Data Base Technology

W. C. McGee

The evolution of data base technology over the past twenty-five years is surveyed, and major IBM contributions to this

technology are identified and briefly described.

Introduction

Around 1964 a new term appeared in the computer
literature to denote a new concept. The term was ‘‘data
base,”” and it was coined by workers in military informa-
tion systems to denote collections of data shared by end-
users of time-sharing computer systems. The commercial
data processing world at the time was in the throes of
“‘integrated data processing,”” and quickly appropriated
‘‘data base’’ to denote the data collection which results
from consolidating the data requirements of individual
applications. Since that time, the term and the concept
have become firmly entrenched in the computer world.

Today, computer applications in which many users at
terminals concurrently access a (usually large) data base
are called data base applications. A significant new kind
of software, the data base management system, or
DBMS, has evolved to facilitate the development of data
base applications. The development of DBMS, in turn,
has given rise to new languages, algorithms, and software
techniques which together make up what might be called
a data base technology.

Data base technology has been driven by, and to a large
extent distinguished from other software technologies by,
the following broad user requirements.

® Data consolidation

Early data processing applications used master files to
maintain continuity between program runs. Master files
“‘belonged to’’ applications, and the master files within an
enterprise were often designed and maintained indepen-
dently of one another. As a result, common data items
often appeared in different master files, and the values of

such items often did not agree. There was thus a require-
ment to consolidate the various master files into a single
data base which could be centrally maintained and shared
among various applications. Data consolidation was also
required for the development of certain types of ‘‘man-
agement information’’ applications that were not feasible
with fragmented master files.

® Data independence

Early applications were programmed in low-level lan-
guages, such as machine language and assembler lan-
guage. Programmers were not highly productive with
such languages, and their programs contained undesirable
hardware dependencies. Further, the complexity of pro-
gramming made data inaccessible to nonprogrammers.
There was a requirement to raise the level of languages
used to specify application procedures, and also to pro-
vide software for automatically transforming high-level
specifications into equivalent low-level specifications. In
the data base context, this property of languages has
come to be known as data independence.

® Data protection

The consolidation of master files into data bases had the
undesirable side effect of increasing the potential for data
loss and unauthorized data use. The requirement for data
consolidation thus carried with it a requirement for tools
and techniques to control the use of data bases and to
protect against their loss.

This paper surveys the development of data base
technology over the past twenty-five years and identifies
the major IBM contributions to this development. For

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOQOP. e VOL. 25 @ NO. 5 ¢ SEPTEMBER 1981

505

W. C. McGEE

506

W. C. McGEE

this purpose we organize the technology into three areas,
roughly paralleling the three broad user requirements just
cited:

1. The development of data structuring methods for the
representation of consolidated data;

2. The development of high-level data languages for
defining and manipulating consolidated data; and

3. The development of generalized data protection facili-
ties for protecting and controlling the use of consoli-
dated data.

Because of space limitations, coverage is limited to
specific IBM activities that in the author’s opinion have
had the greatest impact on the technology. As a result,
much important work has, unfortunately, had to be
omitted. Also for space reasons, only brief descriptions
are given of the activities which are included.

Data structuring methods

A data base management system is characterized by its
data structure class, i.e., the class of data structures
which it makes available to users for the formulation of
applications. Most DBMS distinguish between structure
instances and structure rypes, the latter being abstrac-
tions of sets of structure instances.

A DBMS also provides an implementation of its data
structure class, which is conceptually a mapping of the
structures of the class into the structures of a lower-level
class. The structures of the former class are often referred
to as logical structures, while those of the latter are called
physical structures.

The data structure classes of early systems were de-
rived from punched card technology, and thus tended to
be quite simple. A typical class was composed of files of
records of a single type, with the record type being
defined by an ordered set of fixed-length fields. Because
of their regularity, such files are now referred to as flat
files. Records were typically used to represent the entities
of interest to applications (e.g., students and courses),
and fields were used to represent entity attributes (such
as student name and course number). Files were typically
implemented on sequential storage media, such as mag-
netic tape.

When data consolidation was first attempted, the limi-
tations of early data structuring methods immediately
became apparent. The main problem was the lack of an
effective method for representing the entity associations
that frequently appear when data are consolidated (e.g.,
the one-many associations between courses and course
offerings and the many-many associations between

course offerings and students). The processing required
to reflect such associations was not unlike punched card
processing, involving many separate sorting and merging
steps.

Early structuring methods had the additional problem
of being hardware-oriented. As a result, the languages
used to operate on structures were similarly oriented.

In response to these problems, data base technology
has produced a variety of improved data structuring
methods, many of which have been embodied in DBMS.
While many specific data structure classes have been
produced (essentially one class per system), these classes
have tended to cluster into a small number of ‘‘families,”
the most important of which are the hierarchic, the
network , the relational,, and the semantic families. These
families have evolved more or less in the order indicated,
and all are represented in the data structure classes of
present-day DBMS.

® Hierarchic structures

The hierarchic data structuring methods which began to
appear in the early 1960s provided some relief for the
entity association problem. These methods were devel-
oped primarily to accommodate the variability that fre-
quently occurs in the records of a file. For example, in the
popular two-level hierarchic method, a record was divid-
ed into a header segment and a variable number of trailer
segments of one or more types. The header segment
represented attributes common to all entities of a set,
while the trailer segments were used for the variably
occurring attributes. The method was also capable of
representing one-many associations between two sets of
entities, by representing one set as header segments and
the other as trailers, and thus provided a primitive tool for
data consolidation.

By the mid-1960s, the two-level hierarchic record had
been generalized to n levels. For example, GIS [1, 2]
provided up to fifteen levels, but with a single segment
type only at each level. By the end of the 1960s, n-level
hierarchies with multiple segment types at each level
were found in such systems as TDMS [3], MARK IV [4],
and IMS [5, 6]. Implementations of n-level hierarchic
structures on sequential media tended to follow the
segmented-record approach, with segments being record-
ed in “‘top down, left-right’’ sequence. These structures
have also been implemented extensively on direct access
storage devices, which afford numerous additional repre-
sentation possibilities.

IMS was one of the first commercial systems to offer
hierarchic data structuring and is often cited to illustrate

IBM J. RES. DEVELOP. @ VOL. 25 ¢ NO. 5 e SEPTEMBER 1981

the hierarchic structuring concept. The IMS equivalent of
a file is the physical data base, which consists of a set of
hierarchically structured records of a single type. A
record type is composed according to the following rules:

e The record type has a single type of root segment.

e The root segment type may have any number of child
segment types.

e Each child of the root may also have any number of
child segment types, and so on, up to a maximum of 15
segment types in any one hierarchical path and a
maximum of 255 segment types in the complete data
base record type.

Record occurrences are derived from the following
rules:

e A record contains a single root segment.

e For one occurrence of any given segment type there
may be any number of occurrences (possibly zero) of
each of its children.

® No child segment occurrence can exist without its
parent. This point is essentially a restatement of the
hierarchic philosophy. It means, for example, that if a
given segment occurrence is deleted, so are all its
children.

An unusual feature of IMS is the multiple implementa-
tions which have been provided for its data structure
class. For any given physical data base, the user may
select an implementation that best matches the use to be
made of that data base. For example, the Hierarchic
Indexed Sequential Access Method (HISAM) implemen-
tation uses physical contiguity to represent hierarchic
record structure, and thus provides efficient sequential
access to the segments of a record. The Hierarchic
Indexed Direct Access Method (HIDAM) implementa-
tion, on the other hand, uses pointers to represent hierar-
chic structure, thus providing for efficient segment inser-
tion and deletion.

® Network structures

While hierarchic structures provided some relief for the
entity association problem in the early 1960s, a more
general solution had to await the introduction of the direct
access storage device (DASD), which occurred on a large
scale in the mid-1960s. DASD made possible a new family
of data structuring methods, the network methods, and
opened the door to the development of present-day
DBMS.

