P. Lucas

Formal Semantics of Programming Languages: VDL

The history of ideas that led to the first formalization of the syntax and semantics of PLI is sketched. The definition
method and notation are known as the Vienna Definition Language (VDL). The paper examines the relationship between
VDL and both denotational semantics and the axiomatic approach to programming language definition.

1. Introduction

Software, commercial and scientific application programs
in particular, constitute formidable investments by indus-
try. High level languages play an important role in the
protection of these investments by preserving the validity
and meaning of programs across multifarious hardware,
operating systems, and implementations, as well as over
time, as the underlying hardware and systems evolve.

To remain stable both in form and meaning, a program-
ming language needs a rigorously precise and implemen-
tation-independent definition. Such definitions do not
emerge casually, as committees struggle to standardize a
language. This has been painfully clear ever since FOR-
TRAN and ALGOL 60 appeared on the scene.

The first significant contribution towards rigorous and
formal language definition was made by John Backus [1]
for the purpose of defining the syntax of ALGOL 60. The
method and notation, known as BNF (Backus Naur
Form), or minor variants thereof, have been used for
virtually all programming languages since ALGOL 60. It
enjoys general consensus. The method profoundly influ-
enced compiler construction and stimulated numerous
theoretical studies in computer science.

The success of formal syntax definitions invited similar
attempts at the formalization of the semantic aspects of
programming languages, i.e., the definition of the mean-
ing of programs rather than their form. The problem
turned out to be obstinate. In spite of considerable

progress, no satisfactory solution exists, at least none
that enjoys general acceptance.

This state of affairs is not particularly surprising. The
formalization of programming languages inherits a frame
of reference from linguistics and formal logic [2, 3}; in
spite of its distinct origin and purpose, the analysis of
programming languages shares some of the difficulties
with the analysis of natural languages.

However, the past two decades have seen considerable
progress. Language constructs that were only understood
on an intuitive, pragmatic basis, if at all, can now be
defined and analyzed in precise mathematical terms.

The present paper is a retrospective contemplation of a
piece of work that contributed to this relative success: the
first complete formalization of the semantics of a com-
mercially available and generally used programming lan-
guage, viz., PL/.

The methodology and the actual definition of PL/1 were
developed during the years 1964 to 1969 by the IBM
Laboratory Vienna under the management of H.
Zemanek. The definition method and the related notation
are known collectively as vDL (for Vienna Definition
Language). The term ‘‘Vienna Definition Language,” to
my knowledge, was first used by J. Lee in [4]. The
acronym initially used for the pL1 formalization was
“ULD” for Universal Language Document.

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. ® VOL. 25 ® NO. 5 e SEPTEMBER 1981

549

P. LUCAS

550

P. LUCAS

2. Historical sketch of vbL

e The motivation and start

The efforts related to formal semantics at the Vienna
Laboratory were triggered by a preceding experience
with an implementation of ALGOL 60.

Unlike users of a language, who might only need a
partial knowledge of the language, an implementer needs
a complete understanding of the language to be imple-
mented. At the time (1960), this was a rather demanding
prerequisite. The combination of blocks, procedures as
arguments, general goto statements, and recursion was
especially difficult to master. It was hoped that a formal
model could serve as the basis for a systematic design and
justification of execution environments and compiler
algorithms.

With this motivation in mind, preliminary investiga-
tions started in 1964.

The state of the art at that time was summarized by an
IFIP Working Conference on ‘“‘Formal Language De-
scription Languages” [5], held in Baden bei Wien in
September 1964. ‘‘Attendance was limited by invitation
to recognized experts in one or more of the various
disciplines of linguistics, logic, mathematics, philosophy,
and programming whose frontiers converge around the
subject of the meeting. The resulting group—351 individ-
vals from 12 nations—was ideal in size, breadth of
experience, and commitment to the enterprise.”’ (The
quotation is from the Preface to the Working Conference
Proceedings.) Members of the IBM Vienna Laboratory,
involved in the preparation of the conference, had the
opportunity to become acquainted with the subject and
the leading scientists.

o The pLI definition
Work on the formal definition of PL/ started in September
1965.

The first version of the PL/ definition was completed in
December 1966 [6]; two further versions [7] and [8] had
been produced by June 1968 and June 1969, incorporating
changes and extensions to the language. This paper refers
mostly to the second version, which includes the axio-
matic definition of storage, lacking in the first version.

Close cooperation with the IBM Hursley Laboratory,
then responsible for the pL/1 language and its implementa-
tion, had been established to ensure accuracy of the
formalized language content and feedback concerning
problems uncovered by the formalization. Members of
the IBM Hursley Laboratory also contributed to the
formal definition and its methodology.

The ANSI pLi1 Standard [9] is based on the vDL
methodology, though not identical to the earlier vDL
formalization. After some exposition of the vDL method,
we contrast the VDL version with the ANSI Standard for
PL/I.

There has been some influence from the formalization
exercise on PL/1 during the phase when the language
received its final shape. The most visible practical influ-
ence is seen in the use of the methodology in the ANSI
Standard. Considerable academic research is traceable to
the work of the Vienna Laboratory in the computer
science literature.

The intended practical role of a formal definition, of
both syntax and semantics alike, is threefold: first, to
provide an authoritative reference document from which,
possibly less formal, user manuals can be derived, and
also as an arbiter concerning subtle questions of form and
meaning; second, to provide a basis from which imple-
mentations can be derived systematically, if not formally
or even mechanically, thus rendering portability of pro-
grams as an uncompromised reality. A third role for a
formal definition is that it provides a basis for reasoning
about programs, for program proofs.

These objectives imply that the single, primary, author-
itatively binding reference document be the formalized
one and that the formalization be produced by the same
body that designs the language; furthermore, the second
objective asks for the formal document to be available
before implementation design proceeds.

The vDL definition of PL/ falls short on both counts. It
was certainly too late to be used by implementers.

vDL definitions of languages other than PL/1 have been
produced: e.g., ALGOL 60 [10] and BASIC [11]. The exer-
cise of formalizing ALGOL 60 resulted in a document very
much smaller in size than the pL1 definition, thus demon-
strating that the size of the PL/1 definition is not necessari-
ly due to the particular definition method.

e The period after VDL

Following the formalization of PL/1, various projects at the
Vienna Laboratory attempted to improve the definition
method and attacked some major open problems.

Some progress had been achieved towards methods for
verifying the consistency of formal source language se-
mantics and its implementation. The first stumbling at-
tempts to use VDL for that purpose are found in [12]. The
published trace of this activity is found in [13-18].

