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Data Base Technology 

The  evolution of data  base technology  over the  past  twenty-five years is  surveyed, and  major IBM contributions to this 
technology are identified and briefly described. 

Introduction 
Around 1964 a new term  appeared in the computer 
literature  to  denote a new  concept. The term was  “data 
base,”  and it was coined by workers  in military informa- 
tion systems  to  denote collections of data  shared by end- 
users of time-sharing computer  systems.  The commercial 
data processing  world at  the time was in the  throes of 
“integrated  data  processing,”  and quickly  appropriated 
“data  base”  to  denote  the  data collection  which  results 
from  consolidating the  data requirements of individual 
applications. Since  that time, the  term  and  the  concept 
have become firmly entrenched in the  computer world. 

Today,  computer applications in which many users  at 
terminals concurrently  access a (usually large) data  base 
are called data base  applications. A significant new kind 
of software,  the  data base management  system, or 
DBMS, has evolved to facilitate the  development of data 
base applications. The development of DBMS, in turn, 
has given rise to new  languages,  algorithms, and software 
techniques which together make  up  what might be called 
a data base technology. 

Data  base technology has been driven  by,  and  to a large 
extent distinguished from  other  software technologies by, 
the following broad  user requirements. 

Data  consolidation 
Early data processing  applications  used master  files  to 
maintain  continuity between program runs.  Master files 
“belonged to” applications,  and the  master files within an 
enterprise were  often  designed and maintained  indepen- 
dently of one  another. As a result,  common  data items 
often appeared in  different  master files, and  the values of 

such items  often did not  agree. There  was  thus a require- 
ment to consolidate the various master files into a single 
data  base which could be centrally  maintained and  shared 
among  various  applications. Data consolidation was  also 
required for  the  development of certain types of “man- 
agement  information”  applications that  were not  feasible 
with  fragmented master files. 

Data independence 
Early  applications  were  programmed in low-level lan- 
guages, such as machine language and  assembler lan- 
guage. Programmers  were not highly productive with 
such languages, and  their programs contained undesirable 
hardware  dependencies.  Further,  the complexity of pro- 
gramming made  data inaccessible to nonprogrammers. 
There was  a requirement  to raise the level of languages 
used to specify application procedures, and also  to pro- 
vide software for automatically  transforming high-level 
specifications into equivalent low-level specifications. In 
the  data  base  context, this property of languages has 
come  to be  known as  data  independence. 

Data protection 
The consolidation of master files into  data  bases had the 
undesirable  side effect of increasing the potential for  data 
loss  and  unauthorized  data  use.  The  requirement  for  data 
consolidation thus  carried with it a requirement  for tools 
and techniques to  control  the  use of data  bases and to 
protect against their loss. 

This paper  surveys  the development of data  base 
technology over  the  past twenty-five years and identifies 
the major IBM contributions  to this development.  For 
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this purpose we organize the technology into three areas, 
roughly  paralleling the three broad user requirements just 
cited: 

1. The development of data structuring methods for the 
representation of consolidated data; 

2. The development of high-level data languages for 
defining and manipulating consolidated data; and 

3. The development of generalized data  protection  facili- 
ties for protecting and controlling the  use of consoli- 
dated data. 

Because of space limitations, coverage is limited to 
specific  IBM activities that in the author’s opinion have 
had the greatest impact on the technology. As a result, 
much important work has, unfortunately, had to be 
omitted. Also for space reasons, only  brief descriptions 
are given of the activities which are included. 

Data  structuring  methods 
A data base management  system  is characterized by its 
data structure class,   i .e. ,  the class of data structures 
which  it  makes available to users for the formulation of 
applications. Most DBMS  distinguish between structure 
instances and structure types, the latter being abstrac- 
tions of sets of structure instances. 

A DBMS also provides an implementation of its data 
structure class, which is conceptually a mapping of the 
structures of the class into the structures of a lower-level 
class. The structures of the former class are often referred 
to  as logical structures, while those of the latter are called 
physical structures. 

The  data  structure classes of early systems were de- 
rived  from punched card technology,  and thus tended to 
be quite simple. A typical class was composed offiles of 
records of a single type, with the record type being 
defined by an ordered set of fixed-lengthjields. Because 
of their regularity, such files are now referred to as flat 

files. Records were typically  used to represent the entities 
of interest to applications (e .g . ,  students and courses), 
and  fields were used to represent entity attributes (such 
as student name and course number). Files were typically 
implemented on sequential storage media, such as mag- 
netic tape. 

When data consolidation was  first attempted, the limi- 
tations of early data structuring methods immediately 
became apparent. The main  problem  was the lack of an 
effective  method for representing the entity associations 
that frequently appear when data are consolidated (e .g . ,  
the one-many associations between courses and course 
offerings  and the many-many associations between 

course offerings  and students). The processing required 
to reflect  such associations was  not  unlike punched card 
processing, involving  many separate sorting and  merging 
steps. 

Early structuring methods had the additional problem 
of being hardware-oriented. As a result, the languages 
used to operate on structures were similarly oriented. 

In response to these problems, data base technology 
has produced a variety of improved data structuring 
methods, many of which have been  embodied  in  DBMS. 
While  many  specific data structure classes have been 
produced (essentially one class per system), these classes 
have tended to cluster into a small number of “families,” 
the most important of which are  the hierarchic, the 
network, the relational, and the semantic families. These 
families  have  evolved  more or less in the order indicated, 
and  all are represented in the data structure classes of 
present-day DBMS. 

e Hierarchic  structures 
The hierarchic data structuring methods which  began to 
appear in the early 1960s provided some relief for the 
entity association problem. These methods were devel- 
oped  primarily to accommodate the variability that fre- 
quently occurs in the records of a file. For example, in the 
popular two-level hierarchic method, a record was divid- 
ed into a header segment  and a variable number of trailer 
segments of one or more types. The header segment 
represented attributes common to all entities of a set, 
while the trailer segments were used for the variably 
occurring attributes. The method  was also capable of 
representing one-many associations between two sets of 
entities, by representing one set as header segments  and 
the other as trailers, and thus provided a primitive  tool for 
data consolidation. 

By the mid-l960s, the two-level hierarchic record had 
been  generalized to n levels. For example, GIS [l ,  21 
provided  up to fifteen levels, but with a single  segment 
type only at each level. By the end of the 1960s, n-level 
hierarchies with  multiple  segment types at each level 
were found in such systems as TDMS  [3],  MARK  IV  [4], 
and  IMS [5, 61. Implementations of n-level hierarchic 
structures on sequential media tended to follow the 
segmented-record approach, with segments being record- 
ed in “top down, left-right’’ sequence. These structures 
have also been implemented extensively  on direct access 
storage devices, which  afford numerous additional repre- 
sentation possibilities. 

IMS  was one of the first  commercial systems to offer 
hierarchic data structuring and is often  cited to illustrate 
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the hierarchic structuring  concept.  The  IMS equivalent of 
a file is the physical  data  base, which consists of a set of 
hierarchically structured records of a single type. A 
record  type is composed according to  the following rules: 

The  record  type  has a single type of root segment. 
The  root segment type may have  any  number of child 
segment types. 
Each child of the  root may also have  any number of 
child segment types,  and so on,  up to a maximum of 15 
segment types in any  one hierarchical path  and a 
maximum of 255 segment types in the  complete  data 
base record type. 