The first network structuring method to be developed
for commercial data processing had its origins in the bill-
of-materials application, which requires the representa-
tion of many-many associations between a set of parts

IBM J. RES. DEVELOP. e VOL. 25 e NO. 5 ¢ SEPTEMBER 1981

and itself; e.g., a given part may simultaneously act as an
assembly of other parts and as a component of other
parts. To simplify the development of such applications,
IBM developed in the mid-1960s an access method called
the Bill-Of-Materials Processor (BOMP), and in the late
1960s, an enhanced version of BOMP known as the Data
Base Organization and Maintenance Processor (DBOMP)
[7]. The BOMP (and DBOMP) data structure class pro-
vides two types of files, master files and chain files, each
file type containing records of a single fixed-format type,
and a construct called a chain, consisting of a single
master file record and a variable number of records from
one chain file. A given chain file record can reside in
multiple chains of different types, thus associating the
master file records at the head of these chains. For the bill
of materials application, two chain types—a ‘‘compo-
nent’’ chain and a ‘‘where used’’ chain—are sufficient to
represent many-many part associations.

Although developed for bill-of-materials applications,
the BOMP data structure class has been used extensively
in a variety of other applications. Essentially the same
data structure class is provided in the TOTAL DBMS of
CINCOM, perhaps the most widely used DBMS in the
world today [8]. In TOTAL, two Kkinds of files are
provided: master files (or single-entry files), correspond-
ing to the master files of BOMP, and variable-entry files,
corresponding to BOMP chain files. Provision for creat-
ing chains in TOTAL is similar to that in BOMP, although
many of the restrictions in BOMP have been removed in
TOTAL (e.g., variable-entry files can have multiple rec-
ord types). While the TOTAL system goes considerably
beyond BOMP in terms of function provided, its BOMP
heritage is still clearly discernible.

Another highly successful network structuring method
is that developed by C. W. Bachman and associates at
General Electric for the Integrated Data Store (IDS)
System [9]. In IDS, a data base is composed of records
and record chains. There is no concept of a file. The
record chain is analogous to the BOMP chain, consisting
of a single owner record and a variable number of member
records. As in BOMP, a record can be a member of
multiple chains of different types. Unlike BOMP, an
owner record can, in turn, be a member of other chains.
This generalization permits the construction of hierar-
chies of any depth, as well as networks of considerable
complexity.

The IDS data structure class was used as the basis of a
data base language developed by the Data Base Task
Group of CODASYL in the late 1960s and early 1970s
[10]. This language introduced some new terminology
(e.g., chains became sets) and generalized some features

507

W. C. McGEE

508

W. C. McGEE

STUDENT NUMBER NAME
12345 ADAMS
15418 BOSWELL
31416 CHICHESTER

Figure 1 STUDENT table.

of the IDS class (e.g., providing an ownerless set, yield-
ing the equivalent of a file). The DBTG language has been
incorporated into the COBOL Journal of Development
[11] and has been implemented in a number of DBMS,
including Cullinane’s IDMS [12] and UNIVAC’s DMS/
1100 [13].

The IMS system provides a logical relationship facility,
which yields many of the benefits of the DBTG data
structure class. With this facility, a segment may be (in
DBTG terms) a member of two sets: the set of physical
child segments of a physical parent segment, all appear-
ing in the same data base record, and the set of logical
child segments of a logical parent segment, which may
occur in different records in the same or different data
bases. The logical relationship is thus a special case of the
DBTG set construct, but is nevertheless capable of
modeling most information situations of practical impor-
tance, such as many-many binary associations. The logi-
cal relationship is not, strictly speaking, a part of the IMS
data structure class, since a mapping facility is used to
shield the programmer from logical relationships and
preserve his strictly hierarchical view of data. It is a
significant contribution to the technology because it dem-
onstrates that the entity association problem can be
solved without exposing complex networks to the pro-
grammer.

® Relational methods

In the mid-1960s, a number of investigators began to grow
dissatisfied with the hardware orientation of then extant
data structuring methods, and in particular with the
manner in which pointers and similar devices for imple-
menting entity associations were being exposed to the
users. These investigators sought a way of raising the
perceived level of data structures, and at the same time
bringing them closer to the way in which people look at
information. Within IBM, Davies [14], Raver [15],
Meltzer [16], and Engles {17] at different times and in
different contexts described an entity set structuring
method, wherein information is represented in a set of
tables, with each table corresponding to a set of entities of
a single type. (A similar construct was used in the
MacAIMS system of MIT as a canonical form for repre-
senting associations among data items.) The rows of a

table correspond to the entities in the set, and the
columns correspond to the attributes which characterize
the entity set type. The intersection of a row and a
column contains the value of a particular attribute for a
particular entity. For example, the STUDENT table in Fig.
1 describes a set of students having attributes NUMBER
and NAME,

Tables can also be used to represent associations
among entities. In this case, each row corresponds to an
association, and the columns correspond to entity identi-
fiers, i.e., entity attributes which can be used to uniquely
identify entities. Additional columns may be used to
record attributes of the association itself (as opposed to
attributes of the associated entities). For example, the
ENROLL table of Fig. 2 describes a set of associations
between course offerings (identified by COURSE and DATE)
and the students (identified by STUNUM) enrolled in those
offerings.

The key new concepts in the entity set method were the
simplicity of the structures it provided and the use of
entity identifiers (rather than pointers or hardware-dictat-
ed structures) for representing entity associations. These
concepts represented a major step forward in meeting the
general goal of data independence.

In the late 1960s, E. F. Codd [18] noted that an entity
set could be viewed as a mathematical relation on a set of
domains D, D,, - - -, D,, where each domain corresponds
to a different property of the entity set. Associations
among entities could be similarly represented, with the
domains in this case corresponding to entity identifiers.
Codd defined a (data) relation to be a time-varying subset
of the Cartesian product D, x D, X - - - X D, ,i.e., a set of
n-tuples (or simply tuples) of the form

<V19 st Y Vn>’

where v, is an element selected from domain D,. One or
more domains whose values uniquely identify the tuples
of a relation is called a candidate key.

Aside from the mathematical relation parallel, Codd’s
major contribution to data structures was the introduction
of the notions of normalization and normal forms. Codd
recognized that the domains on which a relation is
constructed can in general be composed of elements of
any kind; in particular, domains can be composed of
other relations, thus leading to the ‘“nesting’’ of relations
of potentially any depth. Codd showed that there was no
fundamental advantage to this nesting and that, in fact, it
only tended to complicate the information modeling pro-
cess. Instead, he proposed that relations be built exclu-
sively on domains of elementary values—integers, char-

IBM J. RES. DEVELOP. e VOL. 25 ® NO. 5 « SEPTEMBER 1981

acter strings, etc. He called such relations normalized
relations and the process of converting relations to nor-
malized form, normalization. Virtually all work done
since with relations has been with normalized relations.

Codd also perceived that the unconstrained construc-
tion of normalized relations could lead to semantic anom-
alies. For example, when a tuple represents an associa-
tion between two or more entities and at the same time
represents (parasitically) the attributes of the individual
entities, values for the latter will in general be replicated
throughout the relation, entailing duplicate updating.
Similarly, when a tuple represents an entity, some of the
attributes therein may be attributes of a second (masquer-
ading) entity which is associated in some way with the
first entity. When this occurs, entities of the second type
cannot be represented (inserted, deleted, etc.) indepen-
dently of entities of the first type.

To better explain these effects, Codd postulated levels
of normalization called normal forms. An unconstrained
normalized relation is in first normal form (INF). A
relation in INF in which all non-key domains are func-
tionally dependent on (i.e., have their values determined
by) the entire key are in second normal form (2NF),
which solves the problem of parasitic entity representa-
tion. A relation in 2NF in which all non-key domains are
dependent only on the key is in third normal form (3NF),
which solves the problem of masquerading entities.

