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Formal  Semantics of Programming  Languages:  VDL 

The  history of ideas  that led to the first  formalization of the  syntax  and  semantics of PLII is sketched.  The definition 
method and notation  are known as the  Vienna Definition Language (VDL). The paper  examines the relationship  between 
VDL and both  denotational  semantics  and  the  axiomatic  approach to  programming  language  definition. 

1. Introduction 
Software, commercial and scientific application programs 
in particular, constitute formidable  investments by indus- 
try. High level languages play an  important  role in the 
protection of these investments by preserving the validity 
and meaning of programs across multifarious hardware, 
operating systems,  and implementations, as well as over 
time, as  the underlying  hardware  and systems evolve. 

To remain stable  both in form  and meaning, a program- 
ming language needs a rigorously precise  and implemen- 
tation-independent definition. Such definitions do not 
emerge casually, as committees struggle to standardize a 
language. This has been painfully clear ever since FOR- 

TRAN and ALGOL 60 appeared  on the  scene. 

The first significant contribution  towards rigorous and 
formal language definition was made by John  Backus [l] 
for the  purpose of defining the  syntax of ALGOL 60. The 
method  and notation, known as  BNF (Backus Naur 
Form),  or minor variants thereof, have been used for 
virtually all programming languages since ALGOL 60. It 
enjoys general consensus. The  method  profoundly influ- 
enced compiler construction and stimulated  numerous 
theoretical  studies in computer  science. 

The success of formal  syntax definitions invited similar 
attempts  at  the formalization of the semantic aspects of 
programming languages, i . e . ,  the definition of the mean- 
ing of programs rather than  their  form. The problem 
turned  out  to  be obstinate. In spite of considerable 

progress, no satisfactory solution exists,  at least  none 
that enjoys  general acceptance. 

This state of affairs is not particularly surprising. The 
formalization of programming languages inherits a frame 
of reference from linguistics and  formal logic [2, 31; in 
spite of its distinct origin and purpose,  the analysis of 
programming languages shares some of the difficulties 
with the analysis of natural languages. 

However,  the  past  two decades  have seen considerable 
progress.  Language constructs  that were  only  understood 
on an intuitive,  pragmatic  basis, if at all, can now be 
defined and analyzed in precise  mathematical  terms. 

The present paper is a retrospective  contemplation of a 
piece of work that contributed to this relative  success: the 
first  complete  formalization of the semantics of a com- 
mercially available  and generally used programming lan- 
guage, viz . , P L ~ .  

The methodology and  the  actual definition of PL/I were 
developed during the years 1964 to 1969 by the IBM 
Laboratory  Vienna  under  the management of H. 
Zemanek. The definition method and  the related  notation 
are known collectively as VDL (for Vienna Definition 
Language). The  term “Vienna Definition Language,” to 
my knowledge, was first used by J .  Lee  in [4]. The 
acronym initially used for  the PL/I formalization was 
“ULD”  for Universal  Language  Document. 
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2. Historical sketch of VDL 

The motivation  and  start 
The efforts related to formal semantics at the Vienna 
Laboratory were  triggered by a preceding experience 
with  an  implementation of ALGOL 60. 

Unlike users of a language,  who  might  only  need a 
partial knowledge of the language,  an implementer needs 
a complete understanding of the language to be  imple- 
mented. At the time (1%0), this  was a rather demanding 
prerequisite. The combination of blocks, procedures as 
arguments, general goto statements, and recursion was 
especially  difficult to master. It was hoped that a formal 
model  could serve as the basis for a systematic design  and 
justification of execution environments and compiler 
algorithms. 

With this motivation in mind,  preliminary  investiga- 
tions started in 1964. 

The state of the art at that time  was  summarized by an 
IFIP Working Conference on “Formal Language  De- 
scription Languages” [5], held  in Baden bei  Wien  in 
September 1964. “Attendance was  limited by invitation 
to recognized experts in one or more of the various 
disciplines of linguistics, logic, mathematics, philosophy, 
and  programming  whose frontiers converge around the 
subject of the meeting. The resulting  group-51  individ- 
uals from 12 nations-was  ideal in size, breadth of 
experience, and  commitment to the enterprise.” (The 
quotation is from the Preface to the Working Conference 
Proceedings.)  Members of the IBM Vienna Laboratory, 
involved in the preparation of the conference, had the 
opportunity to become acquainted with the subject and 
the leading scientists. 

0 The PL/Z definition 
Work  on the formal definition of PLJI started in September 
1965. 

The first version of the PL/I definition was completed in 
December 1966  [6]; two further versions [7] and [8] had 
been produced by June 1968 and June 1969, incorporating 
changes  and extensions to the language. This paper refers 
mostly to the second version, which includes the axio- 
matic  definition of storage, lacking  in the first version. 

Close cooperation with the IBM Hursley Laboratory, 
then responsible for the PLD language and its implementa- 
tion, had  been established to ensure accuracy of the 
formalized  language content and feedback concerning 
problems uncovered by the formalization.  Members of 
the IBM Hursley Laboratory also contributed to the 

550 formal  definition and its methodology. 

The ANSI PL/I Standard [9] is based on the VDL 

methodology, though not identical to the earlier VDL 

formalization. After some exposition of the VDL method, 
we contrast the VDL version with the ANSI Standard for 
PL/I . 

There has  been some influence  from the formalization 
exercise on PL/I during the phase when the language 
received its  final shape. The most  visible practical influ- 
ence is seen in the use of the methodology  in the ANSI 
Standard. Considerable academic research is traceable to 
the work of the Vienna Laboratory in the computer 
science literature. 

