520

JEAN E. SAMMET

Jean E. Sammet

History of IBM’s Technical Contributions to High Level
Programming Languages

This paper discusses IBM’s technical contributions to high level programming languages from the viewpoint of specific
languages and their contributions to the technology. The philosophy used in this paper is that it is the appropriate
collection of features in a language which generally makes the contribution to the technology, rather than an individual
feature. Those IBM languages deemed to have made major contributions are (in alphabetical order) APL, FORTRAN, GPSS,
and PLI. Smaller contributions (because of lesser general usage) have been made by Commercial Translator, CPS, FOR-
MAC, QUIKTRAN, and SCRATCHPAD. Major contributions were made in the area of formal definition of languages, through
the introduction of BNF (Backus-Naur Form) for defining language syntax and vDL (Vienna Definition Language) for

semantics.

1. Introduction

This paper delineates some of IBM’s technical contribu-
tions to high level programming languages, with some dis-
cussion of related work outside IBM to provide per-
spective. Section 2 provides a brief but broad chronologi-
cal tracing of high level language developments, and
Section 3 discusses the two very early IBM languages. Of
all the other languages developed by IBM, four are major
because they were widely used, as well as making signifi-
cant technical contributions; they are described in Sec-
tion 4. The four (listed alphabetically) are APL, FORTRAN,
Gpss, and PLA. Other languages (e.g., FORMAC, Com-
mercial Translator) had significant impact on the tech-
nology and/or on the development of other languages but
never became major in their own right; those are dis-
cussed in Section 5. Still others made lesser conceptual
contributions to the field (e.g., COURSEWRITER) and are
briefly mentioned in Section 7. Section 6 deals with for-
mal definition methodology.

Aside from Section 2, which provides a very broad
framework for the whole field of high level programming
languages, this paper does not discuss the IBM languages
in strict chronological order. The reason for this is that
there was relatively little interdependence among the
IBM languages. While each language used whatever was

appropriate from existing or prior language technology
both inside and outside IBM, there was no direct upward
technical progression, as occurs in some other aspects of
the computer field. Furthermore, the thrust of this paper
is on each language as a unit, rather than its component
elements. In most cases, it was really the proper technical
packaging of ideas—some old, some new—in each lan-
guage which made the contribution. Stated more explic-
itly, it is my view that the significant technical contribu-
tions made in the programming language area are by the
cohesive combination of features in a language, and not
particularly by an individual feature in a single language
regardless of its novelty.

In addition to specific languages, there have been tech-
nical contributions from IBM in related fields. The whole
subject of compilers is being covered in another paper [1]
in this issue. However, methodologies for language defi-
nition are mentioned in Section 6 of this paper; the
Vienna Definition Language is discussed in more detail in
[2] in this issue.

The definition of the term ‘‘programming language’
has been unclear and controversial almost from the begin-
ning of computer activity. In this paper, ‘‘programming

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. ® VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981




language’’ is used as the equivalent of ‘‘high level lan-
guage.”’ The latter was defined in [3] to have the following
four characteristics:

1. Knowledge of machine code is unnecessary.

2. There is good potential for converting a program writ-
ten in high level language for one computer to run on
another computer with minimal difficulty.

3. There is an instruction expansion, i.e., a single state-
ment in a high level language will produce many ma-
chine code instructions.

4. The notation for the language is problem oriented, i.e.,
it is closer to the original conceptual statement of the
problem than are machine instructions.

The last point in particular is meant to exclude from the
high level language category any system involving fixed
fields and fixed formats. This eliminates RPG and deci-
sion tables from the category of high level languages. It
must be emphasized that this is a technical taxonomy of
high level languages and not a value judgment of the use-
fulness of RPG or decision tables or any other tool or
technique with which the user communicates with the
computer. Also excluded are assembly languages (even
with macros), languages for doing microprogramming,
command languages, and text editors. Again, there is no
value judgment intended here of the importance or value
of these facilities but merely an attempt to keep within the
definition. Finally, a significant set of subroutines added
to an existing language, but without any change to the
base language (e.g., SLIP [4]), is not considered a new
language.

The general area of application programming tools,
some of which border on high level languages, is also out-
side the scope of this paper.

Because many of the source documents referred to in
this paper are not publicly available, and because most of
the languages mentioned in this paper have been de-
scribed in the author’s book [3], many citations to the
book are used to provide an easily accessible source for
the reader to find both a description of the language and
the primary references.

Naturally, the comments in this paper and the value
judgments expressed or implied are the personal views of
the author and do not represent an official view of the
IBM Corporation.

2. Broad chronology

In order to provide perspective on IBM’s technical con-
tributions to programming languages, we trace briefly
their overall development. (A more detailed history cov-

IBM J. RES. DEVELOP. & VOL. 25 & NO. 5 ¢ SEPTEMBER 1981

ering the period through 1971 is given in [5].) Later sec-
tions of this paper discuss each of the specific IBM lan-
guages.

The earliest work known which legitimately fits the
programming language definition given earlier is the
““Plankalkiil’’ by Zuse in Germany (1945). Unfortunately,
this was not implemented. The next step was Short Code,
suggested by J. Mauchly and implemented by others at
Remington Rand UNIVAC (1949-50), and then the un-
named and unimplemented language developed by Ru-
tishauser in Switzerland (1952). The Speedcoding system
for the IBM 701 was developed by IBM in 1953 and is
discussed in Section 3. In this time frame, Remington
Rand produced the A-2 and A-3 systems (based on three-
address pseudocodes to indicate mathematical opera-
tions), and the Boeing Company developed BAcAIC for
the 701. All these languages, plus others of that pe-
riod, attempted to provide scientists and engineers with a
notation slightly more natural to mathematics than ma-
chine code. Some permitted the users to write mathemati-
cal expressions in relatively normal format, but most did
not. None of them had any significant or lasting effect on
language development, and apparently minimal effect (if
any) on people’s thinking.

In May 1953 J. H. Laning, Jr., and N. Zierler at MIT
had a system running on Whirlwind that appears to be the
first system in the United States to permit the user to
write expressions in a notation resembling normal mathe-
matical format, e.g.,

¢ = 0.0052 (a — ¥)/2ay,
y = 5y,

An excellent description of most of these early mathe-
matical systems, plus others, appears in [6], and some of
them are described briefly in [3], and even more briefly in

[7].

In 1954, work on FORTRAN started, and the 704 com-
piler was released in April 1957. PRINT (described in Sec-
tion 3) was actually finished before FORTRAN.

About the time the preliminary FORTRAN report was is-
sued, a group at Remington Rand UNIVAC under Grace
Hopper’s direction began development of a system origi-
nally called AT-3 and later renamed MATH-MATIC. (John
Backus says that he sent them a copy of his November
1954 preliminary FORTRAN report, but I cannot determine
how much influence it had on MATH-MATIC. The prelimi-
nary FORTRAN specifications precede any language design
documents on MATH-MATIC from Remington Rand UNI-
VAC.) MATH-MATIC (described in [3, 6]) was similar in
spirit to FORTRAN, although different in syntax, and it is

521

JEAN E. SAMMET




522

not clear which system was actually running first. How-
ever, of all the parallel work going on in the mid-1950s,
only FORTRAN has survived, and by 1957 there were the
first glimmerings of significant practical usage of a high
level language similar to those we know today.

While the main emphasis prior to 1958 was on the de-
velopment of languages for scientific applications, the
first English-like language for business data processing
problems, FLOW-MATIC, was planned and implemented on
the UNIVAC I under the direction of Grace Hopper at
Remington Rand UNIVAC and released in 1958. (A de-
scription appears in [3].)

Activity on another language, APT, started in 1956 at
MIT under Douglas T. Ross. APT was for numerical ma-
chine tool control, and hence was the first language for a
specialized application area. (See [8] for full details on the
early development.) APT (albeit modified over time) was
still in use in 1980.

The years 1958 and 1959 were among the most prolific
for the development of programming languages. The fol-
lowing events in universities and industrial organizations
all occurred during those two years:

1. The development of the 1AL (International Algebraic
Language), which became known as ALGOL 58, and the
publication of its definition [9]. 1AL had a profound ef-
fect on the computing world, because of
a. Its follow-on, ALGOL 60, which is clearly one of the
most important languages ever developed, and

b. The development of three languages based on the
IAL specifications, namely, NELIAC, MAD, and CLIP
(which eventually was the foundation for JOVIAL).
All except CLIP became widely used.