To avoid update anomalies, Codd recommended that
all information be represented in third normal form.
While this conclusion may seem obvious today, it should
be remembered that at the time the recommendation was
made, the relationship between data structures and infor-
mation was not well understood. Codd’s work in effect
paved the way for much of the work done on information
modeling in the past ten years.

As part of the development of the relational method,
Codd postulated a relational algebra, i.e., a set of opera-
tions on relations which was closed in the sense of a
traditional algebra, and thereby provided an important
formal vehicle for carrying out a variety of research in
data structures and systems [19]. In addition to the
conventional set operations, the relational algebra pro-
vides such operations as restriction, to delete selected
tuples of a relation; projection, to delete selected domains
of a relation; and joir, to join two relations into one.

Codd also proposed a relational calculus [19], whose
distinguishing feature is the method used to designate sets
of tuples. The method is patterned after the predicate
calculus and makes use of free and bound variables and

IBM J. RES. DEVELOP. ® VOL. 25 @ NO. 5 » SEPTEMBER 1981

ENROLL | COURSE | DATE | STUNUM | GRADE
M23 F78 12345 A
M23 F78 31416 F
M23 w78 31416 A

Figure 2 ENROLL table.

the universal and existential quantifiers. For example, the
set of names of students who received an ‘A’ in any
offering of course M23 would be expressed as

{x[NAME] € STUDENT:

(Iy € ENROLL) (y[COURSE] = ‘M23’ &
y[GRADE]= ‘A’ &
y[STUNUM] = x[NUMBER])}

Codd recognized the existence of many possible ma-
nipulation languages for relations and proposed that the
relational calculus be used as the standard against which
these languages could be measured for completeness. In
[19] he defined relational completeness: ‘‘a language is
relationally complete if, given any finite collection of
relations R, R,, ---, R, in simple normal form, the
expressions of the language permit definition of any
relation definable from R, R,, - -, R, by expressions of
the relational calculus.”’

Codd characterized his methodology as a data model,
and thereby provided a concise term for an important but
previously unarticulated data base concept, namely, the
combination of a class of data structures and the opera-
tions allowed on the structures of the class. (A similar
concept, the abstract data type or data abstraction, has
evolved elsewhere in software technology.) The term
“‘model’’ has been applied retroactively to early data
structuring methods, so that, for example, we now speak
of “‘hierarchic models’’ and ‘‘network models,” as well
as the relational model. The term is now generally used to
denote an abstract data structure class, although there is a
growing realization that it should embrace operations as
well as structures.

IBM investigators have made several refinements to
Codd’s original definitions of normal forms. Kent [20]
simplified the definitions by removing references to prime
attributes (an attribute in any candidate key). Boyce [21]
noted that Codd’s definition of 3NF still permitted unde-
sirable functional dependencies among prime attributes
and postulated a normal form which excluded these
dependencies. Codd and Boyce later collaborated on the
definition of the Boyce-Codd normal form (BCNF), a

509

W. C. McGEE

510

W. C. McGEE

System Developed by Reference
MacAIMS MIT Project MAC [28]
RDMS General Motors [29]
IS/1 IBM UK Scientific Centre [30]
INGRES U. California, Berkeley [31]
ZETA U. Toronto [32]
System R IBM Research, San Jose [25, 26]
QBE IBM Research, Yorktown [33]
ORACLE Relational Software Inc. [34]
SQL /DS IBM [27]

Figure 3 Relational systems.

redefinition of 3NF which subsumed Boyce’s normal
form and made no reference to either keys or prime
attributes [22].

Fagin [23] noted that relations in BCNF could still
contain higher-order dependencies, which he called mul-
tivalued dependencies. He proposed a fourth normal form
(4NF) to eliminate multivalued dependencies and provid-
ed algorithms for reducing relations to 4NF. In subse-
quent work [24], Fagin described the projection join
normal form (PJ/NF), the ultimate normal form when
only the projection and join operators are allowed.

By providing a common context for the formulation of
data problems, the relational model has proved of great
value as a vehicle for research and for communication
among research workers. Areas in which the relational
model has been used include data base system architec-
ture, data base machines, concurrency theory, language
completeness, view updating, query decomposition (es-
pecially in distributed systems), and data equivalence.

In addition, the relational model has been implemented
in a number of DBMS. Two major implementations
within IBM are System R [25, 26], an exploratory DBMS
developed by the IBM Research Division in San Jose, and
SQL/DS [27], a program product based on System R for
use in the DOS/VSE operating system environment.

A partial list of relational systems appears in Fig. 3.

A question frequently asked about relational model
implementations is: How efficiently do they represent the
entity associations required for the consolidation of data
into data basgs? At the user level, a relation seems no
different from a flat file, and if the latter was not adequate
for data consolidation, how can we expect the former to
be? The answer lies in the hardware improvements that
have been made since flat file days (notably, DASD and

faster CPUs with larger memories) and in a better under-
standing of the problems of implementing high-level data
models. Thus, relational systems make extensive use of
indexes and pointers in implementing relations and rela-
tional operations. Through the use of such devices,
relational systems seem capable of achieving perform-
ance competitive with nonrelational systems, without
compromising the simple view of data for which the
model was conceived.

e Semantic models

During the evolution of the hierarchic, network, and
relational methods, it gradually became apparent that
building a data base was in fact equivalent to building a
model of an enterprise and that data bases could be
developed more or less independently of applications
simply by studying the enterprise. This notion has been
articulated in the widely referenced ANSI/SPARC data
base system architecture [35], which provides the notion
of a conceptual schema for the application-independent
modeling of an enterprise and various external schemata
derivable from the conceptual schema for expressing data
requirements of specific applications.

Application-independent modeling has produced a
spate of semantic data models and debate over which of
these is best for modeling ‘‘reality.”” One of the most
successful semantic models is the entity-relationship
model [36], which provides data constructs at two levels:
the conceptual level, whose constructs include entities,
relationships (z-ary associations among entities), value
sets, and attributes; and the representation level, in
which conceptual constructs are mapped into tables. The
latter are similar to relations in the relational model, with
the important difference that the entity-relationship mod-
el provides distinct table types for representing entity sets
and relationship sets. Such semantic interpretations of
relations have existed for some time, but it took Chen’s
paper to give them wide circulation and to create a surge
of interest in the entity-relationship model.

The data structure class of the IBM DB/DC Data
Dictionary program product is an embodiment of the
entity-relationship model [37]. The Dictionary provides
subjects, which may have attributes and which may
participate in many-many binary relationships, which
may also have attributes. In the initial release of the
Dictionary, subject and relationship types were fixed in
the product design and reflected the entity types typically
found in a computer installation about which the user
wanted to record information: data bases, records, fields,
programs, etc. Subsequently, the Dictionary has provid-
ed an extensibility facility, which allows the user to define
arbitrary subject and relationship types. With this exten-

IBM J. RES. DEVELOP. o VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

sion, the Dictionary has the modeling power of a general-
ized DBMS, making it one of the first systems to imple-
ment the entity-relationship model.

® Data model implementation

The success of a data model depends not only on the
degree of its hardware independence, but also on the
ability to translate operations on its constructs efficiently
into equivalent operations on the underlying hardware.
As one might expect, these goals often conflict with one
another.

For performance reasons, most data model implemen-
tations make use of indexes, which are essentially sets of
key value-data location pairs. Rather than develop index-
ing techniques from the ground up, many DBMS use
existing indexed access methods as their implementation
base. Two access methods which have been used exten-
sively for this purpose are the IBM Indexed Sequential
Access Method (ISAM) and the IBM Virtual Storage
Access Method (VSAM). ISAM and VSAM are general-
ized indexed sequential access methods, meaning that
they cater simultaneously to both random and sequential
access to data.

ISAM was introduced in 1966 as a component of OS/
360 and was the first indexed sequential access method to
find widespread use in the data processing community.
ISAM made practical the use of DASD for many users,
especially those who could not devote the time and effort
required to develop a viable indexed access method of
their own. It has been widely referenced in the literature
and in textbooks as the typical indexed sequential access
method.

