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This paper  addresses  two central problems in simulation  methodology:  the  generation of conjidence  intervals for  the 
steady state  means of the  output  sequences  and  the  sequential  use of these  conjidence intervals to control the run length. 
The  variance of the  sample  mean of a covariance  stationary  process  is  given  approximately by p(O)lN, where p( f )  is  the 
spectral density  at  frequency f and N is  the  sample  size.  In  an earlier paper we developed a method of confidence interval 
generation based  on  the  estimation of p(0)  through  the  least  squares  jit of a quadratic  to  the  logarithm of the 
periodogram.  This  method  was applied in a run  length Control procedure  to a sequence of batched  means. As the run 
length increased the  batch  means were rebatched  into larger batch  sizes so as  to limit storage  requirements.  In  this 
rebatching the  shape of the spectral density  changes, gradually becoming  flat  as N increases.  Quadratics were chosen  as 
a compromise  between  small  sample  bias  and large sample  stability. 

In  this  paper we consider  smoothing  techniques  which  adapt  to  the  changing  spectral  shape  in  an  attempt  to  improve 
both  the small and large sample  behavior of the  method.  The  techniques  considered are polynomial  smoothing  with  the 
degree selected  sequentially  using  standard  regression  statistics,  polynomial  smoothing  with  the  degree  selected by cross 
validation,  and smoothing splines with  the  amount of smoothing  determined by cross  validation.  These  techniques were 
empirically evaluated  both for  fixed  sample  sizes  and  when incorporated into  the  sequential run length control procedure. 
Forjixed  sample sizes they did not  improve  the small sample  behavior  and  only marginally improved  the large sample 
behavior when  compared  with  the  quadratic  method. Their performance  in  the  sequential  procedure  was  unsatisfactory. 
Hence,  the straightforward quadratic  technique  recommended  in  the earlier paper  is still recommended  as  an  effective, 
practical technique for simulation  conjidence interval generation  and run length  control. 

1. Introduction 
This  paper is concerned with two major  problems in the 
statistical output analysis of single run,  discrete  event 
simulations: generating confidence intervals for  the 
steady state mean of an  output  sequence  and using these 
confidence intervals to  control  the length of the simula- 
tion.  It  discusses methods which can be incorporated  into 
simulation packages and used by typical  practitioners. 
Such  methods  must  be  completely automatic and have 
few user specified control  parameters.  The  paper is not 
concerned with the problem of identifying and eliminating 
the effects due  to initialization bias: we assume  that  the 
simulation is in steady  state. 

More specifically, we assume  that  the simulation gener- 
ates a  covariance stationary  process {X(n),  n 2 1) with 
mean p = E[X(n) ]  and  spectral density p ( f ) .  Under 
general  conditions  (see [l]) the sample mean, x, is,  for 
large samples,  approximately  normally  distributed with 
mean p and variance p(O)/N, where p(0) is  the spectral 
density at  zero  frequency and N is the sample  size. The 
factor p(0) measures  not  only the variance of each indi- 
vidual observation  but also  the correlation between ob- 
servations. Thus  to place a confidence  interval on p it is 
sufficient to  estimate p(0). The  methods developed in this 
paper  use  spectral  analysis techniques  to accomplish  this. 
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The problem of run length control is addressed by defin- 
ing a  sequential procedure which continues  the simulation 
until a confidence interval of desired accuracy is 
obtained. 

There are two reasons why it is often  impractical to 
store  the  entire output  sequence.  First,  the length of the 
sequence  required to obtain the desired accuracy  is 
random,  unknown in advance,  and may be quite  large. 
Second, in complex models there may be the need to 
analyze many such  sequences.  To avoid these problems 
the method operates  on a set of batch  means which are 
rebatched as N increases so as  to occupy  a  relatively 
small, fixed amount of storage. With batched  data  the 
situation is conceptually the  same  as with unbatched 
data. Let B be the  batch size and NB be  the number of 
batches ( N  = BN,); then  Variance (z) = p,(O)/N,, where 
p , ( f )  is the spectral  density of the  batch means. Thus  to 
generate  a confidence interval it is sufficient to  estimate 
p,(O). Furthermore, p , ( f )  becomes flat ( i .e . ,  approaches 
a  constant) as the  batch size increases. 

In [2] we described  a  method for estimating p,(O) 
through the  application of polynomial regression to  the 
logarithm of the (averaged)  periodogram of the  batch 
means. The degree of the polynomial (a  quadratic  was 
recommended) was fixed in advance and was selected 
based upon  the results of empirical tests. This  choice 
represented a compromise  between small and large sam- 
ple behavior. For small samples  a quadratic  is required to 
properly approximate log (p,(f)) so as  to  obtain  an 
unbiased estimate of p,(O). However,  for large samples  a 
quadratic is unnecessary  due  to  the flattening of p , ( f ) ;  a 
linear function  and  ultimately  a constant is adequate, and 
they  provide  successively  more  stable estimates of p,(O). 

In this paper we consider adaptive methods which 
select the degree of the polynomial according to  the  shape 
of the periodogram. The idea is to  adapt  to  the changing 
shape of p , ( f )  and  achieve both a more flexible proce- 
dure in the small sample region and improved Large 
sample stability. The methods  investigated for selecting 
the  degree of the polynomial  include standard sequential 
regression procedures  and  cross validation.  Smoothing 
splines, a  richer class of approximating  functions which 
by their  very nature  are  adaptive, were also  considered. 
The amount of smoothing  was chosen by cross validation. 
All  of these  methods can  be completely automated  and  do 
not require a user's qualitative or graphical  interpretation 
of the  data. 

Although we concentrate on the application of these 
methods to batched data, they are  also applicable to 
unbatched data. With unbatched data,  as  the sample  size 
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N increases, the smoothing is done  over intervals (0, E ~ ) ,  

where E~ -+ 0. In this case  the assumption is that 
log (p(f)) can  be approximated by a polynomial in the 
interval (0, E ~ ) .  Analogous to  the batched case, p(f) 
converges to a constant ( ~ ( 0 ) )  in the interval (0, cN)  as N 
increases. Experiments we have performed have shown 
the  methods to be  insensitive to whether or not the  data 
are batched. Furthermore, if the  data  are  batched, they 
are insensitive to  the particular  batching  protocol. 

The organization of the  paper is as follows.  Section 2 
contains  a brief review of the fixed degree  quadratic 
method, the batching procedure, and the method of run 
length control. In Section 3 the  adaptive  procedures  are 
described.  Section 4 contains experimental results  on 
these  adaptive  methods and  their comparison to the 
quadratic  method in both fixed length  simulations and as 
applied in the run length control  procedure. Section 5 
summarizes the  results  and  contains  recommendations 
for practical  applications. 

We also  point  out that, although we are motivated by 
its  potential  use in simulation experiments, this  method- 
ology has much wider  applicability. The  paper  addresses 
the  general  statistical  problem of generating  confidence 
intervals for  the mean of a serially correlated,  covariance 
stationary time series. 

2. A fixed  degree  method 
We assume  the simulation generates a  sample X(1), . . ., 
X ( N )  from  a covariance  stationary  sequence  and  that we 
are interested in placing a  confidence  interval on the 
mean p = E [ X ( n ) ] .  Let y ( k )  denote  the  covariance 
function at lag k and assume  that 

so that  the process  has a finite, continuous spectral 
density defined by (see for example [3]) 
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For large values of N the variance of the sample mean x 
is approximately p(O)/N (see [l]). 