IBM J. RES. DEVELOP. e VOL, 25 e NO. 5 ¢ SEPTEMBER 1981

A significant improvement in the metalanguage and the
mathematical apparatus has been worked out and is
known as META-IV. The new metalanguage together with
an adaptation of the methodology (called vDM, for Vienna
Development Method [19]), strongly influenced by the
work of Scott and Strachey on denotational semantics,
was successfully applied to a subset of PLA [20]. The
improvement achieved results in proofs of correctness for
implementations that are shorter, more lucid, and thus
more convincing than earlier attempts.

META-1V has recently been used for formalizations of
CHILL [21] and Ada [22], at the Technical University of
Denmark.

It became apparent that the techniques proposed in the
context of formal semantics of programming languages
and the related implementation verification were equally
applicable to program design, in particular to data ab-
straction and stepwise concretization with related cor-
rectness proofs. An early example of this turn in the
development can be found in [23], which to my knowl-
edge is the first publication showing the axioms defining
the ‘‘abstract data type’’ stack and the relation of this
device to its implementation.

Since 1976, the methodology that has its roots in VDL
and META-Iv has been pursued patiently and diligently
outside the Vienna Laboratory, manifest mainly in the
publications of Dines Bjorner, e.g., [24], and Cliff Jones
[25, 26].

What has been outlined is the history of one school of
thought, VDL, and the subsequent developments triggered
by vDL; this is the purpose of the paper and is elaborated
in more detail in the following sections.

Other significant developments have occurred, and the
picture would be incomplete without attempting to posi-
tion the methodology contemplated in this paper relative
to the currently relevant scientific context; Section 8
attends to this duty.

3. The vbL method

Central to main line programming languages, including
PL/, is a category of imperative sentences (‘‘command’’
and ‘“‘executable statement’’ are synonyms). How can the
meaning of an imperative sentence be explained? Intu-
itively, the intent of such sentences is to effect change.
The command *‘Paint this wall green,’” faithfully execut-
ed by an obedient painter, will turn a possibly white wall
into a green one.

IBM J. RES. DEVELOP. ® VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

The most direct explicate of the meaning of an impera-
tive sentence is a function over a set of potential states,
mapping given ‘‘current’’ states into successor states,
thus indicating the change of state intended to occur when
the command is executed. Referring to the quoted exam-
ple sentence above, the universe of states would be the
relations between some set of walls (that can be referred
to or pointed to) and a set of colors and patterns that walls
can be given.

The philosophy thus sketched is further supported by
the following observation. Machine languages are invari-
ably defined, in their respective reference documents, by
first specifying the possible states of the machine, i.e.,
memory structure and contents, registers, instruction
counter, etc. Each instruction in the repertoire of the
machine is then, in turn, defined by the effect of its
execution on the state of the machine. The style of
definition is usually semiformal, i.e., a mixture of plain
English and some formal technical notation. A formal
mathematical model has been used by C. C. Elgot and A.
Robinson in [27] for the study of certain general proper-
ties of machine languages; that paper was instrumental in
the early formation of the vDL methodology.

The high level languages in practical use to date are
abstractions and extrapolations of machine languages;
historically, one observes an evolution from von Neu-
mann type machines, to symbolic asssembly languages,
to high level programming languages. One can question
the wisdom and utility of this development but not the
historical fact and state of affairs. High level languages
falling in this vein of development are called von Neu-
mann languages.

The methods for defining von Neumann languages are
primarily distinguished by the formal explicate chosen for
the set of states and the formal explicate chosen to mirror
state transitions.

The domain of states (explicated by a set of mathemati-
cal objects) and state transitions (functions from states to
states) together are called an abstract machine.

The use of abstract machines for the purpose of defin-
ing programming language semantics was first proposed
by John McCarthy [28]. This paper by John McCarthy
cited above also introduces the notion of abstract syntax
and the proof principle for verifying implementations.
Peter Landin also applied an abstract machine in his
formalization of ALGOL 60 language concepts [29].

PLA is significantly richer and more complex than the
stylized example languages that had been discussed prior

551

P. LUCAS

552

P. LUCAS

Figure 1 Composite object.

to VDL. The carefully designed formal explicates for the
various concepts of PL/1 (and similar languages) together
with a consistent formal apparatus and metalanguage are
the contributions of vDL.

Definitions in vDL are given in terms of a universal
domain of objects. In the PL1 definition, there are two
exceptions to this general rule: Concrete syntax is speci-
fied in a variant of BNF, and the storage component of
the abstract machine is defined implicitly by axioms. The
domain of objects is partitioned into two broad classes:
atomic objects and composite objects. A supply of atomic
objects is assumed as given and conveniently divided into
subclasses. Composite objects are trees constructed re-
cursively from atomic objects, composite objects, and a
set of selectors. Roughly speaking, composite objects can
be viewed as trees with branches labeled by selectors
(unique at each level) and elementary objects at the leaf
nodes. Figure 1 depicts a composite object withs , s, s,
s, as selectors and e, e,, and e, as elementary objects.

The domain of composite objects includes the null
object). Selectors, viewed as functions, can be applied
to objects and yield the respective component, or () (the
empty object), if such a component is not present; thus
selectors are total functions.

There is a combined replacement/construction/deletion
operator called u. Let x be a composite object and y be an
object (elementary or composite). The term wu(xys:y))
yields x with the s component being replaced by y; if x has
no s component, such a component is added; replacement
by Q amounts to a deletion of the respective component.
The domain of objects is closed under the w operation.

Conventional mathematical notation is used to define
functions and predicates on the domain of objects; some
additional notation is provided for concise specification
of subdomains.

Such is the simple and uniform basis of VDL definitions;
this simplicity comes at a price: maps, lists, stacks, etc.,
are all represented in terms of this one universal domain,

thus exhibiting some unnecessary representational detail.
The issue is discussed in more detail in [23]. META-IV
employs a greater variety of primitive notions, such as
maps, lists, tuples, etc. In either method, the respective
primitive notions are used to formalize both, the syntactic
constructs, i.e., programs and parts of programs, as well
as the semantic constructs, i.e., the state of the abstract
machine and its parts.

vDL definitions in general, and the PLA definition in
particular, follow a general method and plan; the order in
which the parts of a definition are discussed below is not
the order in which these have been or should be worked
out, but is the order in which the parts of a definition are
presented.

As usual there is a concrete, context free syntax, which
is presented with a variant of BNF. However, it is unwise
to relate the semantics of a complex programming lan-
guage directly to its concrete syntax. Many secondary
notational issues can be separated from the essential
structure of such languages, such as: punctuation, con-
ventions permitting omission of parentheses, default attri-
butes (PL1), and freedom of ordering with no semantic
impact. The essential structure of a language is isolated
by defining an abstract syntax (due to McCarthy [28]); it
gives the semantically essential grammatical constructs
and a canonical form for the language. An algebraic
characterization of this form and its use in semantic
definitions is to be found in the work of the ADJ group
[30]. More detail is provided in the next section.

