Algebraic Complexity Theory

Nicholas Pippenger

Algebraic complexity theory, the study of the minimum number of operations sufficient to perform algebraic
computations, is surveyed with emphasis on the general theory of bilinear forms and two of its applications: polynomial
multiplication and matrix multiplication. Though by no means exhausting algebraic complexity theory, these topics
illustrate well its development and its methods, and provide examples of its most striking successes.

Introduction

Algebraic complexity theory is the study of the minimum
number of operations sufficient to perform various com-
putations, in cases where these computations are of an
algebraic nature. To begin with a concrete example,
suppose that we are given the real and imaginary parts of
two complex numbers, a + bi and ¢ + di, and that we
wish to compute the real and imaginary parts of their
product, e + fi. These may be computed using the
formulae e = ac — bd and f = ad + bc, which require four
multiplications, one addition, and one subtraction. An
alternate method, however, is to compute x = (a + b)
X (¢ —d),y =ad, and z = bc,then to compute e = x + y
— zand f = y + z. This method requires three additions
and two subtractions, but only three multiplications.
Thus, if addition and subtraction take much less time than
multiplication (as indeed they do on many computing
machines), the alternate method may be faster than the
original one.

Encouraged by this success, one may ask if there is an
algorithm for complex multiplication requiring only two
multiplications, together with any number of additions
and subtractions. In 1971, Winograd [1] showed that there
is not. This is a result on a different scale of significance
from that of the preceding paragraph; it calls not for the
discovery of a single algorithm for performing the compu-
tation but for an analysis of all such algorithms. Such an
analysis must begin by formulating definitions of what a
computation is, what an algorithm is, and what it means
for an algorithm to perform a computation.

The following formulation will be used in this paper.
We are given certain input data {B},_,_,, which are
regarded as indeterminates. (For complex multiplication,
these are {a, b, ¢, d}.) We wish to compute certain output
data {C,},_, .. - (For complex multiplication, these are {e,
f}.) If these are to be computed from the input data by
means of real constants, additions, subtractions, and
multiplications, these will be polynomials in the input
data with coefficients in R, the field of real numbers; thus,
they are regarded as elements of R[{B,},_,_/1, the ring of
all such polynomials. (For complex multiplication, these
are {ac~— bd, ad + bc}.) An algorithm for computing
{Cihiar=x from {B} _._, is a sequence of elements of
R[{B},.,.,] that contains each element of {C,} _ _. and in
which each element is an element of {B },_,_, , an element
of R, or the sum, difference, or product of two elements
preceding it in the sequence. (The sequences

a, b, c,d, ac, bd, ac — bd, ad, bc, ad + bc

and

a,b,c,d,a+ b,c—d,ac — ad + bc — bd,
ad, bc, ac + bc — bd, ac — bd, ad + bc

represent the two algorithms for complex multiplication
just described.)

In terms of this formulation, Winograd’s argument to
the effect that complex multiplication cannot be per-
formed with only two multiplications can be sketched
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briefly as follows. First, all possible choices for the
outcome of the first multiplication, say x, are considered.
Clearly, x must be the product of two polynomials of the
first degree in a, b, c, and d. Next, a criterion is obtained
for the possibility of computing two polynomials, e and f,
from a, b, ¢, d, and x with only one more multiplication.
The criterion is that the determinant of a certain 2 X 2
matrix must vanish. Finally, it is shown that for no choice
of x is the criterion satisfied. The proof, though too
lengthy to recount in full here, uses only elementary
algebraic reasoning. It actually establishes more than
what is stated above, for it shows that three multiplica-
tions are necessary, even if scalar multiplications (multi-
plications in which one of the factors is an element of R)
are not counted. Winograd’s result can thus be expressed
by saying that three nonscalar multiplications are re-
quired to perform complex multiplication.

The problem of complex multiplication just discussed
illustrates the principal theme of algebraic complexity
theory. The goal of this paper is to show how this theme
has been developed with regard to other more challenging
computational problems. The problems to be discussed
involve the manipulation of polynomials and matrices;
they have been chosen both for their intrinsic mathemati-
cal interest and because they advantageously exhibit
many of the basic techniques of algebraic complexity
theory.