VSAM [38] was introduced in 1972. Its major contribu-
tion was the use of a record-splitting strategy to overcome
the tendency in ISAM for long overflow chains to develop
after many record insertions. In addition, VSAM has
made innovative contributions in the areas of index
compression and index replication. The VSAM index
organization is known more generally as the B-tree orga-
nization, which was developed independently by Bayer
and McCreight in the early 1970s [39].

Also for performance reasons, many data model imple-
mentations make use of hashing, i.e., the calculation of
data locations from key values. W. W. Peterson [40] was
one of the first to apply hashing to DASD, and his work
has been extensively referenced. V. Lum and his asso-
ciates at IBM’s Research Division (e.g., [41, 42]) have
conducted systematic investigations of hashing tech-
niques and demonstrated the general utility of the divi-
sion/remainder method, which is widely used today.

IBM J. RES. DEVELQP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

High-level data languages

The history of computer applications has been marked by
a steady increase in the level of the languages used to
implement applications. In data base technology, this
trend is manifested in the development of high-level data
definition languages and data manipulation languages.

A data definition language (DDL) provides the DBMS
user with a way to declare the attributes of structure
types within his data base, and thus enable the system to
perform implicitly many operations (¢.g., name resolu-
tion, data type checking) that would otherwise have to be
invoked explicitly. A DDL typically provides for the
definition of both logical and physical data attributes, as
well as the definition of different views of the (logical)
data. The latter are useful in limiting or tailoring the way
in which specific programs or end-users look at the data
base.

A data manipulation language (DML) provides the
user with a way to express operations on the data
structure instances of a data base, using names previously
established through data definition. Data manipulation
facilities are of two general types: host-language and self-
contained.

A host-language facility permits the manipulation of
data bases through programs written in conventional
procedural languages, such as COBOL or PL/. It provides
statements that the user may imbed in a program at the
points where data base operations are to be performed.
When such a statement is encountered, control is trans-
ferred to the data base system, which performs the
operation and returns the results (data and return codes)
to the program in pre-arranged main storage locations.

A self-contained facility permits the manipulation of
the data base through a high-level, nonprocedural lan-
guage, which is independent of any procedural language,
i.e., whose language is ‘‘self-contained.”” An important
type of self-contained facility is the query facility, which
enables ‘‘casual’’ users to access a data base without the
mediation of a professional programmer. Other types of
self-contained facility are available for performing gener-
alizable operations on data base data, such as sorting,
report generation, and data translation.

e Host-language fucilities

Host-language facilities evolved from the need to stan-
dardize within an installation the way in which program-
mers code certain common data handling operations,
such as buffering, error handling, and label processing.
This need resulted in “‘I/O subroutine packages’’ which
were invoked by all programs in the installation. Such

511

W. C. McGEE

512

W. C. McGEE

packages, in turn, were generalized over computers of a
given type into ‘‘I/O systems’ and ‘‘access methods”
applicable to many installations. The introduction of
DASD greatly extended the set of operations which could
be usefully generalized. Functions typically included in
DASD access methods are space allocation, formatting,
key-to-address transformation, and indexing.

With the introduction of data base management sys-
tems, the access method interface was replaced by the
data base sublanguage. The data manipulation facilities
of a'data base sublanguage tend to be more powerful than
those of access methods, permitting, for example, the
updating or deleting of multiple records with a single
statement. Additionally, a data base sublanguage may
include statements unique to the data base environment,
such as locking and transaction control statements.

Because of main storage limitations, the units of data
on which data base sublanguages operate are normally
relatively small, the record being the typical unit. To
access larger collections of data, the programmer must
‘‘navigate’’ through the data base. To assist him in this,
the DBMS may provide objects called cursors or current
position indicators, which the programmer can set to
point to a particular item of data, and later use to refer to
that item or to a related item.

A high-level data language which is proving to be of
considerable importance to data base technology is the
SQL data base sublanguage of system R [43, 44]. SQL is a
relational language which had its origins in several rela-
tional languages developed by IBM’s Research Division
in the early 1970s, including:

o The ALPHA data base sublanguage [45], an adaptation of
the relational calculus for use with conventional proce-
dural languages. Continuing the example of the section
‘‘Relational Methods,”’ the ALPHA sequence

RANGE STUDENT X
RANGE ENROLL Y SOME
GET W X.NAME:
IY((Y.COURSE = ‘M23") &
(Y.GRADE = ‘A’) &
(Y.STUNUM = X.NUMBER))

returns the names of ‘A’ students in M23 to the
workspace relation W, where they can be operated on
by statements of the host language.

e The GAMMA-0 language [46], a low-level relational lan-
guage intended for implementing relational algebras and
query languages.

o The SQUARE language [47, 48], a general purpose query
language which attempted through graphic conventions

to avoid some of the mathematical appearance of the
relational calculus and at the same time remain relation-
ally complete. The set of names of ‘A’ students in M23
would be expressed in SQUARE as:

STUDENT
NAME NUMBER STUNUM

ENROLL (‘M23’, ‘A")
COURSE,GRADE

e The SEQUEL language [49], a general purpose query
language based on SQUARE but providing a string-type
syntax with English keywords. For basic queries, SE-
QUEL borrowed the SELECT-FROM-WHERE construction
of existing query languages such as GIS and then
elaborated this structure in a consistent manner to
achieve the completeness of the relational calculus, but
with much improved readability. An important charac-
teristic of SEQUEL is the ability to ‘‘nest’” SELECT
clauses, permitting complex queries to be articulated
into intellectually manageable chunks without losing
the important nonprocedural nature of the language.

For example, the previous query would be rendered in
SEQUEL as follows:

SELECT NAME

FROM STUDENT

WHERE NUMBER IN
(SELECT STUNUM
FROM ENROLL
WHERE COURSE = ‘M23’
AND GRADE = ‘A”)

The sQL language of System R is an enhanced version
of SEQUEL. In addition to SEQUEL’s query facilities, SQL
provides

e Data manipulation facilities that permit the insertion,
deletion, and updating of individual tuples or sets of
tuples.

e Data definition facilities for defining relations, views,
and other data objects.

e Data control facilities for defining access authorities
and for defining transactions, i.e., units of recoverable
processing.

The use of sQL from programs is facilitated by permit-
ting language variables to appear in SQL statements and
by providing a cursor facility for manipulating individual
tuples. The statement

$LET cursor-name BE select-statement

associates the set of tuples designated by select-state-
ment with the named cursor. A cursor contains a ‘‘cur-
rent tuple’’ pointer, so that individual tuples can be
designated simply through a cursor name. For example,
the statement

iIBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

$FETCH cursor-name

returns the tuple pointed to by the current tuple pointer of
cursor-name and advances the pointer to the next tuple.
To illustrate, the following pseudo-program provides
processing of the names of ‘A’ students in M23:
initialize;
$LET P BE

SELECT NAME INTO $STUNAME

FROM STUDENT

WHERE NUMBER IN

(SELECT STUNUM

FROM ENROLL
WHERE COURSE = ‘M23’
AND GRADE = ‘A’);

$OPEN P;

do until the tuple set designated by P is exhausted;
$FETCH P;
process one name in variable STUNAME;

end;

$CLOSE P;

The use of SQL in generalized programs whose data
requirements are not known until the program is invoked
is facilitated by the PREPARE and EXECUTE statements.
These statements may be used to construct string repre-
sentations of SQL statements (e.g., including data names
supplied by the invoker) and then cause these representa-
tions to be executed exactly as if they had appeared in the
program to begin with.

Whereas most relational DBMS use an interpretive
approach to the execution of data sublanguage state-
ments, System R uses a compiler approach. Programs are
first processed by a precompiler [50], which generates a
tailored data access routine for each sQL statement in the
program and which replaces the SQL statement with a
CALL to the access routine. When the program is execut-
ed, all the access routines are loaded to provide targets
for the translated cALLs. This approach has two advan-
tages:

1. Much of the work of parsing, name binding, access
path selection, and authorization checking can be done
once by the precompiler and thus be removed from the
process of running the program.