The intended practical role of a formal definition, of 
both syntax and semantics alike, is threefold: first, to 
provide an authoritative reference document from  which, 
possibly less formal, user manuals can be derived, and 
also as an arbiter concerning subtle questions of form  and 
meaning; second, to provide a basis from which  imple- 
mentations can be derived systematically, if not formally 
or even mechanically, thus rendering portability of pro- 
grams as an  uncompromised reality. A third role for a 
formal  definition is that it provides a basis for reasoning 
about programs, for program proofs. 

These objectives imply  that the single, primary, author- 
itatively binding reference document  be the formalized 
one and that the formalization be produced by the same 
body that designs the language; furthermore, the second 
objective asks for  the formal document to be  available 
before implementation  design proceeds. 

The VDL definition of PL/I falls short on both counts. It 
was certainly too late to  be used  by implementers. 

VDL definitions of languages other than PL/I have been 
produced: e.g., ALGOL 60 [lo] and BASIC [ll]. The exer- 
cise of formalizing ALGOL 60 resulted in a document very 
much  smaller  in size than the PLA definition, thus demon- 
strating that the size of the PUI definition is not necessari- 
ly due to the particular definition method. 

The period after VDL 

Following the formalization of PLD, various projects at the 
Vienna Laboratory attempted to improve the definition 
method  and attacked some major open problems. 

Some progress had  been  achieved towards methods for 
verifying the consistency of formal source language se- 
mantics  and its implementation. The first  stumbling at- 
tempts to use VDL for that purpose are found in [12]. The 
published trace of this activity is found in [13-181. 
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A significant improvement in the metalanguage and the 
mathematical apparatus  has  been  worked  out and is 
known as META-IV. The new metalanguage together  with 
an adaptation of the methodology (called VDM, for Vienna 
Development Method [19]), strongly influenced by the 
work of Scott  and  Strachey  on  denotational  semantics, 
was successfully  applied to a subset of PL/I [20]. The 
improvement achieved results  in  proofs of correctness  for 
implementations that  are  shorter,  more lucid, and  thus 
more convincing than earlier attempts. 

META-IV has  recently been  used for formalizations of 
CHILL [21] and Ada [22], at the  Technical University of 
Denmark. 

It became apparent  that  the techniques proposed in the 
context of formal semantics of programming languages 
and  the related  implementation verification were  equally 
applicable to  program design, in particular to data ab- 
straction  and stepwise concretization with related  cor- 
rectness proofs. An early example of this  turn in the 
development can  be found in [23], which to my knowl- 
edge is  the first publication showing the  axioms defining 
the  “abstract  data  type”  stack  and  the relation of this 
device to its  implementation. 

Since 1976, the methodology that  has  its  roots in VDL 
and META-IV has  been pursued  patiently and diligently 
outside  the Vienna Laboratory, manifest mainly in the 
publications of Dines Bjorner, e .g . ,  [24], and Cliff Jones 
[25, 261. 

What has been  outlined is the history of one school of 
thought, VDL, and  the  subsequent  developments triggered 
by VDL;  this is the  purpose of the  paper  and  is elaborated 
in more detail in the following sections. 

Other significant developments  have  occurred,  and  the 
picture would be incomplete without attempting  to posi- 
tion  the methodology  contemplated in this paper relative 
to the currently relevant scientific context; Section 8 
attends  to this duty. 

3. The VDL method 
Central to main line programming languages, including 
PL/I, is a  category of imperative sentences  (“command” 
and  “executable  statement”  are synonyms). How can the 
meaning of an imperative  sentence  be explained? Intu- 
itively, the intent of such  sentences  is  to  effect change. 
The command “Paint this wall green,” faithfully  execut- 
ed by an obedient painter, will turn a possibly  white wall 
into a  green one. 
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The most direct explicate of the meaning of an impera- 
tive sentence  is a  function over a set of potential states, 
mapping given “current”  states  into  successor  states, 
thus indicating the  change of state intended to occur when 
the command is  executed. Referring to  the quoted  exam- 
ple  sentence  above,  the universe of states would be the 
relations between  some  set of walls (that  can be  referred 
to or pointed  to) and a set of colors and  patterns  that walls 
can be given. 

The philosophy thus  sketched is further  supported by 
the following observation. Machine  languages are invari- 
ably  defined,  in their  respective  reference  documents, by 
first specifying the  possible  states of the machine, i .e . ,  
memory structure  and  contents,  registers, instruction 
counter,  etc.  Each  instruction in the  repertoire of the 
machine is  then, in turn, defined by  the effect of its 
execution on  the  state of the machine. The style of 
definition is usually  semiformal, i.e., a mixture of plain 
English and  some formal  technical  notation.  A  formal 
mathematical  model has  been used by C.  C. Elgot and A. 
Robinson  in [27] for  the study of certain general  proper- 
ties of machine  languages; that  paper was  instrumental  in 
the early formation of the VDL methodology. 

The high level  languages  in  practical use  to  date  are 
abstractions  and extrapolations of machine languages; 
historically, one  observes  an evolution from von  Neu- 
mann type  machines,  to symbolic asssembly languages, 
to high level  programming languages. One can  question 
the wisdom and utility of this  development but not the 
historical fact  and  state of affairs. High level languages 
falling in  this vein of development are called  von  Neu- 
mann  languages. 

The  methods €or defining von  Neumann languages are 
primarily  distinguished  by the formal explicate  chosen  for 
the  set of states  and  the formal  explicate chosen  to mirror 
state transitions. 

The domain of states (explicated  by a set of mathemati- 
cal objects)  and state transitions  (functions from  states  to 
states)  together  are called an  abstract  machine. 

