
Thomas J. Harrison
Bruce W. Landeck
Hal K. St. Clair

Evolution of Small Real-Time IBM Computer Systems

In parallel with the development of data processing applications for computers, effort was directed to other areas in
which computers might provide benefits for the user. One early effort was the application of computers to the monitoring
and control of industrial processes such as those used in oil refinery units, steel plants, and paper machines. Over time,
these early efforts were generalized to a broader class of applications in which the computer was connected directly into
an external process which placed time response requirements on the computer system. These systems have become
known as real-time systems. In this paper, the evolution of ZBM small real-time systems is traced from the late 1950s to
the present. Emphasis is placed on a few features and requirements which characterize these systems.

Introduction
A significant portion of IBM’s effort in the 1950s was
devoted to computers which eventually merged into the
single architecture of the Systed360. Concurrently, how-
ever, other groups were exploring new opportunities for
computers that resulted in several other computer se-
quences. Although general-purpose, these systems were
optimized for characteristics different from those empha-
sized in the Systed360.

One such sequence was aimed at moving data process-
ing systems closer to data sources associated with the
operational aspects of the users’ enterprises. The initial
application was the monitoring and control of continuous
industrial processes, but, over time, it has broadened to
encompass diverse operational applications such as ener-
gy management, discrete manufacturing control, labora-
tory automation, traffic control systems, and telephone
toll ticketing. The small real-time IBM computers used in
these applications are represented by the 1720, 1710,
1800, Systed7, and, currently, the Seriedl.

Both “real-time” and “small” are relative modifiers
whose quantitative meanings are application dependent.

In general, “real-time” means that the information pro-
cessing, to be useful, must be completed before some
outside event occurs. Depending on the application, the
time available may range from a fraction of a second to
hours. Similarly, a real-time computer need not be small.
In particular, many of the early machines (e .g . , SAGE,
Whirlwind) were physically large and powerful comput-
ers. Nevertheless, most real-time applications today uti-
lize physically small computers that are in the lower range
of computing power.

Requirements for small real-time computer systems
Although the initial trend was to use existing architec-
tures in early small real-time machines, unique process
control requirements were major forces in the evolution
of today’s small real-time computers.

Hostile environment Early data processing computers
typically were installed in dedicated air-conditioned and
filtered rooms which resembled a “clean room.” For
industrial process use, however, the computer must oper-
ate over a wide range of temperature and humidity in the
presence of particulate and gaseous contaminants.

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in comuuter-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor. 441

THOMAS J . HARRISON ET AL. IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

Reliability and unattended operation Many industrial
plants operate 24 hours per day, 7 days a week, and so
must the computer. This placed emphasis on reliability
and ease of repair. Bid requests requiring availability in
excess of 99.9% were not uncommon in the early 1%Os.
In addition, the computer had to be usable by plant
operators who had little knowledge of computers. This
placed great emphasis on ease-of-use and human factors
long before these became the topics of interest that they
are today.

Sensor inputloutput subsystems In order to directly
connect the computer to process equipment, a number of
special subsystems were required [l]. Many process
instruments generate analog signals derived from sensors
such as thermocouples and strain gauges. These signals
must be converted into discrete digital representations to
be used internally in the digital computer.

Feature configurations Even in a given industry and a
given process category, there is considerable variation in
the design of process equipment. Thus, the designer of an
industrial computer system must provide the means for
incorporating virtually any combination of features into a
system.

Time response A key requirement is predictable time
response; this requires architectural features that assist in
the timely completion of a task and in switching from one
task to another. The concept of interrupts to control the
inputloutput equipment of a general-purpose computer
was extended to include interrupt sources outside the
computer.

Environment chronology
The computer business is driven by user needs and the
capabilities of available technologies. As the designer or
user perceives new uses, the evolution of related designs
is affected. Initially, small real-time systems were intend-
ed primarily for industrial process control and this strong-
ly influenced their characteristics. Over the past twenty
years, however, our view of the application set has
changed to the point that the Seriedl satisfies the needs
of many different applications. It is useful, therefore, to
consider a chronology of the environment over the past
twenty or thirty years and how this affected the products
which evolved.

The 1950s: Years of experimentation
By the mid-l950s, work had been started on using com-
puters for the control of industrial processes [2, 31. In
early IBM studies, data-collection hardware was installed
to gather actual process data from several plants. From
these data, a mathematical model of the plant was created
and utilized to optimize plant performance [4]. 442

THOMAS J. HARRISON ET AL.

On the basis of initial studies, a development team was
formed to build a “process control computer.” The first
decision was to choose between a 1400-series machine,
then in development, and a small computer known as
CADET for use as the central processing unit. CADET,
which became the IBM 1620, was selected primarily
because it was computationally oriented and the 1400 was
a character machine. This was despite the fact that the
early 1620 did not have a hardware adder (it used table
look-up arithmetic) or built-in multiply [5]. Its variable-
field-length data and its low cost, coupled with adequate
performance, were winning factors. The resulting system,
the IBM 1720 Process Control Computer System, had as
its first users AMOCO in Whiting, Indiana, SOCAL in El
Segundo, California, and E. I. du Pont in Wilmington,
Delaware. These three pilot systems were installed in
1961, and the AMOCO and SOCAL systems were opera-
tional for many years.

With the experience gained on the 1720, IBM’s first
commercially available offering, the 1710, was defined to
provide a lower entry price at less function than the 1720
to broaden the application set. This machine was an-
nounced in early 1961, and several hundred machines
were installed during its sales life; a number are still in use
after nearly twenty years. The 1720 and 1710 were
technically successful machines that provided rapid
learning, by both IBM and the user, as to the needs of
process control. Coupled with changes in technology, this
set the stage in the early 1960s for a machine which more
nearly satisfied the original goals of the study teams and
designers of the 1720.

