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IBM  Contributions  to  Computer  Performance  Modeling 

Performance modeling can be  used throughout the life of a computer  system,  from initial design, through implementa- 
tion, configuration (and reconfiguration)  and even tuning. Performance  models are  usually solved  by numerical 
techniques, where possible, and by simulation, otherwise. This paper  summarizes IBMs contributions to  performance 
modeling  and the solution of performance models. 

Introduction 
There are many reasons for wishing to model the per- 
formance of a computer system. When a brand-new 
system is being  designed or implemented, modeling is the 
only  way to determine whether performance  specifica- 
tions will be met.  When a system is being  configured for a 
specific workload, modeling  is the economical way to 
narrow down the search among the myriad possible 
configurations.  Modeling is required for capacity plan- 
ning to meet anticipated increases in an installation’s 
workload. Even in the day-to-day management of a 
computer installation, modeling  may  indicate  which of 
many possible tuning actions can best alleviate perform- 
ance bottlenecks. 

Performance modeling consists of estimating the values 
of system performance parameters, given descriptions of 
the system’s configuration and workload. The perform- 
ance parameters most  commonly  modeled are  the re- 
sponse times to service requests of various types (trans- 
actions, jobs, messages), throughputs (number of re- 
quests completed per unit time), utilizations (percent of 
time system components are busy), and queue lengths 
(number of requests waiting for service at various system 
components). Depending  on the modeling  method  em- 
ployed, one obtains anything from mere  average values of 
these quantities to full probability distributions. 

In the following sections we shall  first enumerate the 
general classes of modeling  methods. We shall then give a 
brief  summary of queueing  network theory, which is the 
basis of most computer performance  models. We then 
summarize the contributions of  IBM to analytic and 
simulation  models of computer systems. 

It is impossible to  do justice here to all IBM contribu- 
tions to this area. We have chosen to concentrate our 
attention on the “main line” area of queueing network 
models, thereby excluding  much important work on sub- 
jects like priority queueing,  program behavior, and tele- 
processing system modeling. We have also excluded the 
extensive work  on aspects of performance analysis not 
directly related to modeling. We apologize to all authors 
whose work should have been listed but was not, due  to 
our oversight or ignorance. 

Apart from  making  specific research contributions, 
IBM authors have also published some books covering 
aspects of modeling [l-41. These books contain many 
case studies which demonstrate the practical value of the 
modeling technology-another subject which is beyond 
the scope of this paper. The reader not  familiar  with 
queueing network models  and  their applications may also 
wish to consult special issues of Computing  Surveys (Vol. 
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10, September 1978) and Computer (Vol. 13, April 1980) 
for general discussion. 

Modeling  methods 
Computer performance models may  be of the empirical, 
analytic, or simulation types, with various hybrids possi- 
ble. An empirical model  is constructed by fitting relative- 
ly simple equations, usually linear, to measured  perform- 
ance data. The usefulness of this method  is limited, since 
such equations can generally  be  applied  only under 
conditions not too different  from those previously ob- 
served. Such models have been used, for example, to 
describe the relation between system overhead and the 
functions that the system  performs [5] and to evaluate the 
effectiveness of system modifications [6]. Methods for 
constructing and  fitting  such  models are discussed in [7]. 

An analytic model consists of a set of equations which 
are thought to capture, at least approximately, the rele- 
vant aspects of the system’s behavior. Such equations 
can sometimes be  solved explicitly, but  more often than 
not some numeric methods are required to evaluate the 
solutions. Analytic models, which will be described in 
some detail below, have proven extremely  useful for 
computer performance analysis: they are fast, relatively 
easy to program, and they produce more than acceptable 
accuracy in  many cases. However, they  generally  yield 
only  equilibrium average values of the performance mea- 
sures, and there are still  many  problems  which are 
analytically intractable. Even when  good approximations 
are available, these must  be  continually validated, either 
against real data or against  simulation  models. 

