562

Yonathan Bard
Charles H. Sauer

IBM Contributions to Computer Performance Modeling

Performance modeling can be used throughout the life of a computer system, from initial design, through implementa-
tion, configuration (and reconfiguration) and even tuning. Performance models are usually solved by numerical
techniques, where possible, and by simulation, otherwise. This paper summarizes IBM’s contributions to performance

modeling and the solution of performance models.

Introduction

There are many reasons for wishing to model the per-
formance of a computer system. When a brand-new
system is being designed or implemented, modeling is the
only way to determine whether performance specifica-
tions will be met. When a system is being configured for a
specific workload, modeling is the economical way to
narrow down the search among the myriad possible
configurations. Modeling is required for capacity plan-
ning to meet anticipated increases in an installation’s
workload. Even in the day-to-day management of a
computer installation, modeling may indicate which of
many possible tuning actions can best alleviate perform-
ance bottlenecks.

Performance modeling consists of estimating the values
of system performance parameters, given descriptions of
the system’s configuration and workload. The perform-
ance parameters most commonly modeled are the re-
sponse times to service requests of various types (trans-
actions, jobs, messages), throughputs (number of re-
quests completed per unit time), utilizations (percent of
time system components are busy), and queue lengths
(number of requests waiting for service at various system
components). Depending on the modeling method em-
ployed, one obtains anything from mere average values of
these quantities to full probability distributions.

In the following sections we shall first enumerate the
general classes of modeling methods. We shall then give a
brief summary of queueing network theory, which is the
basis of most computer performance models. We then
summarize the contributions of IBM to analytic and
simulation models of computer systems.

It is impossible to do justice here to all IBM contribu-
tions to this area. We have chosen to concentrate our
attention on the ‘‘main line’’ area of queueing network
models, thereby excluding much important work on sub-
jects like priority queueing, program behavior, and tele-
processing system modeling. We have also excluded the
extensive work on aspects of performance analysis not
directly related to modeling. We apologize to all authors
whose work should have been listed but was not, due to
our oversight or ignorance.

Apart from making specific research contributions,
IBM authors have also published some books covering
aspects of modeling [1-4]. These books contain many
case studies which demonstrate the practical value of the
modeling technology —another subject which is beyond
the scope of this paper. The reader not familiar with
queueing network models and their applications may also
wish to consult special issues of Computing Surveys (Vol.

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

YONATHAN BARD AND CHARLES H. SAUER

IBM J. RES. DEVELOP. ¢, VOL. 25 ¢ NO. 5 ¢,SEPTEMBER 1981




10, September 1978) and Computer (Vol. 13, April 1980)
for general discussion.

Modeling methods

Computer performance models may be of the empirical,
analytic, or simulation types, with various hybrids possi-
ble. An empirical model is constructed by fitting relative-
ly simple equations, usually linear, to measured perform-
ance data. The usefulness of this method is limited, since
such equations can generally be applied only under
conditions not too different from those previously ob-
served. Such models have been used, for example, to
describe the relation between system overhead and the
functions that the system performs [5] and to evaluate the
effectiveness of system modifications [6]. Methods for
constructing and fitting such models are discussed in [7].

An analytic model consists of a set of equations which
are thought to capture, at least approximately, the rele-
vant aspects of the system’s behavior. Such equations
can sometimes be solved explicitly, but more often than
not some numeric methods are required to evaluate the
solutions. Analytic models, which will be described in
some detail below, have proven extremely useful for
computer performance analysis: they are fast, relatively
easy to program, and they produce more than acceptable
accuracy in many cases. However, they generally yield
only equilibrium average values of the performance mea-
sures, and there are still many problems which are
analytically intractable. Even when good approximations
are available, these must be continually validated, either
against real data or against simulation models.

A simulation model is a computer program, designed to
imitate the behavior of the real system in some detail. A
computer system simulator tracks the progress of each
job or transaction through the various system compo-
nents, accumulating performance statistics as it goes
along. Simulators have found wide application in the
modeling of computer system performance, as well as in
the validation of analytic models. They are capable of
almost unlimited accuracy, depending on the amount of
detail that is built into them. They can produce estimates
of entire distributions of performance measures, not just
averages. They can be used to study transient, as well as
equilibrium, system behavior. However, they may be
difficult to implement and validate, and their running may
consume large amounts of computing resources. By and
large, simulation should be considered only when a
suitable analytic model is not available.

Computers as networks of queues
A computer system may be viewed as a set of compo-
nents, each of which is capable of providing certain

IBM J. RES. DEVELOP. e VOL. 25 e NO. 5 e SEPTEMBER 1981

services. For instance, the CPU executes instructions,
the channels transmit data, and the I/O devices both store
and transmit data. A job or transaction submitted to the
system may be viewed as a set of service requests, which
must be executed by these components in a certain order.
When the transaction requires service from a system
component, it may find the latter busy serving some other
transaction. Our transaction must then queue up and wait
for its turn. The performance of the system is determined
primarily by the length of service and queueing times at
each component, and by the rules controlling the se-
quence of transitions from component to componeni. For
performance modeling purposes, the system may there-
fore be viewed as a network of queues . 1t is not surprising
that most performance models, both analytic and simula-
tion, are basically queueing network models.