0 The 1960s: Industrial computers come of age
Numerous industrial control projects were attempted in
the early 1960s. Some were highly successful and some
failed. It was recognized that the mathematical-model
approach initially pursued was complex and often re-
quired vast resources. Alternatives were sought by uni-
versity and industrial researchers in an effort to ease the
task of applying computer control, since demonstrated
advantages clearly existed.

Of the approaches, Direct Digital Control (DDC),
championed by Dr. T. J. Williams of Monsanto (currently
with Purdue University), probably was the most influen-
tial in guiding the technical evolution of process control
computers [6]. The then-current (and still used) analog
control method utilized a specialized analog computer,
known as a controller, which continuously solved the
linear equation

Output = K,e + K,de/dt + KJedt ,

IBM J. RES. DEVELOP. T IOL. 25 NO. 5 SEPTEMBER 1 981

D

i

where e , the error, is the difference between the actual
process parameter value and the desired value (the set-
point), and the K s are constants. A dedicated analog
controller was used for each process “loop” consisting of
a sensor (possibly more than one), which provided the
current value, and a process actuator (e . g . , a valve)
driven by the controller output.

The limitations of using the linear analog controller to
control a nonlinear process were recognized by Williams
and others. In the DDC concept, the computer samples
the loop input, calculates the digital equivalent of the
analog controller equation, and drives the process actua-
tor directly-thus the name “Direct Digital Control.” At
computer speeds, a single computer can handle hundreds
of loops on a time-shared basis. In addition, the computa-
tional capabilities of the computer simplified the imple-
mentation of advanced control algorithms, such as non-
linear and adaptive control, without extensive process
hardware changes. It initially was estimated that DDC
could be justified if the amortized computer cost was less
than $1000 per loop.

This target price provided an elusive goal for the
designers of industrial control computers for most of the
decade. The technology was not yet ripe for this low cost
and the broad acceptance of DDC has only recently been
realized.

Although DDC was a persuasive force, other factors
were important in shaping the systems of the 1960s.
Prices were continuously decreasing but process control
computers still were expensive and proved economically
attractive only on rather large processes. But these large
processes were complex and economic justification often
required that the total process, or even several small
processes, be controlled by the same computer. This led
to the early development of executive programming sys-
tems which incorporated multiprogramming concepts,
and to the early use of high-level languages and applica-
tion packages such as FORTRAN and PROSPRO for pro-
cess use.

It was in this environment that the IBM 1800 was
developed-a new, high-function process control com-
puter. It also was recognized, however, that related
application areas such as high-speed data acquisition for
wind tunnels and laboratory automation could be satisfied
simultaneously by such a machine. Here, the emphasis
was on data input rather than on feedback control. The
1800 was designed to expand applications into new areas.

The CPU used as the base for the 1800 was a small,
scientifically oriented machine, announced as the IBM

1130 [7]. It was a 16-bit binary machine, to which the 1800
added parity, storage-protection bits, and additional fea-
tures such as the preemptive priority interrupt structure
PI.

The 1800 was announced in November 1%4, and was a
very successful machine: several thousand were pro-
duced and many remain installed today. The installation
of the last new 1800 is scheduled for 1981, almost
seventeen years after its initial announcement!

The late 1960s: A period of transition
Attention in 1966 was directed to an 1800 follow-on,
dubbed the 18XX. A new factor was emerging in that a
number of very simple, very low-cost computers were
becoming available. The low cost often allowed the
computer to be dedicated to a single task, thereby greatly
simplifying the needed programming system and the
programmer’s work. These low-cost machines were
known as “minicomputers.”

Two factors became obvious in the initial planning.
One was that the 1800 architecture and its programming
support could not be subset to the point at which signifi-
cant cost benefits could be derived. Secondly, process
control applications were becoming a proportionally
smaller and slower-growing segment of the new emerging
opportunities. As a result, the 18XX as a standalone
system was abandoned, and attention was turned to
alternative system configurations.

The new system was to be merely a front-end control-
ler, without local storage or significant computational
capability. It would maintain, however, the flexibility of
the 1800 in terms of feature configuration, sensor input/
output subsystems, and modular industrial-style packag-
ing. The controller architecture was relatively primitive
and great emphasis was placed on speed.

As the design progressed, performance requirements
dictated that the system have a small amount of local
storage, and the evolution to a standalone system had
begun. It continued until the system became capable of
standalone operation and had all the attributes of a small
real-time computer system. The decision was made to
incorporate the fastest semiconductor memory available
(400 ns), despite lengthy debates and concern about the
acceptability of volatile storage in industrial control appli-
cations.

The initial host-dependence concept also was reflected
in the software. All program preparation was to be
performed in a host using cross compilers and assem-
blers. Since many new applications were anticipated, the 443

THOMAS J. HARRISON ET AL. IBM J. RES. DEVELOP. 1 IOL. 2S 0 NO. 5 0 SEPTEMBER 1 981

programming system consisted of a set of facilities which
could be combined to build an optimized control program
for each application.

The system was announced as the Systed7 in late 1YO
[9]. Initial reaction to the machine was poor due to the
lack of native programming support, the requirement for
host support, and modularity increments which resulted
in expensive small configurations. Over the next few
years, native program preparation was provided, and
considerable resource was devoted to application devel-
opment. The system ultimately was successful, but in
areas not entirely anticipated by its designers, and, as
intended, mostly in areas other than process control. In
retrospect, it was an expensive machine, ahead of its time
in its orientation to host support and hierarchical inter-
connection, which often was at a disadvantage when
compared to less sophisticated, standalone minicomput-
ers.