A simulation model is a computer program,  designed to 
imitate the behavior of the real system in some detail. A 
computer system simulator tracks the progress of each 
job or transaction through the various system compo- 
nents, accumulating performance statistics as it goes 
along.  Simulators have found wide  application  in the 
modeling of computer system performance, as well as in 
the validation of analytic models.  They are capable of 
almost  unlimited accuracy, depending  on the amount of 
detail that is built into them. They can produce estimates 
of entire distributions of performance measures, not just 
averages. They can be  used to study transient, as well as 
equilibrium, system behavior. However, they may be 
difficult to implement and validate, and their running may 
consume large amounts of computing resources. By and 
large, simulation  should  be considered only  when a 
suitable analytic model is not available. 

Computers  as  networks of queues 
A computer system may be  viewed as a set of compo- 
nents, each of which  is capable of providing certain 

services. For instance, the CPU executes instructions, 
the channels transmit data, and the I/O devices both store 
and transmit data. A job or transaction submitted to the 
system may be  viewed as a set of service requests, which 
nust be executed by these components in a certain order. 
When the transaction requires service from a system 
component, it may  find the latter busy  serving  some other 
transaction. Our transaction must then queue up  and  wait 
for its turn. The performance of the system is determined 
primarily by the length of service and queueing times at 
each component, and by the rules controlling the se- 
quence of transitions from  component to component. For 
performance modeling purposes, the system may there- 
fore be  viewed as a network of queues. It is not surprising 
that most performance models, both analytic and  simula- 
tion, are basically  queueing  network models. 

Analytic  models 
As implied  by the foregoing, analytic computer perform- 
ance models are based primarily on queueing network 
theory. This theory originated in the work of Jackson [8] 
and Gordon and Newel1  [9]. The simplest nontrivial 
queueing network model, the so-called “machine repair- 
man model,” was  applied to computer system  modeling 
by Scherr [IO]. The first  full-fledged applications of the 
theory to  our field are due to Buzen [ 1 I] and Arora and 
Gallo [12]. This theory deals with a fixed number of 
customers (e .g . ,  jobs or transactions) circulating  among a 
set of queues, constituting a so-called closed network. An 
open network is one where customers are allowed to 
anive from and depart to the outside world. Subsequent 
work, by Baskett et al. [13], by Reiser and Kobayashi at 
IBM [14, 151, by Chandy et al. [16], by Lam at IBM [17], 
and by Towsley [18], has greatly expanded the scope of 
the theory, so that it now encompasses networks with 

Several customer classes, each with its own service and 
routing requirements. 
Mixed networks, i . e . ,  networks where  some customers 
are fixed  within the network and others are allowed to 
arrive and depart. 
Servers of several types, including processor sharing, 
infinite server, last come first served preemptive re- 
sume, and first  come  first served (in the last case, all 
customer classes must have identical exponentially 
distributed service times). 

0 Servers with  variable service rates, depending on queue 
length and subnetwork population. 
Routing probabilities depending on queue length  and 
subnetwork population. 
Routing probabilities depending on previous routing of 
a job. 
Arrival rates and  loss functions dependent on network 
population. 563 
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However, some  restrictions still apply, among which are 
the following: 

e A customer  can request  service  only  from one  server  at 

e Priority scheduling is not allowed. 
e Successive transaction interanival and  service  times 

must be statistically  independent. 

a time. 

The main result of the  theory is that,  for  those  networks 
satisfying the restrictions, the probability of each  network 
state is  proportional to the  product of terms,  each involv- 
ing the  state of a single queue. By “state” we  mean the 
number of customers of each class receiving or waiting 
for  service  at each  queue. Each of these terms consists of 
a simple  function of the state of its  queue, and of the  total 
average service time required by each customer  class at 
that  queue. Because of the  form of the state probabilities, 
it is  referred to as the product  form  solution, and  net- 
works satisfying the required  conditions are called prod- 
uct  form  networks. Once the  state probabilities have  been 
computed, all the required  performance  measures can  be 
easily calculated. 