Record occurrences  are derived from  the following 
rules: 

A record  contains a single root segment. 
For one  occurrence of any given segment type  there 
may be any  number of occurrences (possibly  zero) of 
each of its  children. 
No child segment occurrence  can  exist without its 
parent. This point  is essentially a restatement of the 
hierarchic  philosophy. It  means,  for  example,  that if a 
given  segment occurrence is deleted, so are all its 
children. 

An unusual feature of IMS is  the multiple  implementa- 
tions which have  been provided for its data  structure 
class. For any  given  physical data  base,  the  user may 
select  an implementation that  best  matches  the  use  to  be 
made of that  data  base. For example,  the Hierarchic 
Indexed Sequential Access Method  (HISAM) implemen- 
tation uses physical  contiguity to  represent hierarchic 
record  structure,  and  thus provides efficient sequential 
access  to  the  segments of a record.  The  Hierarchic 
Indexed Direct Access Method (HIDAM)  implementa- 
tion,  on  the  other  hand,  uses  pointers  to  represent hierar- 
chic  structure,  thus providing for efficient segment  inser- 
tion and deletion. 

Network structures 
While hierarchic structures provided some relief for  the 
entity association  problem in the early 1%Os, a more 
general  solution  had to await the  introduction of the direct 
access  storage  device (DASD), which occurred  on a large 
scale in the mid- 1960s. DASD  made  possible a new family 
of data  structuring  methods,  the network methods,  and 
opened  the  door  to  the development of present-day 
DBMS. 

The first network structuring  method to  be developed 
for commercial data processing  had its origins in the bill- 
of-materials application, which requires  the representa- 
tion of many-many  associations  between a set of parts 
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and itself; e .g . ,  a  given part may simultaneously act  as  an 
assembly of other  parts  and  as a component of other 
parts.  To simplify the development of such applications, 
IBM developed  in the mid-l%Os an access method called 
the Bill-Of-Materials Processor (BOMP), and in the late 
1960s, an  enhanced version of BOMP known  as  the  Data 
Base Organization and Maintenance Processor (DBOMP) 
[7]. The  BOMP (and DBOMP) data  structure  class  pro- 
vides two  types of files, masterfiles and chainfiles, each 
file type containing records of a single fixed-format type, 
and a construct called a chain, consisting of a single 
master file record  and a variable number of records  from 
one chain file. A  given  chain file record  can reside in 
multiple chains of different types,  thus associating the 
master file records  at  the head of these  chains.  For  the bill 
of materials application,  two chain types-a  “compo- 
nent” chain and a “where  used” chain-are sufficient to 
represent many-many part associations. 

Although developed  for bill-of-materials applications, 
the BOMP data  structure  class has  been  used  extensively 
in a variety of other applications.  Essentially the  same 
data  structure  class  is provided in the  TOTAL DBMS of 
CINCOM,  perhaps  the most widely used  DBMS in the 
world today [SI. In  TOTAL,  two  kinds of files are 
provided: masterfiles (or single-entry files), correspond- 
ing to  the  master files of BOMP,  and variable-entry$les, 
corresponding to BOMP  chain files. Provision for  creat- 
ing chains in TOTAL  is similar to  that in BOMP, although 
many of the  restrictions in BOMP have  been removed in 
TOTAL (e.g., variable-entry files can have multiple rec- 
ord  types). While the  TOTAL system goes considerably 
beyond BOMP in terms of function provided,  its BOMP 
heritage is still clearly  discernible. 

Another highly successful network structuring method 
is  that developed  by C. W. Bachman and  associates  at 
General Electric for  the Integrated Data  Store (IDS) 
System [9]. In  IDS, a data  base is composed of records 
and record chains. There  is  no  concept of a file. The 
record  chain is analogous to  the BOMP chain, consisting 
of a single owner record  and a variable number of member 
records. As  in BOMP, a  record can  be a member of 
multiple chains of different types.  Unlike BOMP, an 
owner  record  can, in turn,  be a member of other chains. 
This  generalization permits  the  construction of hierar- 
chies of any  depth,  as well as  networks of considerable 
complexity. 

The  IDS  data  structure  class was  used as  the basis of a 
data  base language  developed by the  Data  Base  Task 
Group of CODASYL in the late 1960s and early 1970s 
[lo]. This  language introduced some new terminology 
(e.g., chains  became sets) and generalized some  features 507 
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STUDENT I NUMBER I NAME 

12345 
15418 
31416 

Figure 1 STUDENT table. 

BOSWELL 
CHICHESTER 

of the  IDS class (e .g. ,  providing an  ownerless  set, yield- 
ing the equivalent of a file). The DBTG language has been 
incorporated  into  the COBOL Journal of Development 
[ll] and has been  implemented  in a number of DBMS, 
including Cullinane’s IDMS [12] and  UNIVAC’s DMS/ 
1100 [13]. 

The IMS system  provides  alogical  relationship facility, 
which yields many of the benefits of the DBTG data 
structure class. With this  facility, a segment may be (in 
DBTG terms) a member of two  sets:  the  set  ofphysical 
child  segments of a physical  parent  segment, all appear- 
ing  in the  same  data  base  record,  and  the  set of logical 
child  segments of a logical  parent  segment, which may 
occur in different records in the  same or different data 
bases.  The logical relationship is  thus a  special case of the 
DBTG set  construct,  but is nevertheless  capable of 
modeling most  information  situations of practical impor- 
tance,  such  as many-many  binary associations.  The logi- 
cal  relationship is not, strictly  speaking, a part of the  IMS 
data  structure  class,  since a mapping facility is used to 
shield the  programmer  from logical relationships and 
preserve his strictly hierarchical  view of data.  It  is a 
significant contribution  to  the technology because it dem- 
onstrates  that  the  entity association  problem can  be 
solved  without exposing complex networks  to  the  pro- 
grammer. 

0 Relational  methods 
In  the mid-I960s, a number of investigators  began to grow 
dissatisfied with the  hardware orientation of then  extant 
data structuring methods, and in particular with the 
manner in  which pointers  and similar devices  for imple- 
menting  entity associations were being exposed to the 
users.  These  investigators sought a way of raising the 
perceived level of data  structures,  and  at  the  same time 
bringing them closer  to  the way in which people look at 
information.  Within IBM, Davies [14], Raver [15], 
Meltzer [16], and Engles [I71 at different  times and in 
different contexts  described  an entity set structuring 
method, wherein  information is  represented in a set of 
tables, with each  table corresponding to a set of entities of 
a single type. (A similar construct  was  used in the 
MacAIMS system of MIT  as a canonical form  for repre- 
senting  associations among  data items.) The  rows of a 

table correspond to  the entities  in the  set,  and  the 
columns  correspond to  the  attributes which characterize 
the entity set  type.  The intersection of a row and a 
column  contains the  value of a particular  attribute  for a 
particular  entity. For  example,  the STUDENT table in Fig. 
1 describes a set of students having attributes NUMBER 

and NAME. 

