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The  IBM  History of Memory  Management  Technology 

The history of memory management technology in IBM during the  period  between the 1950s and the early 70s is  discussed 
in this paper. The paper concentrates  on  the  programming  and operating  system  aspects of the problem,  rather than the 
hardware technology  involved. 

Introduction 
The speed at which  digital computers operate depends 
heavily  upon  how fast the processors can get data and 
instructions from memory. Over the past quarter century, 
the internal organization of computers has become  in- 
creasingly sophisticated as a result of efforts to make data 
more  readily accessible to the central processing unit. In 
parallel with this engineering activity, systems program- 
mers, installation managers, and computer scientists have 
been striving toward the same  goal. Their effort, to 
optimize the processor’s access to information, has  come 
to be  called  memory  management. In this paper we 
review the evolution of  memory  management  in IBM, 
particularly as it concerns and  affects  programming. 

1 

In order to present some  ways of managing  memory, 
we first  need a model on which to define basic objects and 
concepts. Data and programs are stored, usually in binary 
form, in a memory subsystem. On early computers, the 
memory subsystem was a single main memory. Comput- 
ers became faster and computer problems larger, but a 
single main memory that was  both fast enough  and  large 
enough  had  not really been available. This led to a 
memory subsystem organization  consisting of a set of 
devices, typically consisting of a small fast main  memory 
for the immediate needs of the processor and  some larger, 
slower devices holding data not expected to be  required 
soon. These devices are usually arranged in a hierarchy 
and are interconnected so that data can be  moved about 
independent of the processing of other data. 

Thus our simple  model, or abstraction, consists of a 
processor and a memory subsystem, with  information 
flowing between them. The processor works  cyclically, 
and  at the completion of almost every cycle, a specified 
piece of information is sent to or requested of the memory 
subsystem. The memory subsystem then accomplishes 
the task with  some delay. The following questions imme- 
diately  arise: (1) How is the information piece specified? 
(2) How  large are the pieces? (3) How rapid is the 
response of the memory subsystem? 

Question (1) is that of addressing, which can be per- 
formed in either of two fundamental ways: by content or 
by location. In the first, the requested information is 
found by (partial) matching, as in the process of finding a 
telephone number  in a list in which each number is next to 
a subscriber’s name. (Notice that the name-number pairs 
do not  have to be stored in  any order.) An example of the 
second way  of addressing is the looking  up of an article in 
a book  by  using the table of contents, which gives, in 
numerical order, the starting page number of each article. 
Due to its predominance, in our paper the latter, location- 
based or coordinate addressing is assumed, and the 
extent of addressability is called an address  space. 

Question (2) is not an issue since we introduce a 
simplifying assumption: An address always refers to a 
portion of memory  whose  size  is constant in a given 
context in  this paper. 
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Question (3) relates computer  performance to memory 
management. The time required for  the memory  subsys- 
tem to deliver (or store) a piece of information depends on 
the arrangement of the devices in the  subsystem,  as well 
as  the arrangement of the programs  and data on those 
devices. The result  is that  the  rate  at which the  processor 
operates is  not  uniform;  periods of full speed execution 
are interspersed  with  periods of waiting. 

Memory  management  schemes 
One way to  reduce if not eliminate idle processor periods 
is for  the programmer to anticipate  its  demand for new 
information. Thus, new data  are brought into main memo- 
ry concurrently  with, but independently of, processing. A 
second way, called multiprogramming, is to  keep several 
independent  programs in memory concurrently. When 
one program encounters a delay in the memory  subsys- 
tem, the processor  can  be switched to  another program 
which was previously  delayed  but is now ready to  run. 
We defer till later discussion of multiprogramming. For 
both schemes,  however,  the idea  is to overlap the time 
required to move data in the subsystem with some other 
processing  activity. 

Until  about fifteen years  ago,  computers only ran one 
program at a time, and the overlapping of computation 
with inputloutput  activities  was  considered a minor task, 
to  be easily included in the program by the programmer. 
At that  time, both  the programmer  and the machine 
designer assumed that  the computational aspects of com- 
puting  were  predominant, with the  programmer  concen- 
trating on algorithms and their representations, not  on 
data, and  the  designer  on  fast processors,  not  on memory 
subsystems. It  soon became apparent,  however,  that  the 
problems of complex  program  and data  structures, often 
far larger than main memory, were anything but a minor 
task  for  the programmer. 

In response,  system programs handling memory man- 
agement began to  appear. Many of these solutions  were 
also supported by innovation in hardware  design. Slowly, 
a basic dilemma became crystallized:  how to make a 
program containing only functions  relevant to  the prob- 
lem it  is  intended to solve,  yet  assuring efficient use of 
machine  resources. 

One way that  this problem was dealt with was to 
identify the  separate memory management functions and 
to provide  system  programs to perform them.  These must 
allow the  programmer to work only with  the logical 
structure of data,  rather than the way the information 
pieces are arranged in main memory. The decomposition 
of memory management  results in subtasks  such  as  the 

492 following: 

Arrange data and program  segments within a single 

Manage the  capacity limitation of this address  space. 
Manage the trade-offs introduced by the  cost of differ- 
ent  devices in the memory  hierarchy. 
Manage the capacity  variations  introduced by the idio- 
syncrasies of hardware: nonstandard  sizes of informa- 
tion  pieces (words,  records, etc.)  and  changes in system 
configurations. 

linear address  space. 

As we see,  the situation  has  become far more compli- 
cated  than it appeared in our simple model. Not surpris- 
ingly, a  quite  sizable  and growing community of research- 
ers and  system  designers has been involved in solving the 
problems. IBM has been one of the leaders in its effort to 
combine the many component  solutions in a systematic 
way and to integrate  them  into practical systems. Howev- 
er,  few of these  component solutions have been  reported 
in the literature,  and their origins are almost  impossible to 
trace, a situation  which  is reflected in this paper. 

In  the next section we discuss  how memory manage- 
ment is  handled beginning with program  preparation and 
continuing through  program  execution. Greatest empha- 
sis  is  on  execution-time memory management, that typi- 
cally done by operating  systems. This topic  is further 
elaborated in the following section,  which is, in turn, 
followed by sections on the approaches to memory man- 
agement  taken in several particular  IBM  operating sys- 
tems. 

The four phases of memory  management 
The solutions to  the problems of memory management 
are distributed (with some overlap) over several  phases: 
structuring the program (program  design), translating the 
program  from  a  programming language to machine code 
(compilation), presenting the program material to  the 
machine (link-editing), and executing the program (dy- 
namic  memory  management). 