The  use of abstract machines for  the  purpose of defin- 
ing programming language  semantics was first  proposed 
by  John  McCarthy [28]. This paper by John McCarthy 
cited above  also  introduces  the notion of abstract  syntax 
and  the proof principle for verifying implementations. 
Peter Landin also applied an  abstract machine in his 
formalization of ALGOL 60 language concepts [29]. 

PL/I is significantly richer  and more complex than the 
stylized  example  languages that had been discussed prior 



Figure 1 Composite object. 

to VDL. The carefully designed  formal explicates for the 
various concepts of PL/I (and  similar  languages) together 
with a consistent formal apparatus and  metalanguage are 
the contributions of VDL. 

Definitions  in vDL are given  in terms of a universal 
domain of objects. In the PL/I definition, there are two 
exceptions to this general rule: Concrete syntax is speci- 
fied  in a variant of BNF, and the storage component of 
the abstract machine is  defined  implicitly  by axioms. The 
domain of objects is partitioned into two broad classes: 
atomic objects and composite objects. A supply of atomic 
objects is assumed as given  and  conveniently  divided into 
subclasses. Composite objects are trees constructed re- 
cursively from atomic objects, composite objects, and a 
set of selectors. Roughly speaking, composite objects can 
be viewed as trees with branches labeled by selectors 
(unique at each level)  and  elementary objects at the leaf 
nodes. Figure 1 depicts a composite object with s s2, s3, 
s 4  as selectors and e , ,   e 2 ,  and e 3  as elementary objects. 

The domain of composite objects includes the null 
object R. Selectors, viewed as functions, can be applied 
to objects and  yield the respective component, or R (the 
empty object), if such a component i s  not present; thus 
selectors are total functions. 

There is a combined replacernentkonstructioddeletion 
operator called p. Let x be a composite object and y be an 
object (elementary or composite). The term p(n;(s:y))  
yields x with the s component being replaced by y ;  if x has 
no s component, such a component is added; replacement 
by R amounts to a deletion of the respective component. 
The domain of objects is closed under the p operation. 

Conventional mathematical notation is used  to  define 
functions and predicates on the domain of objects; some 
additional notation is provided for concise specification 
of subdomains. 

Such is the simple  and  uniform basis of VDL definitions; 
this simplicity comes at a price: maps, lists, stacks,  etc., 
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thus exhibiting some unnecessary representational detail. 
The issue is discussed in  more detail in [23]. META-IV 
employs a greater variety of primitive notions, such as 
maps, lists, tuples, etc. In either method, the respective 
primitive  notions are used to formalize both, the syntactic 
constructs, i . e . ,  programs and parts of programs, as well 
as the semantic constructs, i . e . ,  the state of the abstract 
machine  and its parts. 

VDL definitions  in general, and the PL/I definition  in 
particular, follow a general method and plan; the order in 
which the parts of a definition are discussed below  is  not 
the order in  which these have been  or  should  be  worked 
out, but is the order in which the parts of a definition are 
presented. 

As  usual there is a concrete, context free syntax, which 
is presented with a variant of BNF. However, it is unwise 
to relate the semantics of a complex  programming  lan- 
guage  directly to its concrete syntax. Many secondary 
notational issues can be separated from the essential 
structure of such languages, such as: punctuation, con- 
ventions permitting  omission of parentheses, default attri- 
butes (PL/I), and freedom of ordering with no semantic 
impact. The essential structure of a language is isolated 
by  defining  an abstract syntax (due to McCarthy [28]); it 
gives the semantically essential grammatical constructs 
and a canonical form for the  language. An algebraic 
characterization of this form and its use in semantic 
definitions is to  be found in the work of the ADJ group 
[30]. More detail is provided in the next section. 

An abstract syntax is  specified by equations analogous 
to a context free grammar (not identical, since the ab- 
stract syntax defines objects, i . e . ,  trees, rather than 
character strings). 

The link between the concrete and abstract syntax is 
defined as a map, called a translator, from concrete 
programs to abstract programs. 

The central part of the definition  and focus of this paper 
is the specification of the abstract machine  explicating the 
semantics of the language. A machine is specified  in  two 
parts: (1) a domain of states 2, using exactly the same 
definition technique as was  employed for the abstract 
syntax, i .e. ,  equations analogous to a context free gram- 
mar; and (2) a state transition function A, specifying 
computations for given initial states and programs. PL/I 
and  most other practical languages include nondetermi- 
nistic programs. Language features that may lead to 
nondeterministic programs include  tasking and certain 
grammatical constructions where the sequence of elabo- 
ration of subphrases is left  unspecified by definition. 
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The state transition function A is, therefore, a function 
mapping states into  sets of possible successor states. A 
computation is thus a sequence of states: 

f fo ,  ffl, . . . ffi ,  ffi+l, ' . . 

E A ( ( T i )  

Both the abstract syntax of programs  and the domain of 
states, given the definition  method indicated, are too 
large, in the sense that the abstract syntax contains 
meaningless programs and the domain of states contains 
some that cannot occur given a particular state transition 
function. 

As an aid, the  definition of abstract programs and states 
is usually complemented by so-called context conditions 
that narrow  both sets. For example, the restriction that 
the parameter list in a procedure declaration must  not 
contain two occurrences of the same identifier  could  be 
stated as a context condition. 