We consider methods of estimating p ( 0 )  which do  not 
require storing the  entire  sequence X(1), . . ., X ( N ) .  
Suppose N = BNB and that we batch  the  sequence  into 
contiguous,  nonoverlapping batches of size B.  Let  FB(m) 
denote  the  mean of the  mth  batch, i .e. ,  

Notice that {T,(m), m 2 1) is also a covariance  stationary 
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sequence with mean p and a spectral  density which we 
denote by p , ( f )  (the  relationship  between p ( f )  and p,( f )  
is given in [ 2 ] ) .  Since 

N  NE 

X = ( U N )  C x( j )  = ( I / N , )  C F,(rn), (4) 
j =  1 m=1 

the approximate  variance of % is both p(O)/N and pB(0)/NB 
and in fact p,(O) = p(O)/B. 

In [2]  we  described a method  for  estimating p,(O) by 
fitting a polynomial to  the logarithm of the averaged 
periodogram of the  batch  means. For completeness  that 
method is outlined here. We consider such estimates 
preferable to classical windowed spectral  estimates be- 
cause  the windowed estimates of p,(O) will be biased low 
for the type of spectra peaked at  zero which are usually 
encountered in simulations (see [2] for additional discus- 
sion). 

Let Z(n/N,) be the periodogram of the  batch  means, 
I.e., 

z ( ~ / N , )  = 1 ~ , ( j  )e-2.rri(j-l)n/Ne I N E  

2 1 lNB ' (5 )  
j= 1 

where i = (- 1f2. Let f, = (4n - 1)/2N, and define 

J(f,) = log ((Z((2n - l)/N,) + Z(2n/NB)}/2). (6) 

The quantity J(fJ is the logarithm of the  average of 
Z(l/N,) and Z(2/NB), J ( f 2 )  is the logarithm of the  average 
of Z(3/NB) and Z(4/NB), etc. If 0 < n,  rn < NB/4, then 
J( f , )  has the following approximate  properties (see [31 
and [4]): 

E[J(f,)l z log (pJfn) )  - 0.270, 

Variance [J(f,)] = 0.645, (7) 

Covariance [J ( f , ) ,   J ( fm) ]  = 0.0, n # m. 

We estimate p J 0 )  by fitting a smooth  function to J( f , ) .  
The  sequence J(f,) is used because it  has a constant 
variance and an  approximately  symmetric  distribution. 
These points are discussed  more fully in [2] ,  and a figure 
illustrating these  properties is given there. We empirically 
checked the  variance of J(f ,)  and confirmed the theoreti- 
cal variance. We also  checked  and confirmed the  assump- 
tion that the J(f,)'s are uncorrelated. 

The following method for estimating p,(O) and  generat- 
ing a confidence interval for p was  developed in [ 2 ] .  Let 
g B ( f )  = log (pB( f ) )*  

1. Calculate Z(n/N,) for n = 1, - . a ,  2K and J(f ,)  for n = 

2. Using ordinary  least squares fit a polynomial of degree 
1, * * -, K .  

862 d,  g(f) = Zi=oa,fk, to J(f,) + 0.270 for n = 1 ,  . ., K .  
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3. Let the resulting least  squares estimate of a, be bo. 
Under the assumption that g,(f) is a polynomial of 
degree d for 0 sfs 2K/NB, 6, is an unbiased estimate 

4. EstimatepJO) byfi,(O) = C,(K,  d)e", where Cl(K, d )  
is a constant  chosen to make fi,(O) approximately 
unbiased. The function C, (K ,  d )  is  discussed in [ 2 ] .  

5. Finally, a confidence interval for p is  generated by 
assuming that 

CZ - PI/( F,(WN,)~'~ (8) 

has a t-distribution with C2(K,  d )  degrees of freedom, 
where C2(K,  d )  is  also  discussed in [2]. This is the 
distribution of the t random variable whose  denomina- 
tor  squared has the  same coefficient of variation as 

of  log (pB(O)) '  

fiJO)/NB* 

In [ 2 ]  the parameters K = 25 and d = 2 were  recom- 
mended. For  these parameters C2(25, 2 )  = 7 degrees of 
freedom. However, if a linear fit was sufficient to produce 
an unbiased estimate of p,(O), then  this  equivalent  de- 
grees offreedom would increase to C2(25, l )  = 18, and if a 
constant  was adequate, C2(25, 0) = 77. Furthermore in [ 2 ]  
we showed that 

&a 
lim Bp, ( f )  = p(O), 

so that  for large batch  sizes p,( f )  is nearly flat and  the 
quadratic fit is unnecessary. Thus  the potential exists for 
increasing the stability of fi,(O) by successively removing 
the  quadratic  and  linear terms from the regression as the 
shape of p , ( f )  changes.  Section 3 describes  several 
methods which attempt  to achieve  this. 

We  now briefly describe the batching  and  run length 
control  procedures. The batching  is  done in a straightfor- 
ward manner. We store between L and 2L batches and 
assume  there are always a sufficient number of batches  to 
generate K independent values of J(f,). The  procedure 
generates an increasing sequence of batch  sizes which are 
successive  powers of two. If the  current batch  size is B ,  
then enough observations are collected until 2L such 
batches are obtained. At  that point the number of batches 
is halved by doubling the batch  size  and formingx2,,(1) = 

The  subsequent  observations are  stored in batches of size 
2B until further rebatching is necessary. The procedure 
requires at most 2L storage  locations.  In  the  experiments 
described below we chose L = 100 to reflect the practical 
need for  economy of storage in simulation applications. 
However, as previously  mentioned,  the  methods are 
insensitive to  the batching  scheme. 

( q 1 )  + XB(2))/2, * * )  Zm(L) = (ZB(2L - 1) + ZB(2L))/2. 

The run length control  procedure operates on a relative 
confidence interval half-width criterion. A sequence of 
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checkpoints, j , , j 2 ,  * * *, j,,,, is generated,  where j,,, is 
the maximum run length and  represents a cost  constraint. 
At each  checkpoint a confidence  interval is generated. If 
the  relative half-width of the confidence  interval (confi- 
dence  interval width divided by 2 I I) is less  than a 
prespecified value, E ,  the simulation is terminated.  Other- 
wise it is continued to  the next  checkpoint. In [2] we 
suggested generating the  checkpoints according to  the 
formula j,+, = min (1 .5  X j,, j,,,). These geometrically 
increasing checkpoints  reduce  the degradation in confi- 
dence interval coverage inherent in such a sequential pro- 
cedure. We evaluate  the  adaptive  methods using this  run 
length control  procedure with 90% confidence  intervals 
and E = 0.05, 0.10, 0.15, and 0.20. This range of accura- 
cies seems reasonable for most  practical  applications. 

3. Three  adaptive  methods 
In Sections 1 and 2 we  saw  that  the log of the  spectrum, 
g,(f), begins with a shape which is characteristic of the 
process {X(n)} but  as B increases  becomes progressively 
smoother and eventually flat. Because of this there is the 
potential to obtain  both a more robust small sample and a 
more  stable large sample  estimate of p,(O) by having a 
fitting procedure which adapts to this changing shape. In 
this section we discuss  three  such  procedures.  Two of 
them apply polynomial regression but select the degree of 
the polynomial adaptively.  One uses  standard regression 
statistics, the  other  cross validation. The third  applies 
smoothing splines  with the  amount of smoothing deter- 
mined by cross validation. The third approach is appeal- 
ing a priori not  only because it is adaptive but also 
because it offers a class of fitting functions  richer  than the 
polynomials. 