To explicitly evaluate the  product form  solution, one 
requires a proportionality constant, whose  function  is to 
ensure  that all state probabilities sum to unity. The 
evaluation of this so-called normalizing constant is  quite 
trivial for  open networks, but  can become quite  burden- 
some  when a closed  network has many customer  classes. 
In  fact,  from a computational  point of view, analyzing the 
performance of a closed  (or mixed) network  is  more or 
less  equivalent to evaluation of the normalizing constant 
(although some algorithms do  not evaluate that  constant 
explicitly). 

The main threads in the development of queueing 
network  applications are 

Finding efficient algorithms for obtaining the  exact 
product form  solution. 
Finding  approximate  solutions  for non-product form 
networks. 

e Finding fast algorithms for obtaining  approximate  solu- 
tions to a large variety of networks, both product  form 
and  not. 

IBM has  made significant contributions to all three  areas. 
These  are described in the following sections. 

e Exact algorithms for  product  form networks 
Buzen [19] originated what later became  known as  the 
convolution  algorithm for computing the normalizing 
constant. If G(n, m) is the normalizing constant  for a 
network with n servers and m jobs,  then  the algorithm 564 
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uses a convolution  formula of the form 

G(n,  m) = 1 G(n - 1 ,  m - i)A(n, i )  , 
i 

where A(n, i )  is a factor related to  the processing rate of 
the nth server when its  queue length is i .  The formula 
permits  calculation of the normalizing constant  for pro- 
gressively larger networks.  The original version applied 
only to closed single-class networks.  This was general- 
ized at  the IBM Thomas J. Watson Research  Center by 
Chandy,  Herzog, and Woo [20], by Reiser and Kobayashi 
[14], and by Sauer [21] to encompass the entire range of 
product form networks. This algorithm has remained the 
standard one  for  several  years, but is currently receiving 
competition from  several new algorithms, all developed 
(at  least partly) at IBM: Reiser  and  Lavenberg’s mean 
value  analysis [21-231 and Chandy and  Sauer’s local 
balance  algorithm for normalizing constants [21, 241. 
Also noteworthy are some algorithms not  applicable to all 
product form networks, namely Moore’s partial  fraction 
algorithm [25], Kobayashi’s Polya  enumeration [26], and 
Chandy and Sauer’s coalesce computation of normalizing 
constants [24]. 

The computational efforts required for  the various full- 
range algorithms are comparable,  but  they differ some- 
what in their numerical properties. Algorithms which 
compute the normalizing constant explicitly are subject to 
floating point overfiow when solving grossly  unbalanced 
networks. Mean value analysis, which avoids the normal- 
izing constant  calculation,  is free from that problem,  but 
is  subject to loss of accuracy when dealing with variable- 
rate  servers.  For networks with only fixed-rate and 
infinite servers, mean  value  analysis appears  to  be  the 
algorithm of choice, and  recent work by Reiser [23] may 
overcome  some of the method’s deficiencies. The mean 
value algorithm works directly with the mean values of 
queue lengths and  response times at each  queue. It 
computes these quantities  for a given network by relating 
them to values for networks  with, in turn, one  fewer 
customer in each  class. Specifically, in the  case of a 
network with fixed-rate servers, it  applies the following 
formulas  alternately: 

T(n,  m) = t(n)[l  + N(n, m - l)] , ( 1) 

where T(n,  m) and N ( n ,  m) are, respectively, the total 
time a job spends at  the nth server, and  the average  queue 
length of the nth server, when there is a total of m users in 
the  system,  and t ( j )  is  the total  service  time per  job  at the 
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nth server.  This  method  has spawned several approxi- 
mate methods  which will be discussed  in the following 
sections. 

