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The IBM History of Memory Management Technology

The history of memory management technology in IBM during the period between the 1950s and the early 70s is discussed
in this paper. The paper concentrates on the programming and operating system aspects of the problem, rather than the

hardware technology involved.

Introduction

The speed at which digital computers operate depends
heavily upon how fast the processors can get data and
instructions from memory. Over the past quarter century,
the internal organization of computers has become in-
creasingly sophisticated as a result of efforts to make data
more readily accessible to the central processing unit. In
parallel with this engineering activity, systems program-
mers, installation managers, and computer scientists have
been striving toward the same goal. Their effort, to
optimize the processor’s access to information, has come
to be called memory management. In this paper we
review the evolution of memory management in IBM,
particularly as it concerns and affects programming.

In order to present some ways of managing memory,
we first need a model on which to define basic objects and
concepts. Data and programs are stored, usually in binary
form, in a memory subsystem. On early computers, the
memory subsystem was a single main memory. Comput-
ers became faster and computer problems larger, but a
single main memory that was both fast enough and large
enough had not really been available. This led to a
memory subsystem organization consisting of a set of
devices, typically consisting of a small fast main memory
for the immediate needs of the processor and some larger,
slower devices holding data not expected to be required
soon. These devices are usually arranged in a hierarchy
and are interconnected so that data can be moved about
independent of the processing of other data.

Thus our simple model, or abstraction, consists of a
processor and a memory subsystem, with information
flowing between them. The processor works cyclically,
and at the completion of almost every cycle, a specified
piece of information is sent to or requested of the memory
subsystem. The memory subsystem then accomplishes
the task with some delay. The following questions imme-
diately arise: (1) How is the information piece specified?
(2) How large are the pieces? (3) How rapid is the
response of the memory subsystem?

Question (1) is that of addressing, which can be per-
formed in either of two fundamental ways: by content or
by location. In the first, the requested information is
found by (partial) matching, as in the process of finding a
telephone number in a list in which each number is next to
a subscriber’s name. (Notice that the name-number pairs
do not have to be stored in any order.) An example of the
second way of addressing is the looking up of an article in
a book by using the table of contents, which gives, in
numerical order, the starting page number of each article.
Due to its predominance, in our paper the latter, location-
based or coordinate addressing is assumed, and the
extent of addressability is called an address space.

Question (2) is not an issue since we introduce a
simplifying assumption: An address always refers to a
portion of memory whose size is constant in a given
context in this paper.
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Question (3) relates computer performance to memory
management. The time required for the memory subsys-
tem to deliver (or store) a piece of information depends on
the arrangement of the devices in the subsystem, as well
as the arrangement of the programs and data on those
devices. The result is that the rate at which the processor
operates is not uniform; periods of full speed execution
are interspersed with periods of waiting.

o Memory management schemes

One way to reduce if not eliminate idle processor periods
is for the programmer to anticipate its demand for new
information. Thus, new data are brought into main memo-
ry concurrently with, but independently of, processing. A
second way, called multiprogramming, is to keep several
independent programs in memory concurrently. When
one program encounters a delay in the memory subsys-
tem, the processor can be switched to another program
which was previously delayed but is now ready to run.
We defer till later discussion of multiprogramming. For
both schemes, however, the idea is to overlap the time
required to move data in the subsystem with some other
processing activity.

Until about fifteen years ago, computers only ran one
program at a time, and the overlapping of computation
with input/output activities was considered a minor task,
to be easily included in the program by the programmer.
At that time, both the programmer and the machine
designer assumed that the computational aspects of com-
puting were predominant, with the programmer concen-
trating on algorithms and their representations, not on
data, and the designer on fast processors, not on memory
subsystems. It soon became apparent, however, that the
problems of complex program and data structures, often
far larger than main memory, were anything but a minor
task for the programmer.

In response, system programs handling memory man-
agement began to appear. Many of these solutions were
also supported by innovation in hardware design. Slowly,
a basic dilemma became crystallized: how to make a
program containing only functions relevant to the prob-
lem it is intended to solve, yet assuring efficient use of
machine resources.

One way that this problem was dealt with was to
identify the separate memory management functions and
to provide system programs to perform them. These must
allow the programmer to work only with the logical
structure of data, rather than the way the information
pieces are arranged in main memory. The decomposition
of memory management results in subtasks such as the
following:
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e Arrange data and program segments within a single
linear address space.

e Manage the capacity limitation of this address space.

® Manage the trade-offs introduced by the cost of differ-
ent devices in the memory hierarchy.

e Manage the capacity variations introduced by the idio-
syncrasies of hardware: nonstandard sizes of informa-
tion pieces (words, records, etc.) and changes in system
configurations.

As we see, the situation has become far more compli-
cated than it appeared in our simple model. Not surpris-
ingly, a quite sizable and growing community of research-
ers and system designers has been involved in solving the
problems. IBM has been one of the leaders in its effort to
combine the many component solutions in a systematic
way and to integrate them into practical systems. Howev-
er, few of these component solutions have been reported
in the literature, and their origins are almost impossible to
trace, a situation which is reflected in this paper.

In the next section we discuss how memory manage-
ment is handled beginning with program preparation and
continuing through program execution. Greatest empha-
sis is on execution-time memory management, that typi-
cally done by operating systems. This topic is further
elaborated in the following section, which is, in turn,
followed by sections on the approaches to memory man-
agement taken in several particular IBM operating sys-
tems.

The four phases of memory management

The solutions to the problems of memory management
are distributed (with some overlap) over several phases:
structuring the program (program design), translating the
program from a programming language to machine code
(compilation), presenting the program material to the
machine (link-editing), and executing the program (dy-
namic memory management).