In summary  we obtain the  following structure of a VDL 

definition: 

1. Concrete syntax, 
2 .  Abstract syntax, 
3.  Translator, 
4. Abstract machine. 

The intent of such  definitions  is to serve as a basis for 
proving  general properties of languages  and programs, 
rather than  to determine the effect of a specific  program 
when applied to specific data. Of particular interest are 
theorems asserting the correctness of proposed imple- 
mentation techniques, theorems useful  in  program  verifi- 
cation (see Section 8), and also theorems related to the 
equivalence of given constructs ( e . g . ,  can automatic 
variables in PWI always be  replaced by controlled varia- 
bles and suitable explicit allocate  and free statements?). 

As mentioned in Section 2 ,  the ANSI PLD Standard 
uses a similar method of definition; the structure of the 
standard document is as outlined above. The detailed 
construction of the domain of states differs  from the 
Vienna  definition  and is closer to the corresponding data 
structures needed in implementations. The definition of 
state transitions employs stylized  English rather than a 
formal notation. The treatment of temporary results asso- 
ciated with complex state transitions is improved as 
compared  to the Vienna  definition. The definition of the 
state transitions in the ANSI Standard would probably be 
more compact than the VDL style definitions, if the 
stylized  English were replaced by a formal notation. 

4. Abstract syntax 
The state transition function A is defined in terms of 
auxiliary functions; each syntactic category of the ab- 
stract syntax is usually  related to exactly one such 
auxiliary function; thus the structure of the semantic 
definition parallels the syntactic structure. The key idea is 
that the meaning of a complex structure is defined  in 
terms of the meanings of its constituent parts. 

The punctuation marks and particles (mostly  key 
words) play  no role after the phrase structure and syntac- 
tic categories have been determined  and are therefore 
absent from the abstract syntax. 

The practical role of abstract syntax is, therefore, to 
minimize the number of grammatical categories and re- 
place punctuation by an explicit structural definition, 
with the added advantage that the semantic definition 
becomes independent of semantically  insignificant  nota- 
tional variations. 

Let v be a variable name  and e an expression; consider 
the following notational variants of the assignment state- 
ment: 

v = e  

v := e 

e + v  

An abstract syntax would subsume all three variants 
under a definition: 

assignment ::= (source:  expr,  target:  uar) 

where source and target are selectors for the respective 
essential parts of an assignment statement, one of syntac- 
tic category expr (abbreviation for expression), the other 
of syntactic category m r  (abbreviation for variable). 

The concrete syntax of most  programming  languages 
includes the treatment of operator precedence by intro- 
ducing  auxiliary syntactic categories, one for each group 
of operators with the same precedence (the categories 
primary,  factor,  term, etc., in ALGOL 60 exist precisely 
for that purpose). Precedence rules are a notational 
convention that need not enter the essential structure of 
the language; the auxiliary categories can be  eliminated  in 
the abstract syntax: 

expr : : = mr  (rdl  :expr , op  :injix-op,  rd2  :expr ) * . * 
Expressions, expr, are defined to be either variables or 
composite objects consisting of three parts. Two of the 
parts are expressions obtained by applying the selectors 
rdl andrd2 (short for operand  one  and operand two). The 
third part is an injix-op (infix operator) obtained by 
applying the selector o p .  
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Note  that  the above abstract syntax  definition  would  be 
hopelessly  ambiguous if interpreted as a concrete syntax 
rule. 

5. States 
In the design of the domain of states for the abstract 
machine, the primary concern is simplicity, as the pur- 
pose is  definition rather than implementation. In view  of 
the volume  and  complexity  of the VDL formalization of 
PUI this statement may sound frivolous. The following 
few  examples, starting with  some rather simple  language 
concepts, demonstrate how the state of the defining 
abstract machine  is related to language concepts and  how 
it has to be  refined  with each new idea introduced into the 
language. 

The example  published  by J.  McCarthy  in [3 13 formal- 
ized a language  (Micro ALGOL) involving  simple  varia- 
bles, expressions, assignment statements, and  condition- 

be further revised. Upon each  block or procedure activa- 
tion a new environment has to be  formed  including the 
locally  defined  names;  upon exit the  environment  preced- 
ing the activation has to be  re-established. The state must 
be  extended by a stack component, keeping the environ- 
ments of the suspended activations. The discussion of 
denotational semantics in  Section 8 re-examines  this step. 

In addition to variable names, procedure names in the 
context of calls  and as arguments have to be  dealt  with. 
Following the rules of block-structured  languages,  global 
names  occurring in procedure bodies are bound  in the 
environment of the block or procedure activation in 
which  they are declared. In VDL definitions, procedure 
names denote pairs, (body, enu), where the first  compo- 
nent  is the procedure body  proper  and the parameter list; 
env is a copy of the appropriate environment that binds 
the  global  names. 

a1 goto statements. Programs are sequences of such A closer look at the construction of the environment 
statements. States are simply  maps  from variables to their 
(current) values.  Given a particular  map, state, the value 

that needs to be paired  with procedure bodies  upon block 
entry reveals a difficulty.  Since a procedure can  contain 

Of a id’ may be  determined via this map as global references to local  names of the containing  block, 
indicated  below; ID is the set of potential  variables  and in particular recursive references to itself, the environ- 
VAL the set of potential values. ment that needs to be constructed becomes an infinite 

id Y 2  state: ID + VAL 

One  special variable acts as the statement counter; its 
value  points to the next statement to be executed. 

If the language  is enriched by permitting  program 
variables to  “share storage locations,” the state of the 
abstract machine will have to reflect the fact that  two 
distinct variable  names may  in fact denote “the same” 
variable, i . e . ,  an assignment to one variable also changes 
the value of the other. One  method to reflect  such 
“sharing” patterns is to introduce an indirect step. In the 
case of variables an auxiliary  domain of names  called 
locations (LOC)  is introduced. A state consists now of 
two  maps: a map from  identifiers to locations, called 
environment (env), and a map  from locations to values 
called storage (stg). 