Program  design 
In  the program design  stage  decisions  must be made 
about  the organization of the program and  its  data  into 
subroutines, control tables, work areas, and buffers. Key 
elements of this activity  include planning of storage 
occupancy, storage  requirements during execution, link- 
age  among  program  elements, and availability of data  at 
the  proper times. However, programs and their data 
cannot  always be arranged linearly with respect  to  each 
other. Also, as execution  progresses,  programs  and data 
that  are no  longer  required in memory can  be removed 
and the space  occupied by them  made  available for 
occupation by others. 
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Compilation 
The initial importance of programming  languages  was to 
assist the programmer with the expression of algorithms. 
One aspect of this activity is giving names to and declar- 
ing sizes of data elements of a program, which, in turn, 
means that the compiler must  be  involved  in the clerical 
task of arranging the program  and its data in storage. The 
first  compilers arranged program  and data in a single, 
compact  memory space. FORTRAN COMMON was an early 
compiler extension which  allowed the programmer to 
arrange data elements in a separate memory space. 
NAMED COMMON was a later elaboration which  allowed 
several separate data spaces. These allowed data to be 
addressed by separately compiled parts of a program  and 
were particularly valuable when one  program  was too 
large to fit into available main  memory. These compiler 
facilities are quite useful  when the number and sizes of 
the  data elements are known at compilation  time. When 
they could  not  be  known  before  run time, however, 
further compiler extensions were required. 

PL~I compilers have perhaps the most detailed facilities 
for allowing programmers to guide the run-time memory 
management actions of the operating system. These are 
based on the idea of “classifying” storage according to 
how it is to be  managed at execution time. Thus, for 
example, “automatic” storage was provided: Without 
explicit specification, the main  memory requirements of 
subprograms are honored automatically at invocation 
time.  Upon return of control from the subprogram, the 
allotted memory is considered surrendered. In providing 
storage classes, PL/I allows the programmer, the lan- 
guage, the compiler, and the language’s run-time environ- 
ment to cooperate in memory  management. Neverthe- 
less, they all assume a storage model  which is linear and 
homogeneous. 

Link editing and loading 
After the programmer has expressed the computational 
and  memory  management aspects of the separate pieces 
of the total program, they must  next  be  combined into a 
single unit residing  in  memory. Thus, each piece is linked 
together, and the composite is loaded into memory. The 
need for computer tools to help the programmer with this 
linking/loading process was recognized  from the very 
onset of computer programming  (even before compilers 
and assemblers). One of the first computer aids to pro- 
gramming  was a form of relocating loader, the one 
provided  before 1950 in EDSAC [l]. 

A direct extension of linking/loading is the technique 
called overlay. Here the entire program is not  in  memory 
at one time; rather,  as  the name  implies, parts (sometimes 
called phases or segments) of the program are brought in, 
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when needed, overlaying those that are no longer needed. 
The separate modules of the program are organized into 
segments, and an overlay program structure is planned  in 
terms of which  program  segments are required in  memory 
at the same  time and which  segments can overlay other 
segments. 

Generally, the overlay structure of the program is not 
part of the code modules themselves. This means that the 
structure can  be changed without  requiring a recompila- 
tion of the program  modules.  Early implementations of 
the concept provided a basic phase-to-phase transition 
within a program and read the phases from a tape on 
program demand, with the relative origin for loading the 
next phase specified on the tape as  part of the overlay 
program format. 

Execution-time memory  management 
Several factors influence  memory  management  during 
execution. First, for all but the earliest computers, the 
amount of memory available to the system has been a 
variable. This is because most computers can operate in a 
variety of configurations, allowing a choice of memory 
devices of different speed, capacity, and cost. It also 
allows periodic upgrading, and it permits system elements 
to be  unavailable  while  they are serviced. A second, and 
somewhat stronger, influence  has  been that the memory 
requirements of some programs are difficult to predict. 
The memory requirements of programs that serve users at 
keyboard terminals often only  become  known at execu- 
tion time. 

The final,  and perhaps strongest, influence  on execu- 
tion-time memory  management  has been that computer 
systems are often operated in a multiprogramming  mode. 
The result is that any one program is only  given  some 
fraction of main memory, an amount  which is unpredict- 
able at the time the program  is written or compiled. 

Memory  management  and  operating  system  design 
The evolution of the techniques of memory  management 
followed, roughly, the  four phases, namely, design, com- 
pile, linkhoad, and execute. In its first decade, program- 
ming  moved  from  specifying  programs and data  as numer- 
ic sequences ( i . e . ,  machine order codes) to expressing 
them as fairly abstract units (such as separately compiled 
FORTRAN programs, common areas, etc.). This evolution 
did  more than just simplify, or clarify, the algorithmic 
aspects of a program; it led to the abstraction of the 
memory allocation aspects as well. The result was that at 
the end of the first decade memory  management  was done 
at each of the four phases. However, only at execution 
time are physical addresses assigned, for only then are 
total memory size, the space currently remaining, the size 
of the various routines from libraries, etc., known. 493 
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The collection of programs that control the execution 
of the processor and to a large degree effect  memory 
management became a part of what  was  first  called a 
“monitor” and later an “operating system.” The func- 
tions of an operating system can usually  be separated into 
two parts: (1) those providing services to individual user 
programs; (2) those applying  some particular policy (e .g . ,  
job priority) to each program  with respect to  its use of 
shared or limited resources. Since a principal objective of 
an operating  system-keeping the processor busy running 
programs-rests on  having the programs and their data in 
memory,  memory  management  is central to its design. 
However, since there are memory  management aspects 
to each of the three other phases of program preparation, 
and  since these three phases span the time between 
creating and  running the program, the following questions 
arose: Who is responsible for memory  management? 
How can  memory  management requirements be ex- 
pressed so they are consistently stated at each phase? 
Can the whole problem be  handled automatically? By the 
end of the 1950s, this last question had become the key 
issue in  design of operating systems. 

By 1%1  [2] this issue came to be characterized as “pre- 
planning versus dynamic storage allocation.” Pre-plan- 
ning  aimed at maximum  run-time  efficiency; it entailed 
greater human  effort  and  required  more sophisticated 
programmer tools. Dynamic storage allocation aimed at 
increasing programmer productivity even at  the possible 
expense of run-time  efficiency.  Both required innovative 
techniques for execution-time memory management, for 
with either the system designer  had to confront the limited 
size of memory and the contiguity of its addresses. 

