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Algebraic  Complexity  Theory 

Algebraic  complexity  theory, the study of the minimum number  of  operations suficient  to  perform algebraic 
computations, is surveyed with emphasis on the general  theory of bilinear forms and two of its  applications: polynomial 
multiplication  and  matrix  multiplication. Though by no means exhausting algebraic complexity theory,  these topics 
illustrate well its  development and its  methods, and provide  examples of its  most striking successes. 

Introduction 
Algebraic complexity  theory is the study of the minimum 
number of operations sufficient to perform  various com- 
putations, in cases where these computations are of an 
algebraic nature. To begin with a concrete example, 
suppose  that we are given the real and imaginary parts of 
two complex numbers, a + bi and c + di, and  that we 
wish to compute the  real and imaginary parts of their 
product, e + f i .  These may be  computed using the 
formulae e = ac - bd and f = ad + bc, which require  four 
multiplications, one addition, and  one subtraction. An 
alternate  method, however, is to compute x = (a + b) 
X ( c  - d ) ,  y = ad, and z = bc, then to  compute e = x + y 
- z and f = y + z. This method requires three additions 
and  two subtractions,  but only three multiplications. 
Thus, if addition and subtraction take much  less time than 
multiplication (as  indeed  they do  on many computing 
machines), the  alternate method may be  faster than the 
original one. 

Encouraged by this  success,  one may ask if there is  an 
algorithm for complex multiplication requiring only two 
multiplications, together with any  number of additions 
and  subtractions. In 197 1 ,  Winograd [ 11 showed  that there 
is not.  This  is  a  result on a different scale of significance 
from that of the  preceding  paragraph;  it calls not for  the 
discovery of a single algorithm for performing the compu- 
tation  but for an  analysis of all such  algorithms.  Such an 
analysis  must begin by formulating definitions of what a 
computation is, what an algorithm is,  and what it means 
for  an algorithm to perform  a  computation. 

The following formulation will be used in this  paper. 
We are given certain input data {BJls,sJ, which are 
regarded as indeterminates. (For complex multiplication, 
these  are {a, b ,   c ,   d } . )  We wish to  compute  certainoutput 
data {Ck}lsksK . (For complex multiplication, these are {e ,  
f } . )  If these  are  to  be computed  from the  input  data by 
means of real constants, additions, subtractions, and 
multiplications, these will be polynomials in the input 
data with coefficients in R, the field of real  numbers; thus, 
they are regarded as elements of R[{B,}ls,sJ], the ring of 
all such polynomials. (For complex multiplication, these 
are {ac--  bd,  ad + bc}.) An algorithm for computing 
{Ck}lsksK from {Bj}ls,sJ is a sequence of elements of 
R[{B,}ls,sJ] that contains each  element of {Ck}ldksK and in 
which each  element  is an element of {BJldIdJ , an element 
of R, or the  sum, difference, or product of two elements 
preceding  it in the  sequence. (The sequences 

a,   b ,   c ,   d ,   ac ,   bd ,   ac  - bd,  ad,  bc,  ad + bc 

and 

a , b , c , d , a + b , c - d , a c - a d + b c - b d ,  

ad,  bc,  ac + bc - bd,  ac - bd,  ad + bc 

represent  the  two algorithms for complex multiplication 
just described.) 

In  terms of this formulation, Winograd’s argument to 
the effect that complex multiplication cannot be per- 
formed with only two multiplications can  be sketched 
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briefly as follows. First, all  possible choices for the 
outcome of the first  multiplication,  say x, are considered. 
Clearly, x must be the product of two  polynomials of the 
first  degree in a ,   b ,  c ,  and d. Next, a criterion is  obtained 
for the possibility of computing  two  polynomials, e and f ,  
from a ,   b ,  c, d, and x with  only  one  more  multiplication. 
The criterion  is that the determinant of a certain 2 x 2 
matrix  must vanish. Finally, it is  shown that for no choice 
of x is the criterion satisfied. The proof, though too 
lengthy to recount in full here, uses only  elementary 
algebraic  reasoning. It actually establishes more  than 
what  is stated above, for it shows that three multiplica- 
tions are necessary, even if scalar multiplications  (multi- 
plications in  which one of the factors is an element of R) 
are not counted. Winograd’s result can thus be expressed 
by  saying that three nonscalar multiplications are re- 
quired to perform  complex  multiplication. 