Sequential regression 
As described above,  there is motivation to first examine 
the log of the averaged  periodogram and  determine what 
degree polynomial is required to adequately  describe  its 
shape and then fit that degree rather  than  to always  use a 
quadratic. For small B a quadratic, or perhaps  even a 
higher degree  polynomial, is required  to approximate 
g,(f). We experimented with the inclusion of a cubic in 
the  adaptive polynomial procedures. However, it provid- 
ed very little improvement in the small  sample region and 
detracted significantly from the overall  performance be- 
cause of the large variance of the  estimate it generates; 
C2(25, 3) = 3 equivalent  degrees of freedom.  Hence it is 
not included in the polynomial procedures,  and we at- 
tempt only to improve the large sample  stability by using 
polynomials of degrees d = 0,  1 ,  or 2 .  

The first approach  to this  problem is through the 
application of standard polynomial regression theory 
(see, for example, [ S I ) .  Let &(f), g,(f), and g 2 ( f )  be the 

least squares polynomials of degree 0,  1, and 2 ,  respec- 
tively,  and let ss(1) and ss(2) be the usual error  sum of 
squares associated with the linear and  quadratic  terms, 
z.e., 

s s (d)  = l / g d ( f f l )  [ I 2  - llkd-I(f,) ) I 2 ,  (9) 

where 1 1  11’ indicates the sum of squares of the  components 
of the vector.  In this case,  since  the variance of J(f,) is a 
known constant, 0.645, the  tests  are based on the statis- 
tics ss(dY0.645 for d = 1 and 2. The  statistic ss(d)/0.645 is 
used to  test  the hypothesis that ad, the coefficient of the 
term of degree d ,  is equal  to  zero.  Under  the  assumptions 
that g,(f) is a polynomial of degree d - 1 and  the  errors 
are approximately normally distributed,  the statistic 
ss(d)/0.645 has approximately a x’ distribution  with one 
degree of freedom. Let x:(4) denote  the  inverse distribu- 
tion function of a x* random variable  with one degree of 
freedom. 

The first adaptive method, which we call sequential 
regression, is a standard  procedure  for  the selection of the 
degree in polynomial regression  (see [6] ) .  In this  proce- 
dure  there is  the  desire  to  choose  as low a degree as is 
consistent with the  data in the  interest of having as simple 
a function as is consistent with the  data.  Hence  the  test is 
sequentially applied at  some high significance level, 4 (4 
= 1 - a, where LY is the probability of a Type I error). 
Specifically such a test  takes  the form: 

If ss(2)/0.645 2 x:(4), choose d = 2 ;  

if ss(2)/0.645 < x:(c$) 
and ss(1)/0.645 5 x:(+), choose d = 1 ;  

if ss(2)/0.645 < x:(+) 
and ss(1)/0.645 < x:(+) choose d = 0. 

The parameter  regulates the  behavior of the  procedure. 
For small values of 4 the  power of the  tests  is high against 
linear or  quadratic  alternatives,  and it is relatively diffi- 
cult to  drop  these  terms.  However, with a small 4, once 
g , ( f )  is flat, degrees d = 1 and d = 2 are  selected  rather 
frequently (with probabilities 4( 1 - 4) and (1 - 4), 
respectively)  resulting in a large asymptotic variance for 
fi,(O). For large values of 4 the linear  and quadratic  terms 
are dropped  more  readily. Once  dropped,  the probability 
is low that they will be  reinstated  into  the regression.  This 
results in a smaller asymptotic  variance. We  experiment- 
ed with this procedure at a number of significance levels 
but  report  only the  results  for 4 = 0.90. 

Polynomial selection with cross validation 
The previous  method of polynomial degree selection is 
dependent  upon  distributional assumptions which are 
only approximate and  contains a significance test parame- 
ter which must  be set in an experimental  fashion. The 863 
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Figure 1 Closed  queueing  network  model. 

method we now describe is free of these shortcomings. It 
selects the polynomial degree which is in some  real sense 
most consistent with the  data.  The method is known as 
cross  validation, or  PRESS  (see [5, 7, 81). 

For a  degree d let k d , , ( f )  be  the  least  squares polyno- 
mial of degree d obtained  by  excluding the point at&.  The 
cross validation sum of squares  for degree d is defined by 

K 

&) = c (kd,Jfn) - J(f f lHZ.  (10) 
n = l  

The method of cross validation chooses from  amongst  a 
set of possible degrees that  one which minimizes E z ( d ) .  
We applied cross validation to select the degree where  at 
each  checkpoint in the sequential procedure  the  set d = 0,  
1 ,  or 2 was considered. 

Smoothing splines  with  cross  validation 
The third method  applied was  the method of cubic 
smoothing splines  (see [9]) with the  amount of smoothing 
chosen by cross validation.  This  method of smoothing 
was suggested by Wahba  and Wold in [lo]; see also [ l l -  
141. The smoothing cubic spline g s ( f )  is the solution to 
the optimization problem 

where g is restricted to  have  two  continuous,  square 
integrable derivatives. The listing of a FORTRAN pro- 
gram to compute g s ( f )  can  be  found in [ 151. The parame- 
ter S controls  the  amount of smoothing: the larger S the 
smoother the function g , ( f )  and  for  some S,, if S 2 SI, 
then g s ( f )  is the least squares straight line fit to J ( f , ) .  In 
the notation of the  two previous subsections,  for S 2 SI, 
g s ( f )  = i , ( f ) .  If S = 0, then the spline interpolates  the 
points J(f,). The  parameter S is analogous to  the degree 864 
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of the polynomial in polynomial regression;  increasing S 
corresponds to decreasing d. By applying  smoothing 
splines we have at our disposal a much  richer class of 
smoothing functions  than the low order polynomials. 
They  can place curvature  as  represented by the  square of 
the second  derivative either locally or globally as needed. 
However,  corresponding to  the  question of what  degree 
polynomial is  the  question of what  value of the smoothing 
parameter S. As  suggested in [lo] we chose S by cross 
validation. Let g S , J f )  be the smoothing  spline for param- 
eter S with the point f ,  excluded. The  cross validation 
error sum of squares corresponding to S is defined as 

K 

a s )  = c (gs,fl(fn) - J(f f lN2.  (13) 
fl= 1 

We choose the  spline g , ( f )  whose cross validation error 
sum of squares  is minimized. This is  the third adaptive 
method.  It will choose,  on  the  average, a smoother and 
smoother curve  as  the  batch size increases. 

We actually implemented an approximation to  the 
method of cross validation  described above. We consid- 
ered the  set of values {S:S = kS,, k = 0.40,  0.45,  0.50, 

quadratic, i .e. 
. . .  , 1.30}, where S, is the  error sum of squares of the 

f l= l  

The smoothing spline from amongst  this set which mini- 
mized kZ(S) was  chosen. This corresponds  to a  range of 
functions  about the  quadratic extending on  the  one hand 
to  the linear  and on  the  other  to functions  much  less 
smooth  than the  quadratic.  The  actual estimate of p,(O) 
was  obtained by letting @,(O) = exp {k,(O)}, where S,(O) 
= gs.(fl) -fl$,.(fl), and S* was  the value of S chosen by 
the cross validation. The  intercept k,(O) is thus obtained 
by the linear  extrapolation of g , * ( f )  from fl  using the 
derivative of g s . ( f )  at f l .  

4. Experimental  results 

Models  studied  and  description of experiments 
The choice of models and  output  sequences studied in 
this paper directly reflects our  interest in the performance 
modeling of computer  systems. We conducted experi- 
mental studies on models of the general  form  shown in 
Fig. 1.  They are simple closed  queueing network models 
of interactive computer  systems.  The  parameters of these 
models are  the  same  as in [2], and a detailed  description 
of them may be  found there. We  considered two models 
of this type, Models  A and  B,  and  for  each model we 
studied a waiting time sequence at a congested queue and 
the sequence of system  response times. The  spectra of 
these processes  are shown in [21. 
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Table 1 Fixed sample size simulation results for response time process in Model A, p = 41.2. 