In June 1961, at  the ACM Dynamic Storage Allocation 
Symposium [3], the developers of the ATLAS computer 
from Manchester, England, described a hardware tech- 
nique termed the one-level storage system. This hardware 
allowed the address of a data item to be treated, not as its 
coordinate ( i .e . ,  location), but as its identifier. Only  when 
the processor requested the data at an “address” was it 
necessary to determine the memory coordinates of that 
data. Termed “dynamic address translation,” this con- 
ceptually  simple extension of computer addressing gave 
the operating system designer a means to attack all three 
parts of the memory  management problem: Program 
addresses could be larger than real  memory addresses; 
they could  remain consecutive, even though the associat- 
ed  main  memory addresses were not; and allocation of 
programs to main  memory  could  be changed dynamical- 
ly-.even during execution of the program. To some 
extent offsetting these advantages was the  fact that the 
translation hardware added complexity (and cost) to the 
processor and, in general, caused it to run slower. 494 
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Until 1972, IBM supported two relatively independent 
approaches to operating system organization. The main 
line of support managed  program execution in the real 
memory of the system. DOS/360 and OS/360 were the two 
IBM  operating system families  in this line.  Examples are 
drawn  from 03360 to demonstrate the progress made  in 
memory  management.  Designed for good  run  time speed 
of production (i.e., polished, frequently run) programs, 
OS/360 provided both the programmer and the system 
operator with a large selection of memory  management 
capabilities that permitted maximizing both program  and 
system efficiency. The other approach to operating sys- 
tem  organization exploited dynamic address translation 
and  aimed at providing an execution-time environment 
for programs  with  highly  dynamic  memory requirements. 
Often characterized as “time-sharing” systems, these 
latter systems allowed the determination of memory 
requirements to be deferred until a user entered a com- 
mand. 

In the following sections we describe first a few repre- 
sentative stages in the development of the “real memo- 
ry” based operating systems and then some  develop- 
ments in virtual storage based systems. We finally  consid- 
er the merging of these two independent lines into the 
most recently available IBM  product-MVS. 

Conventional  memory  management-Stretch 
An early, rudimentary attempt at the management of real 
storage among independent users is found in project 
STEM (STretch Experiment in  Multiprogramming)  in the 
late 1950s  [4]. This was a prototype batch-job multipro- 
gramming system for the IBM 7030 computer. Its design 
emphasized strategies for scheduling (i .e. ,  selecting jobs 
to be run, placing them in memory, and getting  them 
“started”) and dispatching ( i .e . ,  selecting which job in 
memory  is to be assigned next to the processor) that 
provide for the efficient use of the central processor. The 
goal  was to be achieved by attaining the maximum 
multiprogramming level. The memory requirement of a 
job was a key parameter in its scheduling, and each job 
included a declaration of its maximum  memory  require- 
ment, which  was allocated to it by the system. Whatever 
memory  management functions were required within this 
allocated space had to  be incorporated into the applica- 
tion  program itself. 

A second key input parameter to the job scheduler was 
the expected running time of the job;  jobs were scheduled 
based on this estimate. The  job expected to run the 
longest  was placed at one extreme of memory; the next 
longest  running job was  placed at  the other extreme. 
Scheduling proceeded in this manner, with short running 
jobs in the middle and long  running jobs at the extremes. 
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The dispatching strategy was to attempt to complete the 
center, shorter running jobs first. Thus, on two succes- 
sive job completions the two  blocks of storage that were 
relinquished  would  yield a single  block. Ideally, there 
would  be  no storage fragmentation. (See Fig. 1.) 

Dynamic  real  memory  management”OS/360 
The several versions of OS/360 provide many  good  exam- 
ples of the progress made in providing  generalized  aids 
for the memory  management  problem in the real memory 
operating systems. Prior to DOS/360 and OS/360 magnet- 
ic tape was the principal medium for secondary storage, 
but its sequential nature limited its possibilities for memo- 
ry  management. The arrival of disk storage as an econom- 
ical second-level storage with  good  random access capa- 
bilities  was the catalyst for a new approach to memory 
management. Central to this  was the concept of a pro- 
gram as a set of separate pieces each of which  could be 
brought, when needed, from secondary to main storage. 

Some of the earliest programming  aids were based  on 
the concept of forming a program by binding  together 
separately named pieces of source code and data areas 
which  were drawn from libraries. These libraries were 
later pre-compiled, which  not  only saved the compilation 
step for standard modules but also allowed  deferring  until 
load time the selection of specific standard modules to 
use for a particular execution. In the design of OS360 it 
was  decided not only to support compile-time and load- 
time  binding but, by taking advantage of random access 
disk storage, to provide execution-time  binding as well. 
In OS360 a set of services provide the link between the 
application  program and the program  modules on direct 
access storage. For example, during execution, a pro- 
gram can request the appropriate subroutine; only then 
will  it be  brought from secondary storage. This defers 
main  memory occupancy until it is actually needed  and 
also allows the selection of the subroutine to be based on 
the data  at hand. Execution-time binding is a particularly 
important feature of OS/360 for two reasons: first, be- 
cause this capability  offers the potential of reducing the 
maximum amount of storage required by a program 
during its execution without the preplanning  becoming 
hopelessly complex, and second, because the operating 
system itself  can use it to great advantage. This is 
because, just as with the application program, the operat- 
ing system requires subroutines and data  areas. 

It is fundamental to the design of OS/360 that the 
management of the main  memory requirements of the 
system, from the application program  right  down to the 
innermost services of the operating system itself, had to 
be done consistently. To achieve this, OS1360 was de- 
signed to include a single set of services which allocate 
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Figure 1 A scheduled job period  in  project STEM; jobs were 
scheduled in  their  alphabetical  order. 

main  memory to a program  on demand, take it  back  when 
no longer required, and do all the required housekeeping. 
These services had to maintain  lists of free and occupied 
space and to associate all  occupied space with the appro- 
priate program.  Efficient  algorithms were devised to 
make free space available in response to specific  re- 
quests, including the fitting  and  grouping necessary to 
minimize fragmentation. These routines, called GETMAIN 

and FREEMAIN, are available to all programs within the 
operating system. 

Before proceeding further with the description of  mem- 
ory management  in OS/360, let us  refine  slightly this 
concept of a program as a set of pieces of code/datal 
memory. The application program is made up of a “main- 
line” program  and subroutines, some of which are specif- 
ic to  the application and  some of which come from 
system-wide libraries. In addition, the program calls  upon 
system services (such as access to the printer). This is 
shown schematically in  Fig. 2. The important points to be 
made are  that these pieces are not necessarily in  main 
memory at the same time, that they may  be shared by 
several programs, and that some of them were not called 
for directly by the program but brought  in on behalf of it 
by a system service. The possibilities are almost endless, 
particularly if several programs are sharing subroutines. 