Bilinear forms

This section deals not with a specific computational
problem but rather with the general framework within
which the problems of the next two sections will be
discussed. We suppose that we are given two sets of input
data, {4} ., and {B} _._,, and that the output data
{C.} <<y that we wish to compute constitute a set of
bilinear forms in these input data, i.e., that the output
data can be expressed as

C.= 2 T,AB (1

[N ok S B
I1=i=],
1=j=<J

where the coefficients {T; ; 1}i<i<r.1<j<s1<1<x Delong to the
underlying field and characterize the problem to be
solved within this class. This class of problems embraces
many important ones: Complex multiplication, discussed
in the introduction, falls within it (Z, J, and K are 2, the As
are g and b, the Bs are ¢ and d, the Cs are ¢ and £, and the
Ts are all —1, 0, or +1), as does quaternion multiplication
(see de Groote [2] and a forthcoming paper of Feig for an
analysis of quaternion multiplication). More important
problems in this class are polynomial multiplication and
matrix multiplication, which will be discussed in the
following sections.
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The I X J x K array of coefficients that characterizes a
set of bilinear forms is often called a tensor. If Tis such a
tensor, we shall denote by u(7) the minimum number of
nonscalar multiplications sufficient to compute the bilin-
ear forms (1). Here, additions and subtractions, as well as
multiplications in which one of the factors is a constant,
are not counted.

It will be noted that no mention was made of division in
the preceding paragraph. Ungar (see Winograd [3]) ob-
served that no loss is entailed by this omission. If a set of
bilinear forms can be computed by an algorithm using L
nonscalar multiplications and divisions (nonscalar divi-
sions are those in which the divisor is not a constant),
then it can also be computed by an algorithm using L
nonscalar multiplications but no divisions (the number of
additions, subtractions, and scalar multiplications may,
of course, increase). Thus, throughout the rest of this
section divisions will be ignored. (Strassen [4] obtained a
noteworthy generalization of Ungar’s result to multilinear
forms: If a set of d-linear forms can be computed by an
algorithm using L nonscalar multiplications and divisions,
then it can also be computed by an algorithm using at
most (d — 1)L nonscalar multiplications but no divisions.)

Let u*(T) denote the minimum number of nonscalar
multiplications sufficient to compute the bilinear forms (1)
when the indeterminates {A},_,_, and {B},_,_, are not
assumed to commute, i.e., when identities such as A B, =
B A, cannot be relied upon to establish the correctness of
algorithms. That u*(T) may be larger than u(T) can be
seen by comparing the results of Hopcroft and Kerr [5],
who showed that u*(T) = [7N/2] for the problem T of
multiplying a 2 X 2 matrix by a 2 X N matrix, with the
results of Winograd [6], who showed that u(T) <3N + 2
for this problem. Winograd [7] has shown, however, that
1 (T) =< 2u(T) for any problem of computing a set of
bilinear forms, and Ja’ Ja’ [8] has obtained even sharper
bounds on the power of commutativity in computing a set
of bilinear forms. (Hyafil [9] has shown that for comput-
ing multilinear forms —specifically, the determinant of a
matrix—the power of commutativity is greater; it can
reduce the complexity of a problem from an exponential
to a polynomial in the number of input data.)

Once divisions and commutativity have been excluded,
a great deal can be said about the structure of optimal
algorithms for computing sets of bilinear forms. They are
what may be called bilinear algorithms: algorithms in
which every nonscalar multiplication is the product of a

linear form in {A} with a linear form in {B

1=i=] j}ISJSJ ’

(el 52

I=is] 1sj=J
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and in which the {C,}
{M,}

1=<k=x ar€ computed as linear forms in

1sisL

G = z VM,

l=isL

(here’ {ai,l}lsisl,lslsL ’ {Bj,l}lsjs.l,lslsL ’ and {7k,l}15ksK,lslsL
are coefficients from the underlying field). The minimum
number L of nonscalar multiplications in any such al-
gorithm is equal to the minimum number L for which the
system of IJK equations

_ )
T = > & By Vs
I1si<L

has a solution. This number is called the rank p(T) of the
tensor 7, by analogy with the rank of a matrix
{8 }isisrisy=s » Which may be defined as the minimum
number L for which the system of IJ equations

Sy = > o ,By

1=i<L
has a solution. That this is so was observed independently
by Gastinel [10], Fiduccia [11], Strassen [12}, and doubt-
less others. The minimum number L is called the rank
p(T) of the tensor T and u *(T) = p(T) for sets of bilinear
forms in noncommuting indeterminates.