2. The availability in early 1958 of a running version of
IPL-V (a list processing language).

3. The start of work on the development of LISP, a list
processing language which was intended for artificial
intelligence applications.

4. The first implementation of COMIT, a string processing
language.

5. The formation in May 1959 of the CODASYL (Confer-
ence On Data SYstems Languages) Short Range Com-
mittee, which developed coBoL, and the completion
of the COBOL specifications.

6. The development and availability of language specifi-
cations for AIMACO, Commercial Translator (see Sec-
tion 5), and FACT, all of which were for business data
processing problems.

7. The availability of specifications for JOVIAL.

Of all these languages from 1958-59 and earlier, those
that survive (albeit in modified form) and have significant

JEAN E. SAMMET

usage in 1980 are ALGOL 60, APT, COBOL, FORTRAN, JO-
VIAL, and LISP. References and a discussion of all the lan-
guages named in this section can be found in [3]. A de-
tailed history of the development of the six languages just
cited is provided in [10].

A large impetus for most of this work was economic—
even then programming costs were large, and any steps or
tools which could reduce those costs were looked at fa-
vorably. However, the crucial issue often was whether
any ‘‘slowdown’’ caused by these systems exceeded the
overall savings in people’s money or time; generally the
answers favored the use of such systems.

The period 1960-1970 saw some maturation of the pro-
gramming language field. The material for this period is
taken almost verbatim from [5], copyright 1972, Associa-
tion for Computing Machinery, by permission; descrip-
tions of and references for the languages mentioned are in
[3]. During this time the battle over the use of high level
languages was clearly won, in the sense that machine cod-
ing had become the exception rather than the rule. (This
comment is based only on the author’s opinion and per-
ception because there is simply no data to verify or con-
tradict this statement.) Although the concept of devel-
oping systems programs by using high level languages
was fairly well accepted, there was more machine coding
of systems programs than of application programs. The
use of powerful macro systems and *‘half way’’ languages
such as PL360 [11] provided some of the advantages of
high level languages but made no attempt to be machine-
independent.

The major new batch languages of this decade were AL-
GOL 60, COBOL, and PL/, of which only the last two were
extensively used in the United States. Although ALGOL 68
was defined, its implementation was just starting around
1970.

The advent of interactive programming in the mid-60s
brought a host of on-line languages, starting with Joss and
later followed by BASIC, both of which became very
widely used. Each had many imitators and extenders.
APL\360 (see Section 4) was made available late in the
1960s and became popular among certain specific groups.

The development of high level languages for use in for-
mula manipulation was triggered by FORMAC (see Section
5) and Formula ALGOL, although only the former was
widely used. String processing and pattern matching be-
came popular with the advent of SNOBOL.

The simulation languages GPSS (see Section 4) and SIM-
SCRIPT made computer simulation more accessible to
most users and also encouraged the development of other

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢ NO. 5 & SEPTEMBER 1981




simulation languages. A number of other languages for
specialized application areas (e.g., civil engineering,
equipment checkout) continued to be developed.

Perhaps one of the most important practical develop-
ments in this time period, although scorned by many the-
oreticians, was the development of official standards for
FORTRAN and cOBOL and the start of standardization for
PL/I.

The period 1970-1980 involved relatively few signifi-
cant pure language developments. Those few include: (1)
the implementation and initial limited usage of ALGOL 68;
(2) the implementation and heavy use of Pascal; (3) the
massive effort by the Department of Defense to develop a
single language—called Ada—for embedded computer
systems [12, 13]; (4) the concept of data abstraction; and
(5) concepts of functional programming by Backus [14],
and (6) experimental languages such as CLU, EUCLID, and
SETL. It is too early to tell which—if any—of these con-
cepts and languages will have a fundamental effect on the
computer field.

3. Very early IBM languages

The earliest IBM attempt at what was then considered a
high level language was Speedcoding for the IBM 701
[15]. The motivation for its development was similar to
that for all the early languages—to provide the user with a
notation which was easier to use than raw machine code.
Work was started on Speedcoding in January 1953 under
the supervision of John Backus and the general direction
of John Sheldon; the first official manual was dated Sep-
tember 1953.

The basic principle of Speedcoding was to create two
sets of operations, the first category containing three ad-
dresses and the second set containing only one. The oper-
ations were not part of the hardware and were selected
for their utility to the mathematician. Thus

523 SUBAB 100 200 300 TRPL 500

shows an instruction in location 523 which causes the
computer to subtract the absolute value of the contents of
location 200 from the value in 100 and to put the result in
300; then the computer tests the sign of the result in 300
and transfers control to 500 if it is positive.

Such a notation looks primitive by standards in use
only a few years after its development, but it was actually
used on many 701s and may have influenced the designers
of the 704. However, Speedcoding had no lasting lan-
guage effect.

The other early language of IBM was PRINT (PRe-edited
INTerpretive System) [3]. 1t was designed under the lead-

IBM ). RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢« SEPTEMBER 1981

ership of Robert Bemer and was intended to meet the sci-
entific computing needs of IBM 705 users. Since the 705
had been designed primarily for use in business data pro-
cessing, PRINT was created to meet the needs of people
who wished to use it for scientific computing. It provided
a series of operation codes with variable fields (which
could contain one to four variables, depending on the op-
eration code).

Coding of the PRINT system started in February 1956,
and the first customer tried it in July 1956. Thus, it was
actually completed before FORTRAN. PRINT seems to have
had no significant technical effect on other languages.

4. Major IBM languages

The question of which languages (of the many hundreds
developed since 1950) might be construed as being ‘‘ma-
jor’’ is highly controversial. The judgment used in this
paper reflects that of a very well qualified group of indi-
viduals who served as the Program Committee for the
ACM SIGPLAN History of Programming Languages
Conference held in June 1978. To provide perspective for
the categorizations made in this paper, we quote [10, p.
xviii] the rationale used (in 1977) for selecting the lan-
guages for that conference and list the languages which
were accepted. ‘‘The specific requirements were that the
languages (1) were created and in use by 1967; (2) remain
in use in 1977; and (3) have had considerable influence on
the field of computing. (The cut-off date of 1967 was cho-
sen to provide perspective from a distance of at least ten
years.) The general criteria for choosing the languages are
the following (not necessarily in order of importance, nor
required to have each one apply to each language): Us-
age, influence on language design, overall impact on the
environment, novelty (first of its kind), and uniqueness.”’

The program committee selected the following lan-
guages as satisfying the indicated criteria: ALGOL, APL,
APT, BASIC, COBOL, FORTRAN, GPSS, JOSS, JOVIAL, LISP,
PL/, SIMULA, SNOBOL.

For two of these languages, FORTRAN and GPSS, the first
version (and some of the later ones) were designed and
implemented solely within IBM. A third, PL/1, involved a
joint effort of IBM and SHARE for the language develop-
ment, but the first commercial implementation was done
entirely by IBM. APL was designed initially by K. Iverson
at Harvard University, but its design was continued and
modified after he joined IBM and was then implemented
by IBM. And, of course, IBM employees contributed sig-
nificantly to the external committee developments of AL-
GOL 58, ALGOL 60, and COBOL. The portion of this paper
describing the four ‘‘major IBM languages’’ is based pri-
marily on the papers prepared by the authors for the con-
ference. (See [10, 16].)

523

JEAN E. SAMMET




524

Figure 1 Table of FORTRAN I statements for the IBM 704. The spacing is not significant.

Statement
a=b
GOTOn
GOTO~n,(n,n,,...,n,)
ASSIGNiTOn
GOTO(n,n,,...,n,),i

IF (a)n,, n,, n,

SENSE LIGHT i

IF (SENSE LIGHT i) n,, n,

IF(SENSE SWITCH ) n, n,

IF ACCUMULATOR OVERFLOW n, n,
IF QUOTIENT OVERFLOW n,, n,

IF DIVIDE CHECK n, 1,

PAUSE or PAUSE n
STOP or STOP n

DOri=m,m,orDOni=m,m, m,
CONTINUE

FORMAT (Specification)
READ n, list

READ INPUT TAPE i, n, list
PUNCH n, list

PRINT n, list

WRITE OUTPUT TAPE i, n, list
READ TAPE |, list

READ DRUM, i,j, list
WRITE TAPE i, list

WRITE DRUM i, j, list
ENDFILE

REWIND{

BACKSPACE i

DIMENSION v, v,0,. ..
EQUIVALENCE @@,b,c, .. .), d.e.f, . ),
FREQUENCY n G,j, .. ), m&k,l, ...), ...