The 1970s: The “minicomputer” era
By the early 197Os, it was clear that the minicomputer
would be the pervasive small machine of the decade. It
was intended that the Systed7 evolve to meet these
changing conditions by extending its function and reduc-
ing cost. Analysis showed, however, that the controller
orientation of the Systed7 was not easily extendable to
the higher-function instructions becoming common in
minicomputers. It finally was decided to develop a new
architecture which was of much higher function, imple-
mentable as a family of models, and extendable, while
still retaining some important features of the Systed7.

The resulting Series/l family was announced in 1976
[lo], and was hailed in the press as “IBM’s entry into the
minicomputer business.” Looking back, it might more
accurately be seen as a “reentry,” since the IBM 1620
and 1130 clearly were minicomputers before the name
was coined in the late 1960s. Since 1976, numerous
Series/l enhancements have been announced, including
new processors, additional peripherals, and two signifi-
cant operating systems.

Evolution of engineering features
The architecture and most features of small real-time
computer systems are not unique or remarkable when
compared to those of large data processing machines. In
many cases, new functions or features on small machines
are well known on larger computers. The design innova-
tion often is in providing such a function on the small
machine within severe cost and space constraints. Three
areas, however, always have been of particular concern
to the designers and tend to characterize small real-time
systems. These are the sensor inputloutput subsystems,

444 features for time responsiveness, and physical packaging.

THOMAS J. HARRISON ET AL.

e Analog input subsystem
The sensor I/O subsystems necessary to make measure-
ments of, and provide control signals to, the physical
world are lumped into four main classifications: analog
input, digital input, analog output, and digital output. Of
these, the analog input (AI) subsystem always has repre-
sented the most challenging design task, primarily due to
the difficulty of accurately handling low-level analog
signals in the presence of high-level electrical noise.

Two common analog process variables are tempera-
tures measured with thermocouples and forces measured
with strain gauges. The AI subsystem must be able to
read this information without adding expensive equip-
ment for each input. Unfortunately, the signals from
these devices are differential signals in the low millivolt
range that may be imposed on a common voltage to
ground (common mode voltage, or CMV) of many volts.
To detect temperature changes of a few degrees with a
thermocouple, for instance, it may be necessary to mea-
sure microvolt signal differences in the presence of 5-volt
CMV and random process noise. In analog control sys-
tems, heavy filtering is used to eliminate noise effects. To
utilize the speed of a computer, however, individual
readings must be taken in milliseconds or less. Thus, the
shared equipment must have a wide bandwidth, and
consequently is subject to errors from the high-frequency
and transient noise common in an industrial plant. To
achieve a total subsystem error of less than 0.1%, each of
the units in the AI subsystem must contribute less than
0.01 to 0.05% error.

The first unit in the subsystem is a multiplexer required
to switch the relatively expensive analog-to-digital con-
verter (ADC) between hundreds or thousands of low-
level analog inputs. For the 1710 and 1720, IBM pio-
neered with the C. P. Clare Company in the development
of miniature card-mounted mercury-wetted relays that
matched computer packaging and drive requirements
[111. These relays provided the basis for a low-level signal
multiplexer with excellent signal switching characteris-
tics.

The 1800 multiplexer utilized similar card-mounted
dpdt mercury-wetted-contact relays in a “flying capaci-
tor” configuration [12]. In this approach, a 300- to 600-pF
nonpolarized capacitor is connected between the arma-
tures of a dpdt multiplexer relay. With the relay not
actuated, the capacitor is connected to the differential
signal input through two resistors, forming a balanced
single-pole RC filter. When actuated, the relay switches
the charged capacitor to the high-impedance input of the
ADC. During the measurement period, therefore, the

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

subsystem physically is disconnected from the process,
providing excellent isolation from external CMV and
noise sources.

The 1800 system also was designed for the high-speed
data-acquisition application requiring sampling rates of
thousands of readings per second. For this, the “Bright
Switch,” a back-to-back inverted matched bipolar tran-
sistor pair, provided linear switching with a reasonably
low offset voltage [13]. In the Systed7 and Series/l, the
inherently low offset voltage of FET switching technolo-
gy provides for high-speed electronic multiplexing down
to the 50-millivolt full-scale range.

Unbalanced leakage paths also cause errors due to the
conversion of CMV into a normal mode signal. To
minimize this, leakage resistances to ground must be
maintained at more than 1000 megohms in a 95% relative
humidity ambient environment. This finally was achieved
in early systems through empirically determined card
layouts with maximized leakage paths, by special card
coatings, and by the use of desiccants in the multiplexer
enclosure.

In addition to an accurate multiplexer, the AI subsys-
tem requires an ADC to digitize the low-level signals in
the same difficult environment. The conventional ap-
proach was to amplify the low-level signal to a value
compatible with digital technology, usually +5 volts full
scale. However, high-speed, high-precision dc amplifiers
were difficult and expensive devices to build in the 1960s,
so the 1710/1720 utilized a unique low-level ADC that
performed digitization at the low millivolt level in an
electrically isolated front end [14]. This reduced error
sources by converting to a digitized value as early in the
circuit flow as possible and obviated the need for a
separate dc amplifier.

To provide high performance at lowest cost, IBM
offered the “Dual-Ramp” ADC in 1%6 [15]. This design
uses a “ramp-up/ramp-down” technique that converts
the analog signal into a digital count in a manner that
causes most component inaccuracies and drifts to cancel.
It produces a result that is dependent primarily on the
long-term stability of the precision reference voltage and
the short-term (millisecond) stability of all other compo-
nents. This technique has been used in the vast majority
of low-cost ADCs and digital voltmeters since the early
1970s. Since the technique is limited in speed, however,
the Systed7 developed the “Triple-Ramp ADC.” This
technique utilizes the same low-cost error-compensation
concepts of the dual-ramp ADC, but incorporates a high-
speed “slew” and low-speed “trim” approach to provide
a much higher conversion speed [16].