Thus the program can be  thought of as a network of 
named pieces. At any one time  some of these pieces are in 
main  memory, forming, in effect, a subnet of the program 
network. The memory  management part of the operating 
system must keep track of this subnet and provide enough 495 
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Figure 2 Example of an  application  program composed of a 
main-line  program, subroutines from various libraries, and over- 
lays. 

information so that as program execution progresses the 
proper program subnet is always in memory. Other 
memory  management functions include such things as 
making sure that, when a job is completed, all  memory 
pieces have  been returned and as identifying portions to 
reclaim if the program is abruptly stopped. 

Before  disk storage was introduced and the overlay 
structure of a program was stored on tape, program 
execution tended to follow the sequence of segments as 
they appeared on the tape. OS/360 took advantage of disk 
storage devices to provide a random access program 
library and,  thereby,  to provide a very general implemen- 
tation of the overlay technique. Segments could  be  called 
and  recalled  in pretty much  any sequence. 

As discussed above, an important design objective of a 
memory overlay system is that the program  modules  need 
not be recompiled to reflect the overlay segment struc- 
ture. That is, we write and compile  modules-which  call 
other modules as necessary. Next we form the compiled 
modules into segments. In OS/360, the "program" which 
manipulated program modules to form segments was 
called the linkage editor. It resolved the intra-segment 
calls between modules; the inter-segment calls were 
converted into calls to the overlay supervisor to bring 
another segment into memory. Several segments could  be 
combined to form a larger segment, or a segment  could  be 

broken into several smaller segments (provided, of 
course, that it was composed of several modules). In 
addition to providing these means of manipulating  seg- 
ments  and modules, the linkage editor also provided  aid 
in  forming a correct structure by automatically  position- 
ing COMMON data  areas at the proper place in the memory 
structure so as  to be addressable by all modules  requiring 
access to them. 

As  flexible  and general as this implementation is, 
however, an overlay structure is not  sufficient to support 
the execution dynamics of some programs. The overlay is 
based on a preplanned arrangement of programs into 
segments, and some programs, particularly those that 
serve terminal users,  do not  admit to such preplanning. 

OS360 also provided facilities for more  dynamic  as- 
signment of programs to memory  by supporting three 
types of supervisor-assisted linkages. Each is based on a 
different assumption about the memory residence of the 
calling and called program. One service, LINK, is a 
dynamic subroutine call for which both the called  and 
calling  programs are  to be in memory at the same time. A 
second service, called Transfer Control (XCTL), allows a 
program to call another while  relinquishing the storage 
held  by the caller. A third service, ATTACH, allows a 
program to establish the execution of another program 
concurrently with its own execution. This permits the 
application  program to establish its own multitasking 
environment. All  of these facilities eased the management 
of the linear nature of memory and scheduling its con- 
tents, and  they  took over much of the housekeeping that 
would otherwise have to be part of the application 
program. 

A final aspect of memory  management  in OS/360 is the 
device independence of the program libraries. Subpro- 
grams  could reside permanently on any device in the 
memory  subsystem-including  main memory. This al- 
lowed  improved system performance by  placing frequent- 
ly used routines in  main  memory: No input-output activi- 
ty would  be necessary to make these subprograms avail- 
able to the caller. This area of memory is called the Link 
Pack Area. 

The evolution through the various versions of OS360 
and OS370 can be  viewed as an evolution in  memory 
management strategies. The principal  design objective of 
OS/360 was, from the first, that it be a generalized 
multiprogramming operating system. Early developments 
in its evolution were aimed at meeting this objective in the 
best ways possible consistent with schedule and resource 
constraints. Later, on-line environments, such as telepro- 
cessing applications and timesharing, were added to the 
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design  objectives. These new objectives  required  exten- 
sion to  the memory  management  services of the system. 

The first  version of OS360 was made  available in 1%6. 
Called the Primary Control Program  (PCP), it was  a single 
job-at-a-time  operating system.  MFT (Multiprogramming 
with a Fixed number of Tasks)  was  released the following 
year in order  to  provide a minimum multiprogramming 
facility. The limited capability of these  early versions of 
OS was  to a large extent  the result of limited memory 
management. The  next major evolutionary step-MVT 
(Multiprogramming with a Variable  number of Tasks)- 
was  to  provide  for variably  sized job regions. In MVT, 
the memory requirements  for  the  job  or  job  step were 
specified in job  control  statements.  The  scheduler re- 
quested  the  necessary memory to  schedule a job  and, if 
not enough  were  available, the  job  was  enqueued, waiting 
for  the  resource. When memory became  available, the 
scheduler would be  started in this  dynamically  assigned 
space. On an installation  level, care  had  to be  exercised 
not  only over  the region size requested  but  also  over 
whether  these  requests  were  made  for  an  entire  job  or a 
job  step in order  to avoid  serious  fragmentation effects. 
And the application  programmer still had  to  be generally 
aware of the maximum addressable  storage required by 
his  program and  the  system services that  were  used by it. 

MFT-I1 was introduced in 1%8 to  provide generalized 
multiprogramming on  computers  that were too small to 
run MVT efficiently. MFT-I1  provided several fixed parti- 
tions into which jobs could be scheduled  dynamically. It 
allowed for small partitions which were  not large  enough 
to contain the  scheduler  code itself. These were  sched- 
uled from larger partitions  when  one of them  was free 
(between  job  steps).  This could  result  in some inefficiency 
but did provide a smaller system than the  more  elaborate 
MVT  system.  By way of contrast,  to  schedule a small job 
in MVT, the  scheduler obtained  enough space  for itself 
and, when it  transferred control to  the  job  it had  sched- 
uled,  the  extra  memory  it had  required for itself was 
released for  re-use by the  system. 

The next  major  development was in support of the 
time-shared use of memory for  the  Time Sharing Option 
(TSO) of OS/360. Since  it  was impossibly inefficient to 
dedicate physical storage  to a program  interacting with a 
user  at a terminal, the function of swapping was  added  to 
the  system. This  allowed OS/360 to time-share a portion 
of addressable memory  among multiple users by keeping 
on external storage  the  contents of that  portion of memo- 
ry assigned for  each  user  and bringing it back in only 
when that  user  was allowed use of the time-shared region. 
It  was  also  possible  to  have more than  one  such region. 
However,  as a consequence of the binding of programs to 
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real addresses,  each terminal user  was  locked into the 
region to which he was initially assigned, regardless of 
how the time-sharing user load shifted among regions 
over time. 

