Var (width)

Coverage
Width
Var (width)

Coverage
Width
Var (width)

Coverage
Width
Var (width)

0.80
13.86
30.11

0.88
12.17
16.26

0.90
11.12
8.88

0.90
9.06
4.03

0.84
7.15
3.78

0.88
6.00
2.27

0.86
4.63
0.89

0.86
3.57
0.38
0.94

2.97
0.24

0.90
2.80
0.18

0.80
14.43
26.12

0.86
12.41
16.25

0.92
11.46
9.36

0.92
9.57
6.85

0.84
7.16
3.27

0.92
6.22
2.44

0.90
4.88
0.86
0.86
3.81
0.64
0.94

2.92
0.19

0.88
14.98
29.52

0.88
12.54
14.21

0.86
10.50
8.67

0.86
8.92
5.32

0.84
7.23
4.10

0.90
6.06
2.89

0.86
5.12
1.22

0.88
3.86
1.12

0.92
2.95
0.59

0.90
3.02
0.41

For each of the four output sequences we ran 50
independent simulations, each 14 000 elements long.
These sequences are identical to those considered in [2].
The first 500 elements of each sequence were removed to
control the effect of initial conditions.

Tables 1-4 report the results of fixed sample size
simulations. They list results for six methods of generat-
ing confidence intervals: the three adaptive procedures
described in Section 3 as well as the three fixed degree
methods corresponding to d = 0, 1, and 2. The sample
sizes in these tables are the checkpoints of the sequential
procedure. The fraction of the fifty 90% confidence
intervals which actually contained u is reported for each
type of output sequence, checkpoint, and confidence
interval method. This fraction is called a (90%) coverage,
and it should be close to 0.90 if valid confidence intervals
are being formed. Coverages less than 0.82 are signifi-
cantly lower than 0.90 at the 0.90 level. Space consider-
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ations preclude reporting the entire coverage function
(see [16]). These tables also report the means and sample
variances of the confidence interval widths.

Tables 5-8 report the results of tests on the methods
when operating in the run length control procedure.
These tables list the coverage, mean run length, and mean
relative half-width corresponding to each confidence in-
terval method and each of the accuracy requirements, £ =
0.20, 0.15, 0.10, 0.05. More specifically, the coverages
and relative half-widths are those of the confidence
intervals with which the run length control procedure
terminates, i.e., those confidence intervals which either
first satisfy the accuracy criterion or, if the accuracy

criterion is never met, those produced at Jmax:
® General behavior of the adaptive procedures

The adaptive procedures generally made reasonable deci-
sions concerning the amount of smoothing given that only
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Table 2 Fixed sample size simulation results for waiting time process at Queue 2 in Model A, u = 3.77.