If there is just one bilinear form to be computed (K =
1), the tensor T reduces to a matrix, the rank of which is
easily determined by standard methods of linear algebra.
For two bilinear forms (K = 2), the problem is more
difficult, but a complete solution has been obtained by
Grigorev [13] and Ja’ Ja’ [14, 15]. But in general (K =-3),
no satisfactory method is known for determining the rank
of a given tensor. (If the entries of the tensor are integers
and the underlying field is real or complex, the rank can
be computed by a general decision procedure for the first-
order theory of real-closed fields, but such a method is
infeasible even for quite small tensors.)

One consequence of the identity u*(T) = p(T) follows
immediately from the symmetry among e, ,, 8;,, and vy, ,
in (2): The rank of a tensor, and thus the minimum
number of nonscalar multiplications sufficient to compute
the associated set of bilinear forms, is the same for all six
transpositions of a tensor obtained by permuting its three
coordinate axes. This principle is usually referred to as
“duality.”

We close this section by mentioning an outstanding
open problem. Suppose that in addition to computing the
bilinear forms {C.},<x<x given by a tensor T from the
indeterminates {A;},<<; and {B;},< ;<; We wish to compute
another set of bilinear forms {C'},_, ., given by a tensor
T' from the indeterminates {A,} and {B,}

1sisl’ 1sjsJ’ °
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which are assumed to be disjoint from {A} ., and
{B},« s, - If T® T’ (the direct sum of T and T') denotes
the tensor of {C,},,U {C'},<k<x 2s bilinear forms in
{Ai}lsisl U {Ail}lsisl’ and {Bj}ls i=J U {le}ls I=J” then
w* TOTY = pu(T)+ u*(T"), since one may com-
bine optimal algorithms for 7 and T into an algorithm for
T T'. The direct sum conjecture, due to Strassen [4], is
that u* T D T') = w™T) + u™(T'), i.e., that dis-
joint problems may as well be solved separately.

Polynomial multiplication
The problem of algebraic complexity theory that has, on
the one hand, enjoyed the most dramatic reduction in the
number of operations required and, on the other, be-
stowed this reduction on the most numerous and varied
applications is that of polynomial multiplication or convo-
lution. Suppose that we are given two polynomials A(x)
(of degree at most I) and B(x) (of degree at most J) by
means of their coefficients {A;}¢<i<; and {B;}o= ;<s (A; is the
coefficient of x?, and B the coefficient of x7) and that we
wish to compute the coefficients {C,},_, ., of the product
C(x) (of degree at most K = I + J). These output data are
given by the formulae
C.= 5 AB,. ®
i+j=k
which reveal them to be a set of bilinear forms in the input
data.

An obvious algorithm based on the formulae (3) re-
quires (I + 1)(J + 1) multiplications and IJ additions. A
large class of alternate algorithms derives from the fol-
lowing strategy. First, choose K + 1 distinct points
{€doepex - Second, compute {A(¢D}, ., from {A} .,
and {B(£)} .=y from {B},_ ., [evaluate A(x) and B(x) at
the points {£,},_..]- Third, compute {C(£)} by
means of the formulae

C(£) = A(E)B(E) - @

Fourth, compute {C,} ..., from {C(¢)}
C(x) through the points {£,}

0<k=K

o<y liNterpolate

OsksK]'

The second step of this strategy can be expressed as the
multiplication of a matrix by two vectors:

[A(E,)] € - &1 [A)

A

and
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[B(£)] & .. & [B,)]