The problem of complex  multiplication just discussed 
illustrates the principal  theme of algebraic  complexity 
theory. The  goal of this paper is to show  how  this  theme 
has been  developed  with  regard to other more  challenging 
computational problems. The problems to be discussed 
involve  the  manipulation of polynomials  and  matrices; 
they have been chosen both for their intrinsic mathemati- 
cal interest and because they  advantageously  exhibit 
many  of the basic techniques of algebraic  complexity 
theory. 

Bilinear forms 
This  section deals not with a specific  computational 
problem  but rather with the general  framework  within 
which the problems of the  next  two sections will be 
discussed. We suppose that we are given two sets of input 
data, {Af}lsfsl and {B,}ls5sJ , and that the output data 
{Ck}lska that we  wish to compute constitute a set of 
bilinear forms in these input data, i .e. ,  that the output 
data can be expressed as 

Ck = c Ti>5,kA*B, ’ (1) 
l s i s l ,  
I s j s J  

where the coefficients { T i , ~ , k } l s i ~ , l ~ ~ s J , l ~ k s ~  belong to the 
underlying field and characterize the problem to be 
solved  within  this class. This  class of problems  embraces 
many important ones:  Complex  multiplication,  discussed 
in the introduction, falls  within it ( I ,  J ,  and K are 2, the As 
are a and b, the Bs are c and d, the Cs are c andf, and the 
Ts are all - 1, 0, or + l), as does quaternion multiplication 
(see de Groote [2] and a forthcoming paper of Feig for an 
analysis of quaternion multiplication).  More  important 
problems in this class are polynomial  multiplication  and 
matrix  multiplication, which  will be discussed in the 
following sections. 826 
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The Z X J X K array of coefficients that characterizes a 
set of bilinear forms is  often  called a tensor. If Tis such a 
tensor, we shall denote by p(T)  the minimum number of 
nonscalar  multiplications  sufficient to compute the bilin- 
ear forms (1). Here, additions  and subtractions, as well as 
multiplications  in  which one of the factors is a constant, 
are not counted. 

It will  be noted that no  mention  was  made  of  division  in 
the preceding paragraph. Ungar (see Winograd [3]) ob- 
served that no loss is entailed by this  omission. If a set of 
bilinear  forms  can be computed by an algorithm using L 
nonscalar  multiplications  and  divisions (nonscalar divi- 
sions are those in  which the divisor  is  not a constant), 
then it can also be computed by an algorithm  using L 
nonscalar multiplications  but no divisions (the number of 
additions, subtractions, and scalar multiplications  may, 
of course, increase). Thus, throughout the rest of this 
section  divisions will be  ignored. (Strassen [4] obtained a 
noteworthy generalization of Ungar’s result to multilinear 
forms: If a set of d-linear  forms  can be computed by  an 
algorithm  using L nonscalar  multiplications  and  divisions, 
then it can  also be computed by  an algorithm  using at 
most (d - l)L nonscalar multiplications  but  no  divisions.) 

Let p*(T)  denote the minimum number of nonscalar 
multiplications  sufficient to compute the bilinear  forms (1) 
when the indeterminates {Ai}lsisl and {BJlSjsJ are not 
assumed to commute, i . e . ,  when identities such as A$?, = 
B,Ai cannot be  relied  upon to establish the correctness of 
algorithms. That p*(T)  may  be larger than p ( T )  can  be 
seen by comparing the results of Hopcroft and Kerr [5] ,  
who  showed that p * ( T )  = r7N/21 for the problem T of 
multiplying a 2 X 2 matrix by a 2 X N matrix, with the 
results of Winograd [6], who  showed that p ( T )  5 3N + 2 
for this  problem.  Winograd [7] has shown, however, that 
p * ( T )  I 2 p ( T )  for any problem of computing a set of 
bilinear forms, and Ja’ Ja’ [8] has obtained  even sharper 
bounds on the power of commutativity in computing a set 
of bilinear forms. (Hyafil [9] has shown that for comput- 
ing  multilinear  forms-specifically, the determinant of a 
matrix-the  power of commutativity  is greater; it  can 
reduce the complexity of a problem  from an exponential 
to a polynomial  in the number of input data.) 