2. The access routine, because it is tailored to one
specific program, is much smaller and runs much more
efficiently than a generalized SQL interpreter would.

The tailoring of System R access routines is done by an
optimizer component [51-53], which attempts to mini-
mize the “‘cost”” of carrying out SQL statements. Cost is a
weighted combination of CPU and DASD 1/O activity,

IBM J. RES. DEVELOP. @ VOL. 25 ® NO. 5 @ SEPTEMBER 1981

with the weighting adjustable for different system config-
urations. In computing cost, the optimizer makes use of
such ‘‘statistics’” as relation sizes and number of distinct
key values within a relation.

Like the relational model on which it is based, SQL has
been widely adopted as a research and educational vehi-
cle and has been implemented in a number of DBMS
products such as SQL/DS.

® Self-contained facilities

The nonprocedurality of data processing specifications
that can be achieved with a host-language facility is
effectively limited by the procedurality of the host lan-
guage. This limitation was recognized as early as the mid-
1950s, when another approach to application develop-
ment was conceived. This approach took cognizance of
the fact that most data processing logic can be articulated
into executions of a small set of generalized routines,
which can be particularized for specific applications with
a fraction of the effort required to write an equivalent
customized program. The processes which have been
most frequently generalized for this purpose are report
generation, file maintenance, and (more recently) data
translation.

One of the earliest generalized file processing systems
was developed at the Hanford Atomic Products Opera-
tion in the mid-1950s [54]. The work done there on
generalized routines for sorting, report generation, and
file maintenance was picked up by the SHARE organiza-
tion around 1960 and distributed under the title ““9PAC”’
[55]. This work, in turn, was extended in many directions
over the next fifteen years, giving rise to numerous
families of generalized systems [56].

The most pervasive application of the Hanford concept
is found in the report program generator, a software
package intended primarily for the production of reports
from formatted files. Attributes of the source files and the
desired reports are described by the user in a simple
declarative language, and this description is then pro-
cessed by a compiler to ‘‘generate’’ a program which,
when run, produces the desired reports. A key concept of
the report program generator is the use of a fixed struc-
ture for the generated program, consisting of input,
calculation, and output phases. Such a structure limits the
transformations that can be carried out with a single
generated program, but has nevertheless proved remark-
ably versatile (report program generators are routinely
used for file maintenance as well as report generation).
Perhaps more importantly, the fixed structure of the
generated program imposes a discipline on the user which
enables him to produce a running program much more

513

W. C. McGEE

514

W. C. McGEE

quickly than he could with conventional languages. Re-
port program generators are especially popular in smaller
installations where conventional programming talent is
scarce, and in some installations it is the only ‘‘program-
ming language’’ used.

The original report program generator was the IBM
Report Program Generator introduced in the early 1960s
for the IBM 1401 computer [57]. It was patterned after the
SHARE 9PAC system and proved to be a valuable tool in
helping users to migrate from punched card equipment to
electronic data processing. A report program generator
for the System/360 series was introduced in 1964. A much
enhanced version, RPG 11, was introduced in 1969 for the
IBM System/3 [58]. RpG 11 has been implemented on
System/370 and many other machines, and today it is one
of the most widely used computer programming lan-
guages.

While RPG was being developed in IBM’s business
sector, a closely related family of products, the formatted
file systems, were being developed jointly by IBM’s
Federal Systems Division and various military and intelli-
gence agencies of the federal government. A formatted
file system typically provides a set of generalized pro-
grams which are sufficient to implement the bulk of the
application at hand. The programs are separately invoka-
ble and are so designed that the output of one can be used
as inputs to the others. File structures have limited
complexity, typically providing a two-level hierarchic
record with multiple segment types at the second level.
The formatted file systems have been used extensively in
intelligence and command-control applications, where
information requirements are exceptionally volatile, and
the time available to respond to new requirements pre-
cludes the use of conventional programming.

IBM has been a major contributor to a number of the
formatted file systems, including:

e The Formatted File System for the Air Force Strategic
Air Command, developed for the IBM 7090 around
1959 and used mainly for intelligence applications (this
is believed to be the first formatted file system) [59];

¢ The Information Processing System (IPS) for the Navy,
developed in the early 1960s for the IBM 7090 and CDC
1604 [60];

e The Formatted File System for the Naval Fleet Intelli-
gence Center in Europe (FICEUR), developed for the
IBM 1410 (believed to be the most widely used of the
formatted file systems) [61];

e The National Military Command System Information
Processing System (NIPS), developed for the IBM 1401
and later converted to the IBM System/360 [62].

The report program generators and the formatted file
systems were the precursors of the contemporary DBMS
query facility. A query processor is in effect a generalized
routine which is particularized to a specific application
(i.e., the user’s query) by the parameters (data names,
Boolean predicates, etc.) appearing in the query. Query
facilities are more advanced than most early generalized
routines in that they provide online (as opposed to batch)
access to data bases (as opposed to individual files). The
basic concept is unchanged, however, and the lessons
learned in implementing the generalized routines, and
especially in reconciling ease of use with acceptable
performance, have been directly applicable to query
language processors.

Most query facilities use string-type languages, such as
SQL. A significant departure from this practice is the
Query-By-Example (QBE) language [63, 64], which is a
graphical language intended for use from a display termi-
nal. The QBE user is presented with an outline of the
tables he wishes to query, and then he expresses his
query by filling in the outline with the appropriate names
and special characters. The basic idea is for the user to
show the system an example of the information he wants
to see and for the system to respond by showing the user
all instances that conform to the example.

For example, to query the ENROLL table (Fig. 2), the
system user would first call up the outline in Fig. 4(a). To
see all students with an ‘A’ grade in any offering of course
M23, the user would enter ‘A’ in the GRADE column and
‘M23’ in the COURSE column, and then in the STUNUM
column enter an example of student number, underlined
to indicate that it is an example only, and annotated with
a P to indicate that it is values of this column that are to be
printed or displayed [Fig. 4(b)]. The system responds by
displaying the numbers of all qualifying students as in Fig.
4(c).

Queries involving two or more tables are expressed by
using common values as examples of the attributes on
which the tables are to be matched. For example, the
names of all students in the previous query would be
retrieved with the query shown in Fig. 4(d). The system
responds by displaying the names, as in Fig. 4(e).

Through the use of various other graphic conventions,
the QBE user is able to express quite sophisticated que-
ries. Predicates may include Boolean expressions (e.g.,
grade = ‘A’ or grade = ‘B’), comparison of two variables
(e.g., grade better than a specific student’s grade), and
universal quantifiers (e.g., all grades = ‘A’). Both predi-
cates and retrieved values can include aggregate opera-
tors, such as SUM, COUNT, and AVERAGE. The main goal

IBM J. RES. DEVELOP. ® VOL. 25 e NO. 5 « SEPTEMBER 1981

of the language, however, is to make the expression of
simple queries very easy. Tests conducted by Thomas
and Gould [65] suggest that QBE has indeed achieved this
objective.

Data protection facilities

The consolidation of data accentuates the need to protect
the data from loss or unauthorized use. This protection is
in many cases secured (ironically) by re-introducing re-
dundancy into the data, but in a controlled way.

This section surveys the facilities which data base
technology has provided for the protection of data. For
specific examples, we draw on IMS, which is widely
regarded as the DBMS which pioneered data integrity
technology, and on System R, which is believed to be the
first relational DBMS to incorporate a full range of data
protection facilities.

® (Concurrent access control

Most DBMS permit a data base to be accessed concur-
rently by a number of users. If this access is not con-
trolled, the consistency of the data can be compromised
(e.g., lost updates), or the logic of programs can be
affected (e.g., nonrepeatable read operations).

Concurrent access control generally takes the form of
data locking, i.e., giving a user exclusive access to some
part of the data base for as long as necessary to avoid
interference. Locking can, in general, lead to deadlock
among users, necessitating some method of detecting and
breaking deadlocks.