Tables  can also  be used to  represent associations 
among  entities. In  this  case,  each  row  corresponds  to an 
association,  and the columns correspond  to  entity identi- 
fiers, i.e., entity attributes which can  be  used  to uniquely 
identify entities.  Additional  columns may be  used to 
record attributes of the association itself (as opposed  to 
attributes of the  associated entities). For  example,  the 
ENROLL table of Fig. 2 describes a set of associations 
between  course offerings (identified by COURSE and DATE) 
and the  students (identified by STUNUM) enrolled in those 
offerings. 

The key  new concepts in the  entity  set  method were the 
simplicity of the  structures it provided and  the  use of 
entity identifiers (rather  than pointers or hardware-dictat- 
ed structures)  for representing entity associations. These 
concepts  represented a  major step  forward in meeting the 
general goal of data independence. 

In  the  late 1960s, E. F. Codd [18] noted  that  an entity 
set could be viewed as a mathematical  relation on a set of 
domains Dl, D,, . . ., D,, where each domain corresponds 
to a different property of the entity set. Associations 
among  entities  could  be similarly represented, with the 
domains  in  this case corresponding to entity identifiers. 
Codd defined a (data) relation to be a time-varying subset 
of the Cartesian product  Dl X D, X . . . X D,, i.e., a set of 
n-tuples (or simply tuples) of the  form 

(VI, VZ’ . . ., VJ, 

where  vi  is  an  element  selected  from domain  Di. One  or 
more domains whose values uniquely identify the tuples 
of a  relation is called a candidate key. 

Aside from  the mathematical  relation  parallel,  Codd’s 
major contribution to  data  structures  was  the introduction 
of the notions of normalization and  normal  forms. Codd 
recognized that  the domains on which a relation is 
constructed  can in general  be  composed of elements of 
any kind;  in particular, domains  can be composed of 
other relations, thus leading to  the “nesting” of relations 
of potentially any  depth. Codd  showed that  there was no 
fundamental advantage  to this nesting and  that, in fact, it 
only tended  to  complicate  the information modeling pro- 
cess.  Instead,  he  proposed  that relations be built exclu- 
sively on domains of elementary  values-integers,  char- 
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acter strings, etc. He  called such relations normalized 
relations and the  process of converting  relations to nor- 
malized form, normalization. Virtually all work done 
since with relations has been with normalized  relations. 

Codd also  perceived  that  the  unconstrained construc- 
tion of normalized relations  could  lead to  semantic anom- 
alies. For example, when a  tuple represents  an associa- 
tion between two or more  entities and  at  the  same time 
represents (parasitically) the  attributes of the individual 
entities, values for  the  latter will in general  be replicated 
throughout the  relation, entailing duplicate updating. 
Similarly, when a tuple  represents  an  entity,  some of the 
attributes therein may be  attributes of a second (masquer- 
ading) entity  which is associated in some way with the 
first  entity.  When this  occurs, entities of the  second  type 
cannot  be  represented (inserted, deleted,  etc.) indepen- 
dently of entities of the first type. 

To  better explain these effects,  Codd postulated levels 
of normalization  called normal forms. An unconstrained 
normalized  relation is in first normal form (INF). A 
relation  in 1NF in  which all non-key domains  are func- 
tionally dependent  on (i .e. ,  have  their  values determined 
by) the  entire key are in second normal form (2NF), 
which solves  the  problem of parasitic entity representa- 
tion. A  relation  in 2NF in which all non-key  domains are 
dependent only on  the key is in third normal form (3NF), 
which solves the  problem of masquerading  entities. 

To avoid update  anomalies, Codd recommended  that 
all information be  represented in third normal form. 
While this  conclusion  may seem  obvious  today, it should 
be remembered that  at  the time the recommendation  was 
made,  the relationship  between data  structures  and infor- 
mation  was  not well understood. Codd’s  work  in effect 
paved the way for  much of the  work done  on information 
modeling in the  past  ten years. 

As part of the  development of the relational method, 
Codd postulated  a relational algebra, i . e . ,  a set of opera- 
tions  on relations  which  was  closed  in the  sense of a 
traditional  algebra, and thereby  provided an important 
formal  vehicle for  carrying  out a variety of research in 
data  structures  and  systems [19]. In addition to  the 
conventional set  operations,  the relational  algebra  pro- 
vides such  operations  as restriction, to  delete selected 
tuples of a re1ation;projection , to  delete  selected domains 
of a relation; and join, to  join  two relations into  one. 

Codd also  proposed a relational calculus [19], whose 
distinguishing feature  is  the method used to designate sets 
of tuples. The  method  is  patterned  after  the  predicate 
calculus and  makes  use of free  and bound  variables  and 

M23 

12345 
31416 

W78 31416 

Figure 2 ENROLL table. 

the universal and existential quantifiers. For  example,  the 
set of names of students who received an ‘A’ in any 
offering of course M23 would be  expressed  as 

{x[NAME] E STUDENT: 
(3y E ENROLL)  (y[COURSE] = “23’ & 

y[GRADE] = ‘A’ & 
y[STUNUM] = x[NUMBER])} 

Codd  recognized the  existence of many possible ma- 
nipulation  languages for relations  and proposed  that  the 
relational  calculus be  used  as  the  standard against which 
these languages could  be  measured for  completeness.  In 
[I91 he defined relational  completeness: “a language is 
relationally complete if, given any finite collection of 
relations R,, R,, . . ., Rn in simple normal form,  the 
expressions of the language  permit definition of any 
relation definable from  R,, R,, . . ., Rn by expressions of 
the relational calculus.” 

Codd characterized his  methodology as a data  model, 
and thereby provided a concise term for  an  important but 
previously unarticulated  data  base  concept, namely, the 
combination of a class of data  structures  and  the opera- 
tions allowed on  the  structures of the  class. (A similar 
concept,  the abstract  data  type or data  abstraction, has 
evolved elsewhere in software  technology.) The  term 
“model”  has  been applied  retroactively to early data 
structuring methods, so that,  for  example,  we now speak 
of “hierarchic models”  and  “network  models,”  as well 
as  the relational model. The term is now  generally  used to 
denote  an  abstract  data  structure  class, although there  is a 
growing realization that it should embrace operations as 
well as  structures. 

IBM  investigators have made several refinements to 
Codd’s original definitions of normal forms.  Kent [20] 
simplified the definitions by removing references  to prime 
attributes (an attribute in any candidate  key).  Boyce [21] 
noted that  Codd’s definition of 3NF still permitted unde- 
sirable  functional dependencies among prime  attributes 
and postulated a normal form which excluded these 
dependencies.  Codd and  Boyce  later collaborated on  the 
definition of the Boyce-Codd normal form (BCNF), a 
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System Developed by Reference 

MacAIMS  MIT  Project MAC 
RDMS  General  Motors 
Ish IBM UK Scientific  Centre 
INGRES U. California,  Berkeley 
ZETA U. Toronto 
System R IBM Research, San Jose 
QBE  IBM Research, Yorktown 
ORACLE  Relational  Software Inc. 
SQL/DS IBM 

faster  CPUs with larger memories) and in a better under- 
standing of the  problems of implementing high-level data 
models. Thus, relational systems  make  extensive  use of 
indexes  and  pointers in implementing relations  and rela- 
tional operations. Through the  use of such  devices, 
relational systems  seem capable of achieving  perform- 
ance competitive  with  nonrelational systems, without 
compromising the simple view of data  for which the 
model was conceived. 