Run d=0 d=1 d=2 Sequential Regression Splines

length regression with cross with cross
validation validation

Coverage 0.18 0.58 0.76 0.70 0.72 0.80

500 Width 0.65 2.02 2.90 2.64 2.68 3.73

Var (width) 0.009 0.36 1.18 1.29 1.31 4.20

Coverage 0.40 0.64 0.74 0.72 0.74 0.80

750 Width 0.74 1.84 2.61 2.29 2.45 2.98

Var (width) 0.010 0.25 0.78 0.83 0.90 1.91

Coverage 0.40 0.82 0.86 0.84 0.86 0.88

1125 Width 0.77 1.79 2.50 2.24 2.37 2.55

Var (width) 0.011 0.19 0.48 0.57 0.60 1.08

Coverge 0.40 0.82 0.94 0.90 0.92 0.90

1687 Width 0.76 1.66 2.45 2.27 2.31 2.41

Var (width) 0.011 0.13 0.53 0.66 0.62 1.17

Coverage 0.58 0.92 0.96 0.94 0.96 0.90

2530 Width 0.77 1.61 2.15 1.96 2.02 1.95

Var (width) 0.012 0.15 0.36 0.39 0.43 0.50

Coverage 0.56 0.88 0.94 0.92 0.92 0.88

3795 Width 0.76 1.52 1.81 1.63 1.73 1.59

Var (width) 0.012 0.09 0.26 0.19 0.25 0.23

Coverage 0.62 0.90 0.90 0.88 0.88 0.86

5692 Width 0.75 1.31 1.45 1:35 1.35 1.30

Var (width) 0.007 0.08 0.20 0.17 0.18 0.14

Coverage 0.68 0.94 0.90 0.90 0.90 0.84

8538 Width 0.70 1.13 1.16 1.10 1.11 1.05

Var (width) 0.006 0.06 0.10 0.09 0.08 0.11

Coverage 0.66 0.80 0.84 0.82 0.82 0.80

12 807 Width 0.65 0.90 0.98 0.88 0.90 0.87

Var (width) 0.006 0.04 0.09 0.07 0.07 0.06

Coverage 0.72 0.86 0.90 0.88 0.88 0.86

13 500 Width 0.64 0.87 0.97 0.85 0.87 0.87

Var (width) 0.006 0.04 0.08 0.08 0.07 0.05

25 data points, {J(f,), 1 < n < 25}, were available to them.
We were particularly impressed by degree selections
made by cross validation. A sample of their selections is
illustrated in Figs. 2-5. For the waiting time sequence of
Model B these figures contain examples at 1125 and
13 500 observations for the first 8 of the 50 replications.
With a maximum of 200 batches these correspond to
batch sizes of 8 and 128, respectively. Estimates of g,(f)
at these batch sizes are given in Fig. 6. Notice that g (f)
is approximately quadratic and g,,,(f) is approximately
linear.

Figures 2-5 contain plots of J(f)), the three least
squares polynomials 2,(f), &,(f), and 2,(f) and the
selected spline g.(f). The corresponding intercept esti-
mates of g5(0) = log (p4(0)) are indicated by stars. These
plots also list the degrees selected by the two polynomial
procedures and the coefficient & yielding the optimal $*
[§* = kS,, where S, is given by (14)]. Also indicated are

PHILIP HEIDELBERGER AND PETER D. WELCH

whether or not the confidence interval produced by each
fit covered p (Cover = 1 or 0, respectively).

The underestimation of p(0) using degrees d = 0 or 1 for
small run lengths is clearly indicated in Figs. 2 and 3. The
large sample variability of the estimates produced by the
quadratic procedure is seen in Figs. 4 and 5.

The increased flexibility of the splines over the polyno-
mials is evident throughout Figs. 2-5. They generally
gave reasonable looking fits although they were erratic at
times and sensitive to random patterns in {J(f,)} [see, for
example, Fig. 2, replication 4, and Fig. 4, replication 1].

® Fixed sample size behavior

We first discuss the results of the fixed sample size
experiments. Notice from Tables 1-4 that the small
sample coverages for the fixed degree d = 2 procedure
are generally higher than those for d = 0 and d = 1. For
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Table 3 Fixed sample size simulation results for response time process in Model B, u = 171.0.

Run d=0 d=1 d=2 Sequential Regression Splines
length regression with cross with cross
: validation validation