Approximations  for non-product form networks 
Many methods  have  been  proposed  for obtaining  approxi- 
mate  solutions to queueing  networks which do not have a 
product  form  solution. Among those  contributed by 
workers  at IBM we list the following: 

0 The diffusion approximation [27] replaces  the  discrete 
transitions of customers between queues by means of a 
continuous diffusion process.  The  method provides a 
convenient  way of modeling nonexponential  service 
times by taking into  account  the variance, as well as  the 
mean, of the  service times. 
Many approximations  are based on decomposing the 
network into  several  parts, replacing each  part with a 
single more or  less equivalent server,  and then solving 
the resulting reduced network [4, 281. Many of these 
decompositions [29-321 are based on a queueing-theo- 
retic analogue of Norton’s theorem [20], which  permits 
replacing all but  one of the  queues in a product form 
network with a single  equivalent queue.  Another inter- 
esting  method  which uses a  hierarchical  decomposition 
principle is due  to Florkowski [33]. 
In decomposition  approximations one must  solve a 
reduced  network  (or networks)  which does not satisfy 
product form  conditions. The  method of Herzog, 
Chandy,  and Woo [34] provides an efficient algorithm 
for solving reduced  networks which arise in decomposi- 
tion  approximations. 
In  mean  value  analysis  one  uses a “delay  equation,” 
e.g., Eq. (l), relating the total  average  delay suffered by 
a customer  in a given queue  to  the  average length of 
that  queue  for a network with one  fewer  customer.  It is 
a straightforward matter  to  adapt  these  equations  to 
non-product form  queues, e.g. first come first served 
with different average service  times for different class- 
es,  as well as  more complex cases involving blocking 
and parallelism. The results [22, 351 are  approximate, 
but often quite serviceable. 

Fast  approximate  algorithms 
The algorithms described in the previous sections work 
well and reasonably quickly in many cases.  However, 
when the  number of closed  customer classes  reaches  ten 
or so, the algorithms  become too slow and storage- 
consuming.  Computational requirements  can also be- 
come excessive when  the number of customers  and/or 
servers  becomes  very large. IBM  workers  have contribut- 
ed some  algorithms  which are  faster  and  more storage- 
conserving than  the previously described  ones  yet  pro- 
duce  accurate  answers, typically within 5% of their 
slower counterparts. 
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Pittel [36] has investigated  the asymptotic behavior of 
the  product  form solution as  the  number of customers in 
each class increases  beyond  bounds, while preserving 
fixed ratios between different types.  This led to a very 
fast and simple iterative algorithm, valid for large  popula- 
tions (documented in [37]). It then turned  out  that  the 
same algorithm is  derivable from  mean value analysis [22] 
if one neglects the difference between  networks  whose 
number of customers differs by  one. This method  was 
then applied to many non-product form  networks [35]. A 
general approach, valid for  both small and large  popula- 
tions, was then  developed [22, 381 as  documented in [39]. 
The  approach  consists of approximating the  properties of 
a  network with m - 1 customers using the  properties of a 
network with rn customers, and  then  applying the mean 
value  equations. The  latter now contain  only  quantities 
relating to  an m customer  network,  and are usually 
solvable by means of a very simple iterative  procedure. 

Implementations 
A  general-purpose  queueing  network solver,  such as 
QNET4 [40], is  very useful for ad hoc computer  system 
modeling. For  routine  use,  however,  it  presents various 
dificulties, most  notably the problem of expressing a 
computer system modeling problem  in  queueing theoretic 
terms.  Therefore,  many special-purpose  models, tailored 
to specific systems,  have been constructed. Among these 
are models of MVS [41], VM/370 [37, 421, and CICS [43]. 
Similar models exist  for  IMS,  Systems 34 and 38, and 
others. Such a model  contains  in its  core a suitable 
queueing  network  algorithm, but this is  surrounded by 
layers of software which 

prompt  for  inputs describing  system  configuration  and 
workload  in terms meaningful to  the  end  user.  For 
instance,  the configuration  description  may  consist of 
the  CPU  model, main storage size,  I/O device types, 
and  their  channel  connections. The workload  descrip- 
tion may consist of the number of users or transaction 
rate  for  each  class,  and average resource demands 
(instructions executed,  I/O  and  other  service  requests 
made,  storage occupied) per  transaction of each class. 
translate  these  inputs  into quantities required by the 
queueing network algorithm, i.e. service times and 
routing  probabilities at  each  queue.  This translation is 
accomplished  by  using built-in tables of hardware  and 
software characteristics,  such  as  CPU and  device 
speeds, and operating  system  path  lengths. 