® Program design

In the program design stage decisions must be made
about the organization of the program and its data into
subroutines, control tables, work areas, and buffers. Key
elements of this activity include planning of storage
occupancy, storage requirements during execution, link-
age among program elements, and availability of data at
the proper times. However, programs and their data
cannot always be arranged linearly with respect to each
other. Also, as execution progresses, programs and data
that are no longer required in memory can be removed
and the space occupied by them made available for
occupation by others.
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& Compilation

The initial importance of programming languages was to
assist the programmer with the expression of algorithms.
One aspect of this activity is giving names to and declar-
ing sizes of data elements of a program, which, in turn,
means that the compiler must be involved in the clerical
task of arranging the program and its data in storage. The
first compilers arranged program and data in a single,
compact memory space. FORTRAN COMMON was an early
compiler extension which allowed the programmer to
arrange data elements in a separate memory space.
NAMED COMMON was a later elaboration which allowed
several separate data spaces. These allowed data to be
addressed by separately compiled parts of a program and
were particularly valuable when one program was too
large to fit into available main memory. These compiler
facilities are quite useful when the number and sizes of
the data elements are known at compilation time. When
they could not be known before run time, however,
further compiler extensions were required.

PL/ compilers have perhaps the most detailed facilities
for allowing programmers to guide the run-time memory
management actions of the operating system. These are
based on the idea of “‘classifying’’ storage according to
how it is to be managed at execution time. Thus, for
example, ‘‘automatic’’ storage was provided: Without
explicit specification, the main memory requirements of
subprograms are honored automatically at invocation
time. Upon return of control from the subprogram, the
allotted memory is considered surrendered. In providing
storage classes, PL/1 allows the programmer, the lan-
guage, the compiler, and the language’s run-time environ-
ment to cooperate in memory management. Neverthe-
less, they all assume a storage model which is linear and
homogeneous.

® Link editing and loading

After the programmer has expressed the computational
and memory management aspects of the separate pieces
of the total program, they must next be combined into a
single unit residing in memory. Thus, each piece is linked
together, and the composite is loaded into memory. The
need for computer tools to help the programmer with this
linking /loading process was recognized from the very
onset of computer programming (even before compilers
and assemblers). One of the first computer aids to pro-
gramming was a form of relocating loader, the one
provided before 1950 in EDSAC [1].

A direct extension of linking/loading is the technique
called overlay. Here the entire program is not in memory
at one time; rather, as the name implies, parts (sometimes
called phases or segments) of the program are brought in,
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when needed, overlaying those that are no longer needed.
The separate modules of the program are organized into
segments, and an overlay program structure is planned in
terms of which program segments are required in memory
at the same time and which segments can overlay other
segments.

Generally, the overlay structure of the program is not
part of the code modules themselves. This means that the
structure can be changed without requiring a recompila-
tion of the program modules. Early implementations of
the concept provided a basic phase-to-phase transition
within a program and read the phases from a tape on
program demand, with the relative origin for loading the
next phase specified on the tape as part of the overlay
program format.

o Execution-time memory management

Several factors influence memory management during
execution. First, for all but the earliest computers, the
amount of memory available to the system has been a
variable. This is because most computers can operate in a
variety of configurations, allowing a choice of memory
devices of different speed, capacity, and cost. It also
allows periodic upgrading, and it permits system elements
to be unavailable while they are serviced. A second, and
somewhat stronger, influence has been that the memory
requirements of some programs are difficult to predict.
The memory requirements of programs that serve users at
keyboard terminals often only become known at execu-
tion time.

The final, and perhaps strongest, influence on execu-
tion-time memory management has been that computer
systems are often operated in a multiprogramming mode.
The result is that any one program is only given some
fraction of main memory, an amount which is unpredict-
able at the time the program is written or compiled.

Memory management and operating system design
The evolution of the techniques of memory management
followed, roughly, the four phases, namely, design, com-
pile, link /load, and execute. In its first decade, program-
ming moved from specifying programs and data as numer-
ic sequences (i.e., machine order codes) to expressing
them as fairly abstract units (such as separately compiled
FORTRAN programs, common areas, etc.). This evolution
did more than just simplify, or clarify, the algorithmic
aspects of a program; it led to the abstraction of the
memory allocation aspects as well. The result was that at
the end of the first decade memory management was done
at each of the four phases. However, only at execution
time are physical addresses assigned, for only then are
total memory size, the space currently remaining, the size
of the various routines from libraries, etc., known.
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The collection of programs that control the execution
of the processor and to a large degree effect memory
management became a part of what was first called a
“monitor’’ and later an ‘‘operating system.’’ The func-
tions of an operating system can usually be separated into
two parts: (1) those providing services to individual user
programs; (2) those applying some particular policy (e.g.,
job priority) to each program with respect to its use of
shared or limited resources. Since a principal objective of
an operating system —keeping the processor busy running
programs—rests on having the programs and their data in
memory, memory management is central to its design.
However, since there are memory management aspects
to each of the three other phases of program preparation,
and since these three phases span the time between
creating and running the program, the following questions
arose: Who is responsible for memory management?
How can memory management requirements be ex-
pressed so they are consistently stated at each phase?
Can the whole problem be handled automatically? By the
end of the 1950s, this last question had become the key
issue in design of operating systems.

By 1961 [2] this issue came to be characterized as “‘pre-
planning versus dynamic storage allocation.” Pre-plan-
ning aimed at maximum run-time efficiency; it entailed
greater human effort and required more sophisticated
programmer tools. Dynamic storage allocation aimed at
increasing programmer productivity even at the possible
expense of run-time efficiency. Both required innovative
techniques for execution-time memory management, for
with either the system designer had to confront the limited
size of memory and the contiguity of its addresses.