The following  diagram  shows  how variables are con- 
nected to values  in the new (provisional)  design of the 
state: 

v -+ loc 2 value 

A variable  name denotes a location  (map env) whose 
contents is a value  (map s tg) .  

enu 

Taking the full  block structure and procedure invoca- 
554 tion into account, the state of the abstract machine has to 

P. LUCAS 

object. The following  example illustrates the point: 

. . .  
begin 

proc P ( .  . .); 

end 
. . . p( .  . .) . . . ] body 

. . .  
end 

Suppose the begin block  is to be executed in environment 
env; the environment, env‘, that has to be constructed 
upon entry into the block  is  given by 

env’ = env + ( P ,  (body, env’ )> 

where maps are viewed as sets of pairs  and mapl +map2 
means: restrict mapl by  eliminating  all elements from its 
domain that are in the domain of map2, and then form the 
union with map2. 

The various state constructions, especially the above 
issue, have  been discussed in depth by J. Reynolds [32]. 

It is only since the fundamental contributions of Dana 
Scott on denotational semantics [33-351 that such recur- 
sive domain equations are understood, i . e . ,  under which 
conditions  such an equation makes sense and  what  do- 
main is  defined if it does. 
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One can easily see that end, according to the preceding 
equation, is an  infinite object by  writing end explicitly for 
the previous example: 

env’ = { (P , (body , { (P , (body , .  . .)), . . .})), . . .} 
The VDL definition avoided infinite objects in the  state of 
the abstract machine. To avoid  infinite objects as proce- 
dure denotations, another indirect step is employed; 
environments become maps  from identifiers to unique 
names, N. Then what identifiers denote is indirectly 
associated by an additional part of the state, the denota- 
tion part, den, mapping  unique  names to denotations. For 
reasons of uniformity, this extra indirect step applies to 
all names, including variable names. 

The following diagrams illustrate the relation between 
names and their denotations for the latest revision of the 
state. 

Variables: 

id 2 n loc ualue 

Procedures: 

P n den. (body, e m )  

With the revision of the state one can easily see that env’ 
1 (see preceding example) is no longer an infinite  object: 

env’ = { ( P , n ) ,  . + .} 

den = { (n ,(body, env’ )) , . . .} 
The environment env’ contains a finite number of ele- 
ments (one for each name declared in the begin  block), 
and each of the elements is  finite. 

Since env’ is finite, the copy of env’ occurring in den 
does not  make den infinite. 

To capture all of PUI’S concepts, further revisions of 
the  state become necessary. This is not the place to 
repeat all the details; these can be found in the literature. 
However, the treatment of the storage component in the 
PL/I definition introduced a new methodological aspect 
which  is discussed in the next section. 

The instruction counter used  in the Micro ALGOL 

example does not yet have  an  analogous component in 
the revised state. Section 7 attends to this issue. 

6. Implicit  definitions,  storage 
The definition  method related to VDL is usually  catego- 
rized as operational or constructive, in contrast to axio- 
matic and so-called denotational methods (see Section 8). 
This is somewhat inaccurate; several parts of the formal- 

I 

ization of PL/I are defined by nonconstructive means. The 
so-called storage component of the state of the PUI 
machine  is an example in point. 

It was  argued  in Section 5 that a simple map from 
identifiers to values is insufficient to model the state of 
program variables for block structured languages  permit- 
ting  call  by reference. The notion of “location” has been 
introduced to remedy the situation. The content function, 
a simple  map  from locations to values, served as the 
model of storage. 

The relationships that may occur among PL/I variables 
are richer than those which can be explicated by this 
simple  model. An initial attempt to produce a construc- 
tive model that would  define  precisely the properties of 
the PL/I language, i . e . ,  those which  must  hold independent 
of implementation, and no more, failed. 

The storage model that was chosen is rather modern; in 
contemporary terminology it would  be  called an “ab- 
stract type.” More precisely, certain domains are postu- 
lated together with functions and predicates on these 
domains; the properties of the domains, functions, and 
predicates are given  by  axioms. 

The definition of the storage properties in axiomatic 
form appeared first in [7]; an introduction to the method- 
ology  is contained in [36]; a revised  definition suitable for 
specialization to PWI as well as ALGOL 68 was  published by 
H. Bekic and K. Walk in [37] for the purpose of compar- 
ing the two languages. 

The features of PL/I that have to be reflected by the 
axioms are: explicit allocation and freeing of storage, 
allocation  and freeing within areas, pointers and their 
relation to based variables ( e . g . ,  left to right equivalence), 
offsets, cells  (similar to union types in ALGOL 68, this 
property has been deleted from PL/I), and alignment 
properties. 

This is not the place to reprint the storage definition; 
the small example below  should  suffice to indicate the 
style of the definition. 