Many such  models are available to  IBM  system engineers 
for  use in configuring systems  to meet customers’ per- 
formance requirements. 

These models are typically accurate  to within 5% in the 
estimation of utilizations and  throughputs,  and within 



20% for average queue lengths and response times. The 
accuracy of the  performance predictions  is  determined 
more by the accuracy of the workload characterization 
fed into the model than by the quality of the model itself. 
For this reason, it  is  most desirable to  have means of 
deriving model inputs directly from measurements  taken 
on  real  systems [37, 441. 

Special-purpose  models have also  been devised for 
various  system components. Of particular  interest  is the 
I/O subsystem,  consisting of channels, control  units, 
strings, and devices. The contention for channel  and 
control unit time cannot  be modeled adequately by means 
of queueing network theory. A  successful  approach to 
this problem is to regard  each  device as a single server 
queue, whose service time is the sum  of seek,  latency, 
rotational delay,  search, and data  transfer times. The 
rotational delay time, in turn, is a function of the  conten- 
tion  for  various path components  (channel,  control unit, 
and  head of string). Models due to Seaman et al. [45] and 
Bard [46, 391 have successively  tackled the following 
cases: single path  to each  device; single path with rota- 
tional position sensing;  and multiple path with devices 
shared among several  CPUs. 

Simulation 
Simulation is a popular  approach to  the solution of 
computer system models because of its generality and 
because system  details can  be represented very accurate- 
ly. However,  there  are a number of potentially  over- 
whelming problems with simulation: 1) Constructing a 
simulation program  and verifying that  the program is 
logically correct  and properly represents  the simulated 
system can  require a great amount of human effort. 2) It 
may be very difficult to characterize the system work- 
loads and features which have  the  greatest impact  on 
performance. 3) Running a simulation program should be 
considered a statistical  experiment; the performance 
measures  obtained  from a simulation must be viewed 
skeptically unless appropriate statistical  methods are 
used. 4) Detailed simulation programs may require large 
amounts of computer time to provide accurate perform- 
ance estimates.  IBM has made significant contributions 
which alleviate these problems. 

Construction of simulation models 

GPSS Though introduced  two  decades ago,  the Gener- 
al Purpose Simulation System (GPSS) remains  one of the 
most  popular  languages for computing system simulations 
[47]. A principal reason for  the success of GPSS is  that  it 
provides  convenient  abstractions which may be used to 
describe  systems without actually writing a simulation 

566 program; GPSS  constructs a simulation program  based  on 

the user’s  description. The abstract  elements of GPSS  are 
called “blocks.” Current versions of GPSS  have roughly 
50 block types.  Each block type has  a  unique pictorial 
symbol. Usually one will construct a diagram showing the 
flow  of “transactions” through various  blocks.  (The 
transactions may literally represent  transactions in a data 
base  system,  or may represent commands or batch jobs in 
a general-purpose computer  system, messages in a com- 
puter communication system, etc.) Once  such a diagram 
has been constructed, the  computer  implementation of 
the model is a mechanical translation of the diagram. 

CSS and  SNAPISHOT Closely related to GPSS  is the 
Computer  System  Simulator (CSS) [48]. Rather than the 
abstract blocks of GPSS, CSS  blocks are predefined 
characterizations of IBM  hardware  components. Con- 
struction of the simulation model in CSS is thus primarily 
a matter of describing the software  (operating system, 
application programs, etc.) which runs on the hardware. 
A  further step in this  direction of alleviating the need for 
simulation programming is the  Systems Network Analy- 
sis ProgrardSimulated  Host Overview  Technique 
(SNAPISHOT) [49]. In addition to characterizations of 
hardware  components, SNAP/SHOT  provides  corre- 
sponding characterizations of many of IBM’s software 
products, especially those associated  with the Systems 
Network  Architecture. 