In early releases of IMS, concurrent access was con-
trolled through program scheduling, i.e., a program in-
tending to update certain segment types would not be
started until all programs updating these segment types
had completed. Under this regime, the granule of sharing
was effectively the segment type. The segment types to
be updated by a program were effectively locked when
the program was started and unlocked when it completed.
Deadlock did not occur, since all resources required by a
program were obtained at one time.

Around 1974, a program isolation facility was added to
IMS which permitted programs updating the same seg-
ment type to run concurrently and which prevented
interference by locking individual data base records as
required. With program isolation, records are locked for a
program upon updating any item within the record and
unlocked when the program reaches a synchpoint, i.e., a
point at which the changes made by the program are
committed to the data base. Deadlocks can occur and are

IBM J. RES. DEVELOP. e VOL. 25 e NO. 5 ¢ SEPTEMBER 1981

ENROLL COURSE DATE STUNUM GRADE
@
ENROLL | COURSE | DATE | STUNUM | GRADE
M23 P.12345 A
(b)
ENROLL STUNUM
12345
31416
©
ENROLL COURSE DATE STUNUM GRADE
M23 12345 A
STUDENT NUMBER NAME
12345 P.ADAMS
(D
STUDENT NAME
ADAMS
CHICHESTER

(e)
Figure 4 Query-by-example displays.

resolved by selecting one of the deadlocked programs and
restarting it at its most recent synchpoint (see next
section).

In addition to the implicit protection provided by
program isolation, IMS permits programs to explicitly
lock and unlock segments and permits users to explicitly
request exclusive use of segment types and data bases
(for whatever reason) before a program is started.

515

W. C. McGEE

516

W. C. McGEE

A significant new capability in IMS is the ability for
programs running under different invocations of the sys-
tem (e.g., in different CPUs) to concurrently access a
common set of data bases. Additional computer capacity
may thus be applied to the processing of common data,
and the systems sharing the data may be tailored to
specific user needs while still retaining access to common
data.

System R employs an implicit locking technique similar
to program isolation and like IMS allows the user to
explicitly lock data objects at several levels of granulari-
ty. A novel feature is the ability of the user to specify one
of three consistency levels in reading data:

1. Read “‘dirty’’ data, i.e., data subject to backout in the
event that another program updating the data ends
abnormally (see next section).

2. Read ‘‘clean’ but possibly unstable data, i.e., data not
subject to backout, but subject to update by other
users between successive reads by this user.

3. Read ‘‘clean,”’ stable data, i.e., data as it would be
seen by this user if running alone.

The lower levels of consistency required less locking and
produce less lock contention, and may thus be used,
when the application permits, to improve system per-
formance.

® Recovery from abnormal program termination

The data base updating performed by a program does not
occur instantaneously (typically requiring several thou-
sands of machine instruction executions); hence, there is
nonzero probability that the program will fail to complete
normaily and as a result leave the data base in an
inconsistent state (e.g., crediting one bank account with-
out a matching debit to another account). A program can
fail to complete for a variety of reasons, including illegal
instruction execution, termination by the system to break
a loop or deadlock, and system failure.

IMS protects against data inconsistency due to abnor-
mal program termination by recording all data base
changes made by a program in a dynamic log. If the
program reaches a synchpoint, its dynamic log entries are
discarded, thereby committing its data changes. If the
program ends abnormally before a synchpoint is reached,
the system (after restart, if necessary) uses the dynamic
log to back out all data base changes made by the program
since its most recent synchpoint. If abnormal end is due
to a program error, the system prevents the program from
being rescheduled until an operator intervenes. Other-
wise, the system automatically restarts the program.

IMS also protects against anomalous input and output
behavior which can result from abnormal program termi-
nation. If a program ends abnormally, the system dis-
cards any output messages produced by the program
since the most recent synchpoint and restores the pro-
gram’s input message to an input queue. The input
message is discarded and the output messages are deliv-
ered to their destinations only when a synchpoint is
reached.

In System R, recovery from system failure is facilitated
through the use of a novel dual-copy recording technique
and the use of ‘‘maps’’ or directories which point to
physical records on DASD. Updated physical records,
instead of being overwritten to their original locations,
are written to available DASD space, and a ‘‘current
map’’ is updated to point to them. At checkpoints, the
current map becomes a ‘“‘backup map,”’ and a new
current map is started. A log is also kept of all updates
occurring between checkpoints. Following a system out-
age, the data base is restored to a consistent state by
reinstating the backup map and using the log to re-do the
updates of transactions which completed after the last
checkpoint.

The processing which a program does between synch-
points has turned out to be a fundamentally important
concept in data base technology. This unit has come to be
known generally as a transaction, in recognition of the
fact that it is typically done on behalf of one input
message or ‘‘transaction.”” A transaction has been de-
fined by Eswaran et al. at IBM’s Research Division [66]
as a unit of processing which transforms a consistent data
state into a new consistent state. A transaction thus
behaves externally as if it were atomic, even though
internally it may extend over an arbitrarily long time
interval. Eswaran et al. also introduced the concept of a
schedule of interleaved actions of a set of concurrent
transactions and showed that a schedule is consistent
(i.e., equivalent to the serial execution of the transac-
tions) only if transactions can be divided into two phases:
a growing phase, in which locks are acquired, and a
shrinking phase, in which locks are released. Releasing
locks at the end of a transaction thus proves to be a
special case of a more general procedure for achieving
schedule consistency.

The transaction concept has been implemented in Sys-
tem R. Programs may use the BEGIN TRANSACTION and
END TRANSACTION statements to bracket processing
which is to be considered atomic. A COMMIT statement
permits the program to create intermediate points of
consistency, analogous to IMS synchpoints, and a RE-

IBM J. RES. DEVELOP. e VOL. 25 e NO. 5 ¢ SEPTEMBER 1981

STORE TRANSACTION statement may be used to back
out all data base changes to the most recent point of
consistency.

& Data recovery

A data base may be damaged in a variety of ways,
including write errors, physical damage to a volume,
inadvertent erasing by an operator, and by an application
program error. The effect of such a loss on the user’s
installation can be mitigated through the use of data base
recovery facilities.

The basic approach to data base recovery in IMS is to
make periodic copies of the data sets that underlie the
data base and to record data base changes on the system
log. In the event of failure in a data set, the latest copy can
be updated with changes logged since the copy was made,
thus restoring the data set to its condition at the point of
failure.

A data base change is recorded in the system log in the
form of two segment images: the segment as it appeared
before the change and the segment as it appeared after the
change. Additional information recorded includes the
identity of the program that made the change, the date
and time of entry, and the identity of the data base, data
set, and record being modified.

The copying of data bases is done with an image copy
utility program, which creates an image copy of the data
set on disk or tape. Data bases are normally copied just
after the data base has been initially loaded (to obviate
reloading in the case of failure) and immediately after
reorganization. (Copies made before a reorganization
cannot be used in recovery.) Copies may also be made at
intermediate points, as determined by the update activity
against the data base. Copying may be done ‘‘on-line,”
i.e., while the data base is being used by other programs.

When data base damage is discovered, the affected data
sets may be recovered by running a recovery utility
program. For each data set to be recovered, the utility
allocates space for a new version of the data set, loads the
latest image copy into this space, and then reads the
system log in the forward (time ascending) sequence
looking for changes that have been made to the data set
after the image copy. For each such log entry, the ‘‘after”’
image is used to replace the corresponding data in the
data set.

System R uses a similar approach to data base recov-
ery. Provision is made for copying data base and log
checkpoint information to tape, whence it may be re-
called to reconstruct the data base in the event of damage
to DASD contents.

IBM J. RES. DEVELOP. & VOL. 25 & NO. 5 & SEPTEMBER 1981

& Access authorization

Consolidated data often constitute sensitive information
which the user may not want divulged to other than
authorized people, for reasons of national security, com-
petitive advantage, or personal privacy. DBMS, there-
fore, provide mechanisms for limiting data access to
properly authorized persons.