The relevant domains are: STG, a set of storage objects 
(intuitively the  set of all possible snapshots of storage); P ,  
a set of locations; VR,  a set of value representations. 
Roughly speaking, a location can  be  viewed as an address 
together with size information. The size of a location 
determines which values “fit” into it; in the case of PU, 
size not  only relates to the number of bits required but 
also to alignment constraints. A location,p, is viewed as a 
function that can be  applied to  agiven storage object, stg, 

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981 



Figure 2 Control tree. 

to yield that part of the storage object that corresponds to 
the location, p(stg) .  A binary relation is-indep(p1 ,p2) is 
postulated over the domain P of locations. Again intu- 
itively, two locations are independent if they do not 
overlap or contain each other; obviously this relation 
must  be symmetric. 

is-indep(p1 ,p2 )  3 is-indep(p2 , p l )  

An elementary assignment function is postulated, 

el-ass: P X VR X STG --f STG, 

which  assigns a value representation to a location in a 
given storage object and  yields the modified storage 
object. One of the properties of the elementary assign- 
ment function is stated by the axiom 

is-indep(p1 ,p2) 1 pl(s tg)  = pl(el-ass(p2,ur,stg)); 

The axiom states  that assignment to one location does not 
change the content of independent locations. Conversely, 
no definite property of the content of any location that is 
not independent of the assigned-to location can be de- 
rived  on the basis of the above axiom. A program  taking 
advantage of the storage mapping of a particular imple- 
mentation, especially as regards the precise manner  in 
which  locations may overlap, is not  implementation  inde- 
pendent and thus not generally portable. 

The full formalization in [7] of the storage properties 
requires a few additional domains  and functions; about 40 
axioms constrain those functions to reflect the related 
properties of PUI. 

7. State  transitions, the meaning of statements 
The method for specifying the state transition function A, 
mentioned earlier, may seem strange; motivation is re- 
quired. The features of many  programming  languages 
including PLA that make it difficult to define the state 
transition function in a straightforward manner are the 
combination of a nested phrase structure with  general 
goto statements and nondeterminacy (unspecified  se- 
quencing). 

Given a composite grammatical construct, e.g. ,  a con- 
556 ditional statement or iteration statement, one would  like 

to compose the state transition of the compound from the 
state transitions associated with the parts. A statement, 
primitive  or composite, could then be said to denote a 
function, viz . ,  the state transition function to be  applied to 
the state when the statement is executed. Goto state- 
ments cut across this pleasant correspondence between 
syntactic and semantic structure such that this simple 
plan is difficult to follow. The issue is further discussed in 
connection with denotational semantics in Section 8. 

Nondeterminacy also constitutes a barrier to the simple 
plan. The overall state transition effected by a compound 
phrase can be viewed as being composed of multiple 
atomic transitions. Unspecified sequencing means that 
the atomic transitions of two distinct phrases are merged 
(interleaved) arbitrarily. As a consequence, the overall 
state transition of the individual phrases does not provide 
enough  information to determine the combined  effect. 

The question whether the concepts mentioned  should 
be  in  programming  languages at all is important but 
beyond the scope of this paper and  had not been the 
problem VDL was intended to solve. 

To define the  state transitions and cope with the above 
indicated problems, VDL definitions include a control 
component  in the  state of the abstract machine. The 
control component can be  viewed as a tree, called a 
control tree (see Fig. 2), whose nodes are associated with 
instructions. The construction can be represented in 
terms of the universal domain of objects; the details can 
be found in [36]. 

By convention, the instructions at  the leaf  nodes are 
candidates for immediate execution, and the choice is 
arbitrary. The execution of an atomic instruction is 
performed by effecting the state transition defined  by the 
instruction and  removing the instruction from the control 
component. Nonatomic instructions are like macros; they 
are replaced by a control tree. VDL provides notation for 
defining  both kinds of instructions. Upon each block or 
procedure activation, the control component is stacked. 
The interpretation of a goto statement across block 
boundaries removes the appropriate number of stack 
levels. Instructions may, besides  effecting a state transi- 
tion, produce values. The control trees include a mecha- 
nism that permits the result of an instruction to be 
inserted in argument positions of predecessor nodes. 

As an example, let ml-expr(t ,  e )  be the instruction that 
evaluates an expression t in environment e .  If suitably 
defined, the instruction expands into the control tree 
shown  in  Fig. 3.  
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The dashed  lines indicate data flow from the leaves to 
the root. For example, if ml-expr(s-op-l(t) ,   e)  is execut- 
ed, the resulting value is  placed into the first  argument 
position .of ezlal-injix-expr . 

evui-expr ( f ,  e )  

8. The  modern  context,  survey  and  relationships 
It is not the intent of this paper to give a complete 
overview of the subject and the results that have been 
achieved. A brief historical review can be found in [38], 
some  material from which appears here; the reader inter- 
ested in the origins of the subject may  wish to consult the 
Proceedings of the  IFIP Working Conference on Formal 
Language  Description  Languages in 1964 [5]. 

The emphasis of this paper is on the applied rather than 
the theoretical aspects of the theme. Two approaches in 
particular are currently of practical relevance: the axio- 
matic approach and denotational semantics. It is instruc- 
tive to examine the relationship between these two  ap- 
proaches and VDL. 

Denotational  semantics 
Denotational semantics has its roots in the early work of 
P. Landin [29, 391 and C. Strachey [40] with the X- 
calculus [41] as  the formal basis. Fundamental mathemat- 
ical results due to D. Scott [33-351 rendered a firm basis 
upon which the plan of denotational semantics can be 
carried out. The textbook by J. Stoy [42] provides an 
admirable exposition of denotational semantics. 

The formal semantics of a language, denotational style, 
associates with each phrase of the language a mathemati- 
cal object; the phrase is  said to denote that object. 
Conversely, this object is called the denotation of the 
phrase. The fundamental tenet of denotational semantics 
is that the denotation of a composite phrase is a function 
of the denotations of the immediate subphrases. A class 
of mathematical objects is associated with each grammat- 
ical category, and a function on those objects is associat- 
ed with each grammatical construction; the function 
combines the mathematical objects associated with the 
components of the construction to obtain the mathemati- 
cal object (denotation) associated with the phrase. There 
is a correspondence between the syntactic structure and 
the semantic structure of a language in the algebraic sense 
of the term “structure.” This  is elaborated in [30] where 
the denotation is required to be a homomorphism  from 
the algebra of trees of the abstract syntax to  an algebra of 
denotations. 