Analytic models

As implied by the foregoing, analytic computer perform-
ance models are based primarily on queueing network
theory. This theory originated in the work of Jackson [8]
and Gordon and Newell [9]. The simplest nontrivial
queueing network model, the so-called ‘‘machine repair-
man model,”” was applied to computer system modeling
by Scherr [10]. The first full-fledged applications of the
theory to our field are due to Buzen [11] and Arora and
Gallo [12]. This theory deals with a fixed number of
customers (e.g., jobs or transactions) circulating among a
set of queues, constituting a so-called closed network. An
open network is one where customers are allowed to
arrive from and depart to the outside world. Subsequent
work, by Baskett et al. [13], by Reiser and Kobayashi at
I1BM {14, 15], by Chandy er al. [16], by Lam at IBM [17],
and by Towsley [18], has greatly expanded the scope of
the theory, so that it now encompasses networks with

e Several customer classes, each with its own service and
routing requirements.

o Mixed networks, i.e., networks where some customers
are fixed within the network and others are allowed to
arrive and depart.

e Servers of several types, including processor sharing,
infinite server, last come first served preemptive re-
sume, and first come first served (in the last case, all
customer classes must have identical exponentially
distributed service times).

e Servers with variable service rates, depending on queue
length and subnetwork population.

e Routing probabilities depending on queue length and
subnetwork population.

e Routing probabilities depending on previous routing of
a job.

® Arrival rates and loss functions dependent on network
population.

563

YONATHAN BARD AND CHARLES H. SAUER




564

However, some restrictions still apply, among which are
the following:

® A customer can request service only from one server at
a time.

e Priority scheduling is not allowed.

® Successive transaction interarrival and service times
must be statistically independent.

The main result of the theory is that, for those networks
satisfying the restrictions, the probability of each network
state is proportional to the product of terms, each involv-
ing the state of a single queue. By ‘‘state’” we mean the
number of customers of each class receiving or waiting
for service at each queue. Each of these terms consists of
a simple function of the state of its queue, and of the total
average service time required by each customer class at
that queue. Because of the form of the state probabilities,
it is referred to as the product form solution, and net-
works satisfying the required conditions are called prod-
uct form nerworks . Once the state probabilities have been
computed, all the required performance measures can be
easily calculated.

To explicitly evaluate the product form solution, one
requires a proportionality constant, whose function is to
ensure that all state probabilities sum to unity. The
evaluation of this so-called normalizing constant is quite
trivial for open networks, but can become quite burden-
some when a closed network has many customer classes.
In fact, from a computational point of view, analyzing the
performance of a closed (or mixed) network is more or
less equivalent to evaluation of the normalizing constant
(although some algorithms do not evaluate that constant
explicitly).

The main threads in the development of queueing
network applications are

o Finding efficient algorithms for obtaining the exact
product form solution.

o Finding approximate solutions for non-product form
networks.

e Finding fast algorithms for obtaining approximate solu-
tions to a large variety of networks, both product form
and not.

IBM has made significant contributions to all three areas.

These are described in the following sections.

e FExact algorithms for product form networks

Buzen [19] originated what later became known as the
convolution algorithm for computing the normalizing
constant. If G(n, m) is the normalizing constant for a
network with n servers and m jobs, then the algorithm

YONATHAN BARD AND CHARLES H. SAUER

uses a convolution formula of the form

Gn,m)y = ZG(n -1, m— DA, i),

1

where A(n, i) is a factor related to the processing rate of
the nth server when its queue length is i. The formula
permits calculation of the normalizing constant for pro-
gressively larger networks. The original version applied
only to closed single-class networks. This was general-
ized at the IBM Thomas J. Watson Research Center by
Chandy, Herzog, and Woo [20], by Reiser and Kobayashi
[14], and by Sauer [21] to encompass the entire range of
product form networks. This algorithm has remained the
standard one for several years, but is currently receiving
competition from several new algorithms, all developed
(at least partly) at IBM: Reiser and Lavenberg’s mean
value analysis [21-23] and Chandy and Sauer’s local
balance algorithm for normalizing constants [21, 24].
Also noteworthy are some algorithms not applicable to all
product form networks, namely Moore’s partial fraction
algorithm [25], Kobayashi’s Polya enumeration [26], and
Chandy and Sauer’s coalesce computation of normalizing
constants [24].