Coverage 0.68 0.74 0.86 0.72 0.76 0.78

500 Width 33.51 36.81 46.58 35.53 40.15 49.13

Var (width) 11.79 24.45 111.84 96.05 139.00 288.30

Coverage 0.70 0.82 0.90 0.80 0.82 0.82

750 Width 25.92 32.86 40.79 33.78 36.75 38.80

Var (width) 6.23 28.05 85.15 108.26 124.82 179.19

Coverage 0.78 0.84 0.90 0.80 0.88 0.86

1125 Width 22.11 28.35 36.73 28.41 31.15 33.61

Var (width) 3.75 24.10 64.50 80.87 89.81 113.85

Coverage 0.72 0.88 0.96 0.86 0.88 0.96

1687 Width 18.76 24.95 32.01 26.15 27.96 27.65

Var (width) 4.55 15.87 67.01 84.33 96.70 51.83

Coverage 0.80 0.92 0.94 0.90 0.94 0.92

2530 Width 16.33 22.76 26.39 22.10 24.29 23.76

Var (width) 1.87 14.20 41.62 44.70 42.10 41.44

Coverage 0.82 0.90 0.90 0.84 0.86 0.90

3795 Width 14.37 18.62 20.81 17.62 19.68 18.67

Var (width) 1.35 8.81 40.19 27.41 38.99 40.87

Coverage 0.86 0.94 0.92 0.90 0.92 0.90

5692 Width 12.87 15.87 16.55 14.80 15.47 15.31

Var (width) 1.00 6.65 23.71 16.97 18.98 19.13

Coverage 0.92 0.94 0.96 0.94 0.94 0.96

8538 Width 10.89 12.87 13.99 11.48 12.27 12.62

Var (width) 0.49 2.92 10.31 3.57 6.59 7.74

Coverage 0.92 0.96 0.90 0.92 0.94 0.92

12 807 Width 9.27 10.73 11.53 9.79 10.40 10.22

Var (width) 0.53 2.99 6.90 2.25 4.13 5.04

Coverage 0.94 0.96 0.92 0.94 0.94 0.94

13 500 Width 9.06 10.46 11.14 9.63 10.37 9.23

Var (width) 0.63 2.63 6.79 3.36 5.56 4.11

small samples p(0) is severely underestimated using d =
0 or 1. Corresponding to the higher coverages are wider

d). Thus the goal of an adaptive procedure is to move to
the more stable d = 0 or d = 1 estimates of p 5(0) but to do

confidence intervals for d = 2 than for d = 0 or 1. The
coverages for d = 0 are particularly low; this case
corresponds roughly to the method of batch means. The
method of batch means estimates the variance by fitting a
degree zero polynomial to the periodogram (see [2])
rather than to the logarithm of the averaged periodogram
as is done here.

For large samples the coverages ford = 1 and d = 2 are
acceptable, and their mean confidence interval widths are
approximately equal. For the waiting time sequences the
coverages for d = 0 do not reach acceptable levels even
by j..x = 13 500 observations. For all run lengths the
variances of the confidence interval widths produced by
the quadratic are higher than those obtained from either d
= 0 or d = 1. This relationship is as predicted by C,(K,
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so only after their bias is sufficiently low so as to produce
correct coverage.

For the two adaptive polynomial regression procedures
the small sample coverages are generally greater than
those for d = 0 or 1 although not as high as the d = 2
coverages. The corresponding confidence interval widths
are similarly ordered. These adaptive polynomial proce-
dures produced correct large sample coverages through-
out the experiments. Notice, however, that the small
sample confidence interval width variances are larger
than those of the d = 2 procedure. The reason for this
variance increase is that for small samples the distribution
of p,(0) using an adaptive procedure is actually more
spread out than that of the quadratic due to the bias in
Pg(0) for d = 0 or 1. For large samples this effect is not so
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Table 4 Fixed sample size simulation results for waiting time process at Queue 3 in Model B, u = 34.22.

Run d=0 d=1 d=2 Sequential Regression Splines
length regression with cross with cross
validation validation