In June 1961, at the ACM Dynamic Storage Allocation
Symposium [3], the developers of the ATLAS computer
from Manchester, England, described a hardware tech-
nique termed the one-level storage system. This hardware
allowed the address of a data item to be treated, not as its
coordinate (i.e., location), but as its identifier. Only when
the processor requested the data at an ‘‘address’” was it
necessary to determine the memory coordinates of that
data. Termed ‘‘dynamic address translation,” this con-
ceptually simple extension of computer addressing gave
the operating system designer a means to attack all three
parts of the memory management problem: Program
addresses could be larger than real memory addresses;
they could remain consecutive, even though the associat-
ed main memory addresses were not; and allocation of
programs to main memory could be changed dynamical-
ly—even during execution of the program. To some
extent offsetting these advantages was the fact that the
translation hardware added complexity (and cost) to the
processor and, in general, caused it to run slower.
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Until 1972, IBM supported two relatively independent
approaches to operating system organization. The main
line of support managed program execution in the real
memory of the system. DOS/360 and OS/360 were the two
IBM operating system families in this line. Examples are
drawn from OS/360 to demonstrate the progress made in
memory management. Designed for good run time speed
of production (.e., polished, frequently run) programs,
08S/360 provided both the programmer and the system
operator with a large selection of memory management
capabilities that permitted maximizing both program and
system efficiency. The other approach to operating sys-
tem organization exploited dynamic address translation
and aimed at providing an execution-time environment
for programs with highly dynamic memory requirements.
Often characterized as ‘‘time-sharing’’ systems, these
latter systems allowed the determination of memory
requirements to be deferred until a user entered a com-
mand.

In the following sections we describe first a few repre-
sentative stages in the development of the ‘‘real memo-
ry’’ based operating systems and then some develop-
ments in virtual storage based systems. We finally consid-
er the merging of these two independent lines into the
most recently available IBM product—MVS.

Conventional memory management—Stretch

An early, rudimentary attempt at the management of real
storage among independent users is found in project
STEM (STretch Experiment in Multiprogramming) in the
late 1950s {4]. This was a prototype batch-job multipro-
gramming system for the IBM 7030 computer. Its design
emphasized strategies for scheduling (i.e., selecting jobs
to be run, placing them in memory, and getting them
‘‘started’”) and dispatching (i.e., selecting which job in
memory is to be assigned next to the processor) that
provide for the efficient use of the central processor. The
goal was to be achieved by attaining the maximum
multiprogramming level. The memory requirement of a
job was a key parameter in its scheduling, and each job
included a declaration of its maximum memory require-
ment, which was allocated to it by the system. Whatever
memory management functions were required within this
allocated space had to be incorporated into the applica-
tion program itself.

A second key input parameter to the job scheduler was
the expected running time of the job; jobs were scheduled
based on this estimate. The job expected to run the
longest was placed at one extreme of memory; the next
longest running job was placed at the other extreme.
Scheduling proceeded in this manner, with short running
jobs in the middle and long running jobs at the extremes.
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The dispatching strategy was to attempt to complete the
center, shorter running jobs first. Thus, on two succes-
sive job completions the two blocks of storage that were
relinquished would yield a single block. Ideally, there
would be no storage fragmentation. (See Fig. 1.)

Dynamic real memory management-—0S/360

The several versions of 0S/360 provide many good exam-
ples of the progress made in providing generalized aids
for the memory management problem in the real memory
operating systems. Prior to DOS/360 and OS/360 magnet-
ic tape was the principal medium for secondary storage,
but its sequential nature limited its possibilities for memo-
ry management. The arrival of disk storage as an econom-
ical second-level storage with good random access capa-
bilities was the catalyst for a new approach to memory
management. Central to this was the concept of a pro-
gram as a set of separate pieces each of which could be
brought, when needed, from secondary to main storage.

Some of the earliest programming aids were based on
the concept of forming a program by binding together
separately named pieces of source code and data areas
which were drawn from libraries. These libraries were
later pre-compiled, which not only saved the compilation
step for standard modules but also allowed deferring until
load time the selection of specific standard modules to
use for a particular execution. In the design of OS/360 it
was decided not only to support compile-time and load-
time binding but, by taking advantage of random access
disk storage, to provide execution-time binding as well.
In OS/360 a set of services provide the link between the
application program and the program modules on direct
access storage. For example, during execution, a pro-
gram can request the appropriate subroutine; only then
will it be brought from secondary storage. This defers
main memory occupancy until it is actually needed and
also allows the selection of the subroutine to be based on
the data at hand. Execution-time binding is a particularly
important feature of 0S/360 for two reasons: first, be-
cause this capability offers the potential of reducing the
maximum amount of storage required by a program
during its execution without the preplanning becoming
hopelessly complex, and second, because the operating
system itself can use it to great advantage. This is
because, just as with the application program, the operat-
ing system requires subroutines and data areas.

It is fundamental to the design of OS/360 that the
management of the main memory requirements of the
system, from the application program right down to the
innermost services of the operating system itself, had to
be done consistently. To achieve this, OS/360 was de-
signed to include a single set of services which allocate
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Figure 1 A scheduled job period in project STEM; jobs were
scheduled in their alphabetical order.

main memory to a program on demand, take it back when
no longer required, and do all the required housekeeping.
These services had to maintain lists of free and occupied
space and to associate all occupied space with the appro-
priate program. Efficient algorithms were devised to
make free space available in response to specific re-
quests, including the fitting and grouping necessary to
minimize fragmentation. These routines, called GETMAIN
and FREEMAIN, are available to all programs within the
operating system.

Before proceeding further with the description of mem-
ory management in OS/360, let us refine slightly this
concept of a program as a set of pieces of code/data/
memory. The application program is made up of a ‘‘main-
line’’ program and subroutines, some of which are specif-
ic to the application and some of which come from
system-wide libraries. In addition, the program calls upon
system services (such as access to the printer). This is
shown schematically in Fig. 2. The important points to be
made are that these pieces are not necessarily in main
memory at the same time, that they may be shared by
several programs, and that some of them were not called
for directly by the program but brought in on behalf of it
by a system service. The possibilities are almost endless,
particularly if several programs are sharing subroutines.