Virtual  storage  memory  management 
Recall from the  previous discussion the notion of address- 
as-location and address-as-identifier. This distinction, 
and  the  hardware  that  supports  it,  has given  rise to 
address  relocation,  dynamic  address  translation, paging, 
and virtual  storage [5, 61. In all of these a distinction is 
made between what  we call a ‘‘logical’’ (or  “virtual”) and 
a “real”  address. Logical addresses  are  those defined by 
(and in some sense defining) the program to  be  run,  and 
real addresses  are  those defined by  (and defining) physi- 
cal storage. The translation of logical addresses  into real 
addresses  (“dynamic  address translation” or “reloca- 
tion”)  is  performed by the CPU as  data in memory are 
needed. This  translation  (or mapping) can  take  any of 
several forms. 

The simplest  mapping  function  (called single register 
relocate) adds a constant  to  the logical address and 
compares  the  sum  to  some limit. This  map  allows  several 
logical address  spaces  to  exist in main memory at  once, 
but  it  has  the limitation that  the maximum logical address 
can be no larger than  the maximum physical address. 

This simple address translation technique  was  part of 
the special modifications made  to  the  IBM 7094 for MIT’s 
Compatible Time Sharing  System [7]. (See  subsequent 
section “Early time-sharing  and the MIT-RF’Q.”) It  was 
also incorporated into  both  the Models 135 and 145 of 
Systed370 [8] to  support a logical address  space  for 
DOS/360 to co-exist  with another  system. 

The  ATLAS  project provided a more elaborate map- 
ping system.  In  ATLAS,  the main memory of  16K words 
was divided into 64 blocks of  256 words  each. Associated 
with each block was a “Page Address Register,” which 
contained the virtual address of the 256-word portion of 
virtual  memory that was in that block of main memory. 
Virtual addresses  were translated to  real  addresses by 
taking the page address  part of the  address  (that is, all but 
the least significant 8 bits) and comparing it with the 
contents of all 64 Page Address  Registers. If a match was 
made,  say in register  no. 9, then the ninth  page of main 
memory  must have  contained  the  data being requested. If 
no match  was found,  then  that virtual address was  not  in 
main memory and  had  to be  brought  in from  secondary 
storage. 

ATLAS allowed several logical address  spaces  to  re- 
side concurrently in main memory. It  also allowed por- 497 
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Figure 3 The  virtual-to-real  address  translation  used in the 
MU. 

tions of virtual memory to be absent from main  memory. 
This aspect of dynamic address translation gives rise to 
“demand-paging.” When an absent page of virtual mem- 
ory is referred to, a “page fault” occurs and the memory 
management part of the system must  move the requested 
page of virtual  memory to main  memory and update the 
mapping hardware to reflect  this change. Address transla- 
tion hardware can be used to support paging  only if a page 
fault is detected early enough in the instruction execution 
cycle, as illustrated later in the case of the Virtual 
Machine  Control Program, CP/40. If the page fault occurs 
after instruction execution has progressed too far to 
“back up” (or if the machine is not organized so that 
instruction execution can be stopped and restarted in 
mid-cycle), then demand-paging is not possible. This is 
not to say that address translation cannot be employed, 
only that the memory  management part of the operating 
system must  be capable of enough “pre-planning” to 
ensure that page faults will not happen. 

In the following sections we discuss how this dynamic 
address translation became generalized into paging sys- 
tems, and  many other memory  management tools. The 
central idea is that address translation allows system 
cost/performance design  problems to  be compartmental- 
ized. Thus, broadly viewed, the problem  programmer 
manages  things (program and data) in a space of logical 
addresses. The operating system manages the real storage 
of the computer by maintaining the mapping function. A 
characteristic of a computer system, including its operat- 
ing system, is the extent to which these separate problem 
areas can  be handled separately and concurrently. 

Early  time-sharing  and the MIT-RPQ 
Starting in the 1940s,  with its development of the 
WHIRLWIND computer, MIT  was involved in the devel- 
opment of computers and significant extensions to com- 
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puter system organization. In the late 1950s the notion of 
interactive access (or time-sharing)  was  being discussed 
[9], and by the early 1960s  MIT  had evolved a design for a 
Compatible Time-sharing System (CTSS). The goal set 
for CTSS [7]  was: “. . . drastically to increase the rate of 
interaction between the programmer  and the computer 
without  large economic loss and also to make each 
interaction more  meaningful  by extensive and complex 
system programming to assist in the man-computer com- 
munication.”  Given the great discrepancy between hu- 
man  and  machine processing speeds, it  was felt that the 
program  material for a given  on-line user need appear in 
the execution memory  only burst-wise, and between such 
bursts human  thinking  would take place. Memory  man- 
agement  was central to realizing this goal. 

IBM worked  with the MIT staff to modify their 7090194 
processor. The 7090/94 was limited to 32K  36-bit words of 
memory, which, though adequate for many user prob- 
lems, was  not  enough for several active user programs 
and the sort of system support that the st& at MIT 
envisioned. Additional  memory as well as a means of 
swapping the active user’s program into main  memory for 
its “burst” of execution were required. IBM also worked 
with  MIT to devise several extensions to  the 7090 to allow 
it to support interactive access and  swapping of programs 
into (and out of) main  memory. Thus, in addition to a 
second main  memory unit (32K words), address reloca- 
tion, checking, and protection hardware were developed 
and delivery to MIT  was  completed by  1963. 

The additional  memory unit, termed “core-B,” was 
added to the 7090194 in such a way that the processor 
executed out of either core-A or core-B. The CTSS 
operating system resided in core-A, and user programs 
were moved into and out of core-B. In order to allow 
several users to co-reside without interfering with each 
other, memory was “protected” in units of  256-word 
blocks. CTSS services allowed the user programs to set 
their address space “size” of up to 32K  in units of  256 
words. During the bursts of execution, user address space 
from location 0 to  “size” (N*256)-1 was in real memory 
at locations 0 to (N*256)-1  in  core-B. Locations at and 
greater than (N*256) were protected by the hardware and 
thus could  hold the “upper” portions of the address 
spaces of other users. This came to be called an “onion- 
skin” algorithm. 