Once  divisions  and  commutativity  have  been excluded, 
a great deal  can be said  about the structure of optimal 
algorithms for computing sets of bilinear forms. They are 
what may  be called bilinear algorithms: algorithms in 
which  every nonscalar multiplication  is the product of a 
linear form in {Ai}lsfsl with a linear  form  in {B,}lsjsJ , 
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and in which the {Ck}l ,k~K are computed as linear  forms in 

{Ml)lr515iL ’ 

(here, {ai.l}lsis,,lstsL 9 @j.l}1sjsJ,lslsL 9 and {Yk,l}lsksK,lslsL 
are coefficients from  the  underlying field). The minimum 
number L of nonscalar multiplications in any  such al- 
gorithm is  equal to  the minimum number L for which the 
system of ZJK equations 

(2) Ti,,, = c ‘Yi,lP,,lYk,l 
ISlSL 

has a solution. This number is called the rank p ( T )  of the 
tensor T, by analogy with the rank of a matrix 
{SiJ}lrisl,l~sJ, which may be defined as  the minimum 
number L for which the system of ZJ equations 

SiJ = c %PAl ’ 
IS lSL  

has a solution. That this  is so was observed  independently 
by Gastinel [lo], Fiduccia [ll], Strassen [12], and doubt- 
less others.  The minimum number L is called the rank 
p( T )  of the  tensor T and p *( T )  = p( T )  for  sets of bilinear 
forms in noncommuting  indeterminates. 

If there is just  one bilinear form to  be computed ( K  = 
1), the tensor T reduces  to a  matrix, the rank of which is 
easily determined by standard  methods of linear  algebra. 
For two bilinear forms ( K  = 2), the problem is more 
difficult, but a complete solution has been  obtained by 
Grigorev [13] and  Ja’  Ja’ [14, 151. But in general ( K  ?.3), 
no  satisfactory  method  is known for determining the rank 
of a given tensor. (If the entries of the  tensor  are integers 
and  the underlying field is real or complex,  the  rank can 
be computed by a general decision procedure  for  the first- 
order theory of real-closed fields, but such a method is 
infeasible even for  quite small tensors.) 

One consequence of the identity p * ( T )  = p( T )  follows 
immediately from the symmetry among ai,l, P,,l, and Y, ,~ 
in (2): The rank of a tensor, and thus  the minimum 
number of nonscalar multiplications sufficient to compute 
the associated set of bilinear forms, is the  same  for all six 
transpositions of a tensor obtained by permuting  its three 
coordinate axes. This principle is usually referred to  as 
“duality.” 

We close this section by mentioning an  outstanding 
open problem. Suppose  that in addition to computing the 
bilinear forms {Ck}lsksK given by a tensor T from the 
indeterminates {Ai}lsis, and {Bj}lsjsJ we wish to compute 
another  set of bilinear forms {Ck}lsksK, given by a tensor 
T ’  from the indeterminates {Ai‘}lsis,, and {Bj’}ls,sJ, , 

which are  assumed  to  be disjoint from {Ai}lsis, and 
{BJ1,j,, . If T @ T ’  (the direct sum of T and T ’ )  denotes 
the tensor of {Ck}lsksX U {C;}lskd as bilinear forms in 

p * ( ~  @ T ’ )  5 p * ( ~ )  + p * ( ~ ‘ ) ,  since  one may com- 
bine optimal algorithms for T and  T’into an algorithm for 
T @ T ’ .  The direct sum conjecture, due  to  Strassen [4], is 
that p*(T @ T ’ )  = p * ( T )  + p * ( T ‘ ) ,  i .e . ,  that dis- 
joint problems may as well be solved separately. 