Given a particular language, the problem is, of course, 
to find mathematical objects suitable for explication  in the 
most direct and  simple  manner. 

Figure 3 Example control tree. 

For the purpose of contrasting the methods, the follow- 
ing examples step through the same  language concepts 
discussed in connection with VDL in Section 5 .  The term 
9 [ p h ]  refers to the denotation of the phrase p h .  To 
indicate the various phrases to be discussed, an ALGOL- 
like  and otherwise obvious notation is used, e . g . ,  
v := expr is an assignment statement composed from 
some expression expr and some variable v .  

To define McCarthy’s Micro ALGOL in denotational 
style one  would  first  define a domain of states as before: 

STG = ID + VAL 

The class of denotations to  be attributed to statements, s t ,  

are functions from states to states: 

$[st]: STG + STG 

Expressions (without side effects) have functions from 
states to values as denotations: 

$[expr]: STG + V A L  

Examples for the definition of composite constructs are 

9 [ s t l ; s t 2 ]  = $ j [ s t 2 ] 4 [ s t l ]  where 0 denotes functional 
composition 

9 [ v :  =expr] = A stg  (assign(stg,  v,$[expr](stg))) 

where assign(stg,v,val) = stg’ 

val for x=v 

stg(x) for x#v 
stg‘(x)= 

Goto’s can  be  formalized  using  so-called continuations. 
The incorporation of goto’s would require a revision of 
the denotations designed so far, leading to a structure that 
is not as straightforward as the above system of denota- 
tions. The technical details can be found in [43]; an  in- 
depth discussion of the issue is presented in [44]. 

Ignoring the goto problem, the next revision incorpo- 
rates block structure and procedures. This revision intro- 
duces the domains of locations, L O C ,  environments, 
ENV,  and storage objects, STG, for the same reasons and 
purposes as in the VDL style. 
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ENV = ID  +DEN 

STG = LOC + VAL 

DEN is a domain of mathematical objects comprising  all 
those objects that identifiers  can denote, including  loca- 
tions (LOC) denoted by variables. Denotations of proce- 
dure names are discussed shortly. 

The major classes of denotations for composite  con- 
structs are 

9[expr]: ENV + (STG + STG x VAL) 

9 [ s f ] :  ENV + (STG + STG). 

Assuming expressions with side effects,  given an environ- 
ment, expressions determine a storage to storage transi- 
tion  and a value; statements determine a transition with- 
out yielding a value. The use of the term “transition” is 
convenient  but  somewhat  misleading, since a definition, 
denotational style, does not  need the notion of computa- 
tion, i . e . ,  a sequence of states that an abstract machine 
assumes. For this reason there is no need to explicitly 
define a domain of environment stacks, as in VDL. How- 
ever, by rather trivial  considerations  one may reconstruct 
the stack mechanism of the operational  definition, if one 
so desires [16]. 

The most  significant  distinction  between VDL and  deno- 
tational semantics  must  be  seen in the treatment of 
procedure denotations. For the present purpose it  is 
sufficient to discuss parameterless procedures. Proce- 
dures simply denote transition functions from storage to 
storage. The environment, establishing  what  identifiers 
denote, would relate procedure names, p ,  to functions: 

env(p): STG + STG 

To see the implications for the definition, it is neces- 
sary to examine  how  such  environments are constructed. 
Assuming a begin block  with one local procedure declara- 
tion, the  meaning of the block  is  defined  by 

$begin proc P ;  body  end; sf end] = 

A env.(let env’ = e m  + ( P ,  ($body])(env’)), 

The crucial  point of this  definition  is the equation defining 
the environment env’ (let clause in the above formula), 
that is, the environment in  which the statement, s f ,  of the 
begin block  must  be  performed. 

The  equation is of the form end = F(env’), i . e . ,  
solutions are fixed  points of F. The environment, env’, 
that is wanted  and that is  said to be  defined  by  the above 
equation  is the “least” fixed  point of F, least with respect 

to a universal  domain  and a partial order defined  on that 
domain.  The  theory of denotational semantics constructs 
such a domain, the ordering  relation  and the conditions 
under which such a least fixed point exists, thus  mathe- 
matically  justifying the use of such equations. 

The  equation is similar to the one that was  avoided in 
VDL,  as discussed before, by introducing an additional set 
of auxiliary  names  and an indirect step in the  referential 
structure of the state. Denotational semantics relates the 
state transition denoted by a procedure identifier  directly 
via the environment; the VDL environment relates the 
identifier to a unique name, the unique  name  is  then in 
turn (by  the den map) related to the pair (body, e m ) ;  by 
examining the definition of A for the case of procedure 
call statements one finds the associated state transition. 
Thus  denotational semantics is more direct, a fact that is 
bound to be  reflected  in  simpler correctness proofs. 

Two aspects were mentioned  in the introductory re- 
marks  on VDL that tend to distort the simple structural 
correspondence of the syntactic and the semantic  do- 
main: the presence of goto’s  and  indeterminate  sequenc- 
ing.  As  mentioned earlier, goto’s  can  be covered, though 
at a cost. Indeterminate sequencing has not  found a 
satisfactory solution so far. There are proposed formal- 
izations; see, e.g. ,   [45] and [46]. The problem  is  not just 
one of adequately  formalizing a language construct, oth- 
erwise understood and accepted; it is  unclear how to 
compose asynchronous processes in an orderly manner, 
with  simple  verification  conditions, i . e . ,  at issue is not a 
definition of what exists but  what  is needed. 