IBM J. RES. DEVELOP. VOL. 25 NO. 5 0 SEPTEMBER 1981

Time response features
The primary architectural characteristic that distin-
guishes small real-time systems from many other ma-
chines is the interrupt structure. The real-time system
must be responsive to process events. Typically, the most
important CPU responses are to exceptional conditions
which appear very infrequently, such as an imminent
unsafe condition.

The characteristics of preemptive priority interrupt
structures have evolved over the years to achieve a
twofold purpose: First, they ensure that the highest-
priority jobs are initiated promptly, without requiring
completion of a lower-priority task currently executing.
Secondly, they ensure that the CPU is spending more
time on responding to events, rather than on analyzing
just what the event is. Without any interrupt structure,
the system must constantly poll under program control to
look for these infrequent occurrences and, with hundreds
of potential interrupt sources, this overhead could cause
significant performance degradation. In contrast, the ear-
ly general-purpose systems only had to contend with a
dozen or so interrupt sources, usually associated with
inputloutput equipment.

The IBM 1720 provided an interrupt system by adding
hardware, outboard from the 1620 mainframe, to continu-
ously scan nineteen internal and up to fifty process-
interrupt signals [17]. The interrupt system could be
masked and unmasked as a whole, and it was a preemp-
tive system in that interrupts could be nested (a second
interrupt could interrupt the servicing of a first interrupt).
Hardware vectoring of the interrupt was provided to
cause an automatic program branch to a service routine
uniquely associated with each interrupt source. Howev-
er, there was no multilevel hardware priority, so that each
service routine had to decide whether an interrupt should
be handled immediately or deferred.

The 1710 provided a less complex, nonpreemptive
system in which many events could capture the attention
of the CPU software and an interrupt routine had to be
completed before any new interrupt could be recognized.
Identification of the interrupt source and the storage
location of its service routine was determined by custom-
er-written software. This approach did not require the
outboard hardware of the 1720 and was much lower in
cost-a prime consideration in designing the 1710. This
simple interrupt system was comparable to “priority
processing” in contemporary data processing systems.

Based on the experience with the 1720 and 1710, the
IBM 1800 system in 1964 provided a true preemptive
interrupt structure with up to 24 priority levels, each with 445

THOMAS 3. HARRISON ET AL.

16 sublevels. While servicing an interrupt, the system
could be interrupted only by a request on a higher level,
and interrupts could be nested indefinitely. Interrupts on
lower levels were queued until all higher-level interrupts
had been serviced. Each interrupt level could be masked
individually by software to block interrupts from that
level. When accepted, an interrupt caused a hardware
branch to a service routine associated with the level.

In these systems, the basic interrupt action was to
cause a forced branch in the program and to retain the
address of the next instruction so that the interrupted
program could be resumed after servicing the interrupt.
In most cases, considerable “housekeeping” was needed
to save the intermediate results of the interrupted pro-
gram before servicing the new interrupt. Typically, all
registers, accumulators, and indicators would have to be
stored and return linkages established. This housekeeping
delayed the response to the interrupt.

In 1970, on the System/7, IBM first utilized the power-
ful concept of duplicating the complete register set for
each interrupt level. A separate instruction address regis-
ter, eight general-purpose registers, and registers for
status information were provided for each of four priority
levels. This was equivalent to providing multiple proces-
sors with a common set of controls and main storage.
Thus, no intermediate results were saved explicitly; an
interrupt simply activated a new set of registers. Conse-
quently, within 800 ns (two storage cycles) of the occur-
rence of an interrupt, the processor could be servicing the
interrupt. The four System/7 interrupt levels each had 16
sublevels. The sublevels provided direct hardware vec-
toring for up to 16 interrupt sources on that level,
avoiding software analysis to determine the source of the
interrupt.

Another very powerful concept introduced in the Sys-
t e d 7 was the ability to change the priority of interrupting
devices under program control. In previous systems, the
priority was hardwired at installation. In many real-time
applications, however, the true importance of an inter-
rupt depends on the process state at that instant. In the
Systed7, the software, through a PREPARE instruction,
could modify the priority, setting both the level and
sublevel for each interrupting device. The Series/l system
provides essentially the same interrupt structure and
functions.

Industrial packaging
The cost of the physical package is significant in small
systems. Beyond its primary purpose of providing means
to mount and enclose the electronic components, it must

446 satisfy a range of requirements from withstanding vibra-

tion to aesthetic appeal. In addition, there is a strong
economic incentive to use the mass-produced packaging
technology of larger IBM systems.

Modularity An important packaging requirement is
modularity-so that the broad range of applications can
be satisfied with a single system. For example, some
applications require hundreds of analog inputs, some only
a few, and some none at all. Since the beginning, the
package design has been oriented such that space, power,
and cost need not always be provided for the maximum
system, only to be left unused by the smaller typical
system. The 1710/1720 systems followed the conventional
computer physical design in that almost every optional
feature had a fixed reserved location. The sensor I/O
termination blocks, matching cards, and input-signal mul-
tiplexing were the only areas where a modular, building-
block design was incorporated. The 1800 system also
utilized IBM standard boards and gates, but was given
added flexibility by use of “floating features.” In this
approach, certain gate locations (the same space and
power) could house one of several different sensor I/O
features. The floating features, however, caused appre-
ciable diiliculties in specifying cable lengths, providing
build and test instructions, servicing the system, and
determining the validity of a customer order.