The computational efforts required for the various full-
range algorithms are comparable, but they differ some-
what in their numerical properties. Algorithms which
compute the normalizing constant explicitly are subject to
floating point overflow when solving grossly unbalanced
networks. Mean value analysis, which avoids the normal-
izing constant calculation, is free from that problem, but
is subject to loss of accuracy when dealing with variable-
rate servers. For networks with only fixed-rate and
infinite servers, mean value analysis appears to be the
algorithm of choice, and recent work by Reiser [23] may
overcome some of the method’s deficiencies. The mean
value algorithm works directly with the mean values of
queue lengths and response times at each queue. It
computes these quantities for a given network by relating
them to values for networks with, in turn, one fewer
customer in each class. Specifically, in the case of a
network with fixed-rate servers, it applies the following
formulas alternately:

T(n,m) = t[1 + N(n, m — 1], D
N B mT(n, m)
(n, m) = —Z TG, m)
]

where T(n, m) and N(n, m) are, respectively, the total
time a job spends at the nth server, and the average queue
length of the nth server, when there is a total of m users in
the system, and #j) is the total service time per job at the

IBM J. RES. DEVELOP. § VOL. 25 ¢ NO. 5 & SEPTEMBER 1981




nth server. This method has spawned several approxi-
mate methods which will be discussed in the following
sections.

® Approximations for non-product form networks
Many methods have been proposed for obtaining approxi-
mate solutions to queueing networks which do not have a
product form solution. Among those contributed by
workers at IBM we list the following:

e The diffusion approximation [27] replaces the discrete
transitions of customers between queues by means of a
continuous diffusion process. The method provides a
convenient way of modeling nonexponential service
times by taking into account the variance, as well as the
mean, of the service times.

® Many approximations are based on decomposing the
network into several parts, replacing each part with a
single more or less equivalent server, and then solving
the resulting reduced network [4, 28]. Many of these
decompositions [29-32] are based on a queueing-theo-
retic analogue of Norton’s theorem [20], which permits
replacing all but one of the queues in a product form
network with a single equivalent queue. Another inter-
esting method which uses a hierarchical decomposition
principle is due to Florkowski [33].

e In decomposition approximations one must solve a
reduced network (or networks) which does not satisfy
product form conditions. The method of Herzog,
Chandy, and Woo [34] provides an efficient algorithm
for solving reduced networks which arise in decomposi-
tion approximations.

o In mean value analysis one uses a ‘‘delay equation,”
e.g., Eq. (1), relating the total average delay suffered by
a customer in a given queue to the average length of
that queue for a network with one fewer customer. It is
a straightforward matter to adapt these equations to
non-product form queues, e.g. first come first served
with different average service times for different class-
es, as well as more complex cases involving blocking
and parallelism. The results [22, 35] are approximate,
but often quite serviceable.

o Fast approximate algorithms

The algorithms described in the previous sections work
well and reasonably quickly in many cases. However,
when the number of closed customer classes reaches ten
or so, the algorithms become too slow and storage-
consuming. Computational requirements can also be-
come excessive when the number of customers and/or
servers becomes very large. IBM workers have contribut-
ed some algorithms which are faster and more storage-
conserving than the previously described ones yet pro-
duce accurate answers, typically within 5% of their
slower counterparts.

IBM J. RES. DEVELOP. & VOL. 25 @ NO. 5 « SEPTEMBER 1981

Pittel [36] has investigated the asymptotic behavior of
the product form solution as the number of customers in
each class increases beyond bounds, while preserving
fixed ratios between different types. This led to a very
fast and simple iterative algorithm, valid for large popula-
tions (documented in [37]). It then turned out that the
same algorithm is derivable from mean value analysis [22]
if one neglects the difference between networks whose
number of customers differs by one. This method was
then applied to many non-product form networks [35]. A
general approach, valid for both small and large popula-
tions, was then developed [22, 38] as documented in [39].
The approach consists of approximating the properties of
a network with m — 1 customers using the properties of a
network with m customers, and then applying the mean
value equations. The latter now contain only quantities
relating to an m customer network, and are usually
solvable by means of a very simple iterative procedure.

® Implementations

A general-purpose queueing network solver, such as
QNET4 [40], is very useful for ad hoc computer system
modeling. For routine use, however, it presents various
difficulties, most notably the problem of expressing a
computer system modeling problem in queueing theoretic
terms. Therefore, many special-purpose models, tailored
to specific systems, have been constructed. Among these
are models of MVS [41], VM/370 [37, 42], and CICS [43].
Similar models exist for IMS, Systems 34 and 38, and
others. Such a model contains in its core a suitable
queueing network algorithm, but this is surrounded by
layers of software which

o prompt for inputs describing system configuration and
workload in terms meaningful to the end user. For
instance, the configuration description may consist of
the CPU model, main storage size, /O device types,
and their channel connections. The workload descrip-
tion may consist of the number of users or transaction
rate for each class, and average resource demands
(instructions executed, I/O and other service requests
made, storage occupied) per transaction of each class.

o translate these inputs into quantities required by the
queueing network algorithm, /.e. service times and
routing probabilities at each queue. This translation is
accomplished by using built-in tables of hardware and
software characteristics, such as CPU and device
speeds, and operating system path lengths.

Many such models are available to IBM system engineers
for use in configuring systems to meet customers’ per-
formance requirements.

These models are typically accurate to within 5% in the
estimation of utilizations and throughputs, and within

565

YONATHAN BARD AND CHARLES H. SAUER




566

20% for average queue lengths and response times. The
accuracy of the performance predictions is determined
more by the accuracy of the workload characterization
fed into the model than by the quality of the model itself.
For this reason, it is most desirable to have means of
deriving model inputs directly from measurements taken
on real systems [37, 44].