Figure 3 Relational  systems. 

redefinition of 3NF which  subsumed Boyce’s normal 
form and  made  no  reference  to  either  keys  or prime 
attributes [22]. 

Fagin [23] noted  that relations in BCNF could still 
contain  higher-order dependencies, which he called mul- 
tivalued dependencies. He proposed a fourth normal form 
(4NF) to eliminate multivalued dependencies  and provid- 
ed algorithms for reducing  relations to 4NF.  In subse- 
quent work [24], Fagin  described the projection join 
normal form  (PJ/NF),  the ultimate normal  form when 
only the projection and  join  operators  are allowed. 

By providing  a common  context for the formulation of 
data problems, the relational model has  proved of great 
value  as a vehicle for  research and for communication 
among research  workers.  Areas in which the relational 
model has  been  used include data  base  system architec- 
ture,  data  base  machines,  concurrency  theory, language 
completeness,  view updating,  query  decomposition (es- 
pecially in distributed  systems),  and  data equivalence. 

In addition, the relational model has  been implemented 
in a  number of DBMS. Two major  implementations 
within IBM  are  System R [25, 261, an  exploratory DBMS 
developed by the  IBM  Research Division in San  Jose, and 
SQL/DS [27], a program product  based  on  System R for 
use in the  DOS/VSE operating  system environment. 

A  partial  list of relational systems  appears in Fig. 3. 

A  question frequently  asked  about relational model 
implementations  is: How efficiently do  they  represent  the 
entity  associations required  for  the consolidation of data 
into  data  bases?  At  the  user level, a relation seems  no 
different from-a flat file, and if the  latter  was not adequate 
for  data consolidation,  how can  we  expect  the  former  to 
be?  The  answer lies  in the hardware improvements  that 
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Semantic models 
During the evolution of the  hierarchic,  network, and 
relational methods,  it gradually became  apparent  that 
building a data  base  was in fact equivalent to building a 
model of an  enterprise  and  that  data  bases could be 
developed more  or  less independently of applications 
simply by  studying the  enterprise.  This notion has been 
articulated in the widely referenced  ANSI/SPARC data 
base  system  architecture [35], which provides  the notion 
of a conceptual schema for  the application-independent 
modeling of an  enterprise  and various external schemata 
derivable  from the  conceptual  schema  for  expressing  data 
requirements of specific  applications. 

Application-independent modeling has  produced a 
spate of semantic data models and  debate  over which of 
these  is  best  for modeling “reality.”  One of the most 
successful semantic models is the entity-relationship 
model [36], which provides  data  constructs  at  two levels: 
the conceptual level, whose constructs include  entities, 
relationships  (n-ary  associations among entities),  value 
sets,  and  attributes;  and  the representation level,  in 
which conceptual  constructs  are mapped into tables. The 
latter are similar to relations  in the relational  model, with 
the  important difference that  the entity-relationship mod- 
el provides  distinct table  types  for  representing entity sets 
and relationship sets.  Such semantic interpretations of 
relations have  existed  for some  time, but it took Chen’s 
paper  to give  them  wide  circulation and  to  create a  surge 
of interest in the entity-relationship  model. 

The  data  structure  class of the  IBM DB/DC Data 
Dictionary  program product is an embodiment of the 
entity-relationship model [37]. The Dictionary  provides 
subjects, which may have attributes and which may 
participate in many-many  binary relationships, which 
may also  have  attributes.  In  the initial release of the 
Dictionary, subject  and relationship types  were fixed in 
the  product design and reflected the  entity  types typically 
found  in a computer installation about which the  user 
wanted to  record information: data  bases,  records, fields, 
programs, etc. Subsequently,  the Dictionary has provid- 
ed  an extensibility  facility, which allows the  user  to define 
arbitrary subject and relationship types. With this  exten- 
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sion,  the Dictionary has  the modeling power of a general- 
ized DBMS, making it one of the first systems  to imple- 
ment the entity-relationship  model. 

Data  model  implementation 
The  success of a data model depends  not only on  the 
degree of its  hardware  independence,  but  also  on  the 
ability to translate  operations  on  its  constructs efficiently 
into equivalent operations  on  the underlying hardware. 
As one might expect,  these goals  often conflict with one 
another. 

For performance reasons, most data model implemen- 
tations make  use of indexes, which are essentially sets of 
key  value-data location pairs. Rather than develop index- 
ing techniques from  the ground up,  many DBMS use 
existing  indexed access methods as their implementation 
base.  Two  access  methods which have  been used  exten- 
sively for this purpose  are  the  IBM  Indexed Sequential 
Access Method  (ISAM) and  the  IBM Virtual  Storage 
Access Method  (VSAM).  ISAM  and  VSAM are general- 
ized indexed  sequential access  methods, meaning that 
they  cater simultaneously to both random  and sequential 
access to data. 

ISAM was introduced in 1%6 as a component of OS/ 
360 and  was  the first  indexed  sequential access method to 
find widespread use  in  the  data  processing community. 
ISAM  made  practical  the  use of DASD for many users, 
especially those  who could  not devote  the time and effort 
required to  develop a viable indexed access method of 
their own. It  has  been widely referenced  in the literature 
and  in textbooks  as  the typical  indexed sequential  access 
method. 

VSAM [38] was  introduced in 1972. Its major  contribu- 
tion was the  use of a  record-splitting strategy  to overcome 
the tendency in ISAM  for long overflow chains  to develop 
after many record  insertions.  In  addition, VSAM has 
made  innovative  contributions in the  areas of index 
compression and  index replication. The VSAM index 
organization is known  more generally as  the B-tree  orga- 
nization, which was developed  independently by  Bayer 
and McCreight in the  early 1970s [39]. 

Also for  performance  reasons, many data model imple- 
mentations make  use of hashing, i . e . ,  the calculation of 
data locations from  key values. W. W. Peterson [40] was 
one of the first to  apply hashing to DASD,  and his work 
has been  extensively  referenced.  V. Lum  and his asso- 
ciates  at IBM’s Research Division ( e . g . ,  [41, 421) have 
conducted systematic investigations of hashing  tech- 
niques  and demonstrated  the general utility of the divi- 
sionlremainder method, which is widely used today. 

High-level  data  languages 
The history of computer applications has  been marked  by 
a steady  increase in the level of the languages  used to 
implement  applications. In  data  base technology,  this 
trend is manifested  in the development of high-level data 
definition languages and  data manipulation  languages. 