The M44 system 
Between 1961 and 1964 the IBM Thomas J.  Watson 
Research Center at Yorktown Heights, NY, undertook a 
systematic study of the memory  usage patterns of  7090 
programs [lo]. The intent of this  work  was to learn about 
the behavior of these programs  in a paging environment. 
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In  order  to  study a program one must  first  interpretively 
execute  the program and then store  on magnetic tape  the 
sequence of memory addresses  it  just  generated.  The 
resulting “address  traces”  can  subsequently  be used as 
input  to a paging simulator  program. To  test program 
behavior in a paging environment,  the simulator in fact 
allowed page size,  real memory size,  and page replace- 
ment algorithm to  be  varied. As an  example,  for different 
replacement algorithms,  the number of page  replace- 
ments which had  to  take place in main memory to run a 
program were  counted  and displayed as a function of page 
size  and  (restricted)  memory  size  supplied. The details of 
these studies can  be found in [ll]. 

These studies created a  wealth of insight and, inciden- 
tally, led to  discovery of the principle of locality [ll]. 
Nevertheless, simulation  could  not  be the whole story, 
and by 1%4 it  became clear that full-scale  experimenta- 
tion  was necessary  to  test  the relation of memory man- 
agement to  some of the ideas which were emerging at  that 
time: time sharing, multiprogramming, operating  system 
structures, simulated or “virtual”  machines. An IBM 
7044 was  chosen as  the experimental  vehicle. It was 
modified to  support not one but  many alternative designs 
by allowing variable  parameter values for page size, 
memory size, level of multiprogramming, etc. 

In  order  to modify the 7044 into what later became 
known as  the M44, the  address field had  to  be  extended, 
in all instructions with such a field, from 15 bits to 21 bits 
in  length.  This made  two million words addressable. Of 
course,  the index  registers and  other  hardware involved 
in  addressing were  also enlarged. Dynamic address trans- 
lation  was hardware-aided, using a dedicated “mapping 
memory” of 32K words.  The high order position of each 
processor-generated  “virtual”  address was used  to locate 
a word  in the mapping  memory, where  either  the ‘‘real’’ 
address of the  page containing the desired  memory cell 
could  be  found or  else a “page  exception”  was  generated, 
i . e . ,  an  entry  to  system programs  which  then acted  to 
bring in the missing page  from  some  back-up  memory  (see 
Fig. 3). Actually, the mapping was  somewhat more 
complex,  due  to  the experimental nature of the machine. 
For example, a mechanism  was  included to permit the 
machine to perform  with  any  page  size between 256 and 
40% words  that  was  an integer power of two. 

But  what about multiprogramming using multiple ad- 
dress  spaces? With large pages, smaller  mapping  tables 
were needed,  and  thus only a fraction of the mapping 
memory  was  utilized.  This  made  possible the storing of 
mapping information about several address  spaces  or 
virtual  machines.  Correspondingly, an additional  register 
for  “user  ID”  was installed; it was set  whenever a  new 

user’s program  was dispatched.  Its  contents were  used as 
an offset in accessing  the mapping memory which con- 
tained address  translation  data  for  several virtual ma- 
chines,  as indicated in Fig. 3. With a 2048-word page  size, 
for example, sixteen independent  so-called “44X virtual 
machines”  could share  the physical resources. 

Another useful  thing about  the M44 hardware was that 
a single 36-bit word in the mapping memory  could hold 
much  more  information than a real page address. Corre- 
spondingly, several  bits called status j u g s  were  used to 
designate  certain pages  as read-only,  privileged,  transfer- 
protected,  etc.,  thus packaging  information on capabili- 
ties,  protection,  and  address transformation  in a single 
structure and  making the operating system simpler. 

The operating system, of course,  had  to perform many 
other  functions, including the management of secondary 
storage  devices,  such  as  disks. All these  functions were to 
achieve device independence for  programmers  such  that 
they need  not  manage the details and limitations of 
physical  devices. Programmers,  for  example, could  be 
given  only the  description of a machine  with virtual 
memory and other  abstract  resources. As the programs in 
execution issued  requests  for  the  resources,  the operating 
system  translated  these  into  requests  for real devices. In 
experimentation,  the M44/44X system verified the useful- 
ness of these  ideas [12]. 

But experimentation helped in many other ways. It  was 
observed,  for  example,  that  under  certain  circumstances 
a program will run  faster with fewer pages  assigned to  it 
[13]. Another  discovery  was  the nonlinear effect of pro- 
gram localities: The  decrease in processor idleness is 
generally more  abrupt  than  the  increase of assigned 
memory space which caused  it.  It was indeed experimen- 
tally verified that dynamically  varying  memory space 
could be  superior  to  static allocation. 

Significant progress in  system performance  methods 
was also  facilitated  by  experimentation.  At one time a 
programmed control  loop  was  added  to  the operating 
system; it sensed the page traffic intensity  between main 
and back-up memories  and  the  fraction of time the 
processor was  idle. With both variables  high, the number 
of multiprogrammed tasks was reduced by one until 
congestion eased.  The rationale  was to allow  more aver- 
age main memory to  accommodate  the  natural locality of 
each participating  program.  This dynamic memory-space 
sharing was then monitored  graphically to  further  the 
insights  gained by the  system designers [14]. 

Another performance oriented experiment was the 
“loose coupling” of program  control and  system control 
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of memory. The programmer  (or the compiler) could, at 
any point in the  program, insert one  or  the  other of two 
special  instructions (actually supervisory calls): “named 
page  soon  needed” or “named  page  not needed.” While 
this violated device independence, the supplied informa- 
tion  was  potentially very useful to  the operating  system in 
its effort to maximize throughput. The instructions were, 
incidentally, not taken  as mandatory by  the operating 
system;  hence the  loose coupling. 

After having served as an experimental  vehicle for 
more  than three  years,  the M44 system was dismantled in 
1968, following the original plan. 

Virtual  machine  systems-CP/rlO,  CP/67, and VM/370 
In 1964 the staff at IBM’s Cambridge Scientific Center 
undertook a project intended  partly to investigate  pro- 
gram and machine structures  for  an interactive  system 
[15]: “Central to  the idea of this system is the concept of 
the ‘virtual machine’ and, in our  case,  the ‘virtual 360.’ ” 
This work led first, in 1966, to a virtual Machine Control 
Program (CP/40). This  served as  aprototype, demonstrat- 
ing feasibility, and provided  the  basis for CP/67, an 
operating system  for the Systed360 Model 67,  and in 
1972,  VM/370, an operating  system for  the  Systed370 
machines. The history of the development of this family 
of operating systems is treated separately in this  issue in 
the  paper by R. S. Creasy [16]. 