Normal sequencing

Next executable statement

Statement n

Statement last assigned
Next executable statement
Statement n,

Statement n,, n,, n, as a less than, =, or greater than 0

Next executable statement

Statement #,, n, as Sense Light { ON or OFF

Statement 1, n, as Sense Switchi DOWN or UP

Statement n,, n, as Accumulator Overflow trigger ON or OFF
Statement n,, n, as MQ Overflow trigger ON or OFF
Statement ., 1, as Divide Check trigger ON or OFF

Next executable statement
Terminates program

Next executable statement

’ I 13

Not executed
Next executable statement

’9 ’ (3]

Not executed

* LR

L 13

® FORTRAN

As mentioned in Section 2, there were a number of early
attempts at ‘‘automatic programming’’ systems (which is
the term used in the 1950s for systems of this type). How-
ever, John Backus in [7, p. 26] states that ‘‘“The Laning
and Zierler system was . . . the world’s first operating al-
gebraic compiler, a rather elegant but simple one.”” He
also describes the sequence of events which finally made
it clear to him that the Laning and Zierler work did not
influence FORTRAN. (Earlier, Backus had publicly stated
his belief that the algebraic nature of FORTRAN was de-
rived from the Laning and Zierler work.)

Backus indicates that in those days programmers were
proud of their ability to use the computer efficiently.
Many of them believed that any attempt to automate pro-
gramming would lead to intolerable inefficiencies. It is im-
portant to understand that milieu because it significantly
influenced the design philosophy for FORTRAN. Backus
points out in [7, p. 27] that even at that time economic
considerations made it clear that steps taken to reduce

JEAN E. SAMMET

programming costs would be of value. He said that: ‘“This
economic factor was one of the prime motivations which
led me to propose the FORTRAN project in a letter to my
boss, Cuthbert Hurd, in late 1953.”"

Backus specifically identified [7, p. 28] the systems that
existed at that time and their influence (almost none) on
the development of FORTRAN. He then indicated that the
704 presented challenges to the designers of any new soft-
ware system which attempted to simplify programming,
because the 704 included floating point arithmetic and in-
dex registers whose simulation was part of the justifica-
tion for some of the earlier software systems. He then
said [7, p. 28]): ““‘In view of the widespread skepticism
about the possibility of producing efficient programs with
an automatic programming system and the fact that in-
efficiencies could no longer be hidden, we were con-
vinced that the kind of system we had in mind would be
widely used only if we could demonstrate that it would
produce programs almost as efficient as hand coded ones
and do so on virtually every job.”” Consequently the de-

IBM J. RES. DEVELOP. ¢, VOL. 25 #,NO. 5 ¢, SEPTEMBER 1981




sign of the language as such was relatively straight-
forward, and the major emphasis was on a system which
would produce efficient object code.

In order to provide an appropriate time sequence, note
that a preliminary FORTRAN report was issued in Novem-
ber 1954, a reference manual was issued in October 1956,
and a primer in early 1957. External professional pub-
lication occurred in 1957 in [17]. It is interesting to con-
trast the FORTRAN I statements with later and current ver-
sions of the language. Figure 1 shows all the FORTRAN 1
statements.

One of the interesting myths about FORTRAN that
Backus puts to rest in his paper is the relation between
the FORTRAN subscripts and the index registers on the
704. It had been widely thought for many years that only
three subscripts were allowed in FORTRAN because there
were only three index registers on the 704. Backus makes
it clear [7, p. 34] that the reason for the limitation to
three was the complexity of attempting to optimize index
register allocation.

One of the most interesting (and novel) statements in
FORTRAN 1 was FREQUENCY, which allowed the program-
mer to specify which path on a branch he thought was
most likely. The compiler then attempted to optimize ob-
ject code based on that information. It apparently worked
well, but people usually did not have the correct data
about the best branch and often used it in circumstances
that made little difference; it was removed in FORTRAN IV.
It should also be noted that FORTRAN I (and even FORTRAN
11, discussed below) contained some machine-oriented
statements, namely, references to tape/drum, sense
switches, and even the accumulator (for overflow). Even-
tually these were dropped, when machine independence
became more significant than it was in the early versions.
The EQUIVALENCE statement in FORTRAN I provided a
very early attempt to enable the programmer to use stor-
age efficiently. The use of the loop statement DO became a
model for all future languages (although most later lan-
guages significantly enhanced the FORTRAN loop state-
ment capability).

FORTRAN 11 introduced two important concepts into the
language—subroutines and the COMMON statement to per-
mit communication among subroutines; it was also pos-
sible to link to assembly language programs. (Although
subroutines had been in use for many years, their in-
troduction into a high level language was an important
step.)

Although neither FORTRAN I nor 11 had separate data
declarations as such, FORTRAN 1 did use the concept in-

IBM J. RES. DEVELQOP. ¢ VOL. 25 & NO. 5 ¢ SEPTEMBER 1981

directly, by specifying that variables whose names began
with the letters I, J, K, L, M, or N were considered in-
tegers and all others were considered floating point.

A lot of cleanup and elimination of machine-dependent
features was done in FORTRAN IV, and, along with FOR-
TRAN II as a subset, it formed the basis for the first ANSI
language standard(s) [18, 19].

In my own view, FORTRAN has probably had more im-
pact on the computer field than any other single software
development. Its major technical contribution was to
demonstrate that efficient object code could be produced
by a compiler; as a result, it became clear that productiv-
ity of programmers could be significantly improved. The
fact that FORTRAN still exists in spite of more modern lan-
guages with newer concepts is testimony to the sound-
ness of many of the original ideas (but also to inertia and
investment in old programs). Naturally, since the first
version of FORTRAN, a number of additions and changes
have been made and presumably will continue to be
made. But the basic framework was sound and enabled
many people to build upon it.

This is a reasonable place to indicate some of the rela-
tionships between ALGOL and FORTRAN, particularly
since Backus (of IBM) was one of the four U.S. represen-
tatives to the IAL (= ALGOL 58) activity; he also partici-
pated in the ALGOL 60 development. Since both FORTRAN I
and 11 were released before the ALGOL 58 committee fin-
ished its language design [9], ALGOL 58 could not have any
effect on FORTRAN. Space does not permit a discussion
here of the effect FORTRAN had on ALGOL 58. In my view,
neither of the ALGOL versions had any significant effect on
FORTRAN 1V,

& GPSS (General Purpose Simulation System)

GPss was developed by Geoffrey Gordon. He had worked
on simulation studies in various places prior to joining
IBM, including Bell Telephone Laboratories, where he
participated in the development of a program called the
Sequence Diagram Simulator, which was presented at a
meeting of the IEEE in 1960. When he joined IBM in June
1960, it was in the Mathematics and Programming Depart-
ment under D. V. Newton.

The work being done in that department involved
queuing models. Gordon suggested developing a system
description language based on the Sequence Diagram
Simulator approach. He began writing a program imple-
menting a block diagram language and chose a relatively
simple table-oriented interpretive structure that would
make changes easier. It was written using the SAP assem-
bly language for the IBM 704. Gordon stated {20, p. 407]

525

JEAN E. SAMMET




526

that he was not aware of the work on SIMSCRIPT being
done about the same time.

GPSS is a discrete simulation language, and the major
characteristic that has made it useful twenty years after
its initial development is that the block diagram portion of
the language provides an excellent means of communica-
tion with systems people.

The most relevant similar development is that of SIM-
SCRIPT {21], which was also developed in the early 1960s,
at the Rand Corporation. Unlike GPSS, SIMSCRIPT is a
statement-oriented language. While it is not a direct ex-
tension of FORTRAN, the SIMSCRIPT ‘‘style’’ is very similar
to that of FORTRAN, and many versions have been imple-
mented by means of a preprocessor which translates the
SIMSCRIPT program into FORTRAN.

While Gpss has been developed and improved in many
versions, and continues to be in use in the early 1980s, it
did not have a major impact on other language develop-
ments. I am not aware of any other major discrete simula-
tion languages that have followed the block diagram con-
ceptual approach. (Some of the continuous simulation
languages involve block diagrams, but the need for that is
more obvious.) The other discrete simulation languages
have all tended to follow the statement language orienta-
tion, and a number of them have been based on ALGOL
rather than a FORTRAN-like approach. In particular, SIM-
ULA [22], which was originally intended as a major simu-
lation language and then became more generally used,
was certainly based on ALGOL.