An abstract syntax is specified by equations analogous
to a context free grammar (not identical, since the ab-
stract syntax defines objects, i.e., trees, rather than
character strings).

The link between the concrete and abstract syntax is
defined as a map, called a translator, from concrete
programs to abstract programs.

The central part of the definition and focus of this paper
is the specification of the abstract machine explicating the
semantics of the language. A machine is specified in two
parts: (1) a domain of states X, using exactly the same
definition technique as was employed for the abstract
syntax, i.e., equations analogous to a context free gram-
mar; and (2) a state transition function A, specifying
computations for given initial states and programs. PL/I
and most other practical languages include nondetermi-
nistic programs. Language features that may lead to
nondeterministic programs include tasking and certain
grammatical constructions where the sequence of elabo-
ration of subphrases is left unspecified by definition.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

The state transition function A is, therefore, a function
mapping states into sets of possible successor states. A
computation is thus a sequence of states:

0-0’ 0-1’ e 0-1" O.i+1’ .

Tus €A (@)

Both the abstract syntax of programs and the domain of
states, given the definition method indicated, are too
large, in the sense that the abstract syntax contains
meaningless programs and the domain of states contains
some that cannot occur given a particular state transition
function.

As an aid, the definition of abstract programs and states
is usually complemented by so-called context conditions
that narrow both sets. For example, the restriction that
the parameter list in a procedure declaration must not
contain two occurrences of the same identifier could be
stated as a context condition.

In summary we obtain the following structure of a vDL
definition:

1. Concrete syntax,
2. Abstract syntax,

3. Translator,

4. Abstract machine.

The intent of such definitions is to serve as a basis for
proving general properties of languages and programs,
rather than to determine the effect of a specific program
when applied to specific data. Of particular interest are
theorems asserting the correctness of proposed imple-
mentation techniques, theorems useful in program verifi-
cation (see Section 8), and also theorems related to the
equivalence of given constructs (e.g., can automatic
variables in PL/1 always be replaced by controlled varia-
bles and suitable explicit allocate and free statements?).

As mentioned in Section 2, the ANSI pL1 Standard
uses a similar method of definition; the structure of the
standard document is as outlined above. The detailed
construction of the domain of states differs from the
Vienna definition and is closer to the corresponding data
structures needed in implementations. The definition of
state transitions employs stylized English rather than a
formal notation. The treatment of temporary results asso-
ciated with complex state transitions is improved as
compared to the Vienna definition. The definition of the
state transitions in the ANSI Standard would probably be
more compact than the vDL style definitions, if the
stylized English were replaced by a formal notation.

IBM J. RES, DEVELOP. ® VOL. 25 e NO. 5 » SEPTEMBER 1981

4. Abstract syntax

The state transition function A is defined in terms of
auxiliary functions; each syntactic category of the ab-
stract syntax is usually related to exactly one such
auxiliary function; thus the structure of the semantic
definition parallels the syntactic structure. The key idea is
that the meaning of a complex structure is defined in
terms of the meanings of its constituent parts.

The punctuation marks and particles (mostly key
words) play no role after the phrase structure and syntac-
tic categories have been determined and are therefore
absent from the abstract syntax.

The practical role of abstract syntax is, therefore, to
minimize the number of grammatical categories and re-
place punctuation by an explicit structural definition,
with the added advantage that the semantic definition
becomes independent of semantically insignificant nota-
tional variations.

Let v be a variable name and ¢ an expression; consider
the following notational variants of the assignment state-
ment:

v=e
vi=e
€ >0

An abstract syntax would subsume all three variants
under a definition:

assignment .= {source: expr, target: var)

where source and target are selectors for the respective
essential parts of an assignment statement, one of syntac-
tic category expr (abbreviation for expression), the other
of syntactic category var (abbreviation for variable).

The concrete syntax of most programming languages
includes the treatment of operator precedence by intro-
ducing auxiliary syntactic categories, one for each group
of operators with the same precedence (the categories
primary, factor, term, etc., in ALGOL 60 exist precisely
for that purpose). Precedence rules are a notational
convention that need not enter the essential structure of
the language; the auxiliary categories can be eliminated in
the abstract syntax:

expr ::= var |{rdl.expr, op:infix-op, rd2:expr) | - - -

Expressions, expr, are defined to be either variables or
composite objects consisting of three parts. Two of the
parts are expressions obtained by applying the selectors
rdl and rd2 (short for operand one and operand two). The
third part is an infix-op (infix operator) obtained by
applying the selector op.

553

P. LUCAS

554

P. LUCAS

Note that the above abstract syntax definition would be
hopelessly ambiguous if interpreted as a concrete syntax
rule.

5. States

In the design of the domain of states for the abstract
machine, the primary concern is simplicity, as the pur-
pose is definition rather than implementation. In view of
the volume and complexity of the vDL formalization of
PL/ this statement may sound frivolous. The following
few examples, starting with some rather simple language
concepts, demonstrate how the state of the defining
abstract machine is related to language concepts and how
it has to be refined with each new idea introduced into the
language.

The example published by J. McCarthy in [31] formal-
ized a language (Micro ALGOL) involving simple varia-
bles, expressions, assignment statements, and condition-
al goto statements. Programs are sequences of such
statements. States are simply maps from variables to their
(current) values. Given a particular map, state, the value
of a variable, id, may be determined via this map as
indicated below; ID is the set of potential variables and
VAL the set of potential values.

id — wal
state

state: ID - VAL

One special variable acts as the statement counter; its
value points to the next statement to be executed.

If the language is enriched by permitting program
variables to ‘‘share storage locations,”’ the state of the
abstract machine will have to reflect the fact that two
distinct variable names may in fact denote ‘‘the same’’
variable, i.e., an assignment to one variable also changes
the value of the other. One method to reflect such
‘‘sharing” patterns is to introduce an indirect step. In the
case of variables an auxiliary domain of names called
locations (LLOC) is introduced. A state consists now of
two maps: a map from identifiers to locations, called
environment (env), and a map from locations to values
called storage (stg).

The following diagram shows how variables are con-
nected to values in the new (provisional) design of the
state:

v —> loc — value
env stg

A variable name denotes a location (map env) whose
contents is a value (map stg).

Taking the full block structure and procedure invoca-
tion into account, the state of the abstract machine has to

be further revised. Upon each block or procedure activa-
tion a new environment has to be formed including the
locally defined names; upon exit the environment preced-
ing the activation has to be re-established. The state must
be extended by a stack component, keeping the environ-
ments of the suspended activations. The discussion of
denotational semantics in Section 8 re-examines this step.