The Systeml7 introduced the first truly modular system
in the evolution. Rack-style enclosures with common
power supplies were offered, providing two, three, six,
nine, or twelve modular subframe positions, with the dc
power and system internal interface bussed to each
position. The CPU and features were housed in individual
subframes which, with few restrictions, could be used in
any position. The approach proved to have its limitations,
primarily in penalizing small configurations with relative-
ly high cost. The common power supplies, designed to
power two, three, or six modules, resulted in extra costs
when all module positions were not utilized.

Advances in technology allowed the Series/l to carry
the modularity/flexibility concept much further. The use
of high-frequency switching techniques allowed small
low-cost power supplies to be incorporated in most
individual modules, thereby closely matching power ca-
pacity to actual requirements. The use of higher-density,
lower-unit-power integrated circuits provided the oppor-
tunity for housing more function in a module, thereby
amortizing package cost over several features. A feature
which required a separate subframe in Systed7 often
requires only a single card in Seriedl.

Interestingly enough, continuingly increasing integrat-
ed circuit densities are tending to resurrect the System/7

THOMAS J. HARRISON ET AL. IBM J. RES. DEVELOP. VOL. 25 e NO. 5 SEITEMBER 1981

problem of high packaging costs for small configurations.
When a total CPU, 128K bytes of storage (K = 1024), and
an input-output adapter all fit on two or three cards in a
module which can accommodate about twenty cards, the
package cost represents a significant portion of the total
cost of a small configuration. Although it is likely that
industry standard rack enclosures will continue to be
used, it is obvious that continued evolution and innova-
tion in packaging can be expected.

Industrial environment The 1720 system was designed
principally for the heavy industries of petroleum refining,
steel plants, power generation, and the like. It was the
first complete IBM system designed for such an industrial
environment. The enclosure was built of IO-gauge steel,
designed to survive an inadvertent impact from a fork lift
truck. The operating limits were specified at 40" to 122" F
and 0 to 95% relative humidity (85" F maximum wet bulb
temperature). The entire system had a vibration specifica-
tion of k0.25 G , which required testing 2500-pound units
at this vibration level. In addition the covers were gasket-
ed and closed with screw locks to allow them to be
maintained at a slight positive pressure to exclude hazard-
ous or contaminating gases.

The 1800 system was installed in a number of locations
that had very corrosive atmospheres, particularly in
paper pulp mills. Initially, a few 1800 systems required
mechanical replacement in less than a year due to corro-
sion which would destroy the copper interconnections. A
special impervious coating was developed for all circuit
cards and boards to protect them from rapid deteriora-
tion.

As a result of the 1800 experience, extensive testing
was done to establish the quantitative corrosive effects of
several common industrial gases and airborne particu-
lates on standard IBM printed-circuit cards, boards, and
mechanical devices. Several severity categories were
identified for specification purposes based on the long-
term effect on IBM equipment.

The Systend7 was designed to function in these envi-
ronments without the need for special coatings on individ-
ual cards and boards. An optional feature, the "Internal
Air Isolation" (IAI) feature, offered a nonrefrigerating
heat exchanger mounted on top of the enclosures. Recir-
culated air inside the machine enclosure passes through a
finned air-to-air heat exchanger to provide cooling with-
out an interchange of inside and outside air.

Several environmental monitoring devices were devel-
oped in cooperation with the Field Engineering Division.

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

In a proposed installation suspected of having high con-
tamination levels, the Installation Planning Repre-
sentative installed the device at the site prior to system
installation. If the device showed unacceptable levels of
gaseous contaminants, the use of the IAI feature was
required to validate the rental or maintenance agreement.

Except for standard card coatings, no special provi-
sions for gaseous and particulate contaminants were
taken for the Seriesh. Several factors entered into this
decision: The IBM semiconductor component packages
had been improved and were less susceptible to corrosive
gases. The fans in each module produced sufficient air
velocity that particulates would not collect on the cards,
even though the filters had been eliminated. Finally, an
analysis of applications showed that extra expense for
additional protection was not warranted since relatively
few systems would be subjected to hostile environments.
The air analyzer is still used to provide guidance to the
user in identifying severe environments so that appropri-
ate measures, such as special air conditioning, can be
employed.

Evolution of IBM real-time operating systems
The IBM 1720 did not have an operating system, as such;
the operating system functions were integrated directly
into the application program. This increased the complex-
ity of the application program, limited flexibility, and
increased maintenance problems. The lack of a separate
operating system on the 1720, however, clearly estab-
lished the need for operating systems on future real-time
hardware products. As a result, the Basic Executive
System was developed for use on the IBM 1710 in 1962.
This was a minimum-function dedicated operating system
which provided an interrupt handler and I/O driver sup-
port for the real-time input/output channel. Its use was
minimal, however, because a new operating system,
Executive 11, was developed for the 1710 in 1963.

Executive I1 was a major extension in function and
design and was the first IBM system to provide disk
residence for user and system programs. It provided a set
of error recovery routines for the I/O devices, as well as
facilities for automatically exercising and testing I/O
devices on line so as to enhance system availability.
Further, Executive I1 provided for real-time scheduling of
user application programs based on time interval, time-of-
day clock, and external events. The concept of using
external events (interrupts) as the scheduling stimulus
was a significant advance over the batch orientation of
then-current business-oriented computers. Application
program preparation for Executive I1 was done off line
using sps-11, a symbolic assembly language. Executive I1
was a widely used and successful operating system. 447

THOMAS J. HARRISON ET AL.

The third operating system for the IBM 1710 was
released in 1964. It was called the FORTRAN Executive
and was a significant milestone in the evolution of real-
time systems, since, for the first time, the high-level
language FORTRAN was available for use by the real-time
application programmer. While FORTRAN Executive had
limited acceptance because it came late in the life of the
IBM 1710, it pointed the direction for the use of high-level
languages in real-time applications. All subsequent real-
time systems have provided FORTRAN or other high-level
languages for application development.