A definition for ALGOL 60 has been  given  in  terms of 
denotational semantics in [47]. Ignoring  notational  differ- 
ences, the PL~I subset definition [20] is of this kind.  The 
language  design group of Ada  is  preparing a denotational 
definition of Ada. 

b Axiomatic  approach 
Research on axiom systems and  proof theory suitable as a 
basis for program  verification  was  initiated by R.  Floyd 
[48] with a simple  flowchart  language as the object 
language. The results were refined  and extended to high 
level  languages  by C .  A. R. Hoare [49]. The subject has 
been  most  actively pursued including automatic program 
verification (see, e .g . ,  J.  King [50]).  

The axiomatic approach establishes a proof theory, a 
set of axioms  and rules of inference, for proving  proper- 
ties of programs. Propositions about programs, or parts of 
programs,  following [49], take the  form 
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where pl and p2  are propositions  referring to program 
variables  and st  is a  program statement.  The intuitive 
meaning of the proposition is: if pl is  true immediately 
before the  execution of st and  the  execution of st termi- 
nates,  thenp2 is true immediately after  the execution of 
s t .  The propositions pl  and  p2  are called the  pre-  and 
post-condition, respectively. 

The axiom for assignment  and the rule of inference  for 
the compound statement “stl;st2,” assuming the sim- 
plest language level,  i.e., expressions without  side effects 
and no block structure,  are given  below. 

P ti,,,<.: =expr) P 

wherepzxpr  isp with all occurrences of u replaced by expr 

ifpl{sfl}p2 andp2{st2}p3 
then p l  et1 ; st2}p3 

The  set of propositions  that  are  derivable  for a given 
program, using the axioms and rules of inference, define 
the meaning of the program. It  is in this sense  that  the 
proof theory defines the semantics of the language. 

Pre- and  post-conditions  can be interpreted  as proposi- 
tions  about  the  state of the computation  before and  after 
execution of the  related program statement (VDL interpre- 
tation);  with respect  to a  denotational  definition, these 
propositions are about objects of the  semantic domains. 
The  type of propositionsp in  denotational terms  has  to be 

9[p]: STG + BOOL. 

The meaning of the new  propositional form  can then  be 
understood as 

pI(stlp2 - .a[Pll (stg) = .a[P21(9btI(W)) 

for all stg for which 9[st]  is defined. 

Thus,  the  axioms  are viewed as  theorems in the frame- 
work of denotational  semantics.  This  intimate  relation- 
ship  has been previously observed in [51],  [16], and [42]. 

The close study of proposed axioms  along these lines 
pays.  For  example,  it  is easily discovered [16] that  the 
simple  assignment axiom  does not carry  over  to  the  next 
level of language, which  includes  block structure and 
procedures with  call  by  reference; as soon as variables 
can  denote  the  same location, the simple  substitution of 
the target  variable by the literal  right-hand  side of the 
assignment is no longer valid in general. 

An axiomatic definition for PASCAL has  been published 
in  [52]. 

9. Challenges 
This last section addresses some problems concerning the 
practical use of formal semantics. 

There  are  two  areas  where  the  results  and methodolo- 
gies of formal semantics could have a major  impact: 
language design and implementation. 

The traditional pattern of language design invariably 
results in an informal  reference document, which may 
possibly later  be supplemented by a formal document. 
This  pattern  is  outdated  and needs to be changed.  Formal 
semantics  provides an intellectual  tool  most usefully 
applied in the  process of creating a language,  a process 
whose  end  result is a formal definition from which 
tutorials and  other  secondary literature are derived. In 
this  setting,  knowledge of the major  principles and results 
in  formal semantics  appears  as a prerequisite  and indis- 
pensable  tool of the language  designer. The challenge is 
mostly  in the  educational  sector of computer science. 

An important motivation for  the formalization of the 
semantics of programming languages was  systematic im- 
plementation  design. More precisely, the  correctness of a 
proposed implementation design is argued with reference 
to a formal definition of the language to be  implemented. 
In addition, and possibly of greater  importance, a formal 
definition can be used in the design process  to establish 
the range of alternative realizations. Some evidence for 
this claim is found in [13]. However, monolithic  formal 
language definitions (e.g.,  those cited in this  paper) are 
not  serving  this purpose well. 

Existing and  proposed programming languages have 
much in common. Thus designers can  draw  from common 
technical  knowledge and experience. It  appears inappro- 
priate  to view a systematic implementation design as a 
series of successive transformations of the formal defini- 
tion of the  entire  source language,  with correctness 
proofs for  each  step. A better strategy is to consider parts 
of languages,  isolatable concepts,  and  their related imple- 
mentation techniques (e.g. ,  block structure  and  the relat- 
ed stack  management). 

From an engineering  point of view,  we need to  estab- 
lish  a repertoire of algorithms and  data  structures (ab- 
stract  types, in modern terminology), each associated 
with  precisely stated assumptions about  the  source lan- 
guage. Formal syntax  and semantics provide  the frame of 
reference  for stating these conditions. The burden of 
proof is on  the  inventors of new algorithms; the imple- 
menter needs  to  keep in  evidence the conditions under 
which these algorithms work. 559 

P. LUCAS IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981 



One observes  that  other  engineering  disciplines  have 
reference  books of the  indicated  kind;  software  engineer- 
ing  has  not  yet  reached  such a state  of  maturity. It 
appears  that  with respect t o  this  latter  topic  the  challenge 
is  for  scholarly  research  rather  than  education. 
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