{Ai}lsisl u {Ai’}lrlrl, and {Bj}ls,sJ u { B , ’ } ~ ~  jsJ,, then 

Polynomial  multiplication 
The problem of algebraic complexity theory  that  has, on 
the  one hand, enjoyed  the most  dramatic  reduction in the 
number of operations  required and, on the  other, be- 
stowed this reduction  on the most  numerous and varied 
applications is that of polynomial multiplication or convo- 
lution. Suppose  that we are given two  polynomials A(x) 
(of degree at most Z )  and B(x) (of degree at most J )  by 
means of their coefficients {Ai}osis, and {Bj}os ,<., (Ai is the 
coefficient of xi, and Bj the coefficient of xj)  and  that  we 
wish to compute the coefficients {Ck}osksK of the  product 
C(x) (of degree at most K = Z + J ) .  These  output  data  are 
given by the formulae 

i+ j = k  

which reveal them  to  be a set of bilinear forms in the input 
data. 

An obvious algorithm based on  the formulae (3) re- 
quires ( I  + 1)(J + 1) multiplications and ZJ additions.  A 
large class of alternate algorithms derives  from  the fol- 
lowing strategy. First, choose K + 1 distinct points 

and {B(~J}osksK from {BJosjgJ [evaluate A(x) and B(x) at 
the points {6,1,,,,,1. Third,  compute {C(tJ}o,kG by 
means of the  formulae 

{tk}OsksK . Second,  compute {A(tJI,,,,, from {AJ,,*,l 7 

C(6J = A(%JB(tJ . (4) 

Fourth,  compute {Ck}Osk,K from {C(.$,)},,,,, [interpolate 
C(x) through the  points {6,},,,,,]. 

The second step of this strategy can  be  expressed as the 
multiplication of a matrix by two  vectors: 

and 827 
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(here, A,+, = . . . = A,  = 0 and B,, = . . . = B, = 0 have 
been introduced to promote symmetry). The fourth step 
can also be expressed as the multiplication of a matrix by 

Although  Winograd  [7]  has  shown that  the multiplica- 
tion of an arbitrary ( K  + 1) X ( K  + 1) matrix by a ( K  + 1)- 
dimensional vector requires ( K  + 1)' multiplications, we 
are free to choose the points {(k}Osh5K so as  to reduce this 
number if possible. A particularly favorable choice is to 
let {,$k}o,k,, run through the ( K  + 1)st roots of unity. If 6, 
= tk,  where 5 is a primitive ( K  + 1)st root of unity, then ,$ 
= 5 ", and the linear transformation in ( 5 )  is called the 
Fourier transform. Most marvelously, qk,l = 5-k' and the 
linear transformation in  (6) is called the inverse Fourier 
transform. (We are assuming here that the underlying 
field contains the ( K  + 1)st roots of unity. For simplicity 
we shall take it to be  complex field C. Operations on 
complex  numbers can be  implemented by means of 
operations on their real and  imaginary parts, so the 
results will apply  with  minor adjustments to the real field 
R as well.) 

We turn now to  the problem of computing the Fourier 
transform, where for notational convenience we take the 
number of points to be N = K + 1. There is of course an 
obvious  algorithm  requiring O(N') operations. Good  [16] 
showed that if N = PQ,  where P and Q are relatively 
prime, then a Fourier transform on N points can be 
performed  by  means of P Fourier transforms on Q points 
and Q Fourier transforms on P points. Choosing N to be a 
product of distinct small  primes  yields an algorithm 
requiring  only  O(N[log N]'/log  log N) operations, though 828 
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no one appears to have observed this. It was  not  until 
Cooley  and Tukey [17] showed that if N = 2n, then a 
Fourier transform can be  performed  with  only  O(N  log N )  
operations that the ease of performing Fourier transforms 
was  widely recognized. 