Run d = O  d= I d = 2  Sequential  Regression  Splines 
length  regression  with  cross  with  cross 

validation  validation 

Coverage 0.62  0.78 0.92 0.80 0.80  0.88 
500 Width 7.53  10.38 15.59  13.86 14.43  14.98 

Var (width) 1.17  3.02 17.97  30.11 26.12  29.52 

Coverage 0.60  0.78 0.94 0.88 0.86 0.88 
750 Width 6.60  10.07 13.75  12.17 12.41  12.54 

Var (width) 0.62  3.73 13.32 16.26 16.25  14.21 

Coverage 0.64 0.82 0.96  0.90 0.92  0.86 
' 1125 Width 5.90  9.56 12.34 11.12 1 I .46 10.50 

Var (width) 0.39  1.95 7.99 8.88 9.36  8.67 

Coverage 0.66  0.90 0.92  0.90 0.92  0.86 
1687 Width 5.38  8.85 10.42  9.06 9.57  8.92 

Var (width) 0.22  2.05 7.15  4.03 6.85 5.32 

Coverage 0.68 0.88 0.88 0.84 0.84  0.84 
2530 Width 5.02  7.39 7.69  7.15 7.16  7.23 

Var (width) 0.21 2.25 3.87  3.78 3.27  4.10 

Coverage 0.78  0.94 0.94 0.88 0.92  0.90 
3795 Width 4.50  6.22 6.60  6.00 6.22  6.06 

Var (width) 0.17  1.02 1.97  2.27 2.44  2.89 

Coverage 0.82  0.90 0.88 0.86 0.90  0.86 
5692 Width 4.04 5.00 5.35 4.63 4.88 5.12 

Var (width) 0.13  0.43 1.09  0.89 0.86 1.22 

Coverage 0.84 0.90 0.92  0.86 0.86 0.88 
8538 Width 3.38  3.92 4.29  3.57 3.81  3.86 

Var (width) 0.07  0.29 1.03  0.38 0.64  1.12 

Coverage 0.92  0.94 0.94  0.94 0.94  0.92 
12  807 Width 2.77 3.11 3.27  2.97 2.92  2.95 

Var (width) 0.04 0.24 0.48  0.24 0.19  0.59 

Coverage 0.88 0.94 0.90 0.90 0.92 0.90 
13 500 Width 2.62  3.00 3.23 2.80 2.79  3.02 

Var (width) 0.03  0.24 0.44  0.18 0.13  0.41 

For  each of the  four  output  sequences  we  ran 50 
independent  simulations, each 14 000 elements long. 
These sequences  are identical to  those considered in [ 2 ] .  
The first 500 elements of each  sequence were  removed to 
control the effect of initial conditions. 

Tables 1-4 report  the  results of fixed sample  size 
simulations. They list results for six methods of generat- 
ing confidence intervals: the  three  adaptive  procedures 
described in Section 3 as well as  the  three fixed degree 
methods  corresponding to d = 0, 1 ,  and 2. The sample 
sizes in these tables are  the  checkpoints of the sequential 
procedure. The fraction of the fifty 90% confidence 
intervals which actually  contained p is reported  for  each 
type of output  sequence,  checkpoint, and  confidence 
interval  method. This fraction is called a (90%) coverage, 
and it should be close  to 0.90 if valid confidence  intervals 
are being formed.  Coverages less  than 0.82 are signifi- 
cantly  lower  than 0.90 at  the 0.90 level. Space consider- 

ations  preclude  reporting the  entire  coverage function 
(see [16]). These  tables  also  report  the  means  and sample 
variances of the confidence  interval  widths. 

Tables 5-8 report  the  results of tests  on  the methods 
when operating in the  run length control  procedure. 
These tables  list the  coverage, mean  run  length, and mean 
relative half-width corresponding to  each confidence in- 
terval  method and  each of the  accuracy  requirements, E = 
0.20, 0.15, 0.10, 0.05. More specifically, the  coverages 
and  relative half-widths are  those of the confidence 
intervals with which the run length control  procedure 
terminates, Le.,  those confidence  intervals  which either 
first satisfy the  accuracy criterion or, if the  accuracy 
criterion is never  met,  those  produced at j,,,,,. 

General behavior of the adaptive  procedures 
The adaptive procedures generally  made reasonable deci- 
sions concerning the  amount of smoothing  given that only 869 
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Table 2 Fixed sample size simulation results for waiting  time process at Queue 2 in Model A, = 3.77. 

Run 
length 

500 

750 

1125 

1687 

2530 

3795 

5692 

8538 

12  807 

13  500 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverge 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

d = O   d =  1 d = 2  Sequential Regression Splines 
regression with cross with cross 

validation validation 

0.18 
0.65 

0.009 

0.40 
0.74 

0.010 

0.40 
0.77 

0.01  1 

0.40 
0.76 

0.01 1 

0.58 
0.77 

0.012 

0.56 
0.76 

0.012 

0.62 
0.75 

0.007 

0.68 
0.70 

0.006 

0.66 
0.65 

0.006 

0.72 
0.64 

0.006 

0.58 
2.02 
0.36 

0.64 
1.84 
0.25 

0.82 
1.79 
0.19 

0.82 
1.66 
0.13 

0.92 
1.61 
0.15 

0.88 
1.52 
0.09 

0.90 
1.31 
0.08 

0.94 
1.13 
0.06 

0.80 
0.90 
0.04 

0.86 
0.87 
0.04 

0.76 
2.90 
1.18 

0.74 
2.61 
0.78 

0.86 
2.50 
0.48 

0.94 
2.45 
0.53 

0.96 
2.15 
0.36 

0.94 
1.81 
0.26 

0.90 
1.45 
0.20 

0.90 
1.16 
0.10 

0.84 
0.98 
0.09 

0.90 
0.97 
0.08 

0.70 
2.64 
1.29 

0.72 
2.29 
0.83 

0.84 
2.24 
0.57 

0.90 
2.27 
0.66 

0.94 
1.96 
0.39 

0.92 
1.63 
0.19 

0.88 
1:35 
0.17 

0.90 
1.10 
0.09 

0.82 
0.88 
0.07 

0.88 
0.85 
0.08 

0.72 
2.68 
1.31 

0.74 
2.45 
0.90 

0.86 
2.37 
0.60 

0.92 
2.31 
0.62 

0.96 
2.02 
0.43 

0.92 
1.73 
0.25 

0.88 
1.35 
0.18 

0.90 
1.11 
0.08 

0.82 
0.90 
0.07 

0.88 
0.87 
0.07 

0.80 
3.73 
4.20 

0.80 
2.98 
1.91 

0.88 
2.55 
1.08 

0.90 
2.41 
1.17 

0.90 
1.95 
0.50 

0.88 
1.59 
0.23 

0.86 
I .30 
0.14 

0.84 
1.05 
0.11 

0.80 
0.87 
0.06 

0.86 
0.87 
0.05 

25 data points, {.I(&), 1 5 n I 25}, were available to them. 
We were  particularly impressed by degree selections 
made by cross validation. A sample of their selections is 
illustrated  in  Figs. 2-5. For the waiting  time sequence of 
Model B these figures contain examples at 1125 and 
13 500 observations for the first 8 of the 50 replications. 
With a maximum of  200 batches these correspond to 
batch  sizes of 8 and 128, respectively. Estimates of g,(f) 
at these batch sizes are given  in  Fig. 6. Notice that g&f) 
is  approximately quadratic and gl,,(f) is approximately 
linear. 

