Preface

This chapter of the twenty-fifth anniversary issue of the
IBM Journal of Research and Development deals with
computer science and software technology. When publi-
cation of the Journal began, the cost of software develop-
ment was a small fraction of the total cost of developing a
computer system. Now, the larger part of the develop-
ment dollar is spent on software, and user programs add
to this cost. Another significant investment is required to
discover and extend the fundamental concepts on which
practical programs are based.

Most of the papers in this chapter review IBM’s
involvement in bringing the relatively primitive aids to
programmers and users of the 1950s to the elaborate
operating systems, data base management systems, and
language processors of today. Most of the authors have
themselves been active in the field throughout this period
and have contributed to the history. In addition to review-
ing the extensive, if sometimes informal, literature, we
have encouraged the authors to share their personal
recollections with us, to re-assess some of their decisions
of the past, and even to speculate a little about the future.
The styles of the papers are quite varied, reflecting not
only the approaches preferred by the individual authors,
but the nature of the work reviewed as well.

Not all important IBM contributions to computer sci-
ence are included, of course; there is clearly insufficient
space to do that. And some of the papers deal more with
technological achievements than fundamental contribu-
tions to computer science. This seems appropriate since
IBM has been in an excellent position to implement and
test experimentally many ideas that originated with re-
searchers both inside and outside of the company. A good
example of the magnitude and generality of products
resulting from such efforts is IBM’s operating systems.
Two of the papers in this chapter deal directly with
operating systems.

The first, by Auslander, Larkin, and Scherr, explores
the emergence of an operating system discipline using
MYVS as an example. From beginnings as a small set of
commonly required functions, operating systems have
evolved to address today’s expectations for easy, general
purpose access to data processing power. In reviewing
how IBM responded to emerging requirements, some
perspective on the origins of functions now expected of
all operating systems is provided.

The second paper discusses another operating sys-
tem—VM/370. It is a member of a class of operating
systems distinguished from other operating systems pri-
marily by its approach to resource management, but by

IBM J. RES. DEVELOP. ¢ VOL. 25 ® NO. 5 ® SEPTEMBER 1981

other characteristics as well. The evolution of VM/370 is
reviewed by Creasy, leader of the group that, at what is
now the IBM Cambridge Scientific Center, developed the
experimental operating system on which VM/370 is
based.

Memory management pervades operating system de-
sign and is an important consideration in the design of
other software as well. Three long-time workers in this
area, Belady, Parmelee, and Scalzi, collaborated on a
paper that reviews the schemes devised throughout this
period to relieve the application programmer of memory
occupancy preplanning and to make practical the sharing
of memory space among multiple programs.

Data management, once an important operating system
function, is now often regarded as a separate technology.
The evolution of data base technology in IBM is reviewed
by McGee, an early contributor to this area. He demon-
strates how our growing understanding of the nature of
data influenced the design of programs, both inside and
outside of IBM. This paper treats data structuring meth-
ods, data protection facilities, and high-level data lan-
guages, including the enduring report program generator.

To improve programmer productivity without signifi-
cant sacrifices in computer efficiency, there has been a
continuing trend throughout the past quarter century
toward ever higher-level programming languages.
Throughout this period IBM has contributed program-
ming languages that allow quite diverse styles of program-
ming and that serve the needs of a variety of subcommu-
nities of programmers. One of the contributors to this
history, Sammet, reviews this period of rapid program-
ming language development.

Equally important are the language processors, which
must produce efficient, machine executable code from the
symbolic statements of the programmers. A key figure in
this long-term effort, Allen, reviews assembler, compiler,
and interpreter technology throughout this period. Her
paper demonstrates that, although some fundamental
problems of the computer scientists of 25 years ago have
been largely solved, others are still with us. Specifically,
the trend toward ever higher-level languages makes opti-
mization of object code a continuing challenge.

In grappling with programming languages and their
processors, it has long been recognized that formalisms
could greatly facilitate communication among language
designers and the developers of language processors, and
such formalisms might also provide deeper insights into
the languages themselves. A fundamental contribution in

469

PREFACE



470

PREFACE

this area is Backus-Naur Form—a notation for describing
the syntax of programming languages. This is reviewed
briefly by Sammet in her paper. Although no generally
accepted method for formally defining the meaning of
programming languages exists, a basic method has been
developed at the IBM Laboratory Vienna, called the
Vienna Definition Language (VDL). It has been applied to
a large, complex language, PL/I. One of its developers,
Lucas, reviews the method and compares it to successor
approaches.

Throughout the history of data processing, workers
have sought methods to model computing system per-
formance, including that of its software support, so as to
predict the performance of planned systems, to optimize
the performance of existing systems, and to gain insights
into complex system interdependencies. Two extensively
published participants in this activity, Bard and Sauer,

review the history, theory, and application of computer
performance modeling, with particular emphasis on the
contributions of IBM.

The general purpose programming support dealt with in
most of the papers in this chapter only provides the soil in
which application programs designed to solve specific
problems can grow. IBM has participated rather directly
in this aspect of computer science as well. As a sample of
this activity, we include a paper by Flatt, who has spent
much of his professional career dealing with large-scale
scientific computations. His paper reviews the progress
made in modeling complex energy- and environment-
related phenomena, including studies of some of the
consequences of energy consumption on the environ-
ment.

Editor

IBM J. RES. DEVELOP. ® VOL. 25 ® NO. 5 @ SEPTEMBER 1981