= : ’ : &)
B, | & - - £k |Bg
(here, A, =---=A,=0andB, =:-:= B, =0have

been introduced to promote symmetry). The fourth step
can also be expressed as the multiplication of a matrix by
a vector,

r

G, Moo - - Mok C(E,)

Sl Imea- meal lCE)

where the entries {n, ;}o<r<k.o<i<x depend upon the points
{€x}o<k<k (M1 is the coefficient of x* in the polynomial (x —
&) =G )x— &) (=D& — &) (& —
E- W& — &4y - - (& — &), which assumes the value 1 at
& and the value 0 at &, - - -, &1, Evry * * > ER)-

Although Winograd [7] has shown that the multiplica-
tion of an arbitrary (K + 1) X (K + 1) matrix by a (K + 1)-
dimensional vector requires (K + 1) multiplications, we
are free to choose the points {£,},_.., SO as to reduce this
number if possible. A particularly favorable choice is to
let {£,},;.<, Tun through the (K + I)st roots of unity. If £,
= ¢*, where { is a primitive (K + 1)st root of unity, then ¢,
= ¢* and the linear transformation in (5) is called the
Fourier transform. Most marvelously, n, , = ™ and the
linear transformation in (6) is called the inverse Fourier
transform. (We are assuming here that the underlying
field contains the (K + 1)st roots of unity. For simplicity
we shall take it to be complex field C. Operations on
complex numbers can be implemented by means of
operations on their real and imaginary parts, so the
results will apply with minor adjustments to the real field
R as well.)

We turn now to the problem of computing the Fourier
transform, where for notational convenience we take the
number of points to be N = K + 1. There is of course an
obvious algorithm requiring O(N®) operations. Good [16]
showed that if N = PQ, where P and Q are relatively
prime, then a Fourier transform on N points can be
performed by means of P Fourier transforms on Q points
and Q Fourier transforms on P points. Choosing Nto be a
product of distinct small primes yields an algorithm
requiring only O(N[log N T/log log N) operations, though
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no one appears to have observed this. It was not until
Cooley and Tukey [17] showed that if N = 2", then a
Fourier transform can be performed with only O(N log N)
operations that the ease of performing Fourier transforms
was widely recognized.

The problem of computing the inverse Fourier trans-
form is equivalent to that of computing the Fourier
transform itself; the two transforms differ only in the
replacement of { by {~*. Thus the algorithm of Cooley and
Tukey gives an algorithm for multiplying two polynomials
of degree N requiring only O(N log N) operations. It is
worth noting that only the K + 1 multiplications in the
third step of the strategy are nonscalar multiplications;
only additions and scalar multiplications are required to
compute the Fourier transforms in the second step and
the inverse Fourier transform in the fourth. Indeed, p(T)
= K + 1for the tensor T associated with the set of bilinear
forms (3).

Further improved algorithms for the Fourier transform
have been given by Winograd [18]. Winograd’s algo-
rithms, which include the best currently available, com-
bine the ideas of Good [16] and Rader [19] with his own
previous work [20] on the problem of muitiplying two
polynomials modulo a third.

The most penetrating study of the complexity of per-
forming the Fourier transform, '

- - - -
{ G, e ... | F,
G| _ ¢ T A I 2
-GN_IJ Lgo €N—1 . g(N—l)- _FN_I_
arises by regarding {G,},.,y_, 3 a set of bilinear forms in

the indeterminates {{"},_, ., , and {F },_, ., ,, Where the
indeterminates {{"},.,<y_, are no longer transcendental
but satisfy certain algebraic relations. (We must now
assume that the underlying field does nor contain a
primitive Nth root of unity. For simplicity, we shall take
it to be the rational field Q in this paragraph.) Winograd
[21], by extending the theory of bilinear forms to take
account of these algebraic relations, has determined the
number of ‘‘nonscalar multiplications’’ in this sense re-
quired to compute the Fourier transform when N is
prime. Auslander and Winograd have recently extended
this to arbitrary N.
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The existence of fast algorithms for polynomial multi-
plication has implications for many other computational
problems. It can, of course, be immediately adapted to
give multiplication of (initial segments of ) formal power
series in (N log N) operations. Sieveking [22] showed
how to combine it with Newton’s method of iteration to
give reciprocation of power series in (N log N) opera-
tions, and this in turn can be adapted to give polynomial
division (with remainder) in O(N log N) operations.