The problem of computing the inverse Fourier trans- 
form is equivalent to that of computing the Fourier 
transform itself; the two transforms differ  only  in the 
replacement of 5 by 5". Thus the algorithm of Cooley  and 
Tukey gives  an  algorithm for multiplying two polynomials 
of degree N requiring  only  O(N  log N )  operations. It is 
worth  noting that only the K + 1 multiplications  in the 
third step of the strategy are nonscalar multiplications; 
only additions and scalar multiplications are required to 
compute the Fourier transforms in the second step and 
the inverse Fourier transform in the fourth. Indeed, p(T)  
= K + 1 for the tensor Tassociated with the set of bilinear 
forms (3). 

Further improved algorithms for the Fourier transform 
have been  given  by  Winograd [HI. Winograd's  algo- 
rithms, which include the best currently available, com- 
bine the ideas of Good [ 161 and Rader [ 191 with  his  own 
previous work  [20] on the problem of multiplying  two 
polynomials  modulo a third. 

The most penetrating study of the complexity of per- 
forming the Fourier transform, 

go f 0  . . .  to 
(O 5' . . . gN-' 

{ O  gN-1 . . . 5(N-1) 

FO 

Fl 

F N -  

f 

arises by regarding {Gfl}OBnrN-l as a set of bilinear forms in 
the indeterminates {~"}oBfl,l and {Fn}Om~N-l ,  where the 
indeterminates { ~ f l } O L n B N - l  are no longer transcendental 
but satisfy certain algebraic relations. (We  must now 
assume that the underlying field does not contain a 
primitive Nth root of unity. For simplicity, we shall take 
it to be the rational field Q in this paragraph.) Winograd 
[21],  by extending the theory of bilinear forms to take 
account of these algebraic relations, has determined the 
number of "nonscalar multiplications"  in this sense re- 
quired to compute the Fourier transform when N is 
prime. Auslander and  Winograd have recently extended 
this to arbitrary N. 
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The existence of fast algorithms for polynomial  multi- 
plication has implications for many other computational 
problems. It can, of course, be  immediately adapted to 
give  multiplication of (initial  segments of) formal power 
series in O(N log N )  operations. Sieveking [22] showed 
how to combine it with  Newton’s  method of iteration to 
give reciprocation of power series in O(N log N )  opera- 
tions, and this in turn can be adapted to give  polynomial 
division  (with remainder) in O(N log N )  operations. 

Brent [23] extended Sieveking’s  method to the compu- 
tation of square roots, exponentials, and logarithms of 
power series in O(N log N )  operations and showed  how 
this can  be adapted to give iterated multiplication of 
power series in O(N log N )  operations. Kung  and Traub 
[24] showed that the power series expansions of all 
algebraic functions can be  computed in O(N log N )  
operations. Brent and Kung [25] gave  algorithms for 
composition and reversion of power series in O([N log 
NJ3’2) operations, and Brent and Traub [26] showed how 
to combine  this  with Schroder’s method of iteration to 
give iterated compositions of power series in O([N log 
NI3”) operations. 

Another class of problems that benefit from fast poly- 
nomial  multiplication concern evaluation of polynomials 
at and interpolation of polynomials  through  an arbitrary 
set of N points (rather than Nth roots of unity, as  for the 
Fourier transform). Moenck  and  Borodin [27] reduced 
these problems to polynomial  multiplication  and  division; 
when  Sieveking’s method of polynomial  division is used, 
the resulting algorithms require O(N@og N]’)  operations. 
These problems are among the few for which  nonlinear 
lower bounds have been established. Strassen [28] (see 
also Schonhage [ 2 9 ] )  has shown that evaluation of the 
polynomial P(x) = x” at N points and interpolation of a 
polynomial of degree N through N prescribed zeros each 
require at least N log, N + O(N) nonscalar multiplications 
and  divisions. [The algorithms  resulting from the reduc- 
tion of Moenck and Borodin actually require only O(N log 
N )  nonscalar multiplications  and divisions; the larger 
bounds of O(N[log N]? include scalar multiplications 
and additions.] Gustavson and  Yun [30] have extended 
the work of Moenck  and  Borodin to allow  some of the N 
points to coincide, in  which case  the values of the 
polynomial  and an appropriate number of its derivatives 
are  to be  computed  (in the case of evaluation) or are 
prescribed (in the case of interpolation). The resulting 
algorithms  again require O(N@og N]’) operations. 