Thus the program can be thought of as a network of
named pieces. At any one time some of these pieces are in
main memory, forming, in effect, a subnet of the program
network. The memory management part of the operating
system must keep track of this subnet and provide enough

495

L. A. BELADY ET AL.




496

Application System
program - library
subroutines subroutines

P

___________ 1
Main-line -
program ;

____________ 0

verlay 1,2, ..., n

System
extensions

Operating system services I

Printer

Figure 2 Example of an application program composed of a
main-line program, subroutines from various libraries, and over-
lays.

information so that as program execution progresses the
proper program subnet is always in memory. Other
memory management functions include such things as
making sure that, when a job is completed, all memory
pieces have been returned and as identifying portions to
reclaim if the program is abruptly stopped.

Before disk storage was introduced and the overlay
structure of a program was stored on tape, program
execution tended to follow the sequence of segments as
they appeared on the tape. 0S/360 took advantage of disk
storage devices to provide a random access program
library and, thereby, to provide a very general implemen-
tation of the overlay technique. Segments could be called
and recalled in pretty much any sequence.

As discussed above, an important design objective of a
memory overlay system is that the program modules need
not be recompiled to reflect the overlay segment struc-
ture. That is, we write and compile modules—which call
other modules as necessary. Next we form the compiled
modules into segments. In OS/360, the ‘‘program’’ which
manipulated program modules to form segments was
called the linkage editor. It resolved the intra-segment
calls between modules; the inter-segment calls were
converted into calls to the overlay supervisor to bring
another segment into memory. Several segments could be
combined to form a larger segment, or a segment could be
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broken into several smaller segments (provided, of
course, that it was composed of several modules). In
addition to providing these means of manipulating seg-
ments and modules, the linkage editor also provided aid
in forming a correct structure by automatically position-
ing COMMON data areas at the proper place in the memory
structure so as to be addressable by all modules requiring
access to them.

As flexible and general as this implementation is,
however, an overlay structure is not sufficient to support
the execution dynamics of some programs. The overlay is
based on a preplanned arrangement of programs into
segments, and some programs, particularly those that
serve terminal users, do not admit to such preplanning.

0S/360 also provided facilities for more dynamic as-
signment of programs to memory by supporting three
types of supervisor-assisted linkages. Each is based on a
different assumption about the memory residence of the
calling and called program. One service, LINK, is a
dynamic subroutine call for which both the called and
calling programs are to be in memory at the same time. A
second service, called Transfer Control (XCTL), allows a
program to call another while relinquishing the storage
held by the caller. A third service, ATTACH, allows a
program to establish the execution of another program
concurrently with its own execution. This permits the
application program to establish its own mulititasking
environment. All of these facilities eased the management
of the linear nature of memory and scheduling its con-
tents, and they took over much of the housekeeping that
would otherwise have to be part of the application
program.

A final aspect of memory management in OS/360 is the
device independence of the program libraries. Subpro-
grams could reside permanently on any device in the
memory subsystem—including main memory. This al-
lowed improved system performance by placing frequent-
ly used routines in main memory: No input-output activi-
ty would be necessary to make these subprograms avail-
able to the caller. This area of memory is called the Link
Pack Area.

The evolution through the various versions of 0S/360
and OS/370 can be viewed as an evolution in memory
management strategies. The principal design objective of
0S/360 was, from the first, that it be a generalized
multiprogramming operating system. Early developments
in its evolution were aimed at meeting this objective in the
best ways possible consistent with schedule and resource
constraints. Later, on-line environments, such as telepro-
cessing applications and timesharing, were added to the
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design objectives. These new objectives required exten-
sion to the memory management services of the system.

The first version of OS/360 was made available in 1966.
Called the Primary Control Program (PCP), it was a single
job-at-a-time operating system. MFT (Multiprogramming
with a Fixed number of Tasks) was released the following
year in order to provide a minimum multiprogramming
facility. The limited capability of these early versions of
OS was to a large extent the result of limited memory
management. The next major evolutionary step—MVT
(Multiprogramming with a Variable number of Tasks)—
was to provide for variably sized job regions. In MVT,
the memory requirements for the job or job step were
specified in job control statements. The scheduler re-
quested the necessary memory to schedule a job and, if
not enough were available, the job was enqueued, waiting
for the resource. When memory became available, the
scheduler would be started in this dynamically assigned
space. On an installation level, care had to be exercised
not only over the region size requested but also over
whether these requests were made for an entire job or a
job step in order to avoid serious fragmentation effects.
And the application programmer still had to be generally
aware of the maximum addressable storage required by
his program and the system services that were used by it.

MFT-II was introduced in 1968 to provide generalized
multiprogramming on computers that were too small to
run MVT efficiently. MFT-II provided several fixed parti-
tions into which jobs could be scheduled dynamically. It
allowed for small partitions which were not large enough
to contain the scheduler code itself. These were sched-
uled from larger partitions when one of them was free
(between job steps). This could result in some inefficiency
but did provide a smaller system than the more elaborate
MVT system. By way of contrast, to schedule a small job
in MVT, the scheduler obtained enough space for itself
and, when it transferred control to the job it had sched-
uled, the extra memory it had required for itself was
released for re-use by the system.

The next major development was in support of the
time-shared use of memory for the Time Sharing Option
(TSO) of 0S/360. Since it was impossibly inefficient to
dedicate physical storage to a program interacting with a
user at a terminal, the function of swapping was added to
the system. This allowed OS/360 to time-share a portion
of addressable memory among multiple users by keeping
on external storage the contents of that portion of memo-
ry assigned for each user and bringing it back in only
when that user was allowed use of the time-shared region.
It was also possible to have more than one such region.
However, as a consequence of the binding of programs to
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real addresses, each terminal user was locked into the
region to which he was initially assigned, regardless of
how the time-sharing user load shifted among regions
over time.