Special-purpose models have also been devised for
various system components. Of particular interest is the
I/O subsystem, consisting of channels, control units,
strings, and devices. The contention for channel and
control unit time cannot be modeled adequately by means
of queueing network theory. A successful approach to
this problem is to regard each device as a single server
queue, whose service time is the sum of seek, latency,
rotational delay, search, and data transfer times. The
rotational delay time, in turn, is a function of the conten-
tion for various path components (channel, control unit,
and head of string). Models due to Seaman et a/. [45] and
Bard [46, 39] have successively tackled the following
cases: single path to each device; single path with rota-
tional position sensing; and multiple path with devices
shared among several CPUs.

Simulation

Simulation is a popular approach to the solution of
computer system models because of its generality and
because system details can be represented very accurate-
ly. However, there are a number of potentially over-
whelming problems with simulation: 1) Constructing a
simulation program and verifying that the program is
logically correct and properly represents the simulated
system can require a great amount of human effort. 2) It
may be very difficult to characterize the system work-
loads and features which have the greatest impact on
performance. 3) Running a simulation program should be
considered a statistical experiment; the performance
measures obtained from a simulation must be viewed
skeptically unless appropriate statistical methods are
used. 4) Detailed simulation programs may require large
amounts of computer time to provide accurate perform-
ance estimates. IBM has made significant contributions
which alleviate these problems.

o Construction of simulation models

GPSS Though introduced two decades ago, the Gener-
al Purpose Simulation System (GPSS) remains one of the
most popular languages for computing system simulations
[47]. A principal reason for the success of GPSS is that it
provides convenient abstractions which may be used to
describe systems without actually writing a simulation
program; GPSS constructs a simulation program based on

YONATHAN BARD AND CHARLES H. SAUER

the user’s description. The abstract elements of GPSS are
called ‘‘blocks.”” Current versions of GPSS have roughly
50 block types. Each block type has a unique pictorial
symbol. Usually one will construct a diagram showing the
flow of ‘‘transactions’” through various blocks. (The
transactions may literally represent transactions in a data
base system, or may represent commands or batch jobs in
a general-purpose computer system, messages in a com-
puter communication system, etc.) Once such a diagram
has been constructed, the computer implementation of
the model is a mechanical translation of the diagram.

CSS and SNAP/ISHOT  Closely related to GPSS is the
Computer System Simulator (CSS) [48]. Rather than the
abstract blocks of GPSS, CSS blocks are predefined
characterizations of IBM hardware components. Con-
struction of the simulation model in CSS is thus primarily
a matter of describing the software (operating system,
application programs, etc.) which runs on the hardware.
A further step in this direction of alleviating the need for
simulation programming is the Systems Network Analy-
sis Program/Simulated Host Overview Technique
(SNAP/SHOT) [49]. In addition to characterizations of
hardware components, SNAP/SHOT provides corre-
sponding characterizations of many of IBM’s software
products, especially those associated with the Systems
Network Architecture.

Research Queueing Package An alternate approach to
alleviating the need for simulation programming is the
high-level modeling language provided by the Research
Queueing Package (RESQ) [50-52]. The three principal
contributions of RESQ are that 1) Several solution meth-
ods, numerical, approximate, and simulation, are brought
together in one software package. 2) Systems are de-
scribed in terms of very high-level abstract elements,
based on queueing networks. 3) Several user interfaces
provide both novice and experienced users productive
means to describe systems. We discuss each of these
contributions in turn.

In the past many (most?) modeling practitioners have
restricted themselves to one solution method, either
analytic (including numerical and approximate methods)
or simulation. RESQ includes the previously mentioned
QNET4 package, approximate solution components, and
a simulation component for the solution of models. Thus
the RESQ user is strongly encouraged to avoid arbitrary
restrictions on solution methods and to use a method
most appropriate to the problem at hand. The presence of
several solution methods also makes feasible the mechan-
ical use of the hybrid solution methods to be described.

There are a number of assumptions required for exact
analytic or numerical solution of a significantly sized

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981



queueing network model to be feasible. In addition to
specific limitations on particular types of queues, there
are general assumptions usually left implicit, e.g., that a
job in the queueing network contends for only one
resource at a time and/or that a job may not be involved in
simultaneous synchronous activities. However, charac-
teristics such as these are important in actual systems,
where several resources (e.g., memory, channel, control-
ler and device) may be necessary for particular activities
and messages may be transmitted as packets across
different communication paths, to be reassembled at their
destination. RESQ provides extensions of traditional
queueing networks so that such characteristics may be
included in a model to be solved by approximation or
simulation. The most important of these extensions is the
‘‘passive’’ queue, first proposed by Foster, McGehearty,
Sauer, and Waggoner [53] and redefined in RESQ
[50, 51, 54]. Traditional queues are referred to as ‘‘ac-
tive’’ because a job holding a resource of the queue is
actively using the resource. Resources of passive queues
are held so that the job may use a resource of primary
importance. Passive queues have been demonstrated to
provide compact representations of complex contention
situations and protocols [51, 55].