Figures 2-5 contain plots of J(f , ) ,  the three least 
squares polynomials &(f), bl(f), and B2(f) and the 
selected  spline g s . ( f ) .  The corresponding intercept esti- 
mates of g,(O) = log (p,(O)) are indicated by stars. These 
plots  also  list the degrees selected by the two polynomial 
procedures and the coefficient k yielding the optimal S* 
[S* = kS,, where S, is given  by  (14)].  Also  indicated are 866 
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whether or not the confidence interval produced by each 
fit covered p (Cover = 1 or 0, respectively). 

The underestimation of p(0) using degrees d = 0 or 1 for 
small run  lengths is clearly indicated in Figs. 2 and 3. The 
large  sample  variability of the estimates produced by the 
quadratic procedure is seen in Figs. 4 and  5. 

The increased flexibility of the splines over the polyno- 
mials  is evident throughout Figs. 2-5. They  generally 
gave reasonable looking  fits  although they were erratic at 
times  and sensitive to random patterns in {J(f,)} [see, for 
example,  Fig.  2, replication 4,  and  Fig. 4, replication 11. 

Fixed sample size behavior 
We first discuss the results of the fixed  sample  size 
experiments. Notice from Tables 1-4 that the small 
sample coverages for the fixed degree d = 2 procedure 
are generally  higher than those for d = 0 and d = 1. For 
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Table 3 Fixed sample size simulation results for response time process in Model B, p = 171.0. 

Run 
length 

d = O  d = l  d = 2  Sequential Regression Splines 
regression with cross with cross 

validation validation 

500 

750 

1125 

1687 

2530 

3795 

5692 

8538 

12  807 

13 500 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

0.68 
33.51 
11.79 

0.70 
25.92 
6.23 

0.78 
22.11 
3.75 

0.72 
18.76 
4.55 

0.80 
16.33 
1.87 

0.82 
14.37 
1.35 

0.86 
12.87 
1 .oo 

0.92 
10.89 
0.49 

0.92 
9.27 
0.53 

0.94 
9.06 
0.63 

0.74 
36.81 
24.45 

0.82 
32.86 
28.05 

0.84 
28.35 
24.10 

0.88 
24.95 
15.87 

0.92 
22.76 
14.20 

0.90 
18.62 
8.81 

0.94 
15.87 
6.65 

0.94 
12.87 
2.92 

0.96 
10.73 
2.99 

0.96 
10.46 
2.63 

0.86 
46.58 

111.84 

0.90 
40.79 
85.15 

0.90 
36.73 
64.50 

0.96 
32.01 
67.01 

0.94 
26.39 
41.62 

0.90 
20.81 
40.19 

0.92 
16.55 
23.71 

0.96 
13.99 
10.31 

0.90 
11.53 
6.90 

0.92 
11.14 
6.79 

0.72 
35.53 
96.05 

0.80 
33.78 

108.26 

0.80 
28.41 
80.87 

0.86 
26.15 
84.33 

0.90 
22.10 
44.70 

0.84 
17.62 
27.41 

0.90 
14.80 
16.97 

0.94 
11.48 
3.57 

0.92 
9.79 
2.25 

0.94 
9.63 
3.36 

0.76 
40.15 

139.00 

0.82 
36.75 

124.82 

0.88 
31.15 
89.81 

0.88 
27.96 
96.70 

0.94 
24.29 
42.10 

0.86 
19.68 
38.99 

0.92 
15.47 
18.98 

0.94 
12.27 
6.59 

0.94 
10.40 
4.13 

0.94 
10.37 
5.56 

0.78 
49.13 

288.30 

0.82 
38.80 

179.19 

0.86 
33.61 

113.85 

0.96 
27.65 
51.83 

0.92 
23.76 
41.44 

0.90 
18.67 
40.87 

0.90 
15.31 
19.13 

0.96 
12.62 
7.74 

0.92 
10.22 
5.04 

0.94 
9.23 
4.11 

small samples p,(O) is severely underestimated using d = 

0 or 1. Corresponding to the higher coverages are wider 
confidence intervals for d = 2 than for d = 0 or 1. The 
coverages for d = 0 are particularly low;  this case 
corresponds roughly to the method of batch means. The 
method of batch means estimates the variance by fitting a 
degree zero polynomial to the periodogram (see [21) 
rather than to the logarithm of the averaged periodogram 
as is  done here. 

For large  samples the coverages for d = 1 and d = 2 are 
acceptable, and their mean  confidence interval widths are 
approximately equal. For the waiting  time sequences the 
coverages for d = 0 do not reach acceptable levels even 
by j , ,  = 13 500 observations. For all run lengths the 
variances of the confidence interval widths produced by 
the quadratic are higher than those obtained from either d 
= 0 or d = 1. This relationship is as predicted by C,(K, 
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d ) .  Thus the goal of an adaptive procedure is to move to 
the more stable d = 0 or d = 1 estimates of p,(O) but to do 
so only after their bias  is  sufficiently low so as  to produce 
correct coverage. 

For the  two adaptive polynomial regression procedures 
the  small  sample coverages are generally greater than 
those for d = 0 or 1 although  not as high as the d = 2 
coverages. The corresponding confidence interval widths 
are similarly ordered. These adaptive polynomial proce- 
dures produced correct large  sample coverages through- 
out the experiments. Notice, however, that the small 
sample  confidence interval width variances are larger 
than those of the d = 2 procedure. The reason for this 
variance increase is that for small samples the distribution 
of l i , ( O )  using  an adaptive procedure is actually more 
spread  out  than that of the quadratic due to the bias in 
$JO) for d = 0 or 1. For large samples this effect  is  not so 867 
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Table 4 Fixed sample size simulation results for waiting  time process at Queue 3 in  Model B, p = 34.22. 

Run 
length 

d = O   d =  1 d = 2  Sequential  Regression  Splines 
regression  with  cross  with  cross 

validation  validation 

500 

750 

1125 

1687 

2530 

3795 

5692 

8538 

12  807 

13 500 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

0.28 
4.11 
0.22 

0.26 
4.81 
0.39 

0.20 
5.25 
0.37 

0.36 
5.62 
0.25 

0.44 
6.31 
0.29 

0.54 
6.34 
0.20 

0.68 
6.49 
0.18 

0.80 
6.07 
0.17 

0.80 
5.44 
0.26 

0.72 
5.31 
0.28 

0.66 
15.15 
11.74 

0.64 
15.25 
10.60 

0.72 
15.37 
8.61 

0.90 
15.82 
10.97 

0.88 
15.17 
5.85 

0.92 
13.18 
5.32 

0.90 
11.18 
3.28 

0.96 
8.93 
2.16 

0.88 
7.01 
1.62 

0.88 
6.87 
1.43 

0.82 
25.10 
57.79 

0.88 
23.80 
41.42 

0.90 
22.94 
35.08 

0.92 
22.50 
27.06 

0.92 
18.31 
20.62 

0.96 
14.50 
16.05 

0.90 
10.73 
8.18 

0.94 
8.57 
3.90 

0.88 
7.42 
3.90 

0.88 
7.03 
2.78 

0.78 
23.65 
72.95 

0.84 
22.48 
52.49 

0.86 
21.09 
40.39 

0.92 
20.40 
35.29 

0.90 
16.30 
17.16 

0.92 
13.70 
12.88 

0.88 
10.64 
6.22 

0.94 
8.56 
3.15 

0.84 
6.69 
3.05 

0.82 
6.47 
2.06 

0.76 
23.67 
72.55 

0.84 
22.70 
49.72 

0.88 
22.07 
44.95 

0.92 
21.08 
33.83 

0.90 
16.69 
18.48 

0.92 
13.77 
12.21 

0.88 
10.47 
6.46 

0.94 
8.47 
3.18 

0.84 
6.72 
3.02 

0.80 
6.54 
2.22 

0.86 
28.36 

131.16 

0.86 
26.22 

102.76 

0.86 
23.56 
75.11 

0.92 
20.98 
39.67 

0.90 
16.19 
20.70 

0.90 
12.84 
15.81 

0.80 
10.18 
13.60 

0.90 
8.20 
5.37 

0.86 
6.83 
2.61 

0.84 
6.72 
2.76 

Table 5 Sequential simulation results for response time process in  Model A, p = 41.2. 