Virtual storage memory management

Recall from the previous discussion the notion of address-
as-location and address-as-identifier. This distinction,
and the hardware that supports it, has given rise to
address relocation, dynamic address translation, paging,
and virtual storage [5, 6]. In all of these a distinction is
made between what we call a ‘‘logical’’ (or ‘‘virtual’’) and
a ‘“‘real’” address. Logical addresses are those defined by
(and in some sense defining) the program to be run, and
real addresses are those defined by (and defining) physi-
cal storage. The translation of logical addresses into real
addresses (‘‘dynamic address translation’” or ‘‘reloca-
tion”’) is performed by the CPU as data in memory are
needed. This translation (or mapping) can take any of
several forms.

The simplest mapping function (called single register
relocate) adds a constant to the logical address and
compares the sum to some limit. This map allows several
logical address spaces to exist in main memory at once,
but it has the limitation that the maximum logical address
can be no larger than the maximum physical address.

This simple address translation technique was part of
the special modifications made to the IBM 7094 for MIT’s
Compatible Time Sharing System [7]. (See subsequent
section ‘‘Early time-sharing and the MIT-RPQ.”’) It was
also incorporated into both the Models 135 and 145 of
System/370 [8] to support a logical address space for
DOS/360 to co-exist with another system.

The ATLAS project provided a more elaborate map-
ping system. In ATLAS, the main memory of 16K words
was divided into 64 blocks of 256 words each. Associated
with each block was a ‘‘Page Address Register,”” which
contained the virtual address of the 256-word portion of
virtual memory that was in that block of main memory.
Virtual addresses were translated to real addresses by
taking the page address part of the address (that is, all but
the least significant 8 bits) and comparing it with the
contents of all 64 Page Address Registers. If a match was
made, say in register no. 9, then the ninth page of main
memory must have contained the data being requested. If
no match was found, then that virtual address was not in
main memory and had to be brought in from secondary
storage.

ATLAS allowed several logical address spaces to re-
side concurrently in main memory. It also allowed por-
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Figure 3 The virtual-to-real address translation used in the
M44.

tions of virtual memory to be absent from main memory.
This aspect of dynamic address translation gives rise to
‘‘demand-paging.”’ When an absent page of virtual mem-
ory is referred to, a ‘‘page fault’’ occurs and the memory
management part of the system must move the requested
page of virtual memory to main memory and update the
mapping hardware to reflect this change. Address transla-
tion hardware can be used to support paging only if a page
fault is detected early enough in the instruction execution
cycle, as illustrated later in the case of the Virtual
Machine Control Program, CP/40. If the page fault occurs
after instruction execution has progressed too far to
“‘back up”’ (or if the machine is not organized so that
instruction execution can be stopped and restarted in
mid-cycle), then demand-paging is not possible. This is
not to say that address translation cannot be employed,
only that the memory management part of the operating
system must be capable of enough ‘‘pre-planning’’ to
ensure that page faults will not happen.

In the following sections we discuss how this dynamic
address translation became generalized into paging sys-
tems, and many other memory management tools. The
central idea is that address translation allows system
cost /performance design problems to be compartmental-
ized. Thus, broadly viewed, the problem programmer
manages things (program and data) in a space of logical
addresses. The operating system manages the real storage
of the computer by maintaining the mapping function. A
characteristic of a computer system, including its operat-
ing system, is the extent to which these separate problem
areas can be handled separately and concurrently.

Early time-sharing and the MIT-RPQ

Starting in the 1940s, with its development of the
WHIRLWIND computer, MIT was involved in the devel-
opment of computers and significant extensions to com-
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puter system organization. In the late 1950s the notion of
interactive access (or time-sharing) was being discussed
[9], and by the early 1960s MIT had evolved a design for a
Compatible Time-Sharing System (CTSS). The goal set
for CTSS [7] was: ‘‘. . . drastically to increase the rate of
interaction between the programmer and the computer
without large economic loss and also to make each
interaction more meaningful by extensive and complex
system programming to assist in the man-computer com-
munication.”” Given the great discrepancy between hu-
man and machine processing speeds, it was felt that the
program material for a given on-line user need appear in
the execution memory only burst-wise, and between such
bursts human thinking would take place. Memory man-
agement was central to realizing this goal.

IBM worked with the MIT staff to modify their 7090/94
processor. The 7090/94 was limited to 32K 36-bit words of
memory, which, though adequate for many user prob-
lems, was not enough for several active user programs
and the sort of system support that the staff at MIT
envisioned. Additional memory as well as a means of
swapping the active user’s program into main memory for
its “‘burst’’ of execution were required. IBM also worked
with MIT to devise several extensions to the 7090 to allow
it to support interactive access and swapping of programs
into (and out of) main memory. Thus, in addition to a
second main memory unit (32K words), address reloca-
tion, checking, and protection hardware were developed
and delivery to MIT was completed by 1963.

The additional memory unit, termed ‘‘core-B,”” was
added to the 7090/94 in such a way that the processor
executed out of either core-A or core-B. The CTSS
operating system resided in core-A, and user programs
were moved into and out of core-B. In order to allow
several users to co-reside without interfering with each
other, memory was ‘‘protected’’ in units of 256-word
blocks. CTSS services allowed the user programs to set
their address space ‘‘size’” of up to 32K in units of 256
words. During the bursts of execution, user address space
from location 0 to ‘‘size’’ (N*256)-1 was in real memory
at locations 0 to (N+256)-1 in core-B. Locations at and
greater than (N*256) were protected by the hardware and
thus could hold the ‘‘upper’ portions of the address
spaces of other users. This came to be called an ‘‘onion-
skin’” algorithm.