The basic technique used by IMS to control access to
data is to control the use of programs which access data
and the use of transactions and commands which invoke
such programs. The system provides for the optional
definition of security tables which are used to enforce
control. These tables contain entries of the form (r,u),
where r is a class of resources, u is a class of users, and
the occurrence of an entry (r,u) signifies that user class u
is authorized to use resource class r. For example, the
entry (UPDATE, LTERM1) might signify that UPDATE trans-
actions can be entered only through terminal LTERMI.
““Users”” who may be controlled in this manner include
both terminals and programs.

IMS also provides for the use of individual user pass-
words in order to further control the use of a terminal.
Through suitable definitions, passwords can be required
at sign-on to IMS and at the entry of individual transac-
tions and commands.

In System R, access control is provided through two
mechanisms:

1. The view facility [67], which permits subsets of data to
be defined through SQL SELECT statements, and thus
restricts the user of the view to those subsets. SELECT
statements may contain predicates of the form field-
name = USER, to restrict access to tuples containing
the user’s identification code.

2. The grant facility [68], which permits a system admin-
istrator to grant specific capabilities with respect to
specific data objects to specific users. Grantable capa-
bilities with respect to relations include the capability
to read from the relation, to insert tuples, to delete
tuples, to update specific fields, and to delete the
relation. The holder of a capability may also be given
authority to grant that capability to others, so that
authorization tasks may be delegated to different indi-
viduals within an organization.

Conclusion

Data base technology has evolved in response to user
needs to consolidate data in a secure, reliable way and to
provide easy end-user access to these data. Although its
accomplishments are impressive, it has yet to satisfactori-
ly address a number of important requirements. Chief

517

W. C. McGEE

among these is the need to distribute the data base over
geographically separated computers. Such distribution is
being motivated by a number of factors, such as the need
to reduce response time for user access to the data base
and the need to provide local or autonomous control over
parts of the data base. Such distribution is, at the same
time, being enabled by the continuing reduction in the
cost of computer hardware, starting with mini-computers
some ten years ago and continuing today with micro-
processors, which promise to place substantial process-
ing capability in the hands of individual users.

A number of challenging problems remain to be solved
in distributing data bases. These include the maintenance
of replicated data, which most distributed data schemes
entail; the linking of different DBMS, having different
data models and languages, into cooperative networks;
and the provision of essentially continuous system avail-
ability, so that the end user comes to rely on his data base
system in the same way that he relies on his telephone
and utility services.

The solution of these problems promises to make the
next twenty-five years of data base technology as event-
ful and stimulating as the past twenty-five years have
been.

Acknowledgment

The author wishes to thank W. F. King for his help with
early versions of this paper and for information on
System R.

References

1. J. H. Bryant and P. Semple, Jr., “‘GIS and File Manage-
ment,”” Proceedings of the ACM National Conference,
Association for Computing Machinery, New York, 1966, pp.
97-107.

2. Generalized Information System Virtual Storage (GIS/VS)
General Information Manual, Order No. GH20-9035, avail-
able through IBM branch offices.

3. E. W. Franks, ‘“A Data Management System for Time-
Shared File Processing Using a Cross-Index File and Self-
Defining Entries,’” Proc. Spring Joint Computer Conference
(AFIPS), AFIPS Press, Montvale, NJ, 1966, pp. 79-86.

4. J. A. Postley, ‘‘The MARK 1V System,’’ Datamation 14,
28-30 (1968).

5. W. C. McGee, ‘‘The Information Management System IMS/
VS,” IBM Syst. J. 16, 84-168 (1977).

6. IMS/VS Version 1 General Information Manual, Order No.
GH20-1260, available through IBM branch offices.

7. System/360 Data Base Organization and Maintenance Pro-
cessor Application Development Manual, Order No. GH20-
0771, available through IBM branch offices.

8. D. Kroenke, Database Processing, Science Research Asso-
ciates, Inc., 1977, pp. 280-293.

9. C. W. Bachman and S. B. Williams, ‘A General Purpose
Programming System for Random Access Memories,’’ Proc.
Fall Joint Computer Conference (AFIPS) 26, AFIPS Press,
Montvale, NJ, 1964, pp. 411-422.

10. CODASYL Data Base Task Group, April 1971 Report,
Association for Computing Machinery, New York.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

CODASYL Programming Language Committee, CODASYL
COBOL Journal of Development , Department of Supply and
Services, Government of Canada, Technical Services
Branch, Ottawa, Ontario, Canada.

R. F. Schubert, ‘‘Basic Concepts in Data Base Management
Systems,”” Datamation 18, 42-47 (1972).

E. J. Emerson, “‘DMS 1100 User Experience,’”’ Database
Management Systems, D. A. Jardine, Ed., North-Holland
Publishing Company, Amsterdam, 1974, pp. 35-46.

C. T. Davies, ‘‘A Logical Concept for Control and Manage-
ment of Data,”” Technical Report AR-0803-00, IBM Labora-
tory, Poughkeepsie, New York, 1967.

N. Raver, ‘‘File Organization in Management Information
Control Systems,”” Selected Papers from File 68: Occasional
Publication No. 3, Swets and Zeitlinger, Amsterdam, 1968.

H. S. Meltzer, ‘‘Data Base Concepts and Architecture for
Data Base Systems,”” IBM Report to SHARE Information
Systems Research Project, August 20, 1969.

R. W. Engles, ‘“‘A Tutorial on Data Base Organization,”
Annual Review in Automatic Programming 7, Pergamon
Press, Inc., Elmsford, NY, 1972, pp. 1-64.

E. F. Codd, ‘‘A Relational Model of Data for Large Shared
Data Banks,”’” Commun. ACM 13, 377-387 (1970).

E. F. Codd, ‘‘Relational Completeness of Data Base Sublan-
guages,” Courant Computer Science Symposia, Vol. 6:
Data Base Systems, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1971.

W. Kent, ‘A Primer of Normal Forms,’’ Technical Report
TR.02.600,1BM Laboratory, San Jose, CA, December 1973.

R. F. Boyce, ‘“Fourth Normal Form and its Associated
Decomposition Algorithm,”” IBM Tech. Disclosure Bull. 16,
360-361 (1973).

E. F. Codd, ‘‘Recent Investigations in Relational Data Base
Systems,”” Proceedings IFIP Congress 74, North-Holland
Publishing Company, Amsterdam, 1974, pp. 1017-1021.

R. Fagin, ‘“Multivalued Dependencies and a New Normal
Form for Relational Data Bases,”” ACM Trans. Database
Syst. 2, 262-278 (1977).

R. Fagin, ‘*“Normal Forms and Relational Database Opera-
tors,”’ Proceedings of the 1979 ACM SIGMOD International
Conference on the Management of Data, Association for
Computing Machinery, New York, 1979, pp. 153-160.

M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. Griffiths, W. F. King, R. A. Lorie,
P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B.
W. Wade, and V. Watson, *‘System R: Relational Approach
to Database Management,”” ACM Trans. Database Syst. 1,
97-137 (1976).

M. W. Blasgen ef al., ‘*‘System R—An Architectural Over-
view,”” IBM Syst. J. 20, 41-62 (1981).

SQL/DS General Information Manual, Order No. GH24-
5012, available through IBM branch offices.

R. C. Goldstein and A. L. Strnad, ‘‘The MacAIMS Data
Management System,”’ Proceedings 1970 ACM SIGFIDET
Workshop on Data Description and Access, Association for
Computing Machinery, New York, 1970, pp. 201-229.

V. K. M. Whitney, ‘‘RDMS: A Relational Data Management
System,”’ Proceedings Fourth International Symposium on
Computer and Information Sciences (COINS IV), Plenum
Press, New York, 1972.

M. G. Notley, ‘‘The Peterlee IS/ System,’’ Scientific Centre
Report UK-SC 0018, IBM Scientific Centre, Peterlee, Unit-
ed Kingdom, 1972.