® APL

The concepts of APL (A Programming Language) were de-
fined by Kenneth E. Iverson in his 1962 book [23]. At that
time he said [24, p. 345]: ““The language is based on a
consistent unification and extension of existing mathe-
matical notations, and upon a systematic extension of a
small set of basic arithmetic and logical operations to vec-
tors, matrices and trees.’’ It is perhaps an understatement
to say that APL, as originally described in Iverson’s book,
was not received by the computing world with much en-
thusiasm. The combination of an unusual character set
and concepts which were quite different from those of the
more popular programming languages in the early 1960s
tended to make a number of people say, and with some
justification, that this was a ‘‘notation’’ rather than a pro-
gramming language.

Iverson’s original motivation was to provide a unifying
method of describing and analyzing various concepts in
data processing. In [25, p. 662] it is said that: ‘It is diffi-
cult to pinpoint the beginning, but it was probably early

JEAN E. SAMMET

1956,”” when Iverson was at Harvard. Shortly after Iver-
son joined IBM in 1960, Adin Falkoff started to work with
him, and most of the work done on APL since then has
been done jointly.

In the early 1960s, a formal description of the System/
360 machine language was undertaken at IBM [26]. This
was a significant use of APL, but not the first of its type,
since Iverson’s book contained a description of the 7090.
A running version of a language based on Iverson’s nota-
tion was developed on the IBM 1620 under the name PAT
(Personalized Array Translator) [27], but this was ham-
pered enormously by the need to use standard typewriter
characters.

The breakthrough in demonstrating feasibility came
with the development of a stand-alone interpretative sys-
tem on the IBM 360/50 at the IBM Thomas J. Watson
Research Center in the mid-1960s. Almost all of the lan-
guage was implemented; however, the key breakthrough
in my own view resulted from two factors. First, a SE-
LECTRIC® printing element was designed to include al-
most all of the APL characters then in use, and the lan-
guage which was implemented was in fact then restricted
to those characters. Actually not much was left out, and
Iverson states [25, p. 665] that some of the necessary
changes ‘‘were beneficial, and many led to important gen-
eralizations.”” That paper describes several effects that
the restriction to a linear 88-character set had on the lan-
guage, e.g., the notion of composite characters which are
formed by striking one basic character over another.

The second breakthrough that helped make APL suc-
cessful was that the implementation was relatively effi-
cient. At that time (.e., the mid-1960s) many interactive
systems tended to be quite inefficient in execution, partly
because they had complex command languages. The ease
with which users could communicate with the computer
(because APL\360 was a stand-alone system) made it at-
tractive to some users. That ‘‘ease of use’’ factor was
something of a technical breakthrough, partly because
there was no separate command language.

APL has demonstrated a flexibility for handling different
types of problems that has been amazing to those people
who view it as being primarily for mathematical prob-
lems. As well as by mathematicians and engineers, it has
been found to be useful by administrators, secretaries,
and people in business environments.

There are strong feelings about APL, both for and
against. However, a large number of people who have not
been personally trained and introduced to it by the devel-
opers have found it to be an extremely useful tool. That

1BM J. RES. DEVELOP. & VOL. 25 & NO. 5 ¢« SEPTEMBER 1981




pragmatic observation of usefulness would seem to out-
weigh emotional and even intellectual considerations
from language designers and other computer scientists
who may or may not feel that it is within the mainstream
of language development. Its uniqueness results from (1)
its very large and unusual character set and (2) the very
large functional capability expressed by individual nota-
tions. For example, the notation for multiplication of ma-
trices is shown below for FORTRAN and for APL.

FORTRAN APL
DO100I=1M C< B+ xA
DO 100 =1,N
Ca,h=0
DO10OK =1,P

100 C(1, D =C{d, I + AQ, K)*B(K, )

From a pure language viewpoint, APL introduced signif-
icant new features and concepts. For example, (1) be-
cause of the heavy emphasis on vector and matrix opera-
tions, there is little need to write the loops required in
other languages to achieve equivalent results; (2) it pro-
vides a vast number of primitive operators, such as
“Floor” and ‘‘Minimum’’; and (3) the reduction operator
allows brevity in applying other operators. However, in
spite of (or perhaps because of) its uniqueness, it has had
virtually no effect on other language design.

o PLI

Of all the languages developed within IBM, certainly the
PL/1 effort has to be considered the one with the largest
and most grandiose goals. The motivation and back-
ground for PLi1 stem from two somewhat different
sources.

The first involved FORTRAN. By the early 1960s, im-
provements to the original FORTRAN had been made by
delivering FORTRAN IT and FORTRAN 1V to customers. (FOR-
TRAN HI had been only an internal IBM development.)
Considerations of extensions to FORTRAN IV were peren-
nially considered. It was clear by the early 1960s that FOR-
TRAN was extremely popular, but would not serve the
needs of everyone.

To understand the second viewpoint, it is important to
remember that in the early 1960s computer applications
(as well as the machines and the programmers) tended to
be thought of as either scientific (i.e., engineering and
mathematical) or commercial (i.e., business data process-
ing). One of the major objectives of the IBM System/360
was that it would be equally effective for both scientific
and commercial applications.

The convergence of these two ideas, i.e., to improve
FORTRAN and to create a line of machines to be used

IBM J. RES. DEVELOP. & VOL. 25 4 NO. 5 & SEPTEMBER 1981

across a broad set of applications, caused IBM and
SHARE to jointly form the Advanced Language Develop-
ment Committee of the SHARE FORTRAN project in Octo-
ber 1963, with Bruce Rosenblatt (Standard Oil of Califor-
nia) as Chairman and George Radin as Chairman of the
IBM delegation. The group was supposed to specify a
programming language which would meet the needs of the
user classes indicated above, as well as the needs of sys-
tems programmers. Although I do not believe it was stated
at that early stage, it was also expected that development of
an effective ‘*single’’ language would be beneficial to both
IBM and its customers by eliminating the need for FOR-
TRAN and COBOL.

The earliest significant attempt at a somewhat broad
language had been J10VIAL, developed at the System De-
velopment Corporation in the early 1960s by Jules
Schwartz and others [28]. JOVIAL not only had capabili-
ties for the scientific programmer but also methods for
specifying how data were to be allocated within the com-
puter memory; it also introduced in a language the nota-
tion of a communications pool (COMPOOL) by which the
same descriptions could be used by many programs.

But JoviAL, which was being used almost exclusively
for Air Force projects, did not really satisfy all the needs
indicated above. The early orientation of the PLA design
was to provide appropriate extensions to FORTRAN. Al-
though the project was originally referred to as FORTRAN
VI, it rapidly became clear that it would be impossible to
maintain upward compatibility with FORTRAN 1v and also
meet the objectives indicated for the design of PL/1.

With regard to the decision to abandon FORTRAN IV as a
base, Radin says [29, p. 555]: “‘In retrospect, I believe the
decision was correct. Its major drawback was that, by
taking FORTRAN as a base, we could have gone, in an or-
derly way, from a well-defined language to an enhanced
well-defined language. We could have spent our time de-
signing the new features instead of redesigning existing
features. By starting over, we were not required to live
with many technical compromises, but the task was made
much more difficult.”’

One aspect of the early development of PL/1 was the
rapidity with which it was supposed to be completed. Ac-
cording to Radin [29, p. 553], from a starting date of Octo-
ber 1963, they ‘‘were first informed that the language defi-
nition would have to be complete (and frozen) by Decem-
ber 1963. In December we were given until the first week
in January 1964 and finally allowed to slip into late Febru-
ary.”” The objective of this tight time schedule, of course,
was to make it feasible to introduce PL/ at the same time
as the hardware which became known as the IBM Sys-
tem/360.