Still another class of problems that benefit  from fast- 
polynomial  multiplication center around Euclid’s algo- 
rithm for computing greatest common divisors. Moenck 
[3  13 has adapted this to exploit fast polynomial  multiplica- 

tion  and division, obtaining an algorithm for the polyno- 
mial greatest common divisor (or least common  multiple) 
requiring  O(N[log N]’) operations. Moenck’s  algorithm 
has been extended by Brent, Gustavson, and Yun [32] to 
yield as by-products information  useful for performing 
interpolation of rational functions and their derivatives 
through  an arbitrary set of points. This  information is also 
useful for the solution of systems of linear equations in 
which the coefficients  form Hankel or Toeplitz matrices. 
All  of these computations can be done with O(Npog N]2)  
operations. 

Matrix multiplication 
We  now come to what many regard as the premier 
problem of algebraic  complexity theory: matrix  multipli- 
cation. Suppose that we are given  an Z X J matrix 

we want to compute their product, an Z X K matrix 
{Ci,k}lsisI,lsks whose entries are given  by the formulae 

{Ai, JlsisI,lasJ and a J x K matrix {Bj,k}lsjsJ,lsksK and that 

Ci ,k  = c Ai, IB1,k * (7)  
1 sjs J 

Let T(z ,  J ,  K )  denote the tensor associated with  this set 
of bilinear forms. 

We shall  be particularly interested in the case Z = J = K 
= N of N X N square matrices. An obvious algorithm 
based on the formulae (7) requires N“ multiplications  and 
N 2 ( N  - 1 )  additions. In 1968, Winograd [6]  gave  an 
alternate algorithm  requiring N3/2  + O(Nz)  multiplica- 
tions and 3N312 + O(Nz)  additions and subtractions. But 
the first reduction in the overall  number of operations was 
obtained in 1969 by Strassen [33] ,  who  showed that 
O ( N 7  operations suffice,  where CY = log, 7 = 2.807 * . -. 

Strassen’s reduction is based  on  two  key facts. The 
first, which  had been observed independently by Wino- 
grad [7] ,  is that if p * ( T ( M ,  M ,   M ) )  5 M e  for some 
particular M and some 2 < 0 5 3 ,  then O(N 3 operations 
suffice for all N .  The second is that p*(T(2 ,   2 ,  2)) 5 7 ,  
which was shown by  means of an  explicit  algorithm for 
multiplying 2 X 2 matrices. 

Hopcroft and Kerr [5] have shown that p * ( T ( 2 , 2 , 2 ) )  = 

7 [indeed, Winograd [ l ]  has shown that p ( T ( 2 , 2 , 2 ) )  = 71, 
so Strassen’s exponent cannot be reduced through further 
consideration of 2 X 2 matrices. Strassen’s algorithm 
achieving p*(T(2 ,   2 ,   2 ) )  = 7 used 18 additions and 
subtractions; Winograd (see Probert [34] )  reduced this to 
15, and Probert [34] showed that 15 is minimal. This 
reduction affects only the constant factor implicit in 
O ( N 7 ,  however, and not the exponent CY. 829 
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After the resources of the case M = 2 were exhaust- 
ed, it was natural to hope that Strassen's exponent 
might  be reduced by  showing that p *( T(3, 3, 3)) I 21, 
p*(T(4,4,4))148,or p*(T(5,5,5))191.Despitemany 

attempts along these lines (see for example Laderman 
[35] and Schachtel[36]), no progress was made in reduc- 
ing the exponent until Pan [37] showed by an ingenious 
algorithm that p * ( T ( M ,  M, M ) )  I M3/3 + 9M2/2 
- M/3,  which  yields p *(T(48,48,48)) I 47  216, and thus 
that @ N o )  operations suffice for /3 = log,,  47  216 = 
2.780 * * *. 