In addition to variable names, procedure names in the
context of calls and as arguments have to be dealt with.
Following the rules of block-structured languages, global
names occurring in procedure bodies are bound in the
environment of the block or procedure activation in
which they are declared. In vDL definitions, procedure
names denote pairs, (body, env), where the first compo-
nent is the procedure body proper and the parameter list;
env is a copy of the appropriate environment that binds
the global names.

A closer look at the construction of the environment
that needs to be paired with procedure bodies upon block
entry reveals a difficulty. Since a procedure can contain
global references to local names of the containing block,
in particular recursive references to itself, the environ-
ment that needs to be constructed becomes an infinite
object. The following example illustrates the point:

begin
proc P(- - °);
N (DR body
end

end

Suppose the begin block is to be executed in environment
env; the environment, env’, that has to be constructed
upon entry into the block is given by

en' = env + (P, (body, env'))

where maps are viewed as sets of pairs and mapl +map2
means: restrict mapl by eliminating all elements from its
domain that are in the domain of map2, and then form the
union with map2.

The various state constructions, especially the above
issue, have been discussed in depth by J. Reynolds [32].

1t is only since the fundamental contributions of Dana
Scott on denotational semantics [33-35] that such recur-
sive domain equations are understood, i.e., under which
conditions such an equation makes sense and what do-
main is defined if it does.

IBM J. RES. DEVELOP. & VOL. 25 @ NO. 5 e SEPTEMBER 1981

One can easily see that env’, according to the preceding
equation, is an infinite object by writing env’ explicitly for
the previous example:

en’ = {(P {body {{P (body, -), --}), -}

The vDL definition avoided infinite objects in the state of
the abstract machine. To avoid infinite objects as proce-
dure denotations, another indirect step is employed;
environments become maps from identifiers to unique
names, N. Then what identifiers denote is indirectly
associated by an additional part of the state, the denota-
tion part, den, mapping unique names to denotations. For
reasons of uniformity, this extra indirect step applies to
all names, including variable names.

The following diagrams illustrate the relation between
names and their denotations for the latest revision of the
state.

Variables:

id — n — loc —> value
env den stg

Procedures:

P = (body, emv)

With the revision of the state one can easily see that env’
(see preceding example) is no longer an infinite object:

em’' = {{P,n), -}
den = {{n(body, env’)), - - '}

The environment env’ contains a finite number of ele-
ments (one for each name declared in the begin block),
and each of the elements is finite.

Since ey’ is finite, the copy of env’ occurring in den
does not make den infinite.

To capture all of PL1’s concepts, further revisions of
the state become necessary. This is not the place to
repeat all the details; these can be found in the literature.
However, the treatment of the storage component in the
PL/ definition introduced a new methodological aspect
which is discussed in the next section.

The instruction counter used in the Micro ALGOL
example does not yet have an analogous component in
the revised state. Section 7 attends to this issue.

6. Implicit definitions, storage

The definition method related to VDL is usually catego-
rized as operational or constructive, in contrast to axio-
matic and so-called denotational methods (see Section 8).
This is somewhat inaccurate; several parts of the formal-

IBM J. RES. DEVELOP. @ VOL. 25 ¢ NO. 5 « SEPTEMBER {981

ization of PL/ are defined by nonconstructive means. The
so-called storage component of the state of the PLI
machine is an example in point.

It was argued in Section 5 that a simple map from
identifiers to values is insufficient to model the state of
program variables for block structured languages permit-
ting call by reference. The notion of ‘‘location’ has been
introduced to remedy the situation. The content function,
a simple map from locations to values, served as the
model of storage.

The relationships that may occur among PL/ variables
are richer than those which can be explicated by this
simple model. An initial attempt to produce a construc-
tive model that would define precisely the properties of
the PLA language, i.e. , those which must hold independent
of implementation, and no more, failed.

The storage model that was chosen is rather modern; in
contemporary terminology it would be called an ‘‘ab-
stract type.”” More precisely, certain domains are postu-
lated together with functions and predicates on these
domains; the properties of the domains, functions, and
predicates are given by axioms.

The definition of the storage properties in axiomatic
form appeared first in [7]; an introduction to the method-
ology is contained in [36]; a revised definition suitable for
specialization to PL/1 as well as ALGOL 68 was published by
H. Bekic and K. Walk in [37] for the purpose of compar-
ing the two languages.

The features of pL/ that have to be reflected by the
axioms are: explicit allocation and freeing of storage,
allocation and freeing within areas, pointers and their
relation to based variables (e.g. , left to right equivalence),
offsets, cells (similar to union types in ALGOL 68, this
property has been deleted from PL/I), and alignment
properties.

This is not the place to reprint the storage definition;
the small example below should suffice to indicate the
style of the definition.

The relevant domains are: STG, a set of storage objects
(intuitively the set of all possible snapshots of storage); P,
a set of locations; VR, a set of value representations.
Roughly speaking, a location can be viewed as an address
together with size information. The size of a location
determines which values ‘‘fit’’ into it; in the case of PL/,
size not only relates to the number of bits required but
also to alignment constraints. A location, p, is viewedas a
function that can be applied to a given storage object, stg,

555

P. LUCAS

556

P. LUCAS

instr 1

instry
instry

instr, .
instry instr

Figure 2 Control tree.

to yield that part of the storage object that corresponds to
the location, p(stg). A binary relation is-indep(pl,p2) is
postulated over the domain P of locations. Again intu-
itively, two locations are independent if they do not
overlap or contain each other; obviously this relation
must be symmetric.

is-indep(pl,p2) o is-indep(p2,pl)
An elementary assignment function is postulated,
el-ass: P X VR X STG - STG,

which assigns a value representation to a location in a
given storage object and yields the modified storage
object. One of the properties of the elementary assign-
ment function is stated by the axiom

is-indep(pl,p2) o pl(stg) = pl(el-ass(p2,vr,stg));

The axiom states that assignment to one location does not
change the content of independent locations. Conversely,
no definite property of the content of any location that is
not independent of the assigned-to location can be de-
rived on the basis of the above axiom. A program taking
advantage of the storage mapping of a particular imple-
mentation, especially as regards the precise manner in
which locations may overlap, is not implementation inde-
pendent and thus not generally portable.

The full formalization in [7] of the storage properties
requires a few additional domains and functions; about 40
axioms constrain those functions to reflect the related
properties of PL/I.

7. State transitions, the meaning of statements

The method for specifying the state transition function A,
mentioned earlier, may seem strange; motivation is re-
quired. The features of many programming languages
including pPL/1 that make it difficult to define the state
transition function in a straightforward manner are the
combination of a nested phrase structure with general
goto statements and nondeterminacy (unspecified se-
quencing).