Of interest here is the dynamic address translation 
technique  implemented experimentally in 1965 on a Sys- 
ted360 Model 40 [17]. Resembling closely that devel- 
oped by the ATLAS group, the mapping system was quite 
simple. For  each  4K-byte page frame of real main memo- 
ry,  there was a 16-bit register which contained the identi- 
fier of the  page of virtual memory that  was,  at  that 
moment, in that page  frame. Thus,  for  the 256K-byte 
memory of the Model 40, there were 64 registers. Each 
page of virtual  memory  was “identified” by a 4 bit user id 
and the  6  bits  which identified the page of the virtual 
address. Only 6  bits  were  required because, although 
Systed360 memory addresses  are, architecturally, 24 
bits,  just 18 bits were implemented on the Model 40. That 
is to  say,  the Model 40 provided a maximum address 
space of  256K bytes. During execution, CP/40 loaded the 
user-id register with the id of the  current  user  and thus 
specified which of  16 virtual address  spaces was to  be 
active.  Each  time the  processor requested data,  the 6-bit 
page  number  and the  user id were  combined to form a 10- 
bit identifier of that page of virtual address  space. 

To translate an  address, the Model 40 compared the 
page identifier part of the virtual address with  the con- 
tents of the first 10 bits of each of the 64 identifier 

registers.  (The remaining 6 bits were  used to reflect such 
things as whether the page had  been  referenced or 
changed.) If a match was  found,  then the requested data 
were  located in the corresponding  page of main memory. 
If no  match was found,  then  the requested page was not in 
main memory. The  address translation  hardware  inter- 
rupted the  processor so that  the  data could be transferred 
from disk to some  page of main memory. 

To support a demand paging system,  the Model 40 had 
to  be further modified to  detect page faults  before  instruc- 
tion  execution  was started, since many Systed360 in- 
structions cannot  be interrupted  (or  backed-up). The 
instruction  and address  structure of Systed360 leads to a 
situation in which, as a maximum case,  data from eight 
pages are required for execution of a single instruction. 

The simultaneous  comparison of the virtual address 
(identifier) with that in the 64 identifier registers was 
performed by an  associative memory system [18], which 
was fast enough so that  the execution  speed of the Model 
40 was  not reduced  due  to  address translation. 

In addition to  its importance as a prototype  for two 
IBM products (CP/67 and VM/370), CP/40 served as a 
vehicle for experimentation  on  the  performance aspects 
of memory  management and paging systems.  One topic of 
study was the impact  on paging performance of program 
structure [19, 201. This work led to techniques for arrang- 
ing code modules in virtual memory so as  to minimize the 
number of page faults during execution.  Other  results 
were  obtained, e .g . ,  those from a multifactor paging 
experiment (in which replacement  algorithms, load se- 
quence of subroutines,  set of problem  programs, and 
main memory were investigated) and from analysis of free 
storage algorithms. These  are reported in [21]. 

Time  sharing  system-TSS/360 
The TSS/360 operating  system [22, 231 was IBM’s first 
offering with virtual  memory,  aided by  the hardware 
address transformation  scheme of the IBM 360 Model 67 
computer. TSS/360 was  developed in the 1965-67 period, 
and many of its  memory management features became 
similar to  those of the M44.  We therefore  restrict  our- 
selves  here to outlining the differences only. 

First, the  dynamic address transformation  was  done in 
two  stages,  since the 24-bit (virtual) address field was 
subdivided into  three subfields, containing  segment, 
page, and line numbers. The 4-bit segment field was first 
used as  an offset in the so-called segment table, where the 
address of the  particular  page  table  describing  the  pages 
of the addressed  segment was found. The (middle) page 
subfield was then  used to locate the corresponding real 
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page, within which the last 12 bits of the original (virtual) 
address were used  for locating the desired  byte.  (See 
Fig. 4.) 

This hierarchical address organization made the total 
amount of mapping information to  be  stored smaller than 
the M44’s one-step  map;  this was necessary  because 
segment  and  page tables, without a dedicated  memory, 
had to  share  the main memory with all other processor- 
accessible  information. On the  other  hand,  address map- 
ping became  slower  since two, instead of one, additional 
memory cycles were needed to find the real  address. 

To improve the situation, G .  A. Blauuw, at  that time 
with IBM, invented a “black  box” that could store in its 
content-addressable memory the mapping information 
(virtual-real page  association) of several most recently 
used address  associations. (M44 experimental data were 
used in the design  and feasibility studies of the Blauuw 
box.) Each time a virtual address was generated, this box 
was  interrogated and, more often than not,  the associated 
real page  number found, resulting in a  tenfold  speed-up 
with respect to in-memory two-stage transformation. 

A  further  complication  was  introduced by a fast  drum 
device  which, as back-up, was too small to support the 
many virtual address  spaces, each 16 megabytes long. 
The result was a three-level memory hierarchy, consist- 
ing of main memory, drum, and  disk of essentially 
unlimited capacity. 

The memory management  functions of TSS  thus be- 
came  quite elaborate. Many innovative  algorithms  were 
designed and implemented to  cope with the competition 
between page tables and pages containing programs and 
data. Sharing read-only information was implemented 
without duplicating pages, by mapping segments of differ- 
ent  address  spaces  into  the same pages in memory.  (Each 
address space  was subdivided into 16 equal-sized seg- 
ments.) Also, adaptive algorithms decided about  the 
“page-out”  target  area-drum or disk-depending upon 
scheduling status, memory  demand, current  space occu- 
pied,  and other  factors. And for  cases when available 
drum  space became  short, decision-making rules  about 
replacement,  quite similar to  those  between main and 
simple back-up  memory,  were  incorporated into  the 
operating  system. The subsequent migration process 
was tied to  the time slice allotments  controlled by the 
scheduler. 

The particular  arrangement of records  on drum was 
such  that high transfer  rates could be achieved only by 
combining eight (or nine) pages on a single track.  This 
made  necessary the introduction of “prepaging,” i . e . ,  the 

Figure 4 The address  translation  technique used by the Sys- 
tem/360  Model 67. 

loading of several pages into main memory  prior to  the 
beginning of a time slice-a slight departure from pure 
“demand” paging. This  made memory management even 
more closely coupled to  the scheduling of the time-shared 
and multiprogrammed tasks. 

Multiprogramming demanded  the  sharing of main mem- 
ory. This was done by statically assigning areas of 
different sizes for  each time slice of a task, estimated  from 
the demand which  had  been  recorded during previous 
time slices. Later this scheme was somewhat relaxed by 
“page  stealing,” i .e . ,  the reassignment of a page from one 
task  to  another. And if there was in memory some 
residual page left from a previous time slice, the system 
was programmed to reclaim it. 