What is perhaps the most  striking contribution to  the 
problem of matrix  multiplication, however, stems from 
the following observation. For matrices S, the condition 
p(S) I r that S have rank at most r can  be expressed in 
terms of the vanishing of certain determinants. As a 
consequence, if P(S'~') I r holds for all matrices in a 
sequence S "', S "', . . converging to S, then (since 
determinants are continuous functions of the entries of 
matrices) p(S) I r holds as well. Contrastingly, the rank 
of a tensor T need not  be continuous in this way. It is 
possible to have p(T'"') I r for T"', T"', . . . converging 
to T, but at the same time to have p ( T )  2. r + 1. The 
significance of this for computational complexity is that it 
may require fewer operations to compute a set of bilinear 
forms with arbitrarily small error than to compute them 
exactly. 

An example of this phenomenon, due to Schonhage 
[38], is the following. Consider the problem of computing 
the bilinear forms 

C ,  = AIBl , 

C, = A,B, + A$, . 
If T denotes the associated tensor, it is not hard to  show 
that p * ( T )  = p( T )  = 3.  But if we compute 

M ,  = A,B, , 

Mz = (A,  + EA,)(B, + EBJ , 
then 

c, = M, 9 

C, = E -'(M2 - MJ - eAZB2 . 
Thus, with  only two nonscalar multiplications, C ,  and C,  
can be computed with an error that can be made as small 
as desired by choosing E small enough. Schonhage de- 
fined a new  rank po( T ) ,  called the border rank, of a tensor 
Tfor which the minimum  number of nonscalar multiplica- 
tions p:(T) sufficient to compute the associated set of 
bilinear forms in  noncommuting indeterminates with arbi- 
trarily small error satisfies the identity p.,*(T) = po(T).  In 
the example just given, p.,*(T) = po(T) = 2. 
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The case of performing approximate computations can 
often be  exploited  in  performing larger but exact compu- 
tations. This is done by  performing the approximate 
computations in the field of formal power series in the 
indeterminate E, using Fourier transforms to expedite the 
operations on power series as described in the preceding 
section. For matrix multiplication, Bini  [39], Romani [40], 
and Winograd (see Pan [41]) have shown that if p:(T(M, 
M, M)) I MB for some particular M and some 2 < 8 I 3, 
then @ N e  log N )  operations suffice for exact matrix 
multiplication. 

By the duality principle, @*(I ,  J ,  K )  = p*(J ,  K ,  I )  = 

p *(K ,  I ,  J ) .  Furthermore, T(ZJK, ZJK, ZJK) = T(Z, J ,  K )  
€9 T(J,  K ,  I )  €9 T ( K ,  I ,  J ) ,  where T €3 T' denotes what is 
called the tensor product of T and T ' .  In general, p *(T €9 
T ' )  I p*(T)p*(T' ) ,  and so p*(T(ZJK, ZJK, ZJK)) 5 
p*(T(Z, J ,  Thus, if p * ( T ( I ,  J ,  K ) )  I ( IJK)e /3  for 
some particular I ,  J ,  and K and some 2 < 8 5 3, then 
O(NB) operations suffice for matrix  multiplication. The 
duality principle and the tensor product inequality apply 
to p: as well as p *, and thus if p:(T(Z, J ,  K ) )  5 (ZJK)8'3 
for some particular I ,  J ,  and K and  some 2 < 8 5 3, then 
@ N e  log N )  operations suffice for exact matrix  multipli- 
cation. In 1979, Bini, Capovani, Romani, and Lotti [42] 
showed that  pC(T(3, 2,  2)) I 10,  which  yields 
that @NY log N )  operations suffice for y = 3 log,,  10 = 
2.779 * * e. 