In November 1964, the Time-sharing Executive (TSX)
system was announced in conjunction with the IBM 1800.
When delivered in early 1966, TSX was the first IBM
operating system to provide real-time support with con-
current background batch capability. This allowed the
user to prepare, compile, and link into real-time applica-
tion programs without taking the system off line. The
background batch capability further allowed commercial
and engineering programs to be compiled and executed
concurrently with real-time programs. FORTRAN was the
primary user real-time language under TSX. The use of
assembler language could be relegated to those areas
where the performance or size of the generated code from
FORTRAN was unacceptable.

A specialized control program facility, called PROS-
PRO, was developed in 1966 to reside on top of TSX. It
was intended primarily for use in the control of continu-
ous processes such as those found in an oil refinery.
PROSPRO provided built-in functions familiar to the
process engineer, such as the controller equation de-
scribed earlier, which could be invoked using terminology
known to control engineers. In addition, it featured a
“fill-in-the-blanks’’ programming technique whereby
data from forms prepared by the control engineer were
used to create tables that determined program sequences
and computer responses needed to control the process. It
allowed the control engineer to utilize the system with
very little specialized knowledge of computers [18]. In its
original release, it effectively supported the supervisory
(setpoint) control philosophy, but a later release (PROS-
PRO 11) for MPX provided DDC.

In 1%7, IBM announced a new operating system for
the IBM 1800, called the Multiprogramming Executive
System (MPX). It was the first IBM system to provide
multiple fixed partitions into which programs could be
scheduled on the basis of external events, time-of-day
clock, time interval, operator command, and the batch
job control language [19]. MPX was capable of controlling
multiple independent real-time processes, with batch
program preparation and business and engineering appli-

448 cations running concurrently in the background.

THOMAS J. HARRISON ET AL.

MPX introduced a number of new facilities to the real-
time environment. For example, it was the first IBM real-
time system that effectively could support communica-
tions to other systems and terminals using either Bisync
or Stop/Start protocols. MPX also supported file sharing
between systems. This allowed two MPX/1800 systems to
be connected to an IBM 23 11 Disk File and concurrently
use it for communications between the systems and for
shared-data-set residence. In terms of support facilities,
MPX provided the first Macro Assembly Program for use
on an IBM real-time system.

MPX made significant advances in the area of error
recovery, an important consideration for continuously
running processes. First, while MPX was a disk-resident
system, it was not disk dependent and the system contin-
ued to function if the disk failed. All of MPX’s error-
recovery facilities still were operational with the disk
down, as well as any user routines that were main-storage
resident. The system also was designed so that a custom-
er engineer could take a device off line, work on it,
exercise it, and then bring it back on line after repair
without having to take the system down. Multiple levels
of automatic backup were provided for I/O devices upon
failure. Also, when power returned to the system after a
power failure, MPX would automatically restart the sys-
tem and the application.

MPX was the culmination of all the development
knowledge and experience obtained starting with the
Basic Executive System back in 1%2. In 1968, the
mission was moved from San Jose, California to Boca
Raton, Florida, resulting in an almost completely new
development group. That, coupled with the initial con-
troller orientation of the next system, resulted in a new
series of real-time operating systems which evolved dur-
ing the 1970s.

In October of 1970, the IBM Systed7 was announced
with the Modular System Prograd7 (MSP/7) as its oper-
ating system. As noted earlier, Systed7 was designed to
rely on the Systed37O for host support functions, such as
program preparation. As such, the first release of MSPl7
was designed to be only a kernel for a real-time operating
system. The initial level of function was similar to, but
less than, that of Executive I1 on the IBM 1710. The first
release primarily was a collection of modules which the
user combined, with some additional programming, to
create a control program tailored to the application. Due
to its assumed host dependency, MSPl7 did not support
user or system program residency on a disk, but did
support communications back to a Systed370 host.
Program preparation was provided by the Systed370,
with only minimal capability off line on the Systed7.

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

Version 5 of MSP/7 was released in 1972 with two
major new facilities. The first was Symbolic File Support
(SFS) and the second was the Disk Support System (DSS/
7). These new facilities provided for program transients
resident on disk and a monitor for off-line batch opera-
tion. Functionally, Version 5 was similar to the FORTRAN

Executive system on the IBM 1710. Further, the primary
applications for MSP/7 were now in the communications
systems area. In 1974, Version 9 of MSP/7 was released
and provided for a multipartition monitor similar to MPX,
essentially completing the evolution of MSP/7.

During the 1974-1975 time period, three other operat-
ing systems were developed for the Systend7 by groups
other than the MSP/7 development organization. These
were the Event-Driven Executive (EDW7), the Applica-
tion Program Generator (APG), and the Application Mon-
itor. EDX/7 was developed at the IBM San Jose Research
facility. It was originally designed as a laboratory-auto-
mation real-time system, but then was generalized into
IBM’s first real-time interactive system. APG was devel-
oped at the Application Development Center in Palo Alto.
It was primarily oriented toward the continuous process
control environment. Its significance is that it was the
first IBM real-time system to provide PL/I as the primary
user interface to the real-time facilities [20]. The Applica-
tion Monitor was developed in Boca Raton, and intro-
duced several new concepts. Primary among these was
the late binding of resources to an application program
m1.

The IBM Seriesll was announced in November 1976
with the Control Program Support System (CPS). This
system was similar in concept to Release 1 of MSP/7. In
April 1977, the second system announced for the Series/l
was the Real-time Programming System (RF’S) [22]. RPS
is a full-function, real-time operating system supporting
dedicated, host, and interactive environments. The de-
sign of RPS was heavily influenced by the Application
Monitor System, MSP/7 Release 9, and MPW1800.