The M44 system

Between 1961 and 1964 the IBM Thomas J. Watson
Research Center at Yorktown Heights, NY, undertook a
systematic study of the memory usage patterns of 7090
programs [10]. The intent of this work was to learn about
the behavior of these programs in a paging environment.
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In order to study a program one must first interpretively
execute the program and then store on magnetic tape the
sequence of memory addresses it just generated. The
resulting ‘‘address traces’ can subsequently be used as
input to a paging simulator program. To test program
behavior in a paging environment, the simulator in fact
allowed page size, real memory size, and page replace-
ment algorithm to be varied. As an example, for different
replacement algorithms, the number of page replace-
ments which had to take place in main memory to run a
program were counted and displayed as a function of page
size and (restricted) memory size supplied. The details of
these studies can be found in {11].

These studies created a wealth of insight and, inciden-
tally, led to discovery of the principle of locality [11].
Nevertheless, simulation could not be the whole story,
and by 1964 it became clear that full-scale experimenta-
tion was necessary to test the relation of memory man-
agement to some of the ideas which were emerging at that
time: time sharing, multiprogramming, operating system
structures, simulated or ‘‘virtual’’ machines. An IBM
7044 was chosen as the experimental vehicle. It was
modified to support not one but many alternative designs
by allowing variable parameter values for page size,
memory size, level of multiprogramming, etc.

In order to modify the 7044 into what later became
known as the M44, the address field had to be extended,
in all instructions with such a field, from 15 bits to 21 bits
in length. This made two million words addressable. Of
course, the index registers and other hardware involved
in addressing were also enlarged. Dynamic address trans-
lation was hardware-aided, using a dedicated ‘‘mapping
memory’’ of 32K words. The high order position of each
processor-generated ‘virtual’’ address was used to locate
a word in the mapping memory, where either the ‘‘real”
address of the page containing the desired memory cell
could be found or else a *‘page exception’” was generated,
i.e., an entry to system programs which then acted to
bring in the missing page from some back-up memory (see
Fig. 3). Actually, the mapping was somewhat more
complex, due to the experimental nature of the machine.
For example, a mechanism was included to permit the
machine to perform with any page size between 256 and
4096 words that was an integer power of two.

But what about multiprogramming using multiple ad-
dress spaces? With large pages, smaller mapping tables
were needed, and thus only a fraction of the mapping
memory was utilized. This made possible the storing of
mapping information about several address spaces or
virtual machines. Correspondingly, an additional register
for “‘user ID’’ was installed; it was set whenever a new

IBM J. RES. DEVELOP. ® VOL. 25 & NO. 5 @ SEPTEMBER 1981

user’s program was dispatched. Its contents were used as
an offset in accessing the mapping memory which con-
tained address translation data for several virtual ma-
chines, as indicated in Fig. 3. With a 2048-word page size,
for example, sixteen independent so-called ‘44X virtual
machines’’ could share the physical resources.

Another useful thing about the M44 hardware was that
a single 36-bit word in the mapping memory could hold
much more information than a real page address. Corre-
spondingly, several bits called status flags were used to
designate certain pages as read-only, privileged, transfer-
protected, etc., thus packaging information on capabili-
ties, protection, and address transformation in a single
structure and making the operating system simpler.

The operating system, of course, had to perform many
other functions, including the management of secondary
storage devices, such as disks. All these functions were to
achieve device independence for programmers such that
they need not manage the details and limitations of
physical devices. Programmers, for example, could be
given only the description of a machine with virtual
memory and other abstract resources. As the programs in
execution issued requests for the resources, the operating
system translated these into requests for real devices. In
experimentation, the M44/44X system verified the useful-
ness of these ideas [12].

But experimentation helped in many other ways. It was
observed, for example, that under certain circumstances
a program will run faster with fewer pages assigned to it
[13]. Another discovery was the nonlinear effect of pro-
gram localities: The decrease in processor idleness is
generally more abrupt than the increase of assigned
memory space which caused it. It was indeed experimen-
tally verified that dynamically varying memory space
could be superior to static allocation.

Significant progress in system performance methods
was also facilitated by experimentation. At one time a
programmed control loop was added to the operating
system; it sensed the page traffic intensity between main
and back-up memories and the fraction of time the
processor was idle. With both variables high, the number
of multiprogrammed tasks was reduced by one until
congestion eased. The rationale was to allow more aver-
age main memory to accommodate the natural locality of
each participating program. This dynamic memory-space
sharing was then monitored graphically to further the
insights gained by the system designers [14].

Another performance oriented experiment was the
“loose coupling’’ of program control and system control
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of memory. The programmer (or the compiler) could, at
any point in the program, insert one or the other of two
special instructions (actually supervisory calls): ‘‘named
page soon needed’’ or ‘‘named page not needed.”” While
this violated device independence, the supplied informa-
tion was potentially very useful to the operating system in
its effort to maximize throughput. The instructions were,
incidentally, not taken as mandatory by the operating
system; hence the loose coupling.

After having served as an experimental vehicle for
more than three years, the M44 system was dismantled in
1968, following the original plan.

Virtual machine systems—CP/40, CP/67, and VM/370
In 1964 the staff at IBM’s Cambridge Scientific Center
undertook a project intended partly to investigate pro-
gram and machine structures for an interactive system
[15]: “‘Central to the idea of this system is the concept of
the ‘virtual machine’ and, in our case, the ‘virtual 360.”
This work led first, in 1966, to a virtual Machine Control
Program (CP/40). This served as a prototype, demonstrat-
ing feasibility, and provided the basis for CP/67, an
operating system for the System/360 Model 67, and in
1972, VM/370, an operating system for the System/370
machines. The history of the development of this family
of operating systems is treated separately in this issue in
the paper by R. S. Creasy [16].