Coverage 0.28 0.66 0.82 0.78 0.76 0.86

500 Width 4.11 15.15 25.10 23.65 23.67 28.36

Var (width) 0.22 11.74 57.79 72.95 72.55 131.16

Coverage 0.26 0.64 0.88 0.84 0.84 0.86

750 Width 4.81 15.25 23.80 22.48 22.70 26.22

Var (width) 0.39 10.60 41.42 52.49 49.72 102.76

Coverage 0.20 0.72 0.90 0.86 0.88 0.86

1125 Width 5.25 15.37 22.94 21.09 22.07 23.56

Var (width) 0.37 8.61 35.08 40.39 44,95 75.11

Coverage 0.36 0.90 0.92 0.92 0.92 - 0.92

1687 Width 5.62 15.82 22.50 20.40 21.08 20.98

Var (width) 0.25 10.97 27.06 35.29 33.83 39.67

Coverage 0.44 0.88 0.92 0.90 0.90 0.90

2530 Width 6.31 15.17 18.31 16.30 16.69 16.19

Var (width) 0.29 5.85 20.62 17.16 18.48 20.70

Coverage 0.54 0.92 0.96 0.92 0.92 0.90

3795 Width 6.34 13.18 14.50 13.70 13.77 12.84

Var (width) 0.20 5.32 16.05 12.88 12.21 15.81

Coverage 0.68 0.90 0.90 0.88 0.88 0.80

5692 Width 6.49 11.18 10.73 10.64 10.47 10.18

Var (width) 0.18 3.28 8.18 6.22 6.46 13.60

Coverage 0.80 0.96 0.94 0.94 0.94 0.90

8538 Width 6.07 8.93 8.57 8.56 8.47 8.20

Var (width) 0.17 2.16 3.90 3.15 3.18 5.37

Coverage 0.80 0.88 0.88 0.84 0.84 0.86

12 807 Width 5.44 7.01 7.42 6.69 6.72 6.83

Var (width) 0.26 1.62 3.90 3.05 3.02 2.61

Coverage 0.72 0.88 0.88 0.82 0.80 0.84

13 500 Width 5.31 6.87 7.03 6.47 6.54 6.72

Var (width) 0.28 1.43 2.78 2.06 2.22 2.76

Table 5 Sequential simulation results for response time process in Model A, u = 41.2.

Relative d=0 d=1 d=2 Sequential Regression Splines
half- regression with cross with cross
width validation validation

Coverage 0.62 0.78 0.92 0.78 0.78 0.80

0.20 Run iength 500 500 669 634 634 625

Half-width 0.09 0.12 0.16 0.13 0.14 0.14

Coverage 0.62 0.76 0.92 0.74 0.70 0.74

0.15 Run length 500 548 1198 804 872 852
Half-width 0.09 0.12 0.13 0.12 0.12 0.12

Coverage 0.62 0.86 0.84 0.80 0.80 0.76

0.10 Run length 525 2190 2727 1979 2183 2348
Half-width 0.09 0.09 0.08 0.08 0.08 0.08

Coverage 0.78 0.88 0.88 0.80 0.82 0.88

0.05 Run length 6352 9633 9849 7407 8270 8582
Half-width 0.05 0.04 0.04 0.04 0.04 0.04
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Table 6 Sequential simulation results for waiting time process at Queue 2 in Model A, u = 3.77.

Relative d=10 d=1 d=2 Sequential Regression Splines
half- regression with cross with cross
width validation validation

Coverage 0.18 0.80 0.90 0.82 0.82 0.86

0.20 Run length 500 3628 5660 4614 4510 4360

Half-width 0.09 0.18 0.17 0.18 0.18 0.17

Coverage 0.18 0.86 0.86 0.84 0.84 0.76

0.15 Run length 500 9432 9506 9209 9218 7847
Half-width 0.09 0.13 0.13 0.13 0.13 0.13

Coverage 0.36 0.80 0.84 0.82 0.78 0.76

0.10 Run length 1937 13 262 12 934 12 291 12 404 12 139
Half-width 0.08 0.12 0.13 0.11 0.11 0.11

Coverage 0.72 0.86 0.90 0.88 0.88 0.86

0.05 Run length 13 500 13 500 13 500 13 500 13 500 13 344
Half-width 0.08 0.12 0.13 0.11 0.11 0.11

Table 7 Sequential simulation results for response time process in Model B, u = 171.0.

Relative d=0 d=1 d=2 Sequential Regression Splines
half- regression with cross with cross
width validation validation

Coverage 0.68 0.74 0.86 0.72 0.76 0.76

0.20 Run length 500 500 510 510 510 530
Half-width 0.09 0.11 0.13 0.11 0.11 0.13

Coverage 0.68 0.74 0.84 0.72 0.74 0.76

0.15 Run length 500 500 590 570 558 633
Half-width 0.09 0.11 0.12 0.10 0.10 0.11

Coverage 0.66 0.76 0.80 0.68 0.68 0.72

0.10 Run length 520 811 1350 778 818 1144
Half-width 0.09 0.09 0.09 0.09 0.09 0.08

Coverage 0.76 0.84 0.84 0.82 0.82 0.80

0.05 Run length 2606 5926 6566 4809 5294 5120
Half-width 0.05 0.04 0.04 0.04 0.04 0.04

Table 8 Sequential simulation results for waiting time process at Queue 3 in Model B, u = 34.22.