527

JEAN E. SAMMET




528

There is no space available here to trace the many and
somewhat tortuous twists and turns taken to produce the
““final PL/1.”’ But PL/1 made a number of significant contri-
butions to the technology. For its time, PL/1 was the cul-
mination of the procedural line exemplified by ALGOL, CO-
BOL, FORTRAN, JOVIAL, and others. It included almost all
the good features from those languages, although gener-
ally in a different syntax, and included conceptual fea-
tures from other languages (e.g., pointers to allow list
processing). Although other languages (e.g., ALGOL) con-
tained string variables, PL/1 was the first language to pro-
vide operations on the strings, such as concatenate. PL/I
was the first language to address itself seriously to the
problems arising from the need to interact with an oper-
ating system. It provided more facilities for dealing with
storage allocation, task management, and exception han-
dling than any other language to that date. For example,
the user can specify asynchronous execution of tasks and
control their execution based on factors such as time
delays or completion of another task. PL/1 seems to have
introduced the concept of generic functions, which means
that a single function name can be used to cover a variety
of input data types (e.g., fixed or floating point numbers).
It used the concept of default conditions very heavily;
that eventually was viewed by some people as one of its
weaknesses. In its attempt, and indeed its success, at
being broad, PL/1 became very large and in some cases
produced surprising results. For example, many pages in
the manual were needed to describe the interaction of im-
plied conversions among variables of different types, and
the object code did not always produce the results ex-
pected by the programmer’s common sense.

PL/ was a major technical undertaking in its language
design and implementation. It was the first significant
multipurpose language and it introduced a large number
of innovations.

5. IBM languages with significant technical impact
but not wide usage

IBM developed a number of languages which made signif-
icant technical contributions but were not used as much
as the ones discussed in Section 4. The most important of
these (in my view) are Commercial Translator, FORMAC,
QUIKTRAN, CPS, and SCRATCHPAD. Of these, FORMAC had
the most effect for reasons to be discussed later. The
other four languages had indirect or secondary effects.

o Commercial Translator

In order to understand the technical role played by Com-
mercial Translator, it is helpful to understand its place in
the environment. Around 1955, Grace Hopper and her de-
partment at Remington Rand UNIVAC developed a lan-
guage for business data processing known originally as

JEAN E. SAMMET

B-0 and later renamed FLOW-MATIC. (See description in [3,
Chap. V].) They had preliminary specifications as early as
January 1955, and the first implemented version distrib-
uted to customers was available early in 1958. FLOW-
MATIC introduced two major concepts. One was the idea
of using relatively long identifiers to get readability (e.g.,
SOCIALSECURITY, INCOMETAX), along with Eng-
lish verbs for operations such as COUNT, IN-
CREMENT, ADD, etc. The other major concept in-
troduced by FLOW-MATIC was the combination of (1) sepa-
rating the data description from the statements that were
to operate on it and (2) the availability of a fairly flexible
data format. Up until that time, all the high level lan-
guages had been for scientific computing, in which the
types of data needed were integers and floating point
numbers, with possible fixed radixpoint, complex num-
bers, and double precision also being used. But in all of
those cases it was assumed that a number representation
took an entire machine word (or two) regardless of what
its maximum value actually was. Scientific users were not
faced with the conceptual problem of data in which some
elements might require only one character or even one bit
(e.g., distinguishing between male and female) or many
computer words (e.g., a person’s address). FLOW-MATIC
broke new ground in both of those areas, and IBM recog-
nized that it needed to provide a comparable service to its
business data processing customers.

As early as January 1958 there were some preliminary
specifications for a language (eventually named Com-
mercial Translator) to be used for business data process-
ing; the work was done under the technical leadership of
Roy Goldfinger, with Robert Bemer as the manager. Fol-
lowing the philosophy established in FLOW-MATIC, Com-
mercial Translator was an English-like language, but it in-
troduced several significant concepts. One was the use of
formulas which were standard in scientific languages but
were ostensibly new to the business data processing envi-
ronment. A second key feature was the introduction of
the 1F . . . THEN facility, which had first appeared in AL-
GOL 58. The third idea, building on the data description
facilities in FLOW-MATIC, was the concept of allowing sev-
eral levels of data hierarchy. Finally, the PICTURE clause
provided a succinct description of data characteristics
such as alphabetic or numeric, placement of the decimal
point, number of characters, etc.

But before IBM had implemented Commercial Trans-
lator, work on COBOL started outside of IBM. In May
1959 the Short Range Committee was chartered under
CODASYL (Committee on Data Systems Languages),
which was established under the auspices of the Depart-
ment of Defense. The Short Range Committee consisted
of representatives from six manufacturers, including

IBM J. RES. DEVELOP. e VOL. 25 e NO. 5 ¢ SEPTEMBER 1981




IBM, and three representatives from government organi-
zations. The primary inputs to the work of the Short
Range Committee were FLOW-MATIC, which had actually
been in use for over a year, AIMACO (a modification of
FLOW-MATIC developed by Air Force Air Material Com-
mand), and Commercial Translator [30], which existed as
a set of unimplemented specifications. (Brief descriptions
of these three languages, and references for them, are in
[3, 31]. The history of coBOL is delineated in [31].) The
important point is that Commercial Translator was one of
the two major inputs to COBOL, and two of the key people
on the Short Range Committee which designed COBOL
were IBM employees, namely, William Selden and Ger-
trude Tierney. The significant new concepts of Com-
mercial Translator indicated above were among those in-
cluded in coBOL. Then, as work on Commercial Trans-
lator continued, as the Short Range Committee produced
specifications for coBoL, and as Honeywell produced
specifications for their own business data processing lan-
guage known as FACT (see description in [3, Chap. V],
these three languages became interwined. Thus, in 1960
the Commercial Translator manual showed certain con-
cepts that were obtained from COBOL and even from
FACT, and, of course, COBOL and FACT were significantly
influenced by ideas in Commercial Translator.

Commercial Translator was implemented on the IBM
7070, 7080, and 709/7090. The latter implementation was
extremely efficient, which pleased customers, but COBOL
prevailed. Thus, after the initial implementations on the
7070 and 7080, IBM discontinued further work on Com-
mercial Translator except for those 7090 customers who
insisted on it, and then dropped it completely when going
to the System/360. The net result was that Commercial
Translator had literally faded from any significant usage
by the time the 360 was introduced. For one person’s
view of IBM’s handling of this matter, see [32].

® FORMAC

The basic concepts of FORMAC (FORmula MAnipulation
Compiler) were first developed by Jean E. Sammet (assisted
by Robert G. Tobey) at IBM’s Boston Advanced Pro-
gramming Department in July 1962. 1 recognized that
what was needed was a formal algebraic capability associ-
ated with an already existing numeric mathematical lan-
guage; FORTRAN was the obvious choice. An internal
memo describing the basic ideas was written on August 1,
1962, and a complete draft of language specifications was
finished in December 1962; implementation design started
shortly thereafter. The basic objective was to develop a
practical system for performing formal mathematical ma-
nipulation on the IBM 7090/94. Originally FORMAC was
intended only as an experiment, and there was no plan to
make it available outside of IBM. In April 1964 the first

IBM J. RES. DEVELOP. e VOL. 25 « NO. 5 ¢« SEPTEMBER 1981

complete version was successfully running after exten-
sive testing, and papers on it appeared in the literature
[33, 34]. As a result of pressure from numerous people
who were interested in trying the system, and also as a
way of obtaining feedback from users that would lead to
better systems in the future, FORMAC was released in No-
vember 1964 but with no committed maintenance or sup-
port for it. Nevertheless, there were numerous users.

The use of a computer for performing formal algebraic
manipulation went back to 1954, in which two Master’s
theses (one at MIT and one at Temple University —see
references in [3]) involved programs to do formal dif-
ferentiation. By the early 1960s, various programs were
written to do formula manipulation for specialized pur-
poses, i.e., a particular group, such as astronomers or air-
plane designers, developed a set of routines to do the type
of formula manipulation that was needed for their appli-
cations. But there was only one attempt at language de-
velopment, namely ALGY [35], which was an interpretive
system on the Philco 2000 computer. It allowed com-
mands such as removing parentheses from an algebraic
expression, substituting one or more expressions into an-
other one, factoring a given expression with respect to a
single variable. ALGY contained no arithmetic capability,
nor was there any facility for loop control or control
transfer. The primary objective of FORMAC resulted from
the realization that when doing formula manipulation on a
computer one needed input/output, numerical arithmetic,
loop control, etc. From those needs and premises, the use
of a language providing those facilities became necessary,
and it seemed logical, as stated earlier, to build on an
existing language which already contained the non-
formula capabilities. Therefore, FORMAC was literally de-
signed as a language extension of FORTRAN IV and was
implemented by a preprocessor which used run-time sub-
routines to do the formula manipulation.

The conceptual contrast between FORTRAN and FOR-
MAC is shown below.