The first RESQ interface was an interactive prompter,
with built-in tutorial facilities, so that a novice could
easily learn RESQ terminology and characteristics. Re-
cently, a second version of RESQ has been developed,
compatible with the first [56]. This version incorporates a
much more sophisticated user interface, a modeling lan-
guage analogous to a programming language. The RESQ2
language has been designed to encourage the user to
produce well-structured models, in the sense of struc-
tured programming, so that modelers can effectively cope
with large systems. The ‘‘submodel’’ facility of RESQ2 is
designed so that modelers can cooperate in constructing a
model and build upon the previous work of other model-
ers.

o Workload characterization

Trace-driven modeling In simulation models, the work-
load has traditionally been described by means of proba-
bility distributions. These, however, may not capture
important interdependencies of workload characteristics.
This problem is overcome in trace-driven modeling, first
proposed by Cheng [57] and later popularized by others
[58-60]. With trace-driven modeling, the simulator ‘‘exe-
cutes’’ the same sequence of transactions that was actual-
ly traced on a real system. If used properly, trace-driven
models can reproduce measurement results very closely.
One can then make modifications in the model and have
confidence that the model results are very close to the

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

performance that would be observed if corresponding
modifications were made to the actual system.

Characterization of paging In both distribution-driven
and trace-driven simulations of virtual memory systems,
a compact and accurate representation of paging activity
is desirable. The obvious representation, a complete
history of page references, is usually impractical. Of
particular impact has been the characterization in terms
of distance strings in stack replacement algorithms [61].
Other related work includes the lifetime functions dis-
cussed by Belady and Kuehner [62] and the semi-Markov
characterizations of Lewis and Shedler [63]. Other com-
pact representations of paging behavior have been devel-
oped at IBM for inclusion in various models. These
include the macro-instructions of Boksenbaum et al. [64],
the page survival index [65], the paging index [44], and
the global LRU analysis of Chiu and Chow [60].

e Statistical aspects of simulation

Random number generators  When one is characteriz-
ing systems by probability distributions, one must have
generators for producing samples from the distributions.
Nearly all practical generators for general distributions
require a generator for the uniform distribution on the
interval [0, 1]. In designing such a uniform generator
there are a number of pitfalls which can only be avoided
by careful use of number theory to propose a generator
and of rigorous statistical tests to verify that the generator
has the desired properties [66]. The generator proposed
by Lewis, Goodman, and Miller [67] has been shown to
have very good properties. In fact, its properties are so
highly regarded that this generator has been subsequently
incorporated in highly regarded software for other ven-
dors’ machines [68]. This is surprising because random
number generators are usually designed for specific arith-
metic characteristics, such as word size, and are general-
ly not easily transported. IBM research has also contrib-
uted methods for simulation of processes not described
by stationary distributions, notably nonhomogeneous
Poisson processes [69].

Output analysis  Another difficult problem in probabilis-
tic simulations is the analysis of output. The running of
the simulation is a statistical experiment; the results of
the simulation program may not be accurate estimates of
model performance measures. The most important recent
contribution to this problem is the Regenerative Method
for confidence intervals [70]. IBM has contributed a
number of improvements and extensions for the Regener-
ative Method, including stopping rules [71], extension to
response time distributions [3], and variance reduction
techniques [72]. IBM authors have also applied variance
reduction techniques to previous methods for confidence

567

YONATHAN BARD AND CHARLES H. SAUER




568

intervals [73]. The regenerative method is incorporated in
RESQ, and the practical applicability of the method has
been demonstrated by a number of RESQ models [51]. A
recently proposed spectral method [74] for confidence
intervals may prove to be more useful than previous
methods, including the regenerative method.

o Computational expense

Hybrid simulation  One factor in the computational
expense of simulation is the disparity in event rates in
different parts of the system, causing unnecessarily long
simulation of one part in order to have a long enough
simulation of another part with low event rates. An
important method to avoid this expense is hierarchical
solution, where these different parts of the model are
solved separately. A special case of hierarchical solution
is hybrid simulation, where part of the model is solved
numerically. Examples of hybrid simulation are found in
[60] and [75].

Design of experiments and validation In addition to
reducing the expense of individual simulations, one can
reduce the number of simulations required to cover a
parameter space by appropriate design of experiments
[76]. Rather than run a simulation for each combination of
parameters, one can run simulations for a small subset of
the combinations and estimate results for the other com-
binations. This approach is also useful for validating the
model. For this purpose, identical sets of experiments are
run on the real system and on the model. The statistical
effects of various system parameters are evaluated in
both cases, and the two sets of computed effects are
tested for lack of significant differences. If the test is
passed, the model is considered to be validated. Model
validation can also be combined with estimation of the
unknown model parameters [77].

References

1. A. O. Allen, Probability, Statistics, and Queueing Theory:
With Computer Science Applications, Academic Press, Inc.,
New York, 1978.