Relative d=90 d=1 d=2 Sequential Regression Splines
half- regression with cross with cross
width validation validation

Coverage 0.28 0.86 0.88 0.90 0.86 0.84

0.20 Run length 500 3035 4913 4404 4247 4885
Half-width 0.07 0.18 0.17 0.17 0.17 0.16

Coverage 0.28 0.92 0.92 0.88 0.88 0.84

0.15 Run length 500 8247 8276 7707 7465 7365
Half-width 0.07 0.13 0.12 0.12 0.13 0.12

Coverage 0.30 0.90 0.90 0.84 0.86 0.86

0.10 Run length 7561 12 980 12 569 12 216 12 301 11 342
Half-width 0.07 0.10 0.10 0.09 0.10 0.10

Coverage 0.68 0.88 0.88 0.82 0.80 0.84

0.05 Run length 12 720 13 500 13 401 13 401 13 401 13 306
Half-width 0.08 0.10 0.10 0.10 0.10 0.10
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Figure 2 Model B waiting time with run length = 1125: replications 1-4.

pronounced, and the confidence interval width variances
for.the adaptive procedures decrease below those of the
quadratic.

The smoothing splines generally exhibit good fixed
sample coverages throughout the entire range of run
lengths. The small sample confidence interval width
variances are, however, much larger than those of any of
the other procedures, and their large sample variances are
approximately equal to those of the quadratic.

PHILIP HEIDELBERGER AND PETER D. WELCH

To estimate the large sample potential benefit of these
methods we tested them against a set of independent
observations with a flat spectrum. Specifically we ran 200
replications of 5000 independent and identically distribut-
ed exponential random variables with mean 1. These
observations were batched as described in Section 2, and
the methods of Section 3 were applied. The variances of
the confidence interval widths for d = 0, 1, and 2 were
1.38 x 107°,5.84 x 107>, and 14.8 x 107>, respectively,
while for sequential regression, regression with cross
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Figure 3 Model B waiting time with run length = 1125: replications 5-8.

validation, and the smoothing splines they were 7.32 x
107°, 7.01 x 107°, and 18.2 x 1075, respectively. Thus
even with this ‘‘tailor-made data’’ (see [17]) neither the d
= 0 nor the d = 1 variances were achieved asymptotically
by the adaptive procedures, and the splines did not even
beat the variance of the d = 2 procedure.

In this experiment with independent samples the cross
validation selected d = 0, 1, and 2 80%, 16%, and 4% of
the time, respectively. The sequential regression selected
d=0,1, and 2 88%, 8%, and 4% of the time, respectively.
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The variances for the adaptive regression procedures are
greater than if d = 0, 1, and 2 were independently selected
with the above corresponding probabilities. This variance
increase is explained by the fact that the large error sum
of squares resulting in the selection of d = 1 or 2 tends to
yield extreme values in the intercept estimates, £,(0) and

£2,0).

& Sequential behavior
In this subsection we examine the behavior of the confi-
dence interval methods when operating within the run
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Figure 4 Model B waiting time with run length = 13500: replications 1-4.

length control procedure. This behavior is summarized in
Tables 5-8. Notice that the fixed degree d = 2 method has
proper coverages for all accuracy requirements . How-
ever, for large ¢ the coverages are quite low for d = 0 and
d = 1. This is a consequence of the small sample bias in
pp(0) and the resulting poor small sample coverage using
d = 0 or 1. For small ¢ the coverages corresponding to d
= 1 are generally adequate since the accuracy require-
ment forces the simulation to run long enough so that d =
1 produces essentially unbiased estimates of p,(0). The
underestimation of p ,(0) with d = 0 and 1 leads to shorter
run lengths than with d = 2.

PHILIP HEIDELBERGER AND PETER D. WELCH

The adaptive methods generally do not produce accept-
able coverages when operating within the run length
control procedure. In the case of the polynomial methods
this is related to the poor small-sample coverages of the d
= 0 and d = 1 polynomials. When d = 0 or 1 is
prematurely selected by the adaptive procedure, p(0)/Ny
is underestimated, resulting in a small relative half-width
and an increase in the probability of passing the relative
half-width criterion with a confidence interval which fails
to cover the true value. In the case of the smoothing
splines it is unexpected since their fixed sample cover-
ages are good. We conjecture that it is related to the large
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Figure 5 Model B waiting time with run length = 13500: replications 5-8.

small-sample variance which tends again to generate
underestimates of p,(0)/N, and confidence intervals
which pass the relative half-width criterion and fail to
cover the true value.