RPS is strong in the communications area with support
of Start/Stop, Bisync, and SDLC communications proto-
cols. It also provides a multiple terminal management
facility to aid the user in communication and interactive
applications. It provides great depth of function in the
areas of multiprogramming, multitasking, data manage-
ment, and program preparation. The program preparation
facility under RPS is interactive in design and supports
FORTRAN, PLI, COBOL, BASIC, and Macro Assembly lan-
guages. Further, the system provides for both late and
early binding of system resources to application pro-
grams. RPS is being utilized in commercial, communica-
tions, and real-time process applications.

The Event-Driven Executive (EDX) was announced on
the Series/l in September 1977. This was the first time an
IBM control program had bridged totally different hard-
ware architectures. The first release of EDX was compat-
ible with EDW7 and has been enhanced to support
FORTRAN, COBOL, and PWI through its user interface [23].
For the user who does not require the power, flexibility,
and full function of RPS, EDX provides an alternative
with the emphasis on ease of use and performance.

Contributions to real-time applications
Throughout the evolution of these IBM real-time sys-
tems, there has been considerable effort toward under-
standing and supporting particular computer applications
in industry. Literally hundreds of these applications have
been developed by IBM singly or in cooperation with
customers and many have contributed to advances in
fields other than computers. It is not possible to exhaus-
tively examine these contributions in this paper but
several will be noted on the basis of their significance or
other unusual aspects.

Shortly after the decision to build the 1720, several
technical support and research groups were established in
San Jose. The groups participated in several early studies
and made contributions in the area of mathematical
modeling and adaptive control [24]. As part of the activi-
ty, a small distillation column, controlled by an 1800, was
installed at the plant site in San Jose. This was used to
develop and test control algorithms [25]. It was also used
for human-factors studies relating to consoles for use in
the process industries.

In addition to many process control applications, the
1800 was used in oceanographic research aboard seagoing
vessels. It provided the capability of collecting and ana-
lyzing data from towed transducers. Previous methods
had involved the recording of data on magnetic tape
which was returned to port for reduction and analysis.

Following the Systed7 announcement, a major appli-
cation development effort was undertaken. Included was
the development of the IBM Bridge System [26]. The
system included a ruggedized Systed7 interconnected
with the ship radar, autopilot, and navigational receivers,
and a special operators’ console. The primary application
of the system, and its main justification, is to assess the
possibility of collision between the ship and other ships in
the vicinity. The system digitizes the radar signal, auto-
matically detects targets, and determines their courses
and speeds. Using this information and a collision-assess-
ment algorithm, the ship’s officer is provided with a
prioritized display of potential collisions. In response, the
officer can enter a tentative course or speed correction 449

THOMAS J. HARRISON ET AL. IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

and, through simulation, determine if this action will
avoid the collision without creating another potential
collision. If so, the officer initiates the action to alter the
ship’s motion. In addition to collision assessment, other
applications include position fixing, route planning sub-
ject to longitudinal and other constraints, route tracking,
and control of the autopilot utilizing adaptive control
algorithms that take into account the state and character-
istics of the ship (e . g . , loaded or unloaded, minimum
turning radius, etc.).

Soon after announcement of the Systed7, it was
recognized that it had potential in the communications
industry, primarily because of its high speed and unique
interrupt structure. As a result, a dedicated development
group was established to explore applications, particular-
ly in connection with telephone central offices. A number
of applications were developed and sold, including the
use of the system to record initiation and termination
times of toll calls to use as the basis for billing. Special-
ized operating systems and application programs were
developed for this and related communications uses [27].
This work has been continued and now utilizes the
Series/ 1.

Of particular significance in this application develop-
ment is that it was of benefit to both‘the user and IBM.
Particularly in the early days, the potential of the comput-
er was not understood by all engineers in the process
industries. Through studies and application development,
industry became aware of the potential and how the
computer could be used to improve the control of pro-
cesses and thereby improve the economic return for the
customer. For IBM, it offered an opportunity to sell
systems and, perhaps more importantly, to understand
the needs of the industries so that future computers could
more efficiently or easily satisfy applications.

Today, many users have the necessary expertise to
apply computers with little or no assistance from the
vendor. Nevertheless, application development contin-
ues as an aid to multiple-unit marketing and to make the
use of computers easier for businesses and for individuals
who are not professional programmers or engineers.

Projections for the future
The evolution of IBM real-time systems has not been a
simple straight-line extrapolation of the past. It has been
influenced by a large number of economic and technical
factors. It is likely that the future will have the same
characteristics, complete with a few dead ends and false
starts. There are few, if any of us, who in 1958 when we
started on this evolution could have foreseen where we
would be today; the rate of change of technology has

450 astounded us all. Thus, even assuming a linear or loga-

rithmic extrapolation, the computer world twenty-five
years from now on the fiftieth anniversary of the Journal
cannot be predicted by these authors.

Some observations can be made which point a direction
to the future. The “minicomputer” was spawned some
fifteen years ago as a minimum-capability stored-program
machine, driven by the desire for low cost and con-
strained by minimizing circuit counts. It was devoid of
any significant software support and it flourished in an
environment of experimentation as entrepreneurs sought
to exploit it. It has evolved to a sophisticated machine
with significant software support and computational pow-
er. It is pervasive throughout industry and is produced by
the tens of thousands every year.

Now the “microprocessor” has appeared, as a result of
the capability of semiconductor technology. It appears
that the evolutionary cycle of the minicomputer is being
repeated, only at an accelerated pace. The first micro-
processor on a chip was rudimentary compared to its
minicomputer predecessor. It had 4-bit words and only a
few instructiqns and was very slow. Like the original
minicomputer, the desire was low cost and the constraint
was the number of circuits that could be fabricated on a
single silicon chip with economic yields. But in a few
years, more circuits became available as a result of
semiconductor technology advances and the 8-bit micro-
processor appeared. Soon after, the 16-bit microproces-
sor was announced and is now in common use, with 32-bit
designs close behind. In the 1950s, computers were built
one at a time, in the 1960s it was by the thousands, and in
the 1970s by the tens of thousands. The microprocessor
has already reached the hundreds of thousands and is
expected to reach millions in a few years.