A data  definition  language (DDL) provides  the DBMS 
user with a way to  declare  the  attributes of structure 
types within his data  base,  and  thus  enable  the system to 
perform implicitly many  operations ( e . g . ,  name resolu- 
tion,  data  type checking) that would otherwise  have to be 
invoked  explicitly.  A DDL typically provides  for  the 
definition of both logical and physical data  attributes,  as 
well as  the definition of different views of the (logical) 
data.  The  latter  are useful  in limiting or tailoring the way 
in which specific programs or end-users  look at the  data 
base. 

A data  manipulation  language (DML)  provides the 
user with a way to  express  operations  on  the  data 
structure  instances of a data  base, using names previously 
established  through data definition. Data manipulation 
facilities are of two general  types:  host-language  and self- 
contained. 

A host-language facility  permits the manipulation of 
data  bases  through  programs  written  in conventional 
procedural languages,  such  as COBOL or PL/I. It provides 
statements  that  the  user may imbed in a program at  the 
points where data  base operations are  to  be performed. 
When such a statement  is  encountered,  control is trans- 
ferred  to  the  data  base  system, which  performs the 
operation and  returns  the  results  (data  and  return codes) 
to  the program in pre-arranged main storage locations. 

A self-contained facility  permits the manipulation of 
the  data  base  through a high-level, nonprocedural lan- 
guage,  which is  independent of any procedural language, 
i . e . ,  whose  language is “self-contained.” An important 
type of self-contained facility is  the query  facility, which 
enables “casual”  users  to  access a data  base without the 
mediation of a professional  programmer. Other  types of 
self-contained  facility are available for performing  gener- 
alizable operations  on  data  base  data,  such  as sorting, 
report  generation,  and  data translation. 

Host-language  facilities 
Host-language  facilities  evolved from  the need to stan- 
dardize within an installation the way in  which program- 
mers  code  certain common data handling operations, 
such  as buffering, error handling, and label  processing. 
This  need  resulted in “I/O subroutine  packages” which 
were  invoked  by all programs in the installation. Such 51 1 
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packages, in turn, were generalized over computers of a 
given type into “I/O systems” and “access methods” 
applicable to many  installations. The introduction of 
DASD greatly extended  the  set of operations which could 
be usefully generalized.  Functions typically included in 
DASD access  methods  are space  allocation,  formatting, 
key-to-address  transformation, and indexing. 

With the introduction of data base management sys- 
tems,  the  access method  interface  was  replaced by the 
data  base  sublanguage. The  data manipulation facilities 
of a data  base sublanguage  tend to be more powerful  than 
those of access  methods, permitting, for example, the 
updating or deleting of multiple records with  a single 
statement. Additionally, a data  base sublanguage may 
include statements unique to  the  data  base environment, 
such  as locking and  transaction  control statements. 

Because of main storage limitations, the units of data 
on which data  base sublanguages operate  are normally 
relatively small, the  record being the typical  unit. To 
access larger  collections of data,  the programmer  must 
“navigate”  through the  data base. To  assist him in this, 
the DBMS may provide  objects called cursors or current 
position indicators, which the programmer can  set  to 
point to a particular  item of data, and later  use  to refer to 
that item or to a related  item. 

A high-level data language which is  proving to be of 
considerable importance  to  data base  technology  is the 
SQL data base  sublanguage of system  R [43, 441. SQL is a 
relational language which had its origins in several rela- 
tional languages developed by IBM’s Research Division 
in the early 1970s, including: 

The ALPHA data  base sublanguage [45], an  adaptation of 
the relational  calculus for  use with conventional  proce- 
dural languages. Continuing the  example of the section 
“Relational Methods,”  the ALPHA sequence 

RANGE STUDENT X 

RANGE ENROLL Y SOME 

GET W X.NAME: 
3Y((Y.COURSE = “23’) & 

(Y.GRADE = ‘A’) & 

(Y.STUNUM = X.NUMBER)) 

returns  the names of ‘A’ students in M23 to  the 
workspace  relation  W,  where they can  be  operated  on 
by statements of the host language. 
The GAMMA-0 language [46], a low-level relational lan- 
guage intended for implementing relational  algebras  and 
query languages. 
The SQUARE language [47, 481, a general purpose query 

512 language which attempted through graphic  conventions 

to avoid some of the mathematical appearance of the 
relational calculus  and at  the same  time  remain relation- 
ally complete. The  set of names of ‘A’ students in M23 
would be expressed in SQUARE as: 

STUDENT ENROLL (‘M23’, ‘A’) 
NAME NUMBER  STUNUM COURSE,GRADE 

0 The SEQUEL language [49], a general purpose query 
language based on SQUARE but  providing a string-type 
syntax with English  keywords. For basic  queries, SE- 

QUEL borrowed the SELECT-FROM-WHERE construction 
of existing query languages such  as GIS and  then 
elaborated  this structure in a consistent manner to 
achieve the completeness of the  relational  calculus,  but 
with much improved readability. An important  charac- 
teristic of SEQUEL is  the ability to  “nest” SELECT 

clauses,  permitting complex queries to  be articulated 
into intellectually manageable chunks without losing 
the important  nonprocedural  nature of the language. 

For example, the previous  query would be rendered in 
SEQUEL as follows: 

SELECT NAME 

FROM STUDENT 
WHERE NUMBER IN 

(SELECT STUNUM 

FROM ENROLL 

WHERE COURSE = “23’ 

AND GRADE = ‘A’) 

The SQL language of System  R  is an enhanced  version 
of SEQUEL. In addition to SEQUEL’S query  facilities, SQL 

provides 

0 Data manipulation facilities that  permit the insertion, 
deletion, and updating of individual tuples or sets of 
tuples. 

0 Data definition facilities for defining relations,  views, 
and other  data objects. 
Data control  facilities  for defining access authorities 
and for defining transactions, i . e . ,  units of recoverable 
processing. 

The use of SQL from  programs  is  facilitated by permit- 
ting language variables to appear in SQL statements and 
by providing a cursor facility for manipulating individual 
tuples. The  statement 

$LET cursor-name BE select-statement 

associates  the set of tuples  designated by select-state- 
ment with the  named cursor. A cursor contains a “cur- 
rent tuple” pointer, so that individual tuples can be 
designated simply through a cursor name. For example, 
the  statement 
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$FETCH cursor-name 

returns  the tuple pointed  to by the  current  tuple  pointer of 
cursor-name and  advances  the  pointer  to  the  next tuple. 
To illustrate, the following pseudo-program  provides 
processing of the  names of ‘A’ students in M23: 

initialize; 
$LET P BE 

SELECT NAME  INTO  $STUNAME 
FROM STUDENT 

WHERE NUMBER  IN 

(SELECT  STUNUM 

FROM ENROLL 

WHERE COURSE = “23’ 

AND GRADE = ‘A’); 

$OPEN P; 

do until the tuple set designated by P is  exhausted; 
$FETCH P; 
process  one  name in variable STUNAME; 

end; 
$CLOSE P; 

The  use of SQL in generalized  programs  whose data 
requirements  are  not known until the program is invoked 
is facilitated by the PREPARE and EXECUTE statements. 
These  statements may be used to  construct string  repre- 
sentations of SQL statements (e .g . ,  including data names 
supplied  by the  invoker)  and  then  cause  these  representa- 
tions  to be executed  exactly  as if they had appeared in the 
program to begin with. 