Research  Queueing  Package An alternate approach to 
alleviating the need for simulation programming is the 
high-level modeling language provided by the  Research 
Queueing Package  (RESQ) [50-521. The  three principal 
contributions of RESQ  are that 1) Several  solution meth- 
ods, numerical, approximate, and simulation, are brought 
together in one software package. 2) Systems  are de- 
scribed in terms of very high-level abstract elements, 
based on queueing networks. 3) Several user interfaces 
provide  both  novice  and  experienced users productive 
means to  describe  systems. We discuss  each of these 
contributions in turn. 

In  the  past many (most?) modeling practitioners  have 
restricted  themselves to one solution method, either 
analytic (including numerical and  approximate  methods) 
or simulation. RESQ includes the previously mentioned 
QNET4 package,  approximate  solution  components, and 
a simulation component  for the  solution of models. Thus 
the  RESQ user  is  strongly  encouraged to avoid arbitrary 
restrictions on solution  methods  and to  use a method 
most  appropriate to  the problem at  hand.  The presence of 
several solution methods also makes feasible the mechan- 
ical use of the hybrid solution methods to be described. 

There  are a number of assumptions  required  for  exact 
analytic  or numerical solution of a significantly sized 
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queueing  network model to be  feasible. In addition to 
specific limitations on particular types of queues,  there 
are general assumptions usually left  implicit, e . g . ,  that a 
job in the queueing  network contends  for only one 
resource  at a time  and/or that a job may not be involved in 
simultaneous synchronous activities. However, charac- 
teristics  such as  these  are important in actual  systems, 
where several resources (e .g . ,  memory, channel, control- 
ler and  device)  may be necessary for  particular activities 
and messages may be  transmitted as  packets  across 
different communication paths,  to  be  reassembled  at their 
destination. RESQ provides  extensions of traditional 
queueing networks so that  such  characteristics may be 
included in a model to be  solved  by  approximation or 
simulation. The  most important of these  extensions is the 
“passive”  queue, first  proposed  by Foster,  McGehearty, 
Sauer, and Waggoner [53] and redefined in RESQ 
[50, 51, 541. Traditional  queues are referred to  as  “ac- 
tive” because a job holding a resource of the  queue is 
actively using the  resource.  Resources of passive queues 
are held so that  the  job may use a resource of primary 
importance. Passive  queues  have been demonstrated  to 
provide compact representations of complex  contention 
situations  and protocols [5 1 ,  551. 

The first RESQ  interface was an  interactive  prompter, 
with built-in tutorial  facilities, so that a novice could 
easily  learn RESQ terminology and  characteristics. Re- 
cently, a second version of RESQ  has  been developed, 
compatible  with the first [56]. This  version incorporates a 
much  more sophisticated  user interface, a modeling lan- 
guage analogous to a programming language. The RESQ2 
language has  been designed to  encourage  the  user  to 
produce well-structured  models, in the  sense of struc- 
tured  programming, so that modelers  can effectively cope 
with large systems.  The  “submodel” facility of RESQ2 is 
designed so that modelers can  cooperate in  constructing a 
model and build upon  the previous work of other model- 
ers. 

Workload  characterization 

Trace-driven  modeling In simulation models, the work- 
load has traditionally  been  described  by means of proba- 
bility distributions. These,  however, may  not capture 
important  interdependencies of workload characteristics. 
This  problem is overcome in trace-driven  modeling, first 
proposed by Cheng [57] and later popularized  by others 
[58-601. With trace-driven modeling, the simulator  “exe- 
cutes”  the  same  sequence of transactions  that  was actual- 
ly traced  on a real  system. If used properly, trace-driven 
models can  reproduce measurement results  very closely. 
One can  then make modifications in the model and  have 
confidence that  the model results are  very close to  the 
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performance that would be  observed if corresponding 
modifications were  made  to .the actual  system. 