For values of ¢ in which the maximum run length is not
a constraint (all ¢’s in Tables 5 and 7 and large &’s in
Tables 6 and 8), the run lengths for these adaptive
procedures are less than those with d 2. This is
primarily due to the somewhat shorter confidence inter-
vals produced by the adaptive procedure.
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® Modified adaptive procedures

We tried making a number of modifications to the adap-
tive polynomial procedures in an attempt to improve their
small-sample and sequential behavior. They were de-
signed to decrease and delay the possibility of selecting d
= 0 and d = 1. These modifications generally operated
only within the context of a run length control procedure
with a sequence of checkpoints. Among the modifications
we tried were

1. Excluding d = 0 from consideration,
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2. Allowing the polynomial to move down by at most one
degree per checkpoint,

3. Requiring that a test be passed on two successive
checkpoints before lowering the degree of the polyno-
mial, and

4. Introducing two significance levels into the sequential
regression procedure, one for moving down a degree
and one for moving up a degree.

These modifications did result in marginal improvements
in both small-sample and sequential coverages, but they
seemed ad hoc and their performance overly dependent
upon our particular experimental data. Furthermore,
these modifications tended to increase the large-sample
variances over those of the straightforward procedures
described in Section 3, thus reducing the potential bene-
fit. The only way we found to achieve the large-sample

PHILIP HEIDELBERGER AND PETER D. WELCH

variances corresponding to d = 0 was to make the
decisions on moving down a degree irrevocable (i.e.,
degrees d and higher were excluded from consideration at
all checkpoints after the polynomial first dropped from
degree d to d — 1). However, this resulted in lower small-
sample coverages and seemed like an inflexible and
potentially dangerous approach.

Similar rules limiting the range of the smoothing param-
eter |of the spline could probably have been devised to
improve its behavior, but to do so also seemed arbitrary
and |contrary to the simplicity and elegance of that
method. We did try weighting functions with the splines
which gave more weight to the points close to zero.
However, this did not result in any significant improve-
ment.

An approach we did not investigate was to adaptively
K, the number of points to which the polynomial is
ather than the degree of the polynomial. Such an

periments with unbatched data

¢ mentioned earlier the performance of the methods
we have discussed is not sensitive to whether or not the
data| are batched or, it batched, to the manner in which
the batching is done. Hence, the results and conclusions
of the paper do not depend upon the particular batching
protocol we have used. It was selected not because of
performance considerations but because it made most
economical use of storage. The reason for this insensitiv-
ity is that, regardless of the batching protocol, the method
operates on an increasingly narrow low frequency region
of p(f) as the run length N gets large. This takes place
directly through the interval (0, ¢,) in the unbatched case
and,|in the batched case, by a combination of this direct
shrinkage and the filtering, stretching, and aliasing of p(f)
caused by the batching. For additional discussion see [2].

\

illustrate this insensitivity we now describe the
application of the methods to unbatched data for the
system response time sequences of Model A. Table 9
gives the results of the fixed run length experiments, and
Table 10 gives the results of the sequential experiments.
Comparing these tables with the results of the experi-
ments on batched data (Tables 1 and 5) reveals no
significant differences. This was our general experience
with| all the models.

ummary

In an earlier paper {2], we described a spectral method for
generating confidence intervals from simulation output
sequences and evaluated that method within the context
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Table 9 Fixed sample size simulation results for response time process in Model A, unbatched case, u = 41.2.