Whereas  most  relational DBMS use  an interpretive 
approach  to  the  execution of data sublanguage state- 
ments,  System R uses a compiler approach. Programs are 
first processed  by aprecompiler [50], which generates a 
tailored datu  access  routine for  each SQL statement in the 
program and which  replaces the SQL statement with a 
CALL to  the  access  routine. When the program is execut- 
ed, all the  access  routines  are loaded to  provide targets 
for  the  translated CALLS. This approach  has  two advan- 
tages: 

1. Much of the  work of parsing,  name  binding, access 
path selection, and authorization checking  can be done 
once  by  the  precompiler and thus be  removed  from the 
process of running the program. 

2. The  access  routine, because it is tailored to  one 
specific program,  is much smaller and  runs much  more 
efficiently than a generalized SQL interpreter would. 

The tailoring of System R access routines is  done by an 
optimizer component [Sl-531, which attempts  to mini- 
mize the “cost” of carrying out SQL statements.  Cost  is a 
weighted combination of CPU and  DASD I/O activity, 

with the weighting adjustable  for different system config- 
urations.  In computing cost,  the optimizer makes  use of 
such  “statistics” as relation  sizes and  number of distinct 
key  values within a  relation. 

Like  the relational model on which it  is  based, SQL has 
been widely adopted  as a research  and educational vehi- 
cle and has  been implemented in a number of DBMS 
products  such  as SQLIDS. 

Self-contained  facilities 
The nonprocedurality of data processing  specifications 
that can be  achieved with a host-language facility is 
effectively limited by the procedurality of the  host lan- 
guage.  This  limitation was recognized as  early  as  the mid- 
1950s, when another  approach  to application  develop- 
ment was  conceived.  This  approach  took cognizance of 
the  fact  that  most  data processing logic can  be articulated 
into executions of a small set of generalized  routines, 
which can  be particularized for specific applications with 
a  fraction of the effort required to write an equivalent 
customized program.  The  processes which have been 
most  frequently  generalized for this purpose  are  report 
generation, file maintenance, and  (more  recently) data 
translation. 

One of the earliest  generalized file processing  systems 
was developed at  the  Hanford Atomic Products Opera- 
tion  in the mid-1950s [54]. The  work  done  there  on 
generalized routines  for sorting, report  generation, and 
file maintenance was  picked  up by the SHARE organiza- 
tion around 1960 and distributed under  the title  “9PAC” 
[S I .  This work, in turn, was extended in many  directions 
over  the next  fifteen years, giving rise  to numerous 
families of generalized systems [56]. 

The most pervasive application of the  Hanford  concept 
is found in the report  program  generator, a software 
package  intended primarily for  the  production of reports 
from  formatted files. Attributes of the  source files and  the 
desired reports  are described  by the  user  in a simple 
declarative  language, and this description is  then  pro- 
cessed by a compiler to  “generate” a program  which, 
when run,  produces  the desired reports. A  key  concept of 
the  report program generator  is  the  use of a fixed struc- 
ture  for  the  generated program,  consisting of input, 
calculation, and  output  phases. Such a structure limits the 
transformations that  can be  carried out with a single 
generated program,  but  has nevertheless proved remark- 
ably versatile  (report program generators  are routinely 
used for file maintenance  as well as  report generation). 
Perhaps more importantly,  the fixed structure of the 
generated program imposes a discipline on  the  user which 
enables him to  produce a running program  much  more 513 
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quickly than he could with conventional languages. Re- 
port program generators  are especially popular in smaller 
installations  where  conventional programming talent is 
scarce, and in some  installations  it  is the only  “program- 
ming language” used. 

The original report program generator  was the IBM 
Report Program Generator introduced in the early 1%Os 
for  the IBM 1401 computer [57]. It was patterned after the 
SHARE 9PAC system  and proved to  be a valuable tool in 
helping users  to migrate from punched card  equipment to 
electronic data processing. A report program  generator 
for  the  Systed360 series  was  introduced in 1964. A much 
enhanced version, RPG 11, was introduced in  1969 for the 
IBM Systed3 [58]. RPG 11 has been  implemented  on 
Systed370 and  many other machines,  and today it  is one 
of the most widely used  computer programming lan- 
guages. 

While RPG was being developed in IBM’s  business 
sector, a closely related family of products,  the formatted 
file systems,  were being developed jointly by IBM’s 
Federal Systems Division and  various military and intelli- 
gence agencies of the federal  government.  A  formatted 
file system typically provides a set of generalized pro- 
grams which are sufficient to implement the bulk of the 
application at hand. The programs are separately invoka- 
ble and are so designed that the  output of one  can be used 
as inputs to  the  others. File structures  have limited 
complexity, typically providing a two-level  hierarchic 
record with multiple segment  types at  the second level. 
The formatted file systems  have been  used  extensively in 
intelligence and  command-control  applications,  where 
information requirements are exceptionally  volatile,  and 
the time available to respond to new requirements pre- 
cludes  the use of conventional programming. 

IBM  has  been a major  contributor to a number of the 
formatted file systems, including: 

0 The Formatted  File  System for  the Air Force Strategic 
Air Command,  developed for  the IBM 7090 around 
1959 and used mainly for intelligence applications  (this 
is believed to  be  the first formatted file system) [59]; 
The Information  Processing  System (IPS) for  the  Navy, 
developed in the early 1960s for  the IBM 7090 and CDC 
1604  [60]; 
The Formatted  File System  for  the Naval Fleet Intelli- 
gence  Center in Europe  (FICEUR), developed for  the 
IBM 1410 (believed to be the  most widely used of the 
formatted file systems) [61]; 
The National Military Command System Information 
Processing System (NIPS),  developed for  the IBM 1401 

514 and later  converted to the  IBM System/360 [62]. 

The  report program  generators  and the formatted file 
systems were the precursors of the contemporary DBMS 
query facility. A query processor  is in effect a generalized 
routine which is  particularized to a specific application 
( i . e . ,  the user’s  query) by the parameters  (data names, 
Boolean predicates, etc.) appearing in the query.  Query 
facilities are more  advanced  than  most  early generalized 
routines in that  they provide online (as  opposed to batch) 
access  to  data  bases (as  opposed  to individual files). The 
basic  concept  is  unchanged,  however, and  the lessons 
learned in implementing the generalized  routines,  and 
especially in reconciling ease of use with  acceptable 
performance, have been directly applicable to query 
language processors. 

Most  query  facilities use string-type languages, such  as 
SQL. A significant departure from this practice is the 
Query-By-Example (QBE) language [63, 641, which is a 
graphical language intended for  use  from a display termi- 
nal. The QBE user is  presented with an outline of the 
tables he wishes to  query, and  then he  expresses his 
query by filling in the outline with the  appropriate names 
and special characters.  The basic idea is for  the  user to 
show the  system  an example of the  information he wants 
to  see and for  the  system  to respond by showing the user 
all instances that conform to the  example. 