FORTRAN
A=S5
B=3
C=(A-B)xA+B) C =(A - B*A + B)
yields yields
C«A’- B

FORMAC

C<16

FORMAC also provided commands for formal dif-
ferentiation, replacing variables with expressions, remov-
ing parentheses, evaluating expressions for specific nu-
merical values, comparing expressions for equivalence or
identity, etc. It simplified expressions automatically (as
do most of the systems). For further descriptions of the

JEAN E. SAMMET




530

first FORMAC, see previous citations or [3, Chap. VII].
Eventually a version of FORMAC based on PL/1 was devel-
oped for use on the System/360 and released, but again
with no commitment for maintenance [36]. It was a signif-
icant improvement over the earlier version but did not
introduce any major new concepts. Both versions were
batch oriented but could be used interactively. PL/I-FOR-
MAC remained in minor use in the early 1980s, even
though far more sophisticated and better systems existed
by then.

During the time that work was being done on the origi-
nal 7090 FORMAC, a research effort was underway at Car-
negie Tech (now Carnegie Mellon University) under the
direction of Professor Alan Perlis to develop a system
called Formula ALGOL [37]. Both of these efforts pro-
ceeded independently; in the very early stages neither
was even aware of the other, and after that knowledge did
become mutually available, each continued in its own di-
rection. Formula ALGOL was never used extensively out-
side Carnegie Mellon University. Aside from the obvious
differences arising from using ALGOL rather than FOR-
TRAN as a base, there was one major conceptual dif-
ference in the two approaches. Formula ALGOL initially
used very low level primitives from which the user could
build up his own commands, whereas FORMAC used
higher level commands.

FORMAC introduced and/or emphasized two major con-
cepts—the desirability of a language for doing formula
manipulation, rather than just a series of routines, and the
concept of extending an existing language to provide this
type of capability. Of the other two systems that appear
to be in general use in 1980 one, REDUCE [38], has more or
less followed the FORMAC language philosophy by adding
capabilities to ALGOL, whereas MACSYMA has developed
its own language [39]. Perhaps the most lasting value of
FORMAC was its major role, along with Sammet’s forma-
tion of the ACM Special Interest Group on Symbolic and
Algebraic Manipulation (SIGSAM), in getting this techni-
cal field started.

® SCRATCHPAD

SCRATCHPAD is an experimental, LisP-based, symbolic
mathematical system which runs under VM/370 at the
IBM Thomas J. Watson Research Center. This work was
started by James H. Griesmer in 1965, who was joined
shortly after by Richard D. Jenks and later yet by David
Y. Y. Yun. Systems outside IBM which were started
around that time were REDUCE [38] and MACSYMA [39]. A
description of SCRATCHPAD is in [40].

SCRATCHPAD shared with FORMAC (and other systems
for symbolic computation) the philosophy that a language

JEAN E. SAMMET

(and not just subroutines) was needed for dealing with
symbolic mathematical problems. However, it differed
from FORMAC in two major ways. One was that a major
objective of SCRATCHPAD was to have the language be as
natural for mathematicians as possible; thus it was de-
signed ab initio and not based on any existing program-
ming language. The SCRATCHPAD language is less proce-
dural, allowing an intended computation to be described
by a set of rewrite rules. Although SCRATCHPAD permitted
two-dimensional input (for subscripts, superscripts, limits
on summations and integrals), the actual input to the com-
puter had to be linearized because standard equipment
does not permit two-dimensional inputs; this in my view
prevented SCRATCHPAD from meeting the objectives of
naturalness to mathematicians.

The second major difference was that SCRATCHPAD was
designed from the beginning to be interactive. Unlike nor-
mal numerical calculations which can effectively be done
in batch mode, for many (although certainly not all) prob-
lems involving symbolic computation the user needs to
see the formula displayed before knowing what to do
next.

SCRATCHPAD provides a wide range of built-in symbolic
facilities, which at present are exceeded only by those
contained in MACSYMA. SCRATCHPAD facilities include dif-
ferentiation, integration, polynomial factorization, solu-
tion of equations, APL array operations, formal manipula-
tion of finite and infinite sequences and power series, and
conversational ‘‘backtracking,”” which allows a user to
return to a previous state in his computation.

SCRATCHPAD has never been released outside of IBM,
and therefore its technical influence has been limited to an
active publication plan in which numerous papers and
talks have been given. People outside of IBM have come
to the IBM Thomas J. Watson Research Center and suc-
cessfully used the system for productive work.

® QUIKTRAN

Work on QUIKTRAN was started in IBM in 1961 by a group
under the direction of John Morrissey. While their origi-
nal objective was to improve user debugging facilities,
this eventually took the form of a dedicated system which
was essentially FORTRAN but with powerful debugging
and terminal control facilities added. Two major con-
straints that the designers imposed upon themselves were
to use only existing standard equipment (which turned
out to be the 7040/44 computers and the 1050 terminal)
and to use and stay consistent with an existing language
(which turned out to be ANS Basic FORTRAN) defined in
[18]. A first version was running in mid-1963. The best
language reference is [41]. This system was eventually re-
leased for customer use.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981




The system was designed to handle most legitimate ANS
Basic FORTRAN programs. The intent was to allow pro-
grams to be debugged using QUIKTRAN and then be com-
piled for production running on a regular compiler.
QUIKTRAN introduced the concept of allowing either the
COMMAND or the PROGRAM mode. In the former case each
statement entered by the user was executed immediately,
and the result was printed at the terminal; this was re-
ferred to as the ‘‘desk calculator’” mode, and the state-
ments were not retained by the system. In the PROGRAM
mode, the statements were saved and executed only at
the specific request of the user through some other com-
mands. While this concept is very common now, it was
either unique or relatively new at that time. J10ss [42] had
the same capability, but it is not clear which had it first. In
any case both systems were being developed at approxi-
mately the same time.

QUIKTRAN was significant from several viewpoints. It
was the first on-line system using commercially available
equipment (JOSS used the unique JOHNNIAC at the Rand
Corporation). QUIKTRAN also retained compatibility with
an existing major language and thus made it possible for a
user to debug a program on-line and then use a regular
FORTRAN compiler for batch production runs. J0OSS, of
course, and then later BASIC were unique interactive lan-
guages designed ab initio and each became widely used.
There is no clear indication that QUIKTRAN had any long-
lasting effect on software technology.

e CPs (Conversational Programming System)

CPS was a small, on-line, extended subset of pL/1. It was
developed jointly by the Allen-Babcock Corporation (pri-
marily by J. D. Babcock and P. R. DesJardins) and the
IBM Corporation under the overall direction of Nathaniel
Rochester with significant work by David A. Schroeder.
The language is described in [43]; the work started early
in 1965, and the initial version became operational in the
fall of 1966. The system had two goals: One was to pro-
vide a language in the middle area between 10SS and
QUIKTRAN. This really meant that it was to be as simple as
possible for the terminal user, but the language was to
have as much of the syntax of PL/I as possible. The second
major objective was to investigate the effectiveness of mi-
croprogramming.

The system was originally implemented on a System
360/50 with a special read-only store which was used for
special machine instructions to make the language inter-
preter more efficient. This was an important technical in-
vestigation at the time, and appears to be one of the early
attempts at implementing software functions in hardware
via microprogramming. However, some routines were
also written to replace the microprograms and thus avoid
the necessity for special hardware. A version of the sys-

IBM J. RES. DEVELOP. ® VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

tem (called RUSH for Remote Use of Shared Hardware)
was the basis for a commercial time-sharing service of-
fered by the Allen-Babcock Corporation, while the sys-
tem in use by IBM was called cps. Starting from the same
base the two systems added different facilities and even-
tually diverged significantly. CPs’s primary technical con-
tributions were (1) it was an early interactive subset of
PL/1, and (2) some of the translator operations were put
into microcode.

6. Formal definition methodology

In addition to specific language developments, there have
been two major technical contributions made by IBM em-
ployees in the formal definition of programming lan-
guages. I think it is fair to say that the first of these may be
one of the most significant contributions made to the com-
puting field in general and certainly to the area of pro-
gramming languages in particular. The two contributions
are BNF (Backus-Naur, Backus Normal Form) for de-
scribing syntax and VDL (Vienna Definition Language) for
defining semantics.