Given a composite grammatical construct, e.g., a con-
ditional statement or iteration statement, one would like

to compose the state transition of the compound from the
state transitions associated with the parts. A statement,
primitive or composite, could then be said to denote a
function, viz., the state transition function to be applied to
the state when the statement is executed. Goto state-
ments cut across this pleasant correspondence between
syntactic and semantic structure such that this simple
plan is difficult to follow. The issue is further discussed in
connection with denotational semantics in Section 8.

Nondeterminacy also constitutes a barrier to the simple
plan. The overall state transition effected by a compound
phrase can be viewed as being composed of multiple
atomic transitions. Unspecified sequencing means that
the atomic transitions of two distinct phrases are merged
(interleaved) arbitrarily. As a consequence, the overall
state transition of the individual phrases does not provide
enough information to determine the combined effect.

The question whether the concepts mentioned should
be in programming languages at all is important but
beyond the scope of this paper and had not been the
problem vDL was intended to solve.

To define the state transitions and cope with the above
indicated problems, vDL definitions include a control
component in the state of the abstract machine. The
control component can be viewed as a tree, called a
control tree (see Fig. 2), whose nodes are associated with
instructions. The construction can be represented in
terms of the universal domain of objects; the details can
be found in [36].

By convention, the instructions at the leaf nodes are
candidates for immediate execution, and the choice is
arbitrary. The execution of an atomic instruction is
performed by effecting the state transition defined by the
instruction and removing the instruction from the control
component. Nonatomic instructions are like macros; they
are replaced by a control tree. VDL provides notation for
defining both kinds of instructions. Upon each block or
procedure activation, the control component is stacked.
The interpretation of a goto statement across block
boundaries removes the appropriate number of stack
levels. Instructions may, besides effecting a state transi-
tion, produce values. The control trees include a mecha-
nism that permits the result of an instruction to be
inserted in argument positions of predecessor nodes.

As an example, let eval-expr(t, e) be the instruction that
evaluates an expression f in environment e. If suitably
defined, the instruction expands into the control tree
shown in Fig. 3.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 « SEPTEMBER 1981

The dashed lines indicate data flow from the leaves to
the root. For example, if ewal-expr(s-op-l(1), €) is execut-
ed, the resulting value is placed into the first argument
position -of eval-infix-expr.

8. The modern context, survey and relationships

It is not the intent of this paper to give a complete
overview of the subject and the results that have been
achieved. A brief historical review can be found in [38],
some material from which appears here; the reader inter-
ested in the origins of the subject may wish to consult the
Proceedings of the IFIP Working Conference on Formal
Language Description Languages in 1964 [S].

The emphasis of this paper is on the applied rather than
the theoretical aspects of the theme. Two approaches in
particular are currently of practical relevance: the axio-
matic approach and denotational semantics. It is instruc-
tive to examine the relationship between these two ap-
proaches and VDL.

® Denotational semantics

Denotational semantics has its roots in the early work of
P. Landin [29, 39] and C. Strachey [40] with the A-
calculus [41] as the formal basis. Fundamental mathemat-
ical results due to D. Scott [33-35] rendered a firm basis
upon which the plan of denotational semantics can be
carried out. The textbook by J. Stoy [42] provides an
admirable exposition of denotational semantics.

The formal semantics of a language, denotational style,
associates with each phrase of the language a mathemati-
cal object; the phrase is said to denote that object.
Conversely, this object is called the denotation of the
phrase. The fundamental tenet of denotational semantics
is that the denotation of a composite phrase is a function
of the denotations of the immediate subphrases. A class
of mathematical objects is associated with each grammat-
ical category, and a function on those objects is associat-
ed with each grammatical construction; the function
combines the mathematical objects associated with the
components of the construction to obtain the mathemati-
cal object (denotation) associated with the phrase. There
is a correspondence between the syntactic structure and
the semantic structure of a language in the algebraic sense
of the term *‘structure.’’ This is elaborated in [30] where
the denotation is required to be a homomorphism from
the algebra of trees of the abstract syntax to an algebra of
denotations.

Given a particular language, the problem is, of course,
to find mathematical objects suitable for explication in the
most direct and simple manner.

IBM J. RES. DEVELOP. » VOL. 25 @ NO. 5 ® SEPTEMBER 1981

eval-expr (1, ¢€)

l-infix- Q,Q, t
eval-infix expr’(' op (1))
-~

eval-expr (rdl (t),e) eval-expr (rd2 (1), e)

Figure 3 Example control tree.

For the purpose of contrasting the methods, the follow-
ing examples step through the same language concepts
discussed in connection with VDL in Section 5. The term
F[ph] refers to the denotation of the phrase ph. To
indicate the various phrases to be discussed, an ALGOL-
like and otherwise obvious notation is used, e.g.,
v := expr is an assignment statement composed from
some expression expr and some variable v.

To define McCarthy’s Micro ALGOL in denotational
style one would first define a domain of states as before:

STG =1ID - VAL

The class of denotations to be attributed to statements, s¢,
are functions from states to states:

Ist]: STG — STG

Expressions (without side effects) have functions from
states to values as denotations:

Hexpr): STG — VAL
Examples for the definition of composite constructs are

Fstl;st2] = Fst2]Fst]1] where o denotes functional
composition

S{v:=expr] = \ stg (assign(stg,v,Flexpr(stg)))
where assign(stg,v,val) = stg’

val for x=v

stg' (= {
stg(x) for x#v

Goto’s can be formalized using so-called continuations.
The incorporation of goto’s would require a revision of
the denotations designed so far, leading to a structure that
is not as straightforward as the above system of denota-
tions. The technical details can be found in [43]; an in-
depth discussion of the issue is presented in [44].

Ignoring the goto problem, the next revision incorpo-
rates block structure and procedures. This revision intro-
duces the domains of locations, LOC, environments,
ENYV, and storage objects, STG, for the same reasons and
purposes as in the VDL style.

557

P. LUCAS

558

P. LUCAS

ENV =ID - DEN
STG = LOC — VAL

DEN is a domain of mathematical objects comprising all
those objects that identifiers can denote, including loca-
tions (LOC) denoted by variables. Denotations of proce-
dure names are discussed shortly.

The major classes of denotations for composite con-
structs are

Hlexpr]: ENV —» (STG — STG x VAL)
Hst]: ENV — (STG — STG).

Assuming expressions with side effects, given an environ-
ment, expressions determine a storage to storage transi-
tion and a value; statements determine a transition with-
out yielding a value. The use of the term ‘‘transition’’ is
convenient but somewhat misleading, since a definition,
denotational style, does not need the notion of computa-
tion, i.e., a sequence of states that an abstract machine
assumes. For this reason there is no need to explicitly
define a domain of environment stacks, as in VDL. How-
ever, by rather trivial considerations one may reconstruct
the stack mechanism of the operational definition, if one
so desires [16].