Of interest here is the dynamic address translation
technique implemented experimentally in 1965 on a Sys-
tem/360 Model 40 [17]. Resembling closely that devel-
oped by the ATLAS group, the mapping system was quite
simple. For each 4K-byte page frame of real main memo-
1y, there was a 16-bit register which contained the identi-
fier of the page of virtual memory that was, at that
moment, in that page frame. Thus, for the 256K-byte
memory of the Model 40, there were 64 registers. Each
page of virtual memory was *‘‘identified’’ by a 4 bituser id
and the 6 bits which identified the page of the virtual
address. Only 6 bits were required because, although
System/360 memory addresses are, architecturally, 24
bits, just 18 bits were implemented on the Model 40. That
is to say, the Model 40 provided a maximum address
space of 256K bytes. During execution, CP/40 loaded the
user-id register with the id of the current user and thus
specified which of 16 virtual address spaces was to be
active. Each time the processor requested data, the 6-bit
page number and the user id were combined to form a 10-
bit identifier of that page of virtual address space.

To translate an address, the Model 40 compared the
page identifier part of the virtual address with the con-
tents of the first 10 bits of each of the 64 identifier
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registers. (The remaining 6 bits were used to reflect such
things as whether the page had been referenced or
changed.) If a match was found, then the requested data
were located in the corresponding page of main memory.
If no match was found, then the requested page was not in
main memory. The address translation hardware inter-
rupted the processor so that the data could be transferred
from disk to some page of main memory.

To support a demand paging system, the Model 40 had
to be further modified to detect page faults before instruc-
tion execution was started, since many System/360 in-
structions cannot be interrupted (or backed-up). The
instruction and address structure of System/360 leads to a
situation in which, as a maximum case, data from eight
pages are required for execution of a single instruction.

The simultaneous comparison of the virtual address
(identifier) with that in the 64 identifier registers was
performed by an associative memory system [18], which
was fast enough so that the execution speed of the Model
40 was not reduced due to address translation.

In addition to its importance as a prototype for two
IBM products (CP/67 and VM/370), CP/40 served as a
vehicle for experimentation on the performance aspects
of memory management and paging systems. One topic of
study was the impact on paging performance of program
structure [19, 20]. This work led to techniques for arrang-
ing code modules in virtual memory so as to minimize the
number of page faults during execution. Other results
were obtained, e.g., those from a multifactor paging
experiment (in which replacement algorithms, load se-
quence of subroutines, set of problem programs, and
main memory were investigated) and from analysis of free
storage algorithms. These are reported in [21].

Time sharing system-TSS/360

The TSS/360 operating system [22, 23] was IBM’s first
offering with virtual memory, aided by the hardware
address transformation scheme of the IBM 360 Model 67
computer. TSS/360 was developed in the 1965-67 period,
and many of its memory management features became
similar to those of the M44. We therefore restrict our-
selves here to outlining the differences only.

First, the dynamic address transformation was done in
two stages, since the 24-bit (virtual) address field was
subdivided into three subfields, containing segment,
page, and line numbers. The 4-bit segment field was first
used as an offset in the so-called segment table, where the
address of the particular page table describing the pages
of the addressed segment was found. The (middle) page
subfield was then used to locate the corresponding real
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page, within which the last 12 bits of the original (virtual)
address were used for locating the desired byte. (See
Fig. 4.)

This hierarchical address organization made the total
amount of mapping information to be stored smaller than
the M44’s one-step map; this was necessary because
segment and page tables, without a dedicated memory,
had to share the main memory with all other processor-
accessible information. On the other hand, address map-
ping became slower since two, instead of one, additional
memory cycles were needed to find the real address.

To improve the situation, G. A. Blauuw, at that time
with IBM, invented a ‘‘black box’’ that could store in its
content-addressable memory the mapping information
(virtual-real page association) of several most recently
used address associations. (M44 experimental data were
used in the design and feasibility studies of the Blauuw
box.) Each time a virtual address was generated, this box
was interrogated and, more often than not, the associated
real page number found, resulting in a tenfold speed-up
with respect to in-memory two-stage transformation.

A further complication was introduced by a fast drum
device which, as back-up, was too small to support the
many virtual address spaces, each 16 megabytes long.
The result was a three-level memory hierarchy, consist-
ing of main memory, drum, and disk of essentially
unlimited capacity.

The memory management functions of TSS thus be-
came quite elaborate. Many innovative algorithms were
designed and implemented to cope with the competition
between page tables and pages containing programs and
data. Sharing read-only information was implemented
without duplicating pages, by mapping segments of differ-
ent address spaces into the same pages in memory. (Each
address space was subdivided into 16 equal-sized seg-
ments.) Also, adaptive algorithms decided about the
‘‘page-out’’ target area—drum or disk—depending upon
scheduling status, memory demand, current space occu-
pied, and other factors. And for cases when available
drum space became short, decision-making rules about
replaicement, quite similar to those between main and
simple back-up memory, were incorporated into the
operating system. The subsequent migration process
was tied to the time slice allotments controlled by the
scheduler.

The particular arrangement of records on drum was
such that high transfer rates could be achieved only by
combining eight (or nine) pages on a single track. This
made necessary the introduction of ‘‘prepaging,”’ i.e., the
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Figure 4 The address translation technique used by the Sys-
tem/360 Model 67.

loading of several pages into main memory prior to the
beginning of a time slice—a slight departure from pure
““demand’’ paging. This made memory management even
more closely coupled to the scheduling of the time-shared
and multiprogrammed tasks.

Multiprogramming demanded the sharing of main mem-
ory. This was done by statically assigning areas of
different sizes for each time slice of a task, estimated from
the demand which had been recorded during previous
time slices. Later this scheme was somewhat relaxed by
‘‘page stealing,’’ i.e., the reassignment of a page from one
task to another. And if there was in memory some
residual page left from a previous time slice, the system
was programmed to reclaim it.