® Backus-Naur Form (BNF)

In 1959, John Backus presented a paper [44] in which he
introduced to the computing field from the field of linguis-
tics the concept of a metalanguage and showed how it
could be used to define the syntax of a programming lan-
guage, namely ALGOL 58. When the committee to develop
ALGOL 60 met and Peter Naur of Denmark was appointed
editor of the ALGOL 60 report [45], Naur chose to define
ALGOL 60 using this metalanguage, which has been re-
ferred to since as ‘‘BNF”’ meaning either Backus-Naur
Form (to recognize the contribution of Peter Naur) or
Backus Normal Form. The idea was based on the produc-
tions of Emil Post, and from a vantage point of twenty
years later, it seems very simple. However, the impact
has been so profound that it is almost impossible to de-
scribe its importance. In my own view, this idea has gen-
erated much of the theoretical work in programming lan-
guages, and it has the practical advantage of providing a
formal way of defining language syntax. The Short Range
Committee which developed COBOL was unaware of this
work by Backus and developed their own metalanguage
in the summer of 1959 (although they called it a notation,
not a metalanguage) and used it to define COBOL. (See [31]
for a fuller discussion of this issue.) Since 1959, the syn-
tax of most languages has been defined using one or the
other of these notations, or a mixture of the two. For ex-
ample, the metalanguage used in the early major PL/I man-
ual [46] was primarily based on the COBOL metalanguage
but contained many elements from BNF. By now BNF has
become almost a generic term and, in fact, is sometimes
incorrectly used as the name for any metalanguage,
whether it is the original one described by Backus or not.

JEAN E. SAMMET




532

Considerable controversy arose about the use of BNF to
describe ALGOL 60 from those people not ‘‘in the ALGOL
community.”” Some people immediately regarded it as
being an enormous contribution to the rigor of language
definition, whereas others found it very difficult to learn
and understand. Some people have said that the adoption
of ALGOL 60 was severely hampered by the use of BNF; my
own view is that its use brought ALGOL into the world in a
technically rigorous and understandable fashion and in so
doing caused enormous advances in the computing field.

& Vienna Definition Language (VDL)

It was recognized that a formal definition of the semantics
of a programming language was an even larger problem
than formally defining its syntax. (The ‘‘syntax’’ of a lan-
guage indicates what legal expressions may be written,
whereas the ‘‘semantics’’ specifies the meaning of what
has been written. Thus, syntax would indicate that the
expression A + B is legal, whereas the semantics would
indicate what it meant, since there are other possible
meanings than normal addition.)

Apparently the earliest large scale attempt at a formal
definition of semantics was the work undertaken in the
IBM Vienna Laboratory under the direction of Heinz
Zemanek in the mid-1960s. The original ideas of a con-
crete syntax and an abstract syntax were developed by
McCarthy [47], Elgot and Robinson [48], and Landin [49].
vDL (Vienna Definition Language), reduced to its sim-
plest possible terms, simulated an abstract machine and
defined the language in terms of the effect that statements
in the language would have on this arbitrary machine. For
a description of this method, see [50] or the more rigorous
[51]. See also [2].

VDL was originally developed for pL/ and then applied
to other languages (e.g., ALGOL). At about the same time,
work was being done at the IBM Hursley Laboratories to
produce a semi-formal definition of PL/1. Some of the fla-
vor of this approach is given in [52]. The use of VDL to
define the syntax and semantics of PL/1 was the first appli-
cation of such formalisms to a large and complex lan-
guage. However, VDL eventually proved too difficult and
impractical for compiler writers to use in their develop-
ment work. Nevertheless, because of the obvious value
of a formal semantics definition, the ANSI standard for
PL/I [53] was based on the vDL and Hursley approaches;
the definition mechanism for the standard pL1 is de-
scribed in [54]. Various other techniques for formally
specifying semantics have been developed (see [S5]), but
none has received wide practical usage. The major contri-
bution of the vDL effort was to provide a technique for
formally defining the syntax and semantics of a complex
language and to define PL/ using that technique.

JEAN E. SAMMET

7. Other languages and language activities

IBM has also developed a number of languages which are
used in specialized application areas. Examples include
COURSEWRITER (for Computer Assisted Instruction),
ECAP (for circuit design), and MpsX (for mathematical pro-
gramming). The whole field of languages for specialized
application areas is larger than most people realize—the
number of such languages has consistently been about
half of all the high level languages developed in the U.S.
(see [56-58] for backup data). However, the contributions
of IBM in this area do not seem to be nearly as significant
as those of the languages cited in earlier sections.

In addition to specific language development and lan-
guage definition methods, a significant amount of work in
compiler optimization has been done. This is being cov-
ered in this issue in the paper by F. E. Allen [1].

Summary

IBM and its employees have developed and implemented
four major high level languages, APL, FORTRAN, GPSS, and
PL/, each of which made significant contributions to the
field. Two languages for formal mathematical computa-
tion (FORMAC and SCRATCHPAD) have made important
contributions, and two on-line languages (QUIKTRAN and
CPS) were innovative at the time they were developed,
although they had no long-lasting influence. One business
data processing language (Commercial Translator) had a
major technical impact via its contributions to COBOL.
Numerous languages for specialized application areas
have also been developed by IBM. People from IBM con-
tributed to the development of the significant languages
developed by interorganizational committees, namely,
ALGOL 58, ALGOL 60, and COBOL.

Significant work in the development of formal methods
for specifying high level language syntax and semantics
was done by IBM employees. The former has had a pro-
found impact on language development, and the latter had
some impact on language definition technology.

It should be clear from all of the foregoing material that
each of these IBM languages was developed indepen-
dently of the others. Each built on the technical knowl-
edge available to the developers at the time from within
and outside IBM, and some of the individual languages
had a progression of named improved versions—specifi-
cally APL, FORTRAN, GPSS, and FORMAC. However, the
collective set of languages do not form a cohesive tech-
nology, because they deal with differing problems in dif-
ferent ways.

IBM J. RES. DEVELOP. & VOL. 25 & NO. 5 & SEPTEMBER 1981




Acknowledgments

I would like to thank the following people, each of whom
read at least two versions of the full paper: John Backus,
Bernard Galler, Charles Gold, and John A. N. Lee. They
made valuable suggestions for improvement, and any re-
maining deficiencies are mine.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. E. Allen, ‘‘The History of Language Processor Technolo-
gy in IBM,”” IBM J. Res. Develop. 25, 535-548 (1981, this
issue).

. P. Lucas, ‘‘Formal Semantics of Programming Languages:

VDL,” IBM J. Res. Develop. 25, 549-561 (1981, this issue).

. J. E. Sammet, Programming Languages: History and Fun-

damentals, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1969.

. J. Weizenbaum, ‘‘Symmetric List Processor,”” Commun.

ACM 6, 524-544 (1963).

. J. E. Sammet, ‘‘Programming Languages: History and Fu-

ture,”” Commun. ACM 15, 601-610 (1972).

. D. Knuth and L. Trabb Pardo, *‘The Early Development of

Programming Languages,”” Encyclopedia of Science and
Technology, J. Bélzer, A. G. Holzman, and A. Kent, Eds.,
Vol. 7, Marcel Dekker, Inc., New York, 1977, pp. 419-493.
Also in A History of Computing in the Twentieth Century,
N. Metropolis et al., Eds., Academic Press, Inc., New
York, 1980, pp. 197-274.

. J. W. Backus, ‘“The History of FORTRAN I, II, and II1,”

History of Programming Languages, ACM Monograph Se-
ries, Academic Press, Inc., New York, 1981, pp. 25-45. Also
in Annals of the History of Computing 1, 21-37 (1979).

. D. T. Ross, ““‘Origins of the APT Language for Automati-

cally Programmed Tools,” History of Programming Lan-
guages, ACM Monograph Series, Academic Press, Inc.,
New York, 1981, pp. 279-338.

. A. J. Perlis and K. Samelson, ‘‘Preliminary Report—Inter-

national Algebraic Language,”” Commun. ACM 1, 8-22
(1958).

History of Programming Languages, ACM Monograph Se-
ries, R. L. Wexelblat, Ed., Academic Press, Inc., New
York, 1981.

N. Wirth, “PL360, A Programming Language for the 360
Computers,”” J. ACM 15, 37-74 (1968).

‘‘Preliminary ADA Reference Manual (Part A)’’ and ‘‘Ratio-
nale for the Design of the ADA Programming Language (Part
B),”” ACM SIGPLAN Notices 14, No. 6 (1979).