Brent [23] extended Sieveking’s method to the compu-
tation of square roots, exponentials, and logarithms of
power series in O(N log N) operations and showed how
this can be adapted to give iterated multiplication of
power series in O(N log N) operations. Kung and Traub
[24] showed that the power series expansions of all
algebraic functions can be computed in O(N log N)
operations. Brent and Kung [25] gave algorithms for
composition and reversion of power series in O([N log
NT*®) operations, and Brent and Traub [26] showed how
to combine this with Schroder’s method of iteration to
give iterated compositions of power series in O([N log
NT") operations.

Another class of problems that benefit from fast poly-
nomial multiplication concern evaluation of polynomials
at and interpolation of polynomials through an arbitrary
set of N points (rather than Nth roots of unity, as for the
Fourier transform). Moenck and Borodin [27] reduced
these problems to polynomial multiplication and division;
when Sieveking’s method of polynomial division is used,
the resulting algorithms require O(N[log N ]») operations.
These problems are among the few for which nonlinear
lower bounds have been established. Strassen [28] (see
also Schonhage [29]) has shown that evaluation of the
polynomial P(x) = x" at N points and interpolation of a
polynomial of degree N through N prescribed zeros each
require at least Nlog, N + O(N) nonscalar multiplications
and divisions. [The algorithms resulting from the reduc-
tion of Moenck and Borodin actually require only O(N log
N) nonscalar multiplications and divisions; the larger
bounds of O(N[log NT) include scalar multiplications
and additions.] Gustavson and Yun [30] have extended
the work of Moenck and Borodin to allow some of the N
points to coincide, in which case the values of the
polynomial and an appropriate number of its derivatives
are to be computed (in the case of evaluation) or are
prescribed (in the case of interpolation). The resulting
algorithms again require (N [log N T9) operations.

Still another class of problems that benefit from fast-
polynomial multiplication center around Euclid’s algo-
rithm for computing greatest common divisors. Moenck
[31] has adapted this to exploit fast polynomial multiplica-
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tion and division, obtaining an algorithm for the polyno-
mial greatest common divisor (or least common multiple)
requiring (N[log NT) operations. Moenck’s algorithm
has been extended by Brent, Gustavson, and Yun [32] to
yield as by-products information useful for performing
interpolation of rational functions and their derivatives
through an arbitrary set of points. This information is also
useful for the solution of systems of linear equations in
which the coefficients form Hankel or Toeplitz matrices.
All of these computations can be done with O(N[log NT)
operations.

Matrix multiplication

We now come to what many regard as the premier
problem of algebraic complexity theory: matrix multipli-
cation. Suppose that we are given an I X J matrix
{A; }aiciimeyand aJ X Kmatrix {B;,},_._, . _,and that
we want to compute their product, an 7 X K matrix

{C, 1}1=i=1.1<x=x Whose entries are given by the formulae

Cix = Z A B, . Y

1=j=<J

Let T, J, K) denote the tensor associated with this set
of bilinear forms.

We shall be particularly interested in the case / = J = K
= N of N X N square matrices. An obvious algorithm
based on the formulae (7) requires N° multiplications and
N¥N — 1) additions. In 1968, Winograd [6] gave an
alternate algorithm requiring N*2 + O(N? multiplica-
tions and 3N¥2 + O(N?) additions and subtractions. But
the first reduction in the overall number of operations was
obtained in 1969 by Strassen [33], who showed that
O(N ) operations suffice, where « = log, 7 = 2.807 - - -

Strassen’s reduction is based on two key facts. The
first, which had been observed independently by Wino-
grad [7], is that if p*(T(M, M, M)) = M? for some
particular M and some 2 < 6 < 3, then O(N %) operations
suffice for all N. The second is that u*(T(2,2,2)) =7,
which was shown by means of an explicit algorithm for
multiplying 2 X 2 matrices.