G. Held, M. Stonebraker, and E. Wong, “INGRES—A
Relational Data Base System,”” Proceedings of the National
Computer Conference, AFIPS Press, Montvale, NJ, 1975,
pp. 409-416.

B. Czarnik, S. Schuster, and D. Tsichritzis, “ZETA: A
Relational Data Base Management System,’’ Proceedings of
the ACM Pacific 75 Regional Conference, Association for
Computing Machinery, New York, 1975, pp. 21-25.

IBM J. RES. DEVELOP. @ VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1581

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

Query-by-Example Program Description/Operations Man-
ual, Order No. SH20-2077, available through IBM branch
offices.

H. M. Weiss, ‘“The ORACLE Data Base Management
System,’” Mini-Micro Syst. 13, 111-114 (1980).

D. C. Tsichritzis and A. Klug, ‘“The ANSI/X3/SPARC
DBMS Framework: Report of the Study Group on Data
Base Management Systems,’’ Info. Syst. 3, 173-192 (1978).
P. Chen, ‘‘The Entity-Relationship Model—Toward A Uni-
fied View of Data,”” ACM Trans. Database Syst. 1, 9-36
(1976).

DB/DC Data Dictionary General Information Manual, Or-
der No. GH20-9104, available through IBM branch offices.

R. E. Wagner, ‘‘Indexing Design Considerations,”” IBM
Syst. J. 12, 351-367 (1973).

R. Bayer and E. M. McCreight, ‘‘Organization and Mainte-
nance of Large Ordered Indexes,’’ Proceedings of the ACM
SIGFIDET Workshop on Data Description and Access,
Association for Computing Machinery, New York, 1970, pp.
107-141.

W. W. Peterson, ‘‘Addressing for Random-Access Stor-
age,”” IBM J. Res. Develop. 1, 130-146 (1957).

V.Y. Lum, P. S. T. Yuen, and M. Dodd, ‘‘Key to Address
Transform Techniques, A Fundamental Performance Study
on Large Existing Formatted Files,”” Commun. ACM 14,
228-239 (1971).

S. P. Ghosh and V. Y. Lum, ‘‘Analysis of Collision When
Hashing by Division,” Info. Syst. 1, 15-22 (1975).

D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P.
Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner, and B. W.
Wade, ““SEQUEL 2: A Unified Approach to Data Defini-
tion, Manipulation, and Control,”” IBM J. Res. Develop. 20,
560-575 (1976).

. D. D. Chamberlin, ‘A Summary of User Experience with

the SQL Data Sublanguage,” Proceedings of the Interna-
tional Conference on Data Bases, British Computer Society
and University of Aberdeen, Aberdeen, Scotland, 1980, pp.
181-203. .

E. F. Codd, ‘“A Data Base Sublanguage Founded on the
Relational Calculus,” Proceedings of the ACM SIGFIDET
Workshop on Data Description, Access, and Control, Asso-
ciation for Computing Machinery, New York, 1971.

D. Bjorner, E. F. Codd, K. L. Deckert, and 1. L. Traiger,
“The GAMMA-0 n-ary Relational Data Base Interface
Specification of Objects and Operations,”’ Research Report
RJI1200, IBM Research Division, San Jose, CA, 1973.

R. F. Boyce, D. D. Chamberlin, W. F. King, and M. M.
Hammer, ‘‘Specifying Queries as Relational Expressions:
SQUARE,” Data Base Management, J. W. Klimbie and K.
L. Koffeman, Eds., North-Holland Publishing Company,
Amsterdam, 1974, pp. 169-177.

R. F. Boyce, D. D. Chamberlin, W. F. King, and M. M.
Hammer, ‘‘Specifying Queries as Relational Expressions:
the SQUARE Data Sublanguage,’”” Commun. ACM 18, 621-
628 (1975).

D. D. Chamberlin and R. F. Boyce, “SEQUEL—A Struc-
tured English Query Language,”” Proceedings of the ACM
SIGFIDET Workshop on Data Description, Access, and
Control, Association for Computing Machinery, New York,
1974, pp. 249-264.

R. A. Lorie and B. W. Wade, ‘‘The Compilation of a High
Level Data Language,” Research Report RJ2598, IBM
Research Division, San Jose, CA, 1979.

M. W. Blasgen and K. P. Eswaran, ‘‘Storage and Access in
Relational Data Bases,”’ IBM Syst. J. 16, 363-377 (1977).

IBM J. RES. DEVELOP. ® VOL. 25 ¢ NO. 5 ¢« SEPTEMBER 1981

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

65.

66.

67.

68.

. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price, ‘‘ Access Path Selection in a Relation-
al Database Management System,”’ Proceedings of the ACM
SIGMOD International Conference, Association for Com-
puting Machinery, New York, 1979, pp. 23-34.

Raymond A. Lorie and Jorgen F. Nilsson, ‘“‘An Access
Specification Language for a Relational Data Base System,””
IBM J. Res. Develop. 23, 286-298 (1979).

W. C. McGee, ‘‘Generalization: Key to Successful Electron-
ic Data Processing,”” J. ACM 6, 1-23 (1959).

SHARE 7090 9PAC, Part I: Introduction and General Princi-
ples, Order No. J28-6166, IBM 7090 Programming Systems,
Systems Reference Library, 1961.

J. P. Fry and E. H. Sibley, ‘‘Evolution of Data-Base
Management Systems,”” ACM Computing Surv. 8, 7-42
(1976).

H. Leslie, ‘‘The Report Program Generator,”” Datamation
13, 26-28 (1967).

Introduction to RPG II, Order No. GC21-7514, available
through IBM branch offices.

J. H. Bryant, ‘‘AIDS Experience in Managing Data-Base
Operation,”” Proceedings of the Symposium on Develop-
ment and Management of a Computer-Centered Data Base,
System Development Corporation, Santa Monica, CA, 1964,
pp. 36-42.

Naval Command Systems Support Activity, ‘‘User’s Man-
ual for NAVCOSSACT Information Processing System
Phase 1,”” NAVCOSSACT Document No. 90S003A, CM-51,
IBM Federal Systems Division, Bethesda, MD, July 1963.
Intelligence Data Processing System Formatted File Sys-
tem, U.S. Navy Fleet Intelligence Center and IBM Federal
Systems Division, Bethesda, MD, May 1963.

NMCS Information Processing System 360 Formatted File
System (NIPS FFS), National Military Command System
Support Center, CSM VM 15-74, IBM Federal Systems
Division, Bethesda, MD, October 1974. (Nine volumes.)
M. M. Zloof, ‘‘Query by Example,”” Proceedings of the
National Computer Conference (AFIPS) 44, AFIPS Press,
Montvale, NJ, 1975, pp. 431-437.

. M. M. Zioof, ‘‘Query-by-Example: A Data Base Lan-
guage,”’ IBM Syst. J. 16, 324-343 (1977).

J. C. Thomas and J. P. Gould, ‘‘A Psychological Study of
Query by Example,”’ Proceedings of the National Computer
Conference (AFIPS) 44, AFIPS Press, Montvale, NI, 1975,
pp. 439-445.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger,
*‘On the Notions of Consistency and Predicate Locks in a
Data Base System,”” Commun. ACM 19, 624-633 (1976).
D. D. Chamberlin, J. N. Gray, and 1. L. Traiger, ‘‘Views,
Authorization, and Locking in a Relational Data Base Sys-
tem,” Proceedings of the National Computer Conference
(AFIPS) 44, AFIPS Press, Montvale, NJ, 1975, pp. 425-430.
P. Griffiths and B. W. Wade, ‘‘An Authorization Mechanism
for a Relational Database System,”” ACM Trans. Database
Syst. 1, 242-255 (1976).

Received December 23, 1980; revised March 16, 1981

The author is located at IBM Data Processing Division
laboratory, 555 Bailey Avenue, San Jose, California
95150.

519

W. C. McGEE