Reference Manual for the ADA Programming Language,
U.S. Department of Defense, Defense Advanced Research
Projects Agency, Washington, DC, July 1980.

J. W. Backus, ‘“‘Can Programming Be Liberated from the
von Neumann Style? A Functional Style and Its Algebra of
Programs,”” Commun. ACM 21, 613-641 (1978).

J. W. Backus, ‘“The IBM 701 Speedcoding System,’” J.
ACM 1, 4-6 (1954).

“‘Preprints, ACM SIGPLAN History of Programming Lan-
guages Conference,”” ACM SIGPLAN Notices 13, No. 8
(1978). (See also [10].)

J. W. Backus et al., ‘“The FORTRAN Automatic Coding
System,”” AFIPS Conf. Proc., Western Jt. Comput. Conf.
11, 188-198 (1957). (Also in Programming Systems and Lan-
guages, S. Rosen, Ed., McGraw-Hill Book Co., Inc., New
York, 1967.)

American National Standard Basic FORTRAN, ANS X3.9-
1966, American National Standards Institute, New York,
1966.

American National Standard FORTRAN, ANS X3.10-1966,
American National Standards Institute, New York, 1966.
G. Gordon, *‘The Development of the General Purpose Sim-

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s5.

36.

37.

38.

39.

40.

41.

42.

43,

44.

ulation System (GPSS),”” History of Programming Lan-
guages, ACM Monograph Series, Academic Press, Inc.,
New York, 1981, pp. 403-426.

H. M. Markowitz, B. Hausner, and H. W. Karr, SIM-
SCRIPT—A Simulation Programming Language, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1963.

0.-J. Dahl and K. Nygaard, “SIMULA—An ALGOL-
Based Simulation Language,”” Commun. ACM 9, 671-678
(1966).

K. E. Iverson, A Programming Language, John Wiley &
Sons, Inc., New York, 1962.

K. E. Iverson, ‘‘A Programming Language,”” AFIPS Conf.
Proc., Spring Jt. Comput. Conf. 21, 345-351 (1962).

A. D. Falkoff and K. E. Iverson, ‘‘The Evolution of APL,”’
History of Programming Languages, ACM Monograph Se-
ries, Academic Press, Inc., New York, 1981, pp. 661-674.
A. D. Falkoff, K. E. Iverson, and E. H. Sussenguth, ‘A
Formal Description of System/360,’” IBM Syst. J. 3, 198-262
(1964).

H. Hellerman, ‘‘Experimental Personalized Array Trans-
lator System,”” Commun. ACM 7, 433-438 (1964).

J. Schwartz, ‘‘The Development of JOVIAL,” History of
Programming Languages, ACM Monograph Series, Aca-
demic Press, Inc., New York, 1981, pp. 203-214.

G. Radin, ‘‘The Early History of PL/1,” History of Program-
ming Languages, ACM Monograph Series, Academic
Press, Inc., New York, 1981, pp. 551-575.

General Information Manual: IBM Commercial Translator,
Order No. F28-8043, IBM Data Processing Division, White
Plains, NY (1960).

J. E. Sammet, ‘“‘The Early History of COBOL,"’ History of
Programming Languages, ACM Monograph Series, Aca-
demic Press, Inc., New York, 1981, pp. 199-243.

R. W. Bemer, ‘A View of the History of COBOL,’’ Honey-
well Computer J. 5, 130-135 (1971).

E. R. Bond et al., “FORMAC—An Experimental FORmula
MAnipulation Compiler,”” Proc. 19th National Conference,
Association for Computing Machinery, 1964, pp. K2.1-1-
K2.1-11.

J. E. Sammet and E. Bond, ‘‘Introduction to FORMAC,”
IEEE Trans. Electron. Computers EC-13, 386-394 (1964).
M. D. Bernick, E. D. Callender, and J. R. Sanford,
““ALGY—An Algebraic Manipulation Program,”” AFIPS
Conf. Proc., Western Jt. Comput. Conf. 19, 389-392 (1961).
PL/I-FFORMAC Interpreter, IBM Corporation, Contributed
Program Library #360D 03. 3.004, 1967, available through
IBM branch offices.

A. J. Perlis and R. Iturriaga, ‘‘An Extension to ALGOL for
Manipulating Formulae,”” Commun. ACM 7, 127-130 (1964).
A. C. Hearn, “REDUCE 2, A System and Language for Al-
gebraic Manipulation,”” Proc. Second Symposium on Sym-
bolic and Algebraic Manipulation, Association for Comput-
ing Machinery, New York, March 1971.

J. Moses, ‘“MACSYMA —The Fifth Year,”’” Proc. Eurosam
Conf., ACM SIGSAM Bull. 8, 105-110 (1974).

R. D. Jenks, ‘‘The SCRATCHPAD Language,” Pro-
ceedings of the Symposium on Very High Level Languages,
ACM SIGPLAN Notices 9, 101-111 (1974).

T. M. Dunn and J. H. Morrissey, ‘‘Remote Computing: An
Experimental System, Part 1: External Specifications,”’
AFIPS Conf. Proc., Spring Jt. Comput. Conf. 25, 413-423
(1964).

J. C. Shaw, “‘JOSS: A Designer’s View of an Experimental
On-Line Computing System,”” AFIPS Conf. Proc., Fall Jt.
Comput. Conf. 26, Part 1, 455-464 (1964).

Conversational Programming System, IBM Corporation,
Contributed Program Library #360D 03. 4. 016, 1967, avail-
able through IBM branch offices.

J. W. Backus, ‘‘The Syntax and Semantics of the Proposed
International Algebraic Language of the Zurich ACM-

533

JEAN E. SAMMET




45.

46.

47.

48.

49,

50.

1.

52.

534

JEAN E. SAMMET

GAMM Conference,”’ Proc. International Conference on
Information Processing, UNESCO, Paris 1959, Butter-
worths, London, 1960, pp. 125-132.

‘‘Report on the Algorithmic Language ALGOL 60, Com-
mun. ACM 3, P. Naur, Ed., 299-314 (1960).

IBM System/360 Operating System: PL/I Language Specifi-
cations, Order No. C28-6571, IBM Data Processing Divi-
sion, White Plains, NY (1966).

J. McCarthy, “A Formal Description of a Subset of AL-
GOL,” Formal Language Description Languages, T. B.
Steel, Jr., Ed., North-Holland Publishing Co., Amsterdam,
The Netherlands, 1963, pp. 1-12.

C. C. Elgot and A. Robinson, ‘‘Random access stored-pro-
gram machines. An approach to programming languages,’’
J. ACM 11, 365-399 (1964).

P. J. Landin, ‘A Correspondence between ALGOL 60 and
Church’s Lambda-Notation, Part I, Commun. ACM 8, 89-
101 (1965); ‘‘Part 2,”" Commun. ACM 8, 158-165 (1965).

E. J. Neuhold, ““The Formal Description of Programming
Languages,”” IBM Syst. J. 10, 86-112 (1971).

P. Lucas and K. Walk, ““‘On the Formal Description of
PL/,”’ Annual Review in Automatic Programming 6, Part 3,
105-182 (1969).

D. Beech, “* A Structural View of PL/1,”” Computing Surv. 2,
33-64 (1970).

53.

54.

55.

56.
57.
58.

American National Standard PL/I, ANS X3.53-1976, Amer-
ican National Standards Institute, New York, 1976.

M. Marcotty and F. G. Sayward, ‘‘The Definition Mecha-
nism for Standard PL/1,”’ IEEE Trans. Software Engineering
SE-3, 416-450 (1977).

M. Marcotty, H. F. Ledgard, and G. V. Bochmann, ‘A
Sampler of Formal Definitions,”” Computing Surv. 8, 191-
276 (1976).

J. E. Sammet, ‘‘Roster of Programming Languages for 1976-
1977, ACM SIGPLAN Notices 13, 56-85 (1978).

J. E. Sammet, ‘‘Roster of Programming Languages for 1974
1975, Commun. ACM 19, 655-669 (1976).

J. E. Sammet, ‘‘Roster of Programming Languages for
1973, ACM Computing Reviews 15, 147-160 (1974).

Received March 18, 1980; revised August 5, 1980

The author is located at the IBM Federal Systems Divi-
sion Headquarters, 6600 Rockledge Drive, Bethesda,
Maryland 20034.

IBM J. RES. DEVELOP. @ VOL. 25 e NO. 5 e SEPTEMBER 1981