Hopcroft and Kerr [S]have shown that u*(7(2,2,2)) =
7 [indeed, Winograd [1] has shown that u(7(2,2,2)) =7],
so Strassen’s exponent cannot be reduced through further
consideration of 2 X 2 matrices. Strassen’s algorithm
achieving p*(T(2, 2, 2)) = 7 used 18 additions and
subtractions; Winograd (see Probert [34]) reduced this to
15, and Probert [34] showed that 15 is minimal. This
reduction affects only the constant factor implicit in
O(N %), however, and not the exponent «.
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After the resources of the case M = 2 were exhaust-
ed, it was natural to hope that Strassen’s exponent
might be reduced by showing that u*(T(3, 3, 3)) = 21,

w*(T(4,4,4) <48,0r p*(T(5,5,9) = 91. Despite many

attempts along these lines (see for example Laderman
[35] and Schachtel [36]), no progress was made i reduc-
ing the exponent until Pan [37] showed by an ingenious
algorithm that p*(T(M, M, M)) < M3 + M2
— M/3, which yields u *(T(48, 48, 48)) < 47 216, and thus
that O(N*) operations suffice for 8 = log,, 47 216 =
2.780 - - -.

What is perhaps the most striking contribution to the
problem of matrix multiplication, however, stems from
the following observation. For matrices S, the condition
p(S) = r that § have rank at most r can be expressed in
terms of the vanishing of certain determinants. As a
consequence, if p(S™) = r holds for all matrices in a
sequence S, §®, - .. converging to S, then (since
determinants are continuous functions of the entries of
matrices) p(S) < r holds as well. Contrastingly, the rank
of a tensor T need not be continuous in this way. It is
possible to have p(T™) < rfor T, T®, - - - converging
to T, but at the same time to have p(T) =-r + 1. The
significance of this for computational complexity is that it
may require fewer operations to compute a set of bilinear
forms with arbitrarily small error than to compute them
exactly.

An example of this phenomenon, due to Schonhage
[38], is the following. Consider the problem of computing
the bilinear forms

C,=ApB,,
C,=AB, + A,B,.

If T denotes the associated tensor, it is not hard to show
that u*(T) = p(T) = 3. But if we compute

M, =ApB,,

M, = (A, + €A)B, + €B) ,
then

C,=M,

C,=€¢ '(M,— M) — €A,B, .

Thus, with only two nonscalar multiplications, C, and C,
can be computed with an error that can be made as small
as desired by choosing e small enough. Schénhage de-
fined a new rank p (T), called the border rank, of a tensor
T for which the minimum number of nonscalar multiplica-
tions p,: (T) sufficient to compute the associated set of
bilinear forms in noncommuting indeterminates with arbi-
trarily small error satisfies the identity p,o*(T) = p(T). In
the example just given, u,(T) = p(T) = 2.
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The case of performing approximate computations can
often be exploited in performing larger but exact compu-
tations. This is done by performing the approximate
computations in the field of formal power series in the
indeterminate e, using Fourier transforms to expedite the
operations on power series as described in the preceding
section. For matrix multiplication, Bini [39], Romani [40],
and Winograd (see Pan [41]) have shown that if p, (T(M,
M, M)) = M?for some particular M and some 2 < 6 < 3,
then O(N? log N) operations suffice for exact matrix
multiplication.

By the duality principle, u*, J, K) = p*(J, K, I) =
I *(K, I, J). Furthermore, T(IJK, IJK, IJK) = T(I, J, K)
QTWU,K,I)RT(K,I,J), where T® T  denotes what is
called the tensor product of Tand T'. In general, u*(T®
T') = u*(Mu*(T"), and so u*(TUIK, UK, IJK)) <
p*(TU, J, K). Thus, if u*(T(, J, K)) = (IJK)*/ for
some particular I, J, and K and some 2 < § = 3, then
O(N¥ operations suffice for matrix multiplication. The
duality principle and the tensor product inequality apply
to p, as well as p*, and thus if u (T, J, K)) < (LUK)*
for some particular I, J, and K and some 2 < § < 3, then
O(N? log N) operations suffice for exact matrix multipli-
cation. In 1979, Bini, Capovani, Romani, and Lotti [42]
showed that p)(T(3, 2, 2)) =< 10, which vyields
that O(N” log N) operations suffice for y = 3 log , 10 =
2.779 - - -