The most significant distinction between VDL and deno-
tational semantics must be seen in the treatment of
procedure denotations. For the present purpose it is
sufficient to discuss parameterless procedures. Proce-
dures simply denote transition functions from storage to
storage. The environment, establishing what identifiers
denote, would relate procedure names, p, to functions:

env(p). STG — STG

To see the implications for the definition, it is neces-
sary to examine how such environments are constructed.
Assuming a begin block with one local procedure declara-
tion, the meaning of the block is defined by

F{begin proc P; body end; st end] =
Aenv.(let env' = env + (P, (Flbody])em')),
I[stem))

The crucial point of this definition is the equation defining
the environment env’ (let clause in the above formula),
that is, the environment in which the statement, s¢, of the
begin block must be performed.

The equation is of the form em' = F(em'), i.e.,
solutions are fixed points of F. The environment, env’,
that is wanted and that is said to be defined by the above
equation is the “‘least’ fixed point of F, least with respect

to a universal domain and a partial order defined on that
domain. The theory of denotational semantics constructs
such a domain, the ordering relation and the conditions
under which such a least fixed point exists, thus mathe-
matically justifying the use of such equations.

The equation is similar to the one that was avoided in
VDL, as discussed before, by introducing an additional set
of auxiliary names and an indirect step in the referential
structure of the state. Denotational semantics relates the
state transition denoted by a procedure identifier directly
via the environment; the VDL environment relates the
identifier to a unique name, the unique name is then in
turn (by the den map) related to the pair (body, env); by
examining the definition of A for the case of procedure
call statements one finds the associated state transition.
Thus denotational semantics is more direct, a fact that is
bound to be reflected in simpler correctness proofs.

Two aspects were mentioned in the introductory re-
marks on VDL that tend to distort the simple structural
correspondence of the syntactic and the semantic do-
main: the presence of goto’s and indeterminate sequenc-
ing. As mentioned earlier, goto’s can be covered, though
at a cost. Indeterminate sequencing has not found a
satisfactory solution so far. There are proposed formal-
izations; see, e.g., [45] and [46]. The problem is not just
one of adequately formalizing a language construct, oth-
erwise understood and accepted; it is unclear how to
compose asynchronous processes in an orderly manner,
with simple verification conditions, i.e., at issue is not a
definition of what exists but what is needed.

A definition for ALGOL 60 has been given in terms of
denotational semantics in [47]. Ignoring notational differ-
ences, the PLA subset definition [20] is of this kind. The
language design group of Ada is preparing a denotational
definition of Ada.

e Axiomatic approach

Research on axiom systems and proof theory suitable as a
basis for program verification was initiated by R. Floyd
[48] with a simple flowchart language as the object
language. The results were refined and extended to high
level languages by C. A. R. Hoare [49]. The subject has
been most actively pursued including automatic program
verification (see, e.g., J. King [50]).

The axiomatic approach establishes a proof theory, a
set of axioms and rules of inference, for proving proper-

ties of programs. Propositions about programs, or parts of
programs, following [49], take the form

pl {st}p2

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

where pl and p2 are propositions referring to program
variables and st is a program statement. The intuitive
meaning of the proposition is: if pl is true immediately
before the execution of st and the execution of sz termi-
nates, then p2 is true immediately after the execution of
st. The propositions pl and p2 are called the pre- and
post-condition, respectively.

The axiom for assignment and the rule of inference for
the compound statement ‘‘st!;st2,”” assuming the sim-
plest language level, i.e., expressions without side effects
and no block structure, are given below.

P Avi=expr}p

wherep®__isp with all occurrences of v replaced by expr

expr

if pl{stl}p2 and p2{s:2}p3
then pl{st1;st2}p3

The set of propositions that are derivable for a given
program, using the axioms and rules of inference, define
the meaning of the program. It is in this sense that the
proof theory defines the semantics of the language.

Pre- and post-conditions can be interpreted as proposi-
tions about the state of the computation before and after
execution of the related program statement (VDL interpre-
tation); with respect to a denotational definition, these
propositions are about objects of the semantic domains.
The type of propositions p in denotational terms has to be

J[pl: STG — BOOL.

The meaning of the new propositional form can then be
understood as

pl{st}p2 ~ Hpl](stg) > I p2[(Hst)stg))
for all stg for which $[st]is defined.

Thus, the axioms are viewed as theorems in the frame-
work of denotational semantics. This intimate relation-
ship has been previously observed in [51], [16], and [42].

The close study of proposed axioms along these lines
pays. For example, it is easily discovered [16] that the
simple assignment axiom does not carry over to the next
level of language, which includes block structure and
procedures with call by reference; as soon as variables
can denote the same location, the simple substitution of
the target variable by the literal right-hand side of the
assignment is no longer valid in general.

An axiomatic definition for PASCAL has been published
in [52].

IBM J. RES. DEVELOP. & VOL. 25 & NO. 5 & SEPTEMBER 1981

9. Challenges
This last section addresses some problems concerning the
practical use of formal semantics.

There are two areas where the results and methodolo-
gies of formal semantics could have a major impact:
language design and implementation.

The traditional pattern of language design invariably
results in an informal reference document, which may
possibly later be supplemented by a formal document.
This pattern is outdated and needs to be changed. Formal
semantics provides an intellectual tool most usefully
applied in the process of creating a language, a process
whose end result is a formal definition from which
tutorials and other secondary literature are derived. In
this setting, knowledge of the major principles and results
in formal semantics appears as a prerequisite and indis-
pensable tool of the language designer. The challenge is
mostly in the educational sector of computer science.

An important motivation for the formalization of the
semantics of programming languages was systematic im-
plementation design. More precisely, the correctness of a
proposed implementation design is argued with reference
to a formal definition of the language to be implemented.
In addition, and possibly of greater importance, a formal
definition can be used in the design process to establish
the range of alternative realizations. Some evidence for
this claim is found in [13]. However, monolithic formal
language definitions (e.g., those cited in this paper) are
not serving this purpose well.

Existing and proposed programming languages have
much in common. Thus designers can draw from common
technical knowledge and experience. It appears inappro-
priate to view a systematic implementation design as a
series of successive transformations of the formal defini-
tion of the entire source language, with correctness
proofs for each step. A better strategy is to consider parts
of languages, isolatable concepts, and their related imple-
mentation techniques (e.g., block structure and the relat-
ed stack management).

From an engineering point of view, we need to estab-
lish a repertoire of algorithms and data structures (ab-
stract types, in modern terminology), each associated
with precisely stated assumptions about the source lan-
guage. Formal syntax and semantics provide the frame of
reference for stating these conditions. The burden of
proof is on the inventors of new algorithms; the imple-
menter needs to keep in evidence the conditions under
which these algorithms work.