Relative 
ha&- 
width 

d = O   d =  1 d = 2  Sequential  Regression  Splines 
regression  with  cross  with  cross 

validation  validation 

0.20 
Coverage 

Run  length 
Half-width 

Coverage 
Run length 
Half-width 

Coverage 
Run length 
Half-width 

0.15 

0.10 

0.05 
Coverage 

Run length 
Half-width 
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0.62 
500 

0.09 

0.62 
500 

0.09 

0.62 
525 

0.09 

0.78 
6352 
0.05 

0.78 
500 

0.12 

0.76 
548 

0.12 

0.86 
2190 
0.09 

0.88 
9633 
0.04 

0.92 
669 

0.16 

0.92 
I198 
0.13 

0.84 
2727 
0.08 

0.88 
9849 
0.04 

0.78 
634 

0.13 

0.74 
804 

0.12 

0.80 
1979 
0.08 

0.80 
7407 
0.04 

0.78 
634 

0.14 

0.70 
872 

0.12 

0.80 
2183 
0.08 

0.82 
8270 
0.04 

0.80 
625 

0.14 

0.74 
852 

0.12 

0.76 
2348 
0.08 

0.88 
8582 
0.04 
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Table 6 Sequential  simulation  results  for  waiting  time  process at  Queue 2 in  Model A, p = 3.77. 

Relative 
hay- 
width 

d = O  d =  I d = 2  Sequential 
regression 

0.20 

0.15 

0.10 

0.05 

Coverage 
Run  length 
Half-width 

Coverage 
Run  length 
Half-width 

Coverage 
Run  length 
Half-width 

Coverage 
Run  length 
Half-width 

0.18 
500 

0.09 

0.18 
500 

0.09 

0.36 
1937 
0.08 

0.72 
13  500 

0.08 

0.80 
3628 
0.18 

0.86 
9432 
0.13 

0.80 
13  262 

0.12 

0.86 
13 500 

0.12 

0.90 
5660 
0.17 

0.86 
9506 
0.13 

0.84 
12  934 

0.13 

0.90 
13 500 

0.13 

0.82 
4614 
0.18 

0.84 
9209 
0.13 

0.82 
12  291 

0.11 

0.88 
13 500 

0.11 

Regression 
with  cross 
validation 
"- 

0.82 
4510 
0.18 

0.84 
9218 
0.13 

0.78 
12  404 

0.11 

0.88 
13 500 

0.11 

Splines 
with  cross 
validation 

0.86 
4360 
0.17 

0.76 
7847 
0.13 

0.76 
12  139 

0.11 

0.86 
13  344 

0.11 

Table 7 Sequential  simulation  results  for  response  time  process in Model B, p = 171.0. 

Relative 

width 
ha/f- 

d = O  d =  1 d = 2  Sequential 
regression 

Regression 
with  cross 
validation 

Splines 
with  cross 
validation 

Coverage 
0.20 Run  length 

Half-width 

Coverage 
0.15 Run  length 

Half-width 

0.10 
Coverage 

Run  length 
Half-width 

0.05 
Coverage 

Run  length 
Half-width 

0.68 
500 

0.09 

0.68 
500 

0.09 

0.66 
520 

0.09 

0.76 
2606 
0.05 

0.74 
500 

0.11 

0.74 
500 

0.11 

0.76 
81 1 

0.09 

0.84 
5926 
0.04 

0.86 
510 

0.13 

0.84 
590 

0.12 

0.80 
1350 
0.09 

0.84 
6566 
0.04 

0.72 
510 

0.11 

0.72 
570 

0.10 

0.68 
778 

0.09 

0.82 
4809 
0.04 

0.76 
510 

0.11 

0.74 
558 

0.10 

0.68 
818 

0.09 

0.82 
5294 
0.04 

0.76 
530 

0.13 

0.76 
633 

0.11 

0.72 
1144 
0.08 

0.80 
5  120 
0.04 

Table 8 Sequential  simulation  results for waiting  time  process at  Queue 3 in Model B, p = 34.22. 

Relative 
hay- 
width 

d = O  d =  1 d = 2  Sequential 
regression 

Regression 
with  cross 
validation 

Splines 
with  cross 
validation 

0.20 

0.15 

0.10 

0.05 

Coverage 
Run  length 
Half-width 

Coverage 
Run  length 
Half-width 

Coverage 
Run  length 
Half-width 

Coverage 
Run  length 
Half-width 

0.28 
500 

0.07 

0.28 
500 

0.07 

0.30 
7561 
0.07 

0.68 
12  720 

0.08 

0.86 
3035 
0.18 

0.92 
8247 
0.13 

0.90 
12  980 

0.10 

0.88 
13  500 

0.10 

0.88 
4913 
0.17 

0.92 
8276 
0.12 

0.90 
12 569 

0.10 

0.88 
13  401 

0.10 

0.90 
4404 
0. I7 

0.88 
7707 
0.12 

0.86 
4247 
0.17 

0.88 
7465 
0.13 

0.84 
4885 
0.16 

0.84 
7365 
0.12 

0.84 
12  216 

0.09 

0.82 
13  401 

0.10 

0.86 
12  301 

0.10 

0.80 
13  401 

0.10 

0.86 
11 342 

0.10 

0.84 
13  306 

0.10 
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Spline, optimal K = 0.95 

Replication 1: cross validation selects degree = 2 ;  sequential regression 
selectsdegree = 2. 
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Replication 2 :  cross validation selects degree = 1 ;  sequential  regression 
selects degree = 1. 

4 

V V 
2 I I I I I I 1  2 1 1 1 1 I I I  

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0 

Degree = 0 Degree = 1 

Degree = 2 Spline, optimal K = 0.95 

Replication 3: cross validation selects degree = 2 ;  sequential regression 
selects degree = 2. 

Degree = 2 Spline, optimal K = 0.45 

Replication 4: cross validation selects degree = 2 ;  sequential  regression 
selects degree = 1. 

Figure 2 Model B waiting time with run length = 1125: replications 1-4. 

pronounced, and the confidence interval width variances 
for. the adaptive procedures decrease below those of the 
quadratic. 

The  smoothing  splines  generally exhibit good  fixed 
sample coverages throughout the entire range of run 
lengths.  The  small  sample  confidence interval width 
variances are, however, much  larger than those of any of 
the other procedures, and their large  sample variances are 

870 approximately equal to those of the quadratic. 

To estimate the large  sample potential benefit of these 
methods we tested them against a set of independent 
observations with a flat spectrum. Specifically we ran 200 
replications of  5000 independent and  identically distribut- 
ed exponential random variables with  mean 1 .  These 
observations were batched as described in Section 2, and 
the methods of Section 3 were applied. The variances of 
the confidence interval widths for d = 0, 1, and 2 were 
1.38 x lo-', 5.84 X and 14.8 X respectively, 
while for sequential regression, regression  with cross 
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selects degree = 1. 

Figure 3 Model B waiting time  with run length = 1125: replications 5-8. 

validation, and the smoothing  splines they were 7.32 X 

lo-’, 7.01 x and 18.2 x respectively. Thus 
even with this “tailor-made data” (see [17]) neither the d 
= 0 nor the d = 1 variances were achieved asymptotically 
by the adaptive procedures, and the splines  did  not  even 
beat the variance of the d = 2 procedure. 