Still further reductions in the exponent have been
obtained by Pan and Schonhage (see Schonhage [38]).
They showed that if u*(T(I,, J,, K) ® - & T(,, J, K)
= (JK)P & - & (IJ,K)P for some particular I, J,,
K, -+ I,J, K, and some 2 < § =< 3, then O(N?)
operations suffice. A similar result holds with p™ re-
placed by u, and O(N®) replaced by O(N? log N). They
have also shown that 41 (T(1, 5, 22) & T(11, 2, 5) ® T(10,
11, 1)) =< 156, which yields that (N ® log N) operations
suffice, where 8 = 3 log,, 52 = 2.521 - - -. Coppersmith
and Winograd have recently used this method and exten-
sions of it to reduce the exponent still further, to
2495 - -,

The existence of fast algorithms for matrix multiplica-
tion has implications for many other problems of linear
algebra. As was observed by Strassen [33], if matrix
multiplication can be performed with O(N%) operations,
for some 2 < 6§ < 3, so can matrix inversion; the converse
result has been obtained by Munro [43]. Other problems
that can similarly be reduced to matrix multiplication are
solution of systems of linear equations, triangular factor-
ization and evaluation of determinants (see Bunch and
Hopcroft [44]), and orthogonalization (see Schonhage
[45D).
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Conclusion

In the preceding section, we tacitly assumed that ‘‘fast-
er’’ means ‘‘better,”’ but time is often not the only or even
the most important resource to be reckoned in assessing
the complexity of computations. The other resource most
frequently mentioned is space, the maximum number of
intermediate results that need to be kept at any point in
the execution of an algorithm. Of particular interest are
time-space tradeoffs: situations in which minimum time
and minimum space cannot be achieved by the same
algorithm and in which a spectrum of algorithms, each
optimal according to its own objective, therefore exists.
The first results along these lines were obtained by
Grigorev [46]; for others see Tompa [47] and Ja’ Ja’ [48].

Another resource often discussed is depth, which can
be described as parallel time (the time required when any
number of operations may be performed at once), in
contrast to serial time (the time required when operations
must be performed one after another, referred to simply
as ‘‘time’’ above). Depth was given a status equal to that
of time by Strassen [49, 50]in his formulation of algebraic
complexity. Some important upper bounds to depth are
those for reciprocation of power series (implicit in
Sieveking [22]), for inversion of matrices (due to Csanky
[51]), and for arbitrary polynomials of limited degree that
are computable in limited time (due to Hyafil [52]). It is
an open problem to obtain a lower bound to depth
growing faster than the logarithm of the number of input
data for any computation.

Although nonlinear lower bounds in algebraic complex-
ity theory are scarce, there is one situation in which they
have been obtained with relative ease: that in which
algorithms are assumed to satisfy some strong restriction.
The most common such restriction is to monotone algo-
rithms, which may use positive but not negative real
constants, additions but not subtractions, and multiplica-
tions but not divisions. Kerr [53] showed that about N*
operations are necessary in a monotone algorithm for
multiplying N X N matrices, and Schnorr [54] has shown
that about N operations are necessary in a monotone
algorithm for multiplying polynomials of degree N. Since,
as we have seen in the two preceding sections, faster
nonmonotone algorithms for these problems exist, these
results show something of the power of nonmonotonicity.
Schnorr [54] and also Shamir and Snir [55] have obtained
lower bounds that grow exponentially with the number of
input data, though no significantly faster nonmonotone
algorithms are known for the problems they treat. Valiant
[56], however, has given an example showing that non-
monotonicity can reduce the complexity of a problem
from an exponential to a polynomial in the number of
input data.
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