2. H. Kobayashi, Modeling and Analysis, Addison-Wesley
Publishing Co., Reading, MA, 1978.

3. D. L. Iglehart and G. S. Shedler, Regenerative Simulation of
Response Times in Networks of Queues, Springer-Verlag,
New York, 1980.

4. C. H. Sauer and K. M. Chandy, Computer Systems Per-
formance Modeling, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1981.

5. Y. Bard, ‘‘Performance Criteria and Measurement for a
Time Sharing System,”” IBM Syst. J. 10, 193-216 (1971).

6. H. P. Friedman and G. Waldbaum, ‘‘Evaluating System
Changes Under Uncontrolled Workloads: A Case Study,”
IBM Syst. J. 14, 340-352 (1975).

7. Y. Bard and M. Schatzoff, ‘‘Statistical Methods in Computer
Performance Analysis,”” Current Trends in Programming
Methodology, Volume III: Software Modeling and Its Im-
pact on Performance, K. M. Chandy and R. T. Yeh, Eds.,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978, pp. 1-51.

YONATHAN BARD AND CHARLES H. SAUER

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

. J. R. Jackson, ‘‘Jobshop-like Queueing Systems,”” Manage.

Sci. 10, 131-142 (1963).

. J. Gordon and G. F. Newell, ‘*Closed Queueing Systems

with Exponential Servers,”” Oper. Res. 15, 254-265 (1967).
A. L. Scherr, An Analysis of Time-Shared Computer Sys-
tems, MIT Press, Cambridge, MA, 1967.

J. P. Buzen, ‘“‘Analysis of System Bottlenecks Using a
Queueing Network Model,”” Proceedings of the ACM-
SIGOPS Workshop on System Performance Evaluation,
Cambridge, MA, 1971, pp. 82-103.

S. R. Arora and A. Gallo, ““The Optimal Organization of
Multiprogrammed Multi-level Memory,”” Proceedings of the
ACM-SIGOPS Workshop on System Performance Evalua-
tion, Cambridge, MA, 1971, pp. 104-141.

F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios,
“‘Open, Closed, and Mixed Networks of Queues with Differ-
ent Classes of Customers,”” J. ACM 22, 248-260 (1975).

M. Reiser and H. Kobayashi, ‘‘Queuing Networks with
Multiple Closed Chains: Theory and Computational Algo-
rithms,”” IBM J. Res. Develop. 19, 283-294 (1975).

H. Kobayashi and M. Reiser, ‘‘On Generalization of Job
Routing Behavior in a Queueing Network Model,”” Research
Report RC-5252, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, 1975.

K. M. Chandy, J. H. Howard, and D. F. Towsley, ‘‘Product
Form and Local Balance in Queueing Networks,”” J. ACM
24, 250-263 (1977).

S. S. Lam, ‘‘Queuing Networks with Population Size Con-
straints,”” IBM J. Res. Develop. 21, 370-378 (1977).

D. F. Towsley, ‘‘Queueing Network Models with State-
Dependent Routing,”” J. ACM 27, 323-337 (1980).

J. P. Buzen, ‘‘Computational Algorithms for Closed Queue-
ing Networks with Exponential Servers,”” Commun. ACM
16, 527-531 (1973).

K. M. Chandy, U. Herzog, and L. Woo, ‘‘Parametric
Analysis of Queuing Networks,”” IBM J. Res. Develop. 19,
36-42 (1975).

C. H. Sauer, ‘‘Computational Algorithms for State-Depen-
dent Queueing Networks,”” Research Report RC-8698, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 1981.

M. Reiser and S. Lavenberg, ‘‘Mean Value Analysis of
Closed Multichain Queueing Networks,”” J. ACM 27, 313-
322 (1980).

M. Reiser, ‘‘Mean Value Analysis and Convolution Method
for Queue-Dependent Servers in Closed Queueing Net-
works,”” Performance Eval. 1, 7-18 (1981).

K. M. Chandy and C. H. Sauer, ‘‘Computational Algorithms
for Product Form Queueing Networks,”” Commun. ACM 23,
573-583 (1980).

F. R. Moore, ‘‘Computational Model of a Closed Queuing
Network with Exponential Servers,”” IBM J. Res. Develop.
16, 567-572 (1972).

H. Kobayashi, ‘‘A Computational Algorithm for Queue
Distributions via the Polya Theory of Enumeration,”” Per-
formance of Computer Systems, M. Arato, A. Butrimenko,
and E. Gelenbe, Eds. North-Holland Publishing Co., Am-
sterdam, 1979, pp. 79-88.

H. Kobayashi, ‘‘ Application of the Diffusion Approximation
to Queueing Networks,” J. ACM 21, 316-328 (1974).

C. H. Sauer and K. M. Chandy, ‘‘Approximate Solution of
Queueing Models,”” Computer 13, No. 4, 25-32 (1980).

K. M. Chandy, U. Herzog, and L. Woo, ‘‘Approximate
Analysis of General Queuing Networks,”” IBM J. Res.
Develop. 19, 43-49 (1975).