In this experiment with independent samples the cross 
validation  selected d = 0, 1 ,  and 2 80%, 16%, and 4% of 
the  time, respectively. The sequential regression selected 
d = 0,1, and 2 88%, 8%, and 4% of the time, respectively. 

The variances for the adaptive regression procedures are 
greater than i f d  = 0, 1,  and 2 were independently selected 
with the above corresponding probabilities. This variance 
increase is explained by the fact that the large error sum 
of squares resulting  in the selection of d = 1 or 2 tends to 
yield extreme values  in the intercept estimates, g,(O) and 
k,(O). 

Sequential behavior 
In this subsection we examine the behavior of the confi- 
dence interval methods when operating within the run 
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Replication 4: cross validation selects degree = 1; sequential regression 
selects degree = 0. 

Figure 4 Model B waiting  time with run length = 13500: replications 1-4. 

length control procedure. This behavior is  summarized in 
Tables 5-8. Notice that the fixed degree d = 2 method has 
proper coverages for all accuracy requirements E. How- 
ever, for large E the coverages are quite low ford = 0 and 
d = 1. This is a consequence of the small  sample bias in 
$,(O) and the resulting poor small  sample coverage using 
d = 0 or 1. For small E the coverages corresponding to d 
= 1 are generally adequate since the accuracy require- 
ment forces the simulation to run long  enough so that d = 

1 produces essentially unbiased estimates of p,(O). The 
underestimation of p,(O) with d = 0 and 1 leads to shorter 

872 run  lengths  than  with d = 2. 

PHILIP HEIDELBERGER AND PETER n. WELCH 

The adaptive methods generally do not produce accept- 
able  coverages  when operating within the run  length 
control procedure. In the case of the polynomial  methods 
this is related to the poor small-sample coverages of the d 
= 0 and d = 1 polynomials.  When d = 0 or 1 is 
prematurely selected by the adaptive procedure, p,(O)/N, 
is underestimated, resulting  in a small relative half-width 
and  an increase in the probability of passing the relative 
half-width criterion with a confidence interval which  fails 
to cover the true value. In the case of the smoothing 
splines it is unexpected since their fixed  sample cover- 
ages are good. We conjecture that it is related to the large 
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small-sample variance which tends again to  generate 
underestimates of p,(O)/N, and confidence  intervals 
which pass  the relative half-width criterion and fail to 
cover the  true value. 

For values of E in  which the maximum  run length is not 
a constraint (all E’S in Tables 5 and 7 and  large E ’ S  in 
Tables 6 and 8), the  run lengths for  these adaptive 
procedures are less  than those with d = 2. This is 
primarily due  to  the somewhat shorter confidence  inter- 
vals produced by the  adaptive  procedure. 
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Figure 5 Model B waiting time with run length = 13500: replications 5-8. 

Replication 8 :  cross  validation  selects  degree = 1 ;  sequential  regression 
selects  degree = 1. 

Modijied adaptive  procedures 
We tried making a number of modifications to the  adap- 
tive polynomial procedures in an  attempt  to  improve  their 
small-sample and sequential  behavior. They were  de- 
signed to  decrease  and  delay  the possibility of selecting d 
= 0 and d = 1. These modifications generally operated 
only within the  context of a  run length control  procedure 
with a sequence of checkpoints. Among the modifications 
we tried  were 

1. Excluding d = 0 from consideration, 873 
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Figure 6 Logarithm of Model B waiting  time spectrum with 
batch sizes of 8 and 128. 

2. Allowing the polynomial to move  down  by at most  one 
degree per checkpoint, 

3. Requiring that a test be passed on two successive 
checkpoints before lowering the degree of the polyno- 
mial,  and 

4. Introducing two significance levels into the sequential 
regression procedure, one for moving  down a degree 
and one for moving  up a degree. 

These modifications  did result in  marginal improvements 
in  both  small-sample and sequential coverages, but they 
seemed ad hoc and their performance overly dependent 
upon our particular experimental data. Furthermore, 
these modifications tended to increase the large-sample 
variances over those of the straightforward procedures 
described in Section 3, thus reducing the potential bene- 
fit. The only  way we found to achieve the large-sample a74 
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variances corresponding to d = 0 was to make the 
decisions  on  moving  down a degree irrevocable (i .e. ,  
degrees d and  higher were excluded from consideration at 
all checkpoints after the polynomial  first dropped from 
degr e d to d - 1). However, this resulted in lower small- 
sam le coverages and seemed like  an  inflexible  and 
pote f tially dangerous approach. 

try weighting functions with the splines 

approach we  did  not investigate was to adaptively 

e manner in  which 

mical use of storage. The reason for this insensitiv- 
hat, regardless of the batching protocol, the method 

h the interval (0, E ~ )  in the unbatched case 

chidg. For additional discussion see [21. 

illustrate this insensitivity we  now describe the 
cation of the methods to unbatched data for the 

10 gives the results of the sequential experiments. 

on batched data (Tables 1 and 5 )  reveals no 
ant differences. This was our general experience 

5. ummary 
In a earlier paper [2], we described a spectral method for 
gen rating  confidence intervals from  simulation output 
seq i ences and evaluated that method  within the context 
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Table 9 Fixed sample size simulation results for response time process in Model A, unbatchel d case, p = 41.2. 

Run 
length 

500 

750 

1125 

1687 

2530 

3795 

5692 

8538 

12  807 

13 500  

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

Coverage 
Width 

Var (width) 

d = O  

0.64 
7.62 
1.40 

0.60 
6.70 
0.73 

0.64 
6.04 
0.36 

0.66 
5.55 
0.26 

0.72 
5.18 
0.21 

0.84 
4.74 
0.19 

0.82 
4.15 
0.15 

0.84 
3.51 
0.08 

0.90 
2.85 
0.04 

0.92 
2.76 
0.03 

d =  1 d = 2  Sequential 
regression 

0.76 
10.68 
3.67 

0.82 
9.93 
3.48 

0.80 
9.40 
1.59 

0.88 
8.82 
1.77 

0.86 
7.30 
2.04 

0.92 
6.11 
0.89 

0.90 
4.93 
0.45 

0.88 
3.87 
0.30 

0.94 
3.06 
0.23 

0.92 
2.94 
0.20 

0.88 
15.13 
16.30 
0.94 
13.71 
12.64 

0.96 
12.45 
8.19 

0.92 
10.16 
6.14 

0.86 
7.68 
4.25 

0.94 
6.56 
2.08 

0.88 
5.33 
1.22 

0.88 
4.21 
1.04 

0.94 
3.25 
0.51 

0.92 
3.23 
0.46 

0.80 
13.49 
22.77 

0.86 
12.37 
15.97 

0.90 
11.20 
10.48 

0.86 
9.11 
4.17 

0.84 
7.11 
4.37 

0.90 
5.81 
2.10 

0.86 
4.64 
0.89 

0.86 
3.80 
0.72 

0.92 
2.88 
0.11 

0.94 
2.87 
0.18 

Regression 
with cross 
validation 

0.82 
13.77 
23.57 

0.86 
12.81 
16.98 

0.92 
11.55 
10.57 

0.90 
9.43 
4.78 

0.86 
7.19 
4.27 

0.90 
6.03 
2.19 

0.86 
4.88 
1 .os 
0.88 
3.82 
0.70 

0.92 
2.99 
0.13 

0.94 
2.81 
0.17 

Splines 
with  cross 
validation 

0.84 
14.87 
28.71 

0.86 
12.64 
13.77 

0.90 
10.86 
12.63 

0.86 
9.04 
5.15 

0.84 
7.27 
4.93 

0.88 
6.15 
2.99 

0.88 
5.11 
0.95 

0.86 
3.93 
1.25 
0.92 
2.96 
0.66 

0.88 
2.82 
0.52 

Table 10 Sequential simulation results for response time process in  Model A, unbatched case, p = 41.2. 