Characterization of paging In  both distribution-driven 
and  trace-driven  simulations of virtual memory  systems, 
a compact and  accurate representation of paging activity 
is desirable. The  obvious  representation, a complete 
history of page references, is usually impractical. Of 
particular impact  has  been  the  characterization in terms 
of distance strings in  stack replacement  algorithms [61]. 
Other related work  includes  the lifetime functions  dis- 
cussed by Belady and  Kuehner [62] and  the semi-Markov 
characterizations of Lewis  and  Shedler [63]. Other com- 
pact  representations of paging behavior have been  devel- 
oped at IBM for inclusion in various  models. These 
include the  macro-instructions of Boksenbaum et  al. [a], 
the page  survival index [65], the paging index [MI, and 
the global LRU  analysis of Chiu and  Chow [60]. 

Statistical  aspects of simulation 

Random  number  generators When one  is characteriz- 
ing systems by  probability  distributions, one must have 
generators  for  producing samples  from the distributions. 
Nearly all practical  generators  for  general distributions 
require a generator  for  the uniform distribution on  the 
interval [0, I]. In designing such a uniform generator 
there  are a number of pitfalls which can only  be  avoided 
by  careful use of number  theory to propose a generator 
and of rigorous statistical  tests  to verify that  the  generator 
has  the desired properties [66]. The  generator proposed 
by Lewis,  Goodman,  and Miller [67] has  been shown to 
have  very good properties.  In  fact,  its  properties  are so 
highly regarded that  this generator has  been subsequently 
incorporated in highly regarded software  for  other ven- 
dors’ machines [68]. This is surprising because random 
number generators  are usually  designed for specific arith- 
metic characteristics,  such  as word size,  and  are general- 
ly  not  easily transported. IBM research  has  also contrib- 
uted  methods  for simulation of processes not  described 
by stationary  distributions, notably  nonhomogeneous 
Poisson processes [69]. 

Output  analysis Another difficult problem in probabilis- 
tic  simulations is  the analysis of output.  The running of 
the simulation is a statistical experiment;  the  results of 
the simulation program may not  be accurate estimates of 
model performance  measures.  The most important  recent 
contribution to  this problem is  the  Regenerative Method 
for confidence intervals [70]. IBM has contributed a 
number of improvements  and extensions for  the Regener- 
ative  Method, including  stopping  rules [71], extension to 
response time distributions [3], and  variance reduction 
techniques [72]. IBM  authors  have  also applied variance 
reduction techniques to previous methods  for confidence 567 
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intervals [73]. The regenerative method is incorporated in 
RESQ, and the practical applicability of the method has 
been demonstrated by a number of RESQ  models [51]. A 
recently proposed spectral method [74] for confidence 
intervals may prove to be  more  useful than previous 
methods, including the regenerative method. 

Computational  expense 

Hybrid  simulation One factor in the computational 
expense of simulation is the disparity  in event rates in 
different parts of the system, causing unnecessarily long 
simulation of one part in order to have a long  enough 
simulation of another part with low event rates. An 
important method to avoid  this expense is hierarchical 
solution, where these different parts of the model are 
solved separately. A special case of hierarchical solution 
is hybrid simulation, where part of the model  is  solved 
numerically. Examples of hybrid  simulation are found in 
[60] and [75]. 

Design of experiments and validation In addition to 
reducing the expense of individual simulations, one can 
reduce the number of simulations required to cover a 
parameter space by appropriate design of experiments 
[76]. Rather than run a simulation for each combination of 
parameters, one can run simulations for a small subset of 
the combinations and estimate results for the other com- 
binations. This approach is also useful for validating the 
model. For this purpose, identical sets of experiments are 
run on the real system and on the model. The statistical 
effects of various system parameters are evaluated in 
both cases, and the two sets of computed effects are 
tested for lack of significant differences. If the test is 
passed, the model is considered to be validated. Model 
validation can also be combined  with estimation of the 
unknown  model parameters [77]. 
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