C. H. Sauver and K. M. Chandy, ‘‘Approximate Analysis of
Central Server Models,”” IBM J. Res. Develop. 19, 301-303
(1975).

W.-M. Chow and P. S. Yu, ‘‘An Approximation Technique
for Central Server Queueing Models with a Priority Dis-
patching Rule,”” Research Report RC-8163, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1980.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981




32

33.

34.

35.

36.

37.

38.

40.
41.
42.

43,

44.

45.

46.

47.

48.

49,

50.

51.

52.

53.

54.

. C. H. Sauer, ‘* Approximate Solution of Queueing Networks
with Simultaneous Resource Possession,”” Research Report
RC-8679, IBM Thomas J. Watson Research Center, York-
town Heights, NY, 1981.

J. H. Florkowski, ‘‘Extended Analytic Models for System
Evaluation,”” Technical Report TR00.2549, IBM Data Sys-
tems Division, Poughkeepsie, NY, 1974,

U. Herzog, L. Woo, and K. M. Chandy, ‘‘Solution of
Queuing Problems by a Recursive Technique,”” IBM J. Res.
Develop. 19, 295-300 (1975).

Y. Bard, ‘‘Some Extensions to Multiclass Queueing Net-
work Analysis,” Performance of Computer Systems, M.
Arato, A. Butrimenko, and E. Gelenbe, Eds., North-Hol-
land Publishing Co., Amsterdam, 1979, pp. 51-61.

B. Pittel, ‘“‘Closed Exponential Networks of Queues with
Blocking,”” Research Report RC-6174, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, NY, 1976.

Y. Bard, ‘‘An Analytic Model of the VM/370 System,”’ IBM
J. Res. Develop. 22, 498-508 (1978).

P. Schweitzer, unpublished notes (1977).

. Y. Bard, ‘A Model of Shared DASD and Multipathing,”
Commun. ACM 23, 564-572 (1980).

M. Reiser, ‘‘Interactive Modeling of Computer Systems,’’
IBM Syst. J. 15, 309-327 (1976).

D. C. Schiller, ‘‘System Capacity and Performance Evalua-
tion,”” IBM Syst. J. 19, 46-67 (1980).

Y. Bard, ‘‘The VM/370 Performance Predictor,”” Computing
Surv. 10, 333-342 (1978).

P. H. Seaman, ‘‘Modeling Considerations for Predicting
Performance of CICS/VS Systems,’” IBM Syst. J. 19, 68-80
(1980).

Y. Bard, ‘‘A Characterization of VM/370 Workloads,”” Mod-
eling and Performance Evaluation of Computer Systems, H.
Beilner and E. Gelenbe, Eds., North-Holland Publishing
Co., Amsterdam, 1976, pp. 35-56.

P. H. Seaman, R. A. Lind, and T. L. Wilson, ‘‘On Telepro-
cessing System Design, Part IV: An Analysis of Auxiliary
Storage Activity,”” IBM Syst. J. 5, 158-170 (1966).

Y. Bard, ‘‘Task Queueing in Auxiliary Storage Devices with
Rotational Position Sensing,’” Technical Report G320-2070,
IBM Cambridge Scientific Center, Cambridge, MA, 1971.
G. Gordon, ‘“The Development of the General Purpose
Simulation System,’’ Proceedings of the ACM SIGPLAN
History of Programming Languages Conference, Los Ange-
les, 1978, pp. 183-198.

P. H. Seaman and R. C. Soucy, ‘“‘Simulating Operating
Systems,”” IBM Syst. J. 8, 264-279 (1969).

H. M. Stewart, ‘‘Performance Analysis of Complex Commu-
nications Systems,”’ IBM Syst. J. 18, 356-373 (1979).

C. H. Sauer, M. Reiser, and E. A. MacNair, “‘RESQ—A
Package for Solution of Generalized Queueing Networks,”’
Proceedings, National Computer Conference, Dallas, TX,
1977, pp. 977-986.

C. H. Sauer and E. A. MacNair, ‘‘Computer/Communica-
tion System Modeling with Extended Queueing Networks,”’
Research Report RC-6654, 1BM Thomas J. Watson Re-
search Center, Yorktown Heights, NY, 1977.

C. H. Saver and E. A. MacNair, ‘‘Queueing Network
Software for Systems Modeling,”” Research Report RC-
7143, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1978. See also Software —Practice and Experi-
ence 9, 5 (1979).

D. V. Foster, P. F. McGehearty, C. H. Sauer, and C. N.
Waggoner, ‘‘A Language for Analysis of Queueing Models,”’
Proceedings of the Fifth Annual Pittsburgh Modeling and
Simulation Conference, 1974, pp. 381-386.

M. Reiser and C. H. Sauer, ‘‘Queueing Network Models:
Methods of Solution and their Program Implementation,”
Current Trends in Programming Methodology, Volume III:
Software Modeling and Its Impact on Performance, K. M.
Chandy and R. T. Yeh, Eds., Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1978, pp. 115-167.