In summary, TSS was the first comprehensive integrat- 
ed operating system built for  the computers in the 360 and 
370 line which had  dynamic  address  translation. It helped 
gather valuable experience  for follow-on operating  sys- 
tems with virtual  memories in  the early 70s. 

Multiple  Virtual  Storage  (MVS) 
This  then  was the situation in the early  70s. The real 
memory-based systems were in extensive use and offered 
a great  range of memory management tools  which, in the 
main, met the objective of  high processor efficiency. 
However,  the human effort-of both  programmer  and 
system  support staff-needed to manage memory was 
very high and represented a barrier to adding new appli- 
cations to  the computer. In short, programmer  productiv- 
ity had to  be improved.  Some  years  earlier, the direction 501 
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set for the virtual storage-based systems had been pro- 
grammer productivity, and the success of this approach 
demonstrated by the Ml44,  CP140, TSSl360, and CP167. 
Thus, in  1972 IBM introduced virtual storage on  all of its 
processors and their operating systems. An overriding 
consideration in  doing this was to minimize disruption to 
customers: Their old code must continue to run  without 
change (to preserve their investment), and they must  not 
have to accommodate a new operating system structure. 
The virtual storage design approach taken was substan- 
tially that taken by the Systed360 Model  67: an address 
translation extension to the Systed360 architecture, 
rather than a change to that architecture. It did  not  affect 
any of the instructions used by application programs, and 
most of the instructions used by the operating systems 
were unchanged. This allowed the operating systems for 
Systed360 to be adapted to virtual storage by  adding the 
memory  management functions necessary to create and 
manage a single virtual addressable space (of up to 16 
million bytes), running the operating system in that space, 
and, by demand  paging,  bringing  only the necessary 
portions of that space into real memory.  Though an 
oversimplification, the initial versions of these operating 
systems appeared to provide a 16-megabyte  main memo- 
ry, when  in fact the real memory was, say, only one 
megabyte. 

The problem that this approach presented was that 
acceptable performance made  it mandatory that portions 
of the operating system code and data not be  demand- 
paged. It was necessary to locate these "unpageable" 
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in  which the operating system ran  could  then  be  catego- 
rized as either nonpageable ( i .e . ,  fixed  in real memory) or 
pageable. 

In this straightforward manner, the real memory-based 
operating systems were adapted to virtual storage. DOS 
became DOSNS, MFT became  VS-1,  and MVT became 
VS-2. Each achieved its objective of improving  applica- 
tion  programmer productivity by allowing  much larger 
regions  in  which to place programs, with the result that 
overlay structures became simpler or, quite often, unnec- 
essary. In addition, each supported greater levels of 
multiprogramming, and many system functions otherwise 
available  only on large machines  were  available  on  small- 
er ones as well.  Still the maximum addressable space was 
limited to 16 megabytes and  had to be shared among  all 
jobs. The greater exploitation of virtual storage and the 
restructuring of the operating systems that this entailed 
were left to subsequent versions. 

As they  were the most extensive, we touch briefly  on 
the exploitations of virtual storage made  in the subse- 
quent versions of VS-2. The major restructuring of VS-2, 
called  Multiple Virtual Storage (MVS) [24], provided 
each user with a 16-megabyte address space. (A batch job 
or someone  doing time-sharing is regarded in this context 
to be a user.) Recall the previous discussion of a program 
as  a network of named  pieces  and of memory  manage- 
ment  keeping track of the subnet residing  in  main  memo- 
ry. In the exploitation of virtual storage in MVS, the 
Systed370 hardware took over the major part of keeping 
track of the resident memory subnet. When a user or 
system  component  is to be  given control of the processor, 
the MVS memory  map  is established so as to include the 
virtual pages assigned to that user component. 

Another important aspect of the management of multi- 
ple address spaces by  MVS is that user programs were 
effectively isolated from each other. All user address 
spaces share, at  one  end,  the MVS supervisor and,  at the 
other,  a Common Service Area (See Fig. 5 ) .  Between 
these lie the portions that contain programs and data 
private to each user. Real memory assignment of these 
pieces is by demand  paging; therefore, not  only can it  be 
deferred until needed by the program, it can also be 
treated independently of other users. Importantly, much 
of this burden is handled by the System1370 hardware. 
During execution no user can refer to (or store into)  any 
other user's private area. In order for one user address 
space to communicate with another, it had to use the 
supervisor services that reside in the areas common to 
both. In later versions of  MVS a new hardware facility 
allowing authorized direct communication between user 
address spaces was supported. 
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Two more aspects of the exploitation of virtual  storage 
by MVS should be mentioned. Some system services 
( e .g . ,  telecommunications access methods)  were assigned 
virtual  address spaces. They could then be  treated much 
like problem programs, with the programmer  productivity 
benefits accrued to IBM’s own development  process. 
Finally,  substantial  enhancements  were  made to  the 
resource scheduling and  dispatching  functions of the 
system. It was here, particularly,  that the experience with 
CPl40, M44, TSSl360, and CPl67 was applied. 

Conclusions 
We conclude  this  review by noting two  trends.  First we 
note  the widespread acceptance both inside and  outside 
of IBM of virtual  memory. One of two  trends now 
apparent  is extension of the Systed370 architecture so 
that it  takes over more of the memory management 
functions. An example of this is  the recently announced 
IBM 4300 processor family, which performs much of the 
paging management for DOSNSE. 

The second trend is to remove  from the programmer 
the constraints of the linear nature of the  address space. 
This  is exemplified by IBM’s System 38 [25],  in which the 
addressing structure allows not  just  an  enormous address 
space (48-bit addresses yielding a 281-trillion-byte ad- 
dress space) but is  also designed to directly name the 
separate pieces of the program. No longer  needed are  the 
programs that assign named pieces to  their relative posi- 
tions in a linear space.  Rather,  the name given by the 
programmer to  each  part of a program serves  as its 
address. In this manner, much of the memory manage- 
ment  burden  shifts to  the hardware. 

How  does  one  assess these  trends? What can be said is 
that  the forces that drive the change will be  the shifting 
costs within the total computing system-where “sys- 
tem”  spans not just  the  processors and storage devices 
but includes the people who own, program,  and operate 
them. It is  a  recognition of this total system  cost which 
has governed  IBM’s past memory management  approach- 
es and will continue to  do so into the  future. 
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