559

P. LUCAS

560

P. LUCAS

One observes that other engineering disciplines have

reference books of the indicated kind; software engineer-
ing has not yet reached such a state of maturity. It
appears that with respect to this latter topic the challenge
is for scholarly research rather than education.

Acknowledgments

Many referees offered useful comments. I am especially
grateful for the detailed suggestions and improvements
suggested by D. Bjorner, C. B. Jones, J. Lee, J. Thatch-

er,

and H. Zemanek.

References

1.

5.

J. W. Backus, ‘“The Syntax and Semantics of the Proposed
International Algebraic Language of the Zurich ACM-
GAMM Conference,”’ Proceedings of the International Con-
ference on Information Processing, UNESCO, Paris 1959,
Oldenburg, Munich and Butterworths, London, 1960, pp.
125-132.

. H. Zemanek, ‘‘Semiotics and Programming Languages,”

Commun. ACM 9, 139-143 (1966).

. H. Zemanek, ‘‘Formalization—History, Present and Fu-

ture,”’ Programming Methodology: Lecture Notes in Com-
puter Science, Volume 23, Springer-Verlag New York, Inc.,
New York, 1975, pp. 477-501.

. J. Lee and W. Delmore, ‘‘The Vienna Definition Language,

a Generalization of the Instruction Definitions,’” Preprints of
the SIGPLAN Symposium on Programming Language Defi-
nition, San Francisco, August 1969.

Proceedings of the IFIP Working Conference on Formal
Language Description Languages, T. B. Steel, Jr., Ed.,
North-Holland Publishing Company, Amsterdam, 1966.

. PL/T Definition Group, ‘‘Formal Definition of PL/I,”” Ver-

sion 1, Technical Report TR.25.071, IBM Laboratory Vien-
na, 1968.

. (a) M. Fleck and E. Neuhold, ‘‘Formal Definition of the PL/I

’s

Compile-Time Facilities,”” Version 2, Technical Report
TR.25.080, IBM Laboratory Vienna, 1968. (b) K. Walk, K.
Alber, K. Bandat, H. Bekic, G. Chroust, V. Kudielka, P.
Oliva, and G. Zeisel, ‘‘ Abstract Syntax and Interpretation of
PL/,” Version 2, Technical Report TR.25.082, IBM Labo-
ratory Vienna, 1968. (c¢) P. Lucas, K. Alber, K. Bandat, H.
Bekic, P. Oliva, K. Walk, and G. Ziesel, ‘‘Informal Intro-
duction to the Abstract Syntax and Interpretation of PL/I,”
Version 2, Technical Report TR.25.083, IBM Laboratory
Vienna, 1968. (d) K. Alber, P. Oliva, and G. Urschler,
‘“‘Concrete Syntax of PL/,”’ Version 2, Technical Report
TR.25.084, IBM Laboratory Vienna, 1968. (¢) K. Alber and
P. Oliva, ‘‘Translation of PL/I into Abstract Text,”’ Version
2, Technical Report TR.25.086, IBM Laboratory Vienna,
1968. (f) P. Lucas, P. Lauer, and H. Stiegleitner, ‘‘Method
and Notation for the Formal Definition of Programming
Languages,’” Version 2, Technical Report TR.25.087, IBM
Laboratory Vienna, 1968.

. (a) M. Fleck, ‘‘Formal Definition of the PL/I Compile-Time

Facilities,”” Version 3, Technical Report TR.25.095, IBM
Laboratory Vienna, 1969. (b) G. Urschler, ‘‘Concrete Syn-
tax of PL/I,”” Version 3, Technical Report TR.25.097, IBM
Laboratory Vienna, 1969. (¢) K. Walk, K. Alber, M. Fleck,
H. Goldman, P. Lauer, E. Moser, P. Oliva, H. Stiegleitner,
and G. Zeisel, ‘‘Abstract Syntax and Interpretation of
PL/1,” Version 3, Technical Report TR.25.098, IBM Labo-
ratory Vienna, 1969. (d) K. Alber, H. Goldman, P. Lauer, P.
Lucas, P. Oliva, H. Stiegleitner, and K. Walk, ‘‘Informal
Introduction to the Abstract Syntax and Interpretation of
PL/1,” Version 3, Technical Report TR.25.099, IBM Labo-
ratory Vienna, 1969.

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Programming Language PL/I, ANSI X3.53, American Na-

tional Standards Institute, New York, 1976.

P. E. Lauer, ‘‘Formal Definition of ALGOL 60,”” Technical
Report TR.25.088, IBM Laboratory Vienna, 1968.

J. Lee, ‘“The Formal Definition of the Basic Language,”
Computer J. 15, 32-41 (1972).

P. Lucas, ‘“Two Constructive Realizations of the Block
Concept and Their Equivalence,”” Technical Report
TR.25.085, IBM Laboratory Vienna, 1968.

W. Henhapl and C. B. Jones, ‘‘The Block Structure Concept
and some Possible Implementations with Proofs of Equiva-
lence,”” Technical Report TR.25.104, IBM Laboratory Vien-
na, 1970.

W. Henhapl and C. B. Jones, ‘‘A Runtime Mechanism for
Referencing Variables,”’ Info. Process. Lett. 1, 14-16 (1971).
C. B. Jones and P. Lucas, ‘“‘Proving Correctness of Imple-
mentation Techniques,’’ Symposium on Semantics of Algo-
rithmic Languages: Lecture Notes in. Mathematics, Vol.
188, E. Engeler, Ed., 1971, pp. 178-211.

P. Lucas, ‘“‘On Program Correctness and the Stepwise
Development of Implementations,”’ Proceedings Convegno
di Informatica Teorica, University of Pisa, Pisa, Italy, 1973,
pp. 219-251.

C. B. Jones, ‘‘Yet Another Proof of the Block Concept,”
Laboratory Note No. LN25.3.075, IBM Laboratory Vienna,
1975.

C. B. Jones, ‘‘The Vienna Development Method: Examples
of Compiler Development,”” Le Point sur la Compilation, M.
Amirchaby and D. Neel, Eds., Institut de Recherche d’In-
formatique et d’ Automatique, 1978.

““The Vienna Development Method: the Meta-Language,”
D. Bjorner and C. B. Jones, Eds., Lecture Notes in Comput-
er Science, Vol. 61, Springer-Verlag New York, Inc., New
York, 1978.

H. Bekic, D. Bjorner, W. Henhapl, C. B. Jones, and P.
Lucas, ‘““A Formal Definition of a PL/I Subset,’’” Technical
Report TR.25.139, IBM Laboratory Vienna, 1974.

The Specification of CHILL and supplement, The Formal
Definition of CHILL, C.C.L.T.T. (International Telegraph
and Telephone Consultative Committee), Recommendation
7200, Geneva, Switzerland, 1980.