IBM J. RES. DEVELOP. 4 VOL. 25 & NO. 5 & SEPTEMBER 1981

55

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

. C. H. Sauer, ‘‘Passive Queue Models of Computer Net-
works,” Computer Networking Symposium, Gaithersburg,
MD, 1978.

Charles H. Sauer, Edward A. MacNair, and Silvio Salza, ‘A
Language for Extended Queuing Network Models,” IBM J.
Res. Develop. 24, 747-755 (1980).

P. S. Cheng, ‘‘Trace-Driven System Modeling,”” IBM Syst.
J. 8, 280-289 (1969).

S. W. Sherman, F. Baskett, and J. C. Browne, ‘“‘Trace
Driven Modeling and Analysis of CPU Scheduling in a
Multiprogramming System,”” Commun. ACM 15, 1063-1069
(1972).

S. W. Sherman, ‘‘Trace-Driven Modeling: An Update,”
Proceedings of Symposium on Simulation of Computer
Systems, Boulder, CO, 1972, pp. 87-91.

W. W. Chiu and W.-M. Chow, ‘‘A Performance Model of
MVS,” IBM Syst. J. 17, 444-462 (1978).

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
‘‘Evaluation Techniques for Storage Hierarchies,” IBM
Syst. J. 9, 78-117 (1970).

L. Belady and C. J. Kuehner, ‘“‘Dynamic Space Sharing in
Computer Systems,”” Commun. ACM 12, 282-288 (1969).
P. A. W. Lewis and G. S. Shedler, ‘‘Empirically Derived
Micromodels for Sequences of Page Exceptions,” IBM J.
Res. Develop. 17, 86-100 (1973).

. C. Boksenbaum, S. Greenberg, and C. Tillman, ‘‘Simulation
of CP-67, Technical Report G320-2093, IBM Cambridge
Scientific Center, Cambridge, MA, 1973.

Y. Bard, ‘‘Characterization of Program Paging in a Time-
sharing Environment,”” IBM J. Res. Develop. 17, 387-393
(1973).

D. E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, Addison-Wesley Publishing
Co., Inc., Reading, MA, 1969.

P. A. W. Lewis, A. S. Goodman, and J. M. Miller, ‘A
Pseudo-Random Number Generator for the System/360,”
IBM Syst. J. 8, 136-146 (1969).

Computer Subroutine Libraries in Mathematics and Statis-
tics, International Mathematical & Statistical Libraries,
Inc., Houston, TX.

P. A. W, Lewis and G. S. Shedler, ‘‘Simulation of Nonho-
mogeneous Poisson Processes with Log-linear Rate Func-
tion,”” Biometrika 63, 501-506 (1976).

D. L. Iglehart, ‘‘The Regenerative Method for Simulation
Analysis,”” Current Trends in Programming Methodology,
Volume III: Software Modeling and Its Impact on Perform-
ance, K. M. Chandy and R. T. Yeh, Eds., Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1978.

S. S. Lavenberg and C. H. Sauer, ‘‘Sequential Stopping
Rules for the Regenerative Method of Simulation,”” IBM J.
Res. Develop. 21, 545-558 (1977).

S. S. Lavenberg, T. L. Moeller, and C. H. Sauer, ‘‘Concom-
itant Control Variables Applied to the Regenerative Simula-
tion of Queueing Systems,”” Oper. Res. 27, 134-160 (1979).
S. S. Lavenberg, T. L. Moeller, and P. D. Welch, *‘Statisti-
cal Results on Multiple Control Variables with Application
to Variance Reduction in Queueing Network Simulation,’
Research Report RC-7423, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY, 1978.

T. L. Moeller and P. D. Welch, ‘A Spectral Based Tech-
nique for Generating Confidence Intervals from Simulation
Outputs,’” Proceedings of the 1977 Winter Simulation Con-
ference, 1977, pp. 177-184.

C. H. Sauer, L. S. Woo, and W. Chang, ‘‘Hybrid Analysis/
Simulation: Distributed Networks,”” Research Report RC-
6341, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1976.

76. M. Schatzoff and C. C. Tillman, ‘‘Design of Experiments in

Simulator Validation,”” IBM J. Res. Develop. 19, 252-262
(1975).

77. H. Beilner and G. Waldbaum, *‘Statistical Methodology for

Calibrating a Trace-Driven Simulator of a Batch Computer

569

YONATHAN BARD AND CHARLES H. SAUER




System,” Statistical Computer Performance Evaluation, W. Yonathan Bard is located at the IBM Cambridge Scien-
fzrgilzzgg‘er, Ed., Academic Press, Inc., New York, 1972, pp. tific Center, 545 Technology Square, Cambridge, Massa-
chusetts 02139. Charles H. Sauer is located at the IBM
Thomas J. Watson Research Center, Yorktown Heights,

Received July 15, 1980; revised February 11, 1981 New York 10598.

570

YONATHAN BARD AND CHARLES H. SAUER IBM J. RES. DEVELOP. & VOL. 25 ¢ NO. 5 & SEPTEMBER 1981