The software is lagging but, again, the rate of progress
is much faster than in the case of the minicomputer. High-
level languages are available for the microcomputer and
operating systems have been developed. Although the
level of sophistication is less than that of minicomputer
software, there is no reason to believe that it will remain
so for long.

What, then, is the future of the small real-time comput-
er? It already is obvious that many of the real-time
functions are being assigned to microprocessors buried in
instrumentation, terminals, automobiles, television sets,
and other equipment. This will continue as the general-
purpose programmable nature of the computer and the
low cost of the microprocessor make possible endless
applications. The minicomputer will continue, but often
in the role played in the past by the larger data processing
host computers. Furthermore, the microcomputer has

THOMAS J. HARRISON ET AL. IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEFTEMBER 1981

become a component available for incorporation in larger
computers as a replacement for random logic. Its exis-
tence as a component in a bigger system may or may not
be visible to the programmer or user of the system. When
visible, it could provide an opportunity for parallel pro-
cessing which will enhance the computing power of the
system. But it also will require greater understanding on
the part of the programmer concerning the control of
concurrent processes. It is likely that new programming
techniques and tools will be developed to assist the
programmer in this control.

Although people in general are accustomed to bills,
letters, and mailing lists produced by computers, they are
not computer programmers in the traditional sense, and
never will be. The challenge of the future for computer
companies is in making computers available to the gener-
al public without requiring that they become experts in
programming. The computer must be as easy to use as the
telephone and must have the same transparency that
masks the complex equipment, the call-routing algo-
rithms, and the like. The challenge of the future, there-
fore, is human factors applied to the use of computers.
With a friendly user interface, the power of the computer
as an information processor will be available to everyone
as a means of increasing productivity and enhancing the
quality of life.

Acknowledgments
The three authors have been involved in most of the
evolution described in this paper. Rather than trust their
limited view and memory, however, they interviewed
several dozen key participants in this evolution. The
contributions of these interviewees are acknowledged,
along with those of the hundreds of other people whose
innovative thinking and hard work made these systems a
reality.

References
1. T. J. Harrison, Minicomputers in Industrial Control, Instru-

ment Society of America, Pittsburgh, PA, 1978.
2. T. M. Stout, “Computer Control of Butane Isomerization,”

ZSA Journal 6,98-103 (1959).
3. J. R. Middleton, “Chocolate Bayou Instrument and Com-

puter Systems,” Proceedings Texas A & M 18th Annual
Symposium on Instrumentation for the Process Industries,
January 1%3, College Station, TX, pp. 83-90.

4. R. H. Crowther, J. E. Pitrak, and E. N. Ply, “Computer
Control at American Oil,” Chem. Eng. Progress 57, 39-43
(l%l).

5. IBM 1620 Central Processing Unit, Model Z , Order No. A26-
5706, available through IBM branch offices.

6. T. J. Williams, “Direct Digital Control Computers-A Com-
ing Revolution in Process Control,” Proceedings Texas
A & M 19th Annual Symposium on Instrumentation for the

70-8 1.
i Process Industries, College Station, TX, January 1964, pp.

1 IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1 9 8 1

7. ZBM 1130 Computing System Functional Characteristics,
Order No. A26-5881-6, available through IBM branch of-
fices.

8. ZBM 1800 Data Acquisition and Control System Functional
Characteristics, Order No. GA26-5918-9, available through
IBM branch offices.

9. ZBM System17 Functional Characteristics, Order No. GA34-
0003-7, available through IBM branch offices.

10. J. D. Schoeffler, ZBM Seriesll, The Small Computer Con-
cept, IBM Corporation, Atlanta, GA, 1978.

11. A. J. Koda, “Switching Assembly,” U.S. Patent 3,076,878,
1960.

12. T. J. Harrison, Handbook of Industrial Control Computers,
John Wiley & Sons, Inc., New York, 1972, pp. 223-241.

13. R. L. Bright, “Junction Transistors Used as Switches,”
AZEE Transactions on Communication & Electronics 74,

14. H. L. Funk, T. J. Harrison, and J. Jursik, “Converter
Digitizes Low Level Signals for Control Computers,” Auto-
matic Control 18, 21-23 (1963).

15. C. H. Propster, Jr., “Analog to Digital Converter,” ZBM
Tech. Disclosure Bull. 5, 51-52 (1963).

16. H. B. Aasnaes and T. J. Harrison, “The Triple Integrating
Ramp ADC,” Electronics 41, 69-72 (1968).

17. ZBM Reference Manual, 1720 Control System, Order No.
A26-5512, available through IBM branch offices.

18. PROSPRO II (TSXl1800) Process Systems Program Func-
tional Description, Order No. GH20-4420, available through
IBM branch offices.

19. ZBM 1800 Multiprogramming Executive Operating System
Zntroduction, Order No. GC26-3718, available through IBM
branch offices.

20. Understanding APGI7, Order No. SH20-9513, available
through IBM branch offices.

21. J. G . Sams, “Low Cost Systems Using Multiple Proces-
sors,’’ ZBM Tech. Disclosure Bull. 19, 2879-2883 (1977).

22. ZBM Seriesll Real-time Programming System Version 4
Design Guide, Order No. SC34-0242-1, available through
IBM branch offices.

23. ZBM Seriesll Event-Driven Executive System Guide, Order