Run d=0 d=1 d=2 Sequential Regression Splines

length regression with cross with cross
validation validation

Coverage 0.64 0.76 0.88 0.80 0.82 0.84

500 Width 7.62 10.68 15.13 13.49 13.77 14.87

Var (width) 1.40 3.67 16.30 22.77 23.57 28.71

Coverage 0.60 0.82 0.94 0.86 0.86 0.86

750 Width 6.70 9.93 13.71 12.37 12.81 12.64

Var (width) 0.73 3.48 12.64 15.97 16.98 13.77

Coverage 0.64 0.80 0.96 0.90 0.92 0.90

1125 Width 6.04 9.40 12.45 11.20 11.55 10.86

Var (width) 0.36 1.59 8.19 10.48 10.57 12.63

Coverage 0.66 0.88 0.92 0.86 0.90 0.86

1687 Width 5.55 8.82 10.16 9.11 9.43 9.04

Var (width) 0.26 1.77 6.14 4.17 4.78 5.15

Coverage 0.72 0.86 0.86 0.84 0.86 0.84

2530 Width 5.18 7.30 7.68 7.11 7.19 7.27

Var (width) 0.21 2.04 4.25 4.37 4.27 4.93

Coverage 0.84 0.92 0.94 0.90 0.90 0.88

3795 Width 4.74 6.11 6.56 5.81 6.03 6.15

Var (width) 0.19 0.89 2.08 2.10 2.19 2.99

Coverage 0.82 0.90 0.88 0.86 0.86 0.88

5692 Width 4.15 4.93 5.33 4.64 4.88 5.11

Var (width) 0.15 0.45 1.22 0.89 1.05 0.95

Coverage 0.84 0.88 0.88 0.86 0.88 0.86

8538 Width 3.51 3.87 4.21 3.80 3.82 3.93

Var (width) 0.08 0.30 1.04 0.72 0.70 1.25

Coverage 0.90 0.94 0.94 0.92 0.92 0.92

12 807 Width 2.85 3.06 3.25 2.88 2.99 2.96

Var (width) 0.04 0.23 0.51 0.11 0.13 0.66

Coverage 0.92 0.92 0.92 0.94 0.94 0.88

13 500 Width 2.76 2.94 3.23 2.87 2.81 2.82

Var (width) 0.03 0.20 0.46 0.18 0.17 0.52

Table 10 Sequential simulation results for response time process in Model A, unbatched case, u = 41.2.

Relative d=0 d=1 d=2 Sequential Regression Splines
half- regression with cross with cross
width validation validation

Coverage 0.64 0.76 0.88 0.78 0.78 0.80

0.20 Run length 500 500 649 624 624 633
Half-width 0.09 0.13 0.16 0.14 0.14 0.14

Coverage 0.64 0.76 0.88 0.74 0.74 0.78

0.15 Run length 500 540 1124 781 870 896
Half-width 0.09 0.12 0.13 0.12 0.12 0.12

Coverage 0.58 0.88 0.82 0.80 0.82 0.80

0.10 Run length 553 2122 2691 2002 2231 2408
Half-width 0.09 0.09 0.08 0.08 0.08 0.08

Coverage 0.80 0.86 0.88 0.84 0.84 0.80

0.05 Run length 7011 9335 10 033 8156 8470 8866
Half-width 0.05 0.04 0.04 0.04 0.04 0.04
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of a run length control procedure. This method estimated
the variance of the sample mean by estimating the spec-
tral density at zero frequency, py(0), of a sequence of
batch means. This was accomplished by fitting a quadrat-
ic to the logarithm of the averaged periodogram.

This method worked well and was recommended as a
solid practical procedure. However, there were two rea-
sons to believe it could be improved upon by applying
more flexible, adaptive curve fitting techniques. First,
limiting the approximating function to a quadratic ap-
peared somewhat restrictive for small batch sizes. Sec-
ond, the spectrum p g(f) becomes smoother and is asymp-
totically flat as the sample and batch sizes increase. Thus,
for large samples, a linear fit would yield an unbiased
estimate of p,(0) with a much smaller variance than the
one obtained by fitting a quadratic. This is analogous to
an increase in the degrees of freedom in a t-confidence
interval.

The present paper is an examination of this approach.
Adaptive procedures of three basic types were evaluated:
polynomial fits with the degree selected by sequential
regression, polynomial fits with the degree selected by
cross validation, and smoothing splines with the amount
of smoothing determined by cross validation. In no case
were we able to realize enough benefit to be able to
recommend an adaptive procedure. In each case the
process of adaptation created negative effects which
either generated poorer performance than the quadratic
method or reduced the potential payoff to a marginal
point. The performance of the smoothing splines with
cross validation was particularly disappointing since this
method has flexibility, simplicity, and elegance.

Hence we still recommend the specific fixed quadratic
method of [2]. More so than ever it appears as an
effective, simple, and practical technique for simulation
confidence interval generation and run length control.
This method has been incorporated into the internal IBM
system simulation analysis tools FIVE and SNAP/SHOT
and is planned for installation in the internal IBM simula-
tion tool RESQ. These simulators are described in [18],
[19], and [20] respectively.
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