Relative 
hay- 
width 

d = O  d = l  d = 2  Sequential 
regression 

Coverage 
0.20 Run  length 

Half-width 

Coverage 
0.15 Run length 

Half-width 

Coverage 
0.10 Run length 

Half-width 

Coverage 

Half-width 
0.05 Run length 

0.64 
500 
0.09 

0.64 
500 
0.09 

0.58 
553 
0.09 

0.80 
701 1 
0.05 

0.76 
500 
0.13 

0.76 
540 
0.12 

0.88 
2122 
0.09 

0.86 
9335 
0.04 

0.88 
649 
0.16 

0.88 
1124 
0.13 

0.82 
269 1 
0.08 

0.88 
10  033 
0.04 

0.78 
624 
0.14 

0.74 
78 1 
0.12 

0.80 
2002 
0.08 

0.84 
8156 
0.04 

Regression 
with  cross 
validation 

0.78 
624 
0.14 

0.74 
870 
0.12 

0.82 
223 1 
0.08 

~. 

0.84 
8470 
0.04 

Splines 
with  cross 
validation 

0.80 
633 
0.14 

0.78 
896 
0.12 

0.80 
2408 
0.08 

0.80 
8866 
0.04 
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of a run  length control  procedure. This  method  estimated 
the  variance of the sample  mean  by  estimating the  spec- 
tral  density at zero  frequency, p,(O), of a sequence of 
batch  means. This was  accomplished by fitting a quadrat- 
ic to  the logarithm of the averaged  periodogram. 

This  method  worked well and  was  recommended  as a 
solid practical procedure.  However,  there were two rea- 
sons to believe it could  be  improved  upon by applying 
more flexible, adaptive  curve fitting techniques.  First, 
limiting the approximating  function to a quadratic ap- 
peared somewhat  restrictive  for small batch sizes. Sec- 
ond,  the  spectrump,(f)  becomes  smoother  and  is  asymp- 
totically flat as  the sample and  batch  sizes  increase.  Thus, 
for large samples, a linear fit would yield an unbiased 
estimate of p,(O) with a much smaller  variance than  the 
one obtained  by fitting a quadratic. This is analogous to 
an increase in the  degrees of freedom in a t-confidence 
interval. 

The  present  paper is an examination of this approach. 
Adaptive procedures of three basic types  were  evaluated: 
polynomial fits with the degree selected by  sequential 
regression, polynomial fits with the degree  selected by 
cross validation, and smoothing  splines  with the  amount 
of smoothing determined by cross validation. In no case 
were we able to realize  enough benefit to be able  to 
recommend an  adaptive  procedure.  In  each  case  the 
process of adaptation  created negative  effects which 
either  generated poorer  performance  than  the  quadratic 
method or reduced the potential payoff to a marginal 
point. The performance of the smoothing  splines  with 
cross validation was particularly  disappointing  since  this 
method has flexibility, simplicity, and elegance. 

Hence  we still recommend the specific fixed quadratic 
method of [21. More so than  ever  it  appears  as  an 
effective, simple, and practical technique  for simulation 
confidence interval  generation and  run length control. 
This  method has been incorporated  into  the internal IBM 
system simulation analysis tools  FIVE  and  SNAP/SHOT 
and is planned for installation in the internal  IBM simula- 
tion tool RESQ.  These simulators are described in [18], 
[19], and [20] respectively. 

Acknowledgment 
We would like to thank J. Boericke, R. Jensen, C. Sauer, 
and W. Skwish for  their  encouragement of this research 
and for  their  cooperation in  seeing it  to a practical 
fruition. 

References 
1 .  P. Billingsley, Convergence of Probability  Measures, John 

Wiley & Sons, Inc., New York, 1968. 
2. P. Heidelberger and P. D. Welch, “A Spectral Method for 

Confidence Interval Generation and Run Length Control in 
Simulations,” Commun.  ACM 24, 233-245 (1981). 

3. D. R. Brillinger, Time  Series,  Data  Analysis  and  Theory, 
Holt, Rinehart and Winston, Inc., New York, 1975. 

4. M. S. Bartlett and D. G. Kendall, “The Statistical Analysis 
of Variance Hetereogeniety and the Logarithmic Transfor- 
mation,” J .  Roy.  Statist.  SOC.  (Suppl.) 8, 128-138 (1946). 

5. N. R. Draper and H. Smith, Applied  Regression  Analysis, 
Second  Edition, John Wiley & Sons, Inc., New York, 1981. 

6. T. W. Anderson, The Statistical  Analysis of Time Series, 
John Wiley & Sons, Inc., New York, 1971. 

7. D. M. Allen, “The Relationship Between Variable Selection 
and Data Augmentation and a Method of Prediction,” Tech- 
nometrics 16, 125-127 (1974). 

8. M. Stone, “Cross-validatory Choice and Assessment of 
Statistical Predictions,” J .  Roy.  Statist.  SOC.  Ser. B .  36, 

9. C. H. Reinsch, “Smoothing by Spline Functions,” Numer. 
Math. 10, 177-183 (1967). 

10. G. Wahba and S. Wold, “A Completely Automatic French 
Curve: Fitting Spline Functions by Cross Validation,” 
Comm.  Statist. 4, 1-17 (1975). 

11.  P. Craven and G. Wahba, “Smoothing Noisy Data with 
Spline Functions, Estimating the Correct Degree of Smooth- 
ing  by the Method of Generalized Cross Validation,” 
Numer.  Math. 31, 377-403 (1979). 

12. G. Wahba, “Smoothing Noisy Data with Spline Functions,” 
Numer.  Math. 24, 383-393 (1975). 

13. G. Wahba, “A Survey of Some Smoothing Problems and the 
Method of Generalized Cross Validation for Solving Them,” 
Applications of Statistics, P.  R. Krishnaiah, Ed., North- 
Holland  Publishing Company, New York, 1977, pp. 507-523. 

14. G. Wahba and S. Wold, “Periodic Splines for Spectral 
Density Estimation: The Use of Cross Validation for Deter- 
mining the Degree of Smoothing,” Comm.  Statist. 4, 125- 
141 (1975). 

15. C. de Boor, A Practical  Guide to Splines,  Applied  Mathe- 
matical  Sciences, Vol. 27, Springer-Verlag, New York, 
1978. 

16. L. W. Schruben, “A Coverage Function for Interval Estima- 
tors of Simulation Response,” Manage.  Sci. 26, 18-27 
(1980). 

17. T. J. Schriber and R.  W. Andrews, “A Conceptual Frame- 
work for Research in the Analysis of Simulation Output,” 
Commun. ACM. 24, 218-232 (1981). 

18. H. C. Nguyen, A. Ockene, R. Revell, and W. J. Skwish, 
“The Role of Detailed Simulation in Capacity Planning,” 

19. H. M. Stewart, “Performance Analysis of Complex Commu- 
nications Systems,” ZBM Syst. J .  18, 356-373 (1979). 

20. Charles H. Sauer, Edward A. MacNair, and Silvio Salza, “A 
Language for Extended Queuing Network Models,” ZBMJ. 
Res.  Develop. 24, 747-755 (1980). 

111-147 (1974). 

ZBM Syst. J .  19, 81-101 (1980). 

Received April 28, 1981; revised June 16, 1981 

The authors are located  at the IBM Thomas J .  Watson 
Research  Center, Yorktown Heights,  New York 10598. 

876 

PHILIP HEIDELBERGER AND PETER D. WELCH IBM I .  RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981 