““Towards a Formal Description of Ada,”’ D. Bjorner, Ed.,
Lecture Notes in Computer Science, Vol. 98, Springer-
Verlag New York, Inc., New York, 1980.

P. Lucas, “‘On the Semantics of Programming Languages
and Software Devices,” in Formal Semantics of Program-
ming Languages: Courant Computer Science Symposium,
Randall Rustin, Ed., New York University, 1970.
‘“‘Abstract Software Specification,”” D. Bjorner, Ed., Lec-
ture Notes in Computer Science, Vol. 86, Springer-Verlag
New York, Inc., New York, 1980.

C. B. Jones, ‘‘Constructing a Theory of a Data Structure as
an Aid to Program Development,”” Acta Informatica 11,
119-137 (1979).

C. B. Jones, ‘‘Software Development: A Rigorous Ap-
proach,”” Prentice-Hall International Series in Computer
Science, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.
C. C. Elgot and A. Robinson, ‘‘Random-Access Stored-
Program Machines: An Approach to Programming Lan-
guages,” J. ACM 11, 365-399 (1964).

J. McCarthy, ‘‘Towards a Mathematical Science of Compu-
tation,”” in Information Processing 1962, C. M. Popplewell,
Ed., North-Holland Publishing Company, Amsterdam, 1963.
P. J. Landin, ‘“The Mechanical Evaluation of Expressions,’’
BSC Computer J. 6, 308-320, 1964.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B.
Wright, ‘‘Initial Algebra Semantics and Continuous Alge-
bras,”” J. ACM 24, 68-95 (1977).

J. McCarthy, ‘A Formal Description of a Subset of AL-
GOL,” Proceedings of the IFIP Working Conference on
Formal Language Description Languages, T. B. Steel, Jr.,

IBM J. RES. DEVELOP. e VOL. 25 e NO. 5 ¢ SEPTEMBER 1981

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Ed., North-Holland Publishing Company, Amsterdam, 1966.
J. C. Reynolds, ‘‘Definitional Interpreters for High-Order
Programming Languages,” Proceedings of the 25th ACM
National Conference, 1972, pp. 717-740.

D. Scott, ‘‘Outline of a Mathematical Theory of Computa-
tion,”” PRG-2, Oxford University Programming Research
Group, Oxford, England, 1970.

D. Scott, ‘‘Mathematical Concepts in Programming Lan-
guage Semantics,”’ AFIPS Conf. Proc., Spring Jt. Comput.
Conf. 40, 225-234 (1972).

D. Scott, ‘““Data Types as Lattices,”” SIAM J. Computing 5,
522-587 (1976).

P. Lucas and K. Walk, “On the Formal Description of
PL/,”" Annual Review in Automatic Progamming 6, Perga-
mon Press, Inc., Elmsford, NY, 1969,

H. Bekic and K. Walk, ‘‘Formalization of Storage Proper-
ties,”” Symposium on Semantics of Algorithmic Languages:
Lecture Notes in Mathematics, E. Engeler, Ed., Vol. 188,
Springer-Verlag New York, Inc., New York, 1971.

P. Lucas, ““On the Formalization of Programming Lan-
guages: Early History and Main Approaches,”” The Vienna
Development Method: the Meta-Language: D. Bjorner and
C. B. Jones, Eds., Lecture Notes in Computer Science, Vol.
61, Springer-Verlag New York, Inc., New York, 1978, pp.
1-23.

P. J. Landin, ‘‘A Correspondence between ALGOL 60 and
Church’s Lambda-Notation,”” (2 parts), Commun. ACM 8,
89-101 and 158-165 (1965).

C. Strachey, ‘‘Towards a Formal Semantics,”’ Proceedings
of the IFIP Working Conference on Formal Language
Description Languages, T. B. Steel, Jr., Ed., North-Holland
Publishing Company, Amsterdam, 1966, pp. 198-220.

A. Church, ““The Calculi of Lambda-Conversion,” Annals
of Mathematical Studies, No. 6, Princeton University Press,
Princeton, NJ, 1941,

J. Stoy, Denotational Semantics: the Scott-Strachey Ap-
proach to Programming Language Theory, The MIT Press,
Cambridge, MA, 1977.

C. Strachey and C. Wadsworth, ‘‘Continuations: A Mathe-
matical Semantics which can Deal with Full Jumps,”” PRG-
11, Oxford University Programming Research Group, Ox-
ford, England, 1974.

IBM J. RES. DEVELOQOP. & VOL. 25 & NO. 5 & SEPTEMBER 1981

44.

45.
46.
47.

48.

49.

50.

51.

52.

C. B. Jones, “‘Denotational Semantics of GOTO: An Exit
Formulation and Its Relation to Continuations,” Vienna
Development Method: the Meta-Language, D. Bjorner and
C. B. Jones, Eds., Lecture Notes in Computer Science, Vol.
61, Springer-Verlag New York, Inc., New York, 1978, pp.
278-304.

H. Bekic, ‘“Towards a Mathematical Theory of Processes,”’
Technical Report Tr.25.125, IBM Laboratory Vienna, 1971.

G. D. Plotkin, ‘‘A Powerdomain Construction,”” SIAM J.
Computing 5, 452-487 (1976).

P. D. Mosses, ‘‘The Mathematical Semantics of ALGOL
60,”” PRG-12, Oxford University Programming Research
Group, Oxford, England, 1974.

R. W. Floyd, ‘‘Assigning Meaning to Programs,”’ Mathe-
matical Aspects of Computer Science, Proceedings of Sym-
posia in Applied Mathematics, J. Schwartz, Ed., Vol. 19,
American Mathematical Society, Providence, RI, 1967, pp.
19-32.

C. A. R. Hoare, ‘“The Axiomatic Basis of Computer Pro-
gramming,”” Commun. ACM 12, 576-583 (1969).

J. C. King, ‘““A New Approach to Program Testing,”” Pro-
gramming Methodology: Lecture Notes in Computer Sci-
ence, Vol. 23, Springer-Verlag New York, Inc., New York,
1975, pp. 278-290.

Z. Manna and J. Vuillemin, ‘‘Fixed-Point Approach to the
Theory of Computation,”’ Report AIM 164, Stanford Univer-
sity Computer Science Department and Department of Arti-
ficial Intelligence, Stanford, CA.

C. A. R. Hoare and N. Wirth, ‘“An Axiomatic Definition of
the Programming Language PASCAL,’” ACTA Informatica
2, 335-355 (1973).

Received September 14, 1980; revised February 25, 1981

The author is located at the IBM Research Division
laboratory, 5600 Cottle Road, San Jose California
95193.

561

P. LUCAS