For example, to query the ENROLL table (Fig. 2), the 
system user would first call up  the outline in Fig. 4(a). To 
see all students with an ‘A’ grade in any offering of course 
M23, the  user would enter ‘A’  in the GRADE column and 
“23’ in the COURSE column,  and then in the STUNUM 

column enter  an example of student number, underlined 
to indicate  that  it  is an example  only,  and  annotated with 
a P to indicate that  it is  values of this  column that are to  be 
printed or displayed [Fig. 4(b)]. The system responds by 
displaying the  numbers of all qualifying students as in Fig. 
4(c). 

Queries involving two or more  tables are expressed by 
using common values as examples of the  attributes on 
which the tables are  to  be matched. For example,  the 
names of all students in the previous  query would be 
retrieved with the query  shown in Fig. 4(d). The system 
responds by displaying the names, as in Fig. 4(e). 

Through the use of various other graphic  conventions, 
the QBE user is able  to  express quite  sophisticated que- 
ries.  Predicates may include Boolean expressions (e .g . ,  
grade = ‘A’ or grade = ‘B’), comparison of two variables 
(e .g . ,  grade better  than a specific student’s grade),  and 
universal quantifiers (e .g . ,  all grades = ‘A’). Both predi- 
cates and retrieved  values can include aggregate opera- 
tors, such as SUM, COUNT, and AVERAGE. The main goal 
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of the language, however, is to make the expression of 
simple queries very easy. Tests conducted by Thomas 
and  Gould [65] suggest that QBE has indeed achieved this 
objective. 

Data  protection  facilities 
The consolidation of data accentuates the need to protect 
the data from loss or unauthorized use. This protection is 
in  many cases secured (ironically)  by  re-introducing  re- 
dundancy into the data, but  in a controlled way. 

This section surveys the facilities  which data base 
technology  has provided for the protection of data. For 
specific examples, we draw  on IMS, which  is  widely 
regarded as the DBMS  which pioneered data integrity 
technology, and  on System R, which is believed to be the 
first  relational  DBMS to incorporate a full range of data 
protection facilities. 

Concurrent access control 
Most DBMS permit a data base to be accessed concur- 
rently by a number of users. If  this access is not  con- 
trolled, the consistency of the data can be  compromised 
(e.g., lost updates), or the logic of programs can  be 
affected (e.g., nonrepeatable read operations). 

Concurrent access control generally takes the form of 
data locking, i . e . ,  giving a user  exclusive access to some 
part of the data base for as long as necessary to avoid 
interference. Locking can, in general, lead to deadlock 
among users, necessitating some  method of detecting and 
breaking deadlocks. 

In early releases of IMS, concurrent access was  con- 
trolled  through  program  scheduling, i . e . ,  a program  in- 
tending to update certain segment types would not be 
started until  all programs updating these segment types 
had completed. Under this regime, the granule of sharing 
was  effectively the segment type. The segment types to 
be  updated by a program were  effectively  locked  when 
the program  was started and  unlocked  when it completed. 
Deadlock  did  not occur, since  all resources required by a 
program were obtained at one  time. 

Around 1974, aprogram isolation facility was  added to 
IMS  which permitted programs updating the same seg- 
ment type to run concurrently and which prevented 
interference by locking  individual data  base records as 
required. With program isolation, records are locked for a 
program upon updating any  item  within the record and 
unlocked  when the program reaches a synchpoint, i . e . ,  a 
point at which the changes made by the program are 
committed to the data base. Deadlocks can occur and are 

ENROLL I COURSE I DATE 

P.12345 

(b) 

ENROLL I STUNUM 

12345 
31416 

(d 

12345 

STUDENT NAME NUMBER 
I I 

STUDENT I NAME 

Figure 4 Query-by-example displays. 

resolved by selecting one of the deadlocked programs  and 
restarting it  at  its most recent synchpoint (see next 
section). 

In addition to  the implicit protection provided by 
program isolation, IMS permits programs to explicitly 
lock  and  unlock segments and permits users to explicitly 
request exclusive use of segment types and data bases 
(for whatever reason) before a program is started. 51 S 
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A significant new  capability in IMS  is  the ability for 
programs  running under different invocations of the  sys- 
tem (e .g . ,  in different  CPUs) to concurrently  access a 
common set of data  bases. Additional computer capacity 
may thus  be applied to  the processing of common data, 
and  the  systems sharing the  data may be  tailored to 
specific user  needs while still retaining access  to common 
data. 

System  R employs  an implicit locking technique similar 
to program  isolation and like IMS  allows the  user  to 
explicitly lock data  objects  at several  levels of granulari- 
ty. A novel feature  is  the ability of the  user  to specify one 
of three consistency  levels in  reading data: 

1. Read “dirty”  data, i . e . ,  data subject to  backout in the 
event  that  another program  updating the  data  ends 
abnormally (see  next section). 

2. Read “clean”  but possibly unstable  data, i . e . ,  data not 
subject to  backout, but  subject to  update by other 
users  between  successive  reads by this user. 

3. Read “clean,”  stable  data, i .e . ,  data  as  it would be 
seen by  this user if running alone. 

The lower  levels of consistency required less locking  and 
produce less  lock contention, and may thus  be  used, 
when  the application permits,  to  improve  system per- 
formance. 

Recovery  from  abnormal  program  termination 
The  data  base updating  performed by a program does not 
occur instantaneously (typically requiring several thou- 
sands of machine instruction executions); hence,  there  is 
nonzero probability that  the program will fail to complete 
normally and as a result  leave  the  data  base in an 
inconsistent state ( e . g . ,  crediting one  bank  account with- 
out a  matching debit  to  another  account). A program  can 
fail to complete for a  variety of reasons, including illegal 
instruction execution, termination by the  system to break 
a loop or  deadlock,  and  system failure. 

IMS  protects against data inconsistency due  to  abnor- 
mal program  termination by recording all data  base 
changes made  by a  program  in a dynamic  log. If the 
program reaches a synchpoint, its dynamic log entries are 
discarded,  thereby committing  its data changes. If the 
program ends abnormally  before a synchpoint  is  reached, 
the system  (after restart, if necessary) uses  the dynamic 
log to back out all data  base changes made by the program 
since its  most recent  synchpoint. If abnormal end  is  due 
to a program error,  the  system  prevents  the program  from 
being  rescheduled  until an  operator  intervenes. Other- 

51 6 wise,  the  system automatically restarts  the program. 

IMS  also  protects against  anomalous input  and  output 
behavior which can result from abnormal  program  termi- 
nation. If a program ends abnormally, the system dis- 
cards any output messages produced by the program 
since  the most recent synchpoint and  restores  the  pro- 
gram’s  input  message to  an  input  queue.  The input 
message is  discarded  and  the  output messages are deliv- 
ered to their destinations only when a synchpoint is 
reached. 