In summary, TSS was the first comprehensive integrat-
ed operating system built for the computers in the 360 and
370 line which had dynamic address translation. It helped
gather valuable experience for follow-on operating sys-
tems with virtual memories in the early 70s.

Multiple Virtual Storage (MVS)

This then was the situation in the early 70s. The real
memory-based systems were in extensive use and offered
a great range of memory management tools which, in the
main, met the objective of high processor efficiency.
However, the human effort—of both programmer and
system support staff—needed to manage memory was
very high and represented a barrier to adding new appli-
cations to the computer. In short, programmer productiv-
ity had to be improved. Some years earlier, the direction
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set for the virtual storage-based systems had been pro-
grammer productivity, and the success of this approach
demonstrated by the M/44, CP/40, TSS/360, and CP/67.
Thus, in 1972 IBM introduced virtual storage on all of its
processors and their operating systems. An overriding
consideration in doing this was to minimize disruption to
customers: Their old code must continue to run without
change (to preserve their investment), and they must not
have to accommodate a new operating system structure.
The virtual storage design approach taken was substan-
tially that taken by the System/360 Model 67: an address
translation extension to the System/360 architecture,
rather than a change to that architecture. It did not affect
any of the instructions used by application programs, and
most of the instructions used by the operating systems
were unchanged. This allowed the operating systems for
System/360 to be adapted to virtual storage by adding the
memory management functions necessary to create and
manage a single virtual addressable space (of up to 16
million bytes), running the operating system in that space,
and, by demand paging, bringing only the necessary
portions of that space into real memory. Though an
oversimplification, the initial versions of these operating
systems appeared to provide a 16-megabyte main memo-
ry, when in fact the real memory was, say, only one
megabyte.

The problem that this approach presented was that
acceptable performance made it mandatory that portions
of the operating system code and data not be demand-
paged. It was necessary to locate these ‘‘unpageable’
portions and organize them into pages; the virtual storage
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in which the operating system ran could then be catego-
rized as either nonpageable (i.e., fixed in real memory) or
pageable.

In this straightforward manner, the real memory-based
operating systems were adapted to virtual storage. DOS
became DOS/VS, MFT became VS-1, and MVT became
VS-2. Each achieved its objective of improving applica-
tion programmer productivity by allowing much larger
regions in which to place programs, with the result that
overlay structures became simpler or, quite often, unnec-
essary. In addition, each supported greater levels of
multiprogramming, and many system functions otherwise
available only on large machines were available on small-
er ones as well. Still the maximum addressable space was
limited to 16 megabytes and had to be shared among all
jobs. The greater exploitation of virtual storage and the
restructuring of the operating systems that this entailed
were left to subsequent versions.

As they were the most extensive, we touch briefly on
the exploitations of virtual storage made in the subse-
quent versions of VS-2. The major restructuring of VS-2,
called Multiple Virtnal Storage (MVS) [24], provided
each user with a 16-megabyte address space. (A batch job
or someone doing time-sharing is regarded in this context
to be a user.) Recall the previous discussion of a program
as a network of named pieces and of memory manage-
ment keeping track of the subnet residing in main memo-
ry. In the exploitation of virtual storage in MVS, the
System/370 hardware took over the major part of keeping
track of the resident memory subnet. When a user or
system component is to be given control of the processor,
the MVS memory map is established so as to include the
virtual pages assigned to that user component.

Another important aspect of the management of multi-
ple address spaces by MVS is that user programs were
effectively isolated from each other. All user address
spaces share, at one end, the MVS supervisor and, at the
other, a Common Service Area (See Fig. 5). Between
these lie the portions that contain programs and data
private to each user. Real memory assignment of these
pieces is by demand paging; therefore, not only can it be
deferred until needed by the program, it can also be
treated independently of other users. Importantly, much
of this burden is handled by the System/370 hardware.
During execution no user can refer to (or store into) any
other user’s private area. In order for one user address
space to communicate with another, it had to use the
supervisor services that reside in the areas common to
both. In later versions of MVS a new hardware facility
allowing authorized direct communication between user
address spaces was supported.
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Two more aspects of the exploitation of virtual storage
by MVS should be mentioned. Some system services
(e.g., telecommunications access methods) were assigned
virtual address spaces. They could then be treated much
like problem programs, with the programmer productivity
benefits accrued to IBM’s own development process.
Finally, substantial enhancements were made to the
resource scheduling and dispatching functions of the
system. It was here, particularly, that the experience with
CP/40, M44, TSS/360, and CP/67 was applied.

Conclusions

We conclude this review by noting two trends. First we
note the widespread acceptance both inside and outside
of IBM of virtual memory. One of two trends now
apparent is extension of the System/370 architecture so
that it takes over more of the memory management
functions. An example of this is the recently announced
IBM 4300 processor family, which performs much of the
paging management for DOS/VSE.

The second trend is to remove from the programmer
the constraints of the linear nature of the address space.
This is exemplified by IBM’s System 38 [25], in which the
addressing structure allows not just an enormous address
space (48-bit addresses yielding a 281-trillion-byte ad-
dress space) but is also designed to directly name the
separate pieces of the program. No longer needed are the
programs that assign named pieces to their relative posi-
tions in a linear space. Rather, the name given by the
programmer to each part of a program serves as its
address. In this manner, much of the memory manage-
ment burden shifts to the hardware.

How does one assess these trends? What can be said is
that the forces that drive the change will be the shifting

‘5

costs within the total computing system—where ‘‘sys-
tem’’ spans not just the processors and storage devices
but includes the people who own, program, and operate
them. It is a recognition of this total system cost which
has governed IBM’s past memory management approach-
es and will continue to do so into the future.
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