Still further reductions in the exponent have been 
obtained by Pan and Schonhage (see Schonhage [38]). 
They showed that if p *(T(Zl, J, ,  K,)  CB 63 T(Zs, Js, K J )  
5 (Z,J,KJe/3 @ CB (ZsJ8KJe/3 for some particular I , ,  J , ,  
K , ,  * * * , Z,, Js,  K ,  and  some 2 < 8 I 3, then @Ne)  
operations suffice. A similar result holds  with p* re- 
placed by p.,* and @NB) replaced by @ N e  log N ) .  They 
have also shown that pC(T(1, 5,22) CB T(11,2,5) @ T(10, 
11,  1)) I 156, which  yields that O(N* log N )  operations 
suffice,  where 6 = 3 logllo 52 = 2.521 . . e .  Coppersmith 
and  Winograd have recently used this method and exten- 
sions of it to reduce the exponent still further, to 
2.495 * . .. 

The existence of fast algorithms for matrix multiplica- 
tion has implications for many other problems of linear 
algebra. As was observed by Strassen [33], if matrix 
multiplication can be  .performed  with @ N e )  operations, 
for some 2 < 8 5 3, so can matrix inversion; the converse 
result has been obtained by  Munro [43]. Other problems 
that can similarly  be reduced to matrix  multiplication are 
solution of systems of linear equations, triangular factor- 
ization and evaluation of determinants (see Bunch  and 
Hopcroft [44]), and orthogonalization (see Schonhage 
[451 ) . 
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Conclusion 
In the preceding section, we tacitly assumed that “fast- 
er” means “better,” but time is often not the only or even 
the most important resource to be reckoned in  assessing 
the complexity of computations. The other resource most 
frequently mentioned is space, the maximum  number of 
intermediate results that need to be kept at any  point  in 
the execution of an algorithm. Of particular interest are 
time-space tradeoffs: situations in  which  minimum  time 
and minimum space cannot be achieved by the same 
algorithm  and  in  which a spectrum of algorithms, each 
optimal according to its own objective, therefore exists. 
The first results along these lines were obtained by 
Grigorev [46]; for  others see Tompa [47] and Ja’ Ja’ [48]. 

Another resource often discussed is depth, which  can 
be described as parallel time (the time required when  any 
number of operations may be performed at once), in 
contrast to serial time (the time required when operations 
must  be  performed one after another, referred to simply 
as “time” above). Depth was  given a status equal to that 
of time  by Strassen [49, 501 in  his formulation of algebraic 
complexity. Some important upper bounds to depth are 
those for reciprocation of power series (implicit in 
Sieveking [22]), for inversion of matrices (due to Csanky 
[51]), and for arbitrary polynomials of limited degree that 
are computable  in  limited  time  (due to Hyafil [52]). It is 
an open  problem to obtain a lower bound to depth 
growing faster than the logarithm of the number of input 
data for any computation. 

Although nonlinear lower bounds in algebraic complex- 
ity theory are  scarce, there is one situation in which  they 
have been obtained with  relative ease: that in  which 
algorithms are assumed to satisfy  some strong restriction. 
The most  common such restriction is to monotone algo- 
rithms, which  may use positive but not  negative  real 
constants, additions but not subtractions, and multiplica- 
tions but not divisions. Kerr [53] showed that about N 3  
operations are necessary in a monotone  algorithm for 
multiplying N X N matrices, and Schnorr [54] has shown 
that about N 2  operations are necessary in a monotone 
algorithm for multiplying  polynomials of degree N .  Since, 
as we have seen in the two  preceding sections, faster 
nonmonotone algorithms for these problems exist, these 
results show something of the power of nonmonotonicity. 
Schnorr [54] and also Shamir  and Snir [55] have obtained 
lower bounds that grow exponentially  with the number of 
input data, though no significantly faster nonmonotone 
algorithms are known for the problems they treat. Valiant 
[56], however, has given  an  example  showing that non- 
monotonicity can reduce the complexity of a problem 
from an exponential to  a polynomial  in the number of 
input data. 
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