In  System R, recovery  from system failure  is facilitated 
through the  use of a novel  dual-copy  recording  technique 
and  the  use of “maps”  or directories  which  point to 
physical records  on DASD.  Updated  physical records, 
instead of being overwritten to their original locations, 
are written to available DASD space,  and a “current 
map” is  updated  to  point  to them. At  checkpoints,  the 
current  map  becomes a “backup  map,” and a new 
current map is started. A log is also kept of all updates 
occurring between  checkpoints. Following a system out- 
age,  the  data  base  is  restored  to a consistent  state by 
reinstating the  backup  map and using the log to re-do the 
updates of transactions which  completed after  the last 
checkpoint. 

The processing  which  a  program does  between synch- 
points  has  turned  out  to  be a fundamentally  important 
concept in data  base technology. This unit has  come  to  be 
known  generally as a transaction, in recognition of the 
fact  that it is typically done  on behalf of one input 
message or  “transaction.” A transaction  has been de- 
fined by Eswaran et  al. at IBM’s Research Division [66] 
as a unit of processing which transforms a consistent  data 
state  into a new consistent  state. A transaction  thus 
behaves  externally  as if it were atomic,  even though 
internally it may extend  over  an arbitrarily long time 
interval. Eswaran et al. also introduced  the  concept of a 
schedule of interleaved  actions of a set of concurrent 
transactions  and  showed  that a schedule is consistent 
( i . e . ,  equivalent to  the serial  execution of the transac- 
tions) only if transactions can be divided into  two phases: 
a growing phase,  in  which  locks are acquired, and a 
shrinking phase,  in which  locks are released. Releasing 
locks  at  the  end of a transaction  thus  proves to be a 
special case of a more general procedure  for achieving 
schedule  consistency. 

The  transaction  concept  has been  implemented in Sys- 
tem  R. Programs may use  the BEGIN TRANSACTION and 
END TRANSACTION statements  to  bracket processing 
which is to be  considered atomic. A COMMIT statement 
permits  the program to  create  intermediate points of 
consistency, analogous to  IMS  synchpoints,  and a RE- 
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STORE TRANSACTION statement may  be  used to back 
out all data base changes to the most recent point of 
consistency. 

Data recovery 
A data base may be damaged  in a variety of ways, 
including  write errors, physical  damage to  a volume, 
inadvertent erasing by an operator, and by an  application 
program error. The effect of such a loss on the user’s 
installation can be mitigated  through the use of data base 
recovery facilities. 

The basic approach to data base recovery in  IMS is to 
make periodic copies of the data  sets that underlie the 
data base  and to record data base changes on the system 
log.  In the event of failure in a  data  set, the latest copy can 
be  updated with changes logged since the copy was  made, 
thus restoring the data  set to its condition at the point of 
failure. 

A  data base change is recorded in the system log in the 
form of two segment  images: the segment as it appeared 
before the change and the segment as it appeared after the 
change. Additional  information recorded includes the 
identity of the program that made the change, the date 
and  time of entry, and the identity of the data base, data 
set, and record being  modified. 

The copying of data bases is done with an image  copy 
utility program, which creates an  image  copy of the data 
set on  disk or tape. Data bases are normally  copied just 
after the data base has been  initially loaded (to obviate 
reloading  in the case of failure)  and  immediately after 
reorganization. (Copies made before a reorganization 
cannot be  used in recovery.) Copies may also be  made at 
intermediate points, as determined by the update activity 
against the data base. Copying  may  be done “on-line,” 
i . e . ,  while the data base is being used by other programs. 

When data base damage is discovered, the affected data 
sets may  be recovered by running a recovery utility 
program. For each data set to be recovered, the utility 
allocates space for a new version of the data  set, loads the 
latest image copy into this space, and then reads the 
system log  in the forward (time  ascending) sequence 
looking for changes that have been  made to the data set 
after the image copy. For each such log entry, the “after” 
image is used to replace the corresponding data in the 
data set. 

System R uses a similar approach to data base recov- 
ery. Provision is made for copying data base and log 
checkpoint information to tape, whence it may be re- 
called to reconstruct the data base in the event of damage 
to DASD contents. 

Access authorization 
Consolidated data often constitute sensitive information 
which the user may  not  want  divulged to other than 
authorized people, for reasons of national security, com- 
petitive advantage, or personal privacy. DBMS, there- 
fore, provide mechanisms for limiting data access to 
properly authorized persons. 

The basic technique used by  IMS to control access to 
data is to control the use of programs  which access data 
and  the use of transactions and  commands  which invoke 
such programs. The system provides for the optional 
definition of security tables which are used to enforce 
control. These tables contain entries of the form (r,u), 
where r is a class of resources, u is a class of users, and 
the occurrence of an entry (r,u) signifies that user class u 
is authorized to  use resource class r. For example, the 
entry (UPDATE,  LTERMl) might  signify that UPDATE trans- 
actions can be entered only  through  terminal LTERMi. 

“Users” who  may be controlled in this manner  include 
both  terminals and programs. 

IMS also provides for the use of individual user pass- 
words in order to further control the use of a terminal. 
Through suitable definitions, passwords can be  required 
at sign-on to IMS and at the entry of individual transac- 
tions and commands. 

In System R, access control is provided through  two 
mechanisms: 

1. The view facility [67], which permits subsets of data to 
be  defined through SQL SELECT statements, and thus 
restricts the user of the view to those subsets. SELECT 

statements may contain predicates of the form  field- 
name = USER, to restrict access to tuples  containing 
the user’s  identification  code. 

2. The grunt facility [68], which permits a system admin- 
istrator to grant specific  capabilities  with respect to 
specific data objects to specific users. Grantable capa- 
bilities  with respect to relations include the capability 
to read  from the relation, to insert tuples, to delete 
tuples, to update specific  fields,  and to delete the 
relation. The holder of a capability may also be  given 
authority to grant that capability to others, so that 
authorization tasks may  be  delegated to different  indi- 
viduals  within  an organization. 

Conclusion 
Data base  technology has evolved  in response to user 
needs to consolidate data in a secure, reliable  way  and to 
provide easy end-user access to these data. Although its 
accomplishments are impressive, it has yet to satisfactori- 
ly address a number of important requirements. Chief 
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among these  is  the need to distribute the  data  base  over 
geographically separated computers. Such distribution is 
being  motivated  by  a number of factors,  such  as  the need 
to  reduce  response time for  user  access  to  the  data  base 
and  the need to  provide local or  autonomous  control  over 
parts of the  data  base. Such  distribution is,  at  the  same 
time, being enabled by the continuing  reduction  in the 
cost of computer  hardware, starting  with  mini-computers 
some  ten  years ago and continuing today with micro- 
processors, which promise  to place substantial process- 
ing capability in the  hands of individual users. 

A number of challenging problems remain  to be  solved 
in  distributing data  bases.  These include the maintenance 
of replicated data, which  most  distributed data  schemes 
entail; the linking of different DBMS, having different 
data models and languages, into  cooperative  networks; 
and  the provision of essentially continuous  system avail- 
ability, so that  the  end  user  comes  to rely on his data  base 
system in the  same way that  he relies on his telephone 
and utility services. 

The solution of these problems promises  to make the 
next twenty-five years of data  base technology as event- 
ful and stimulating as  the  past twenty-five years  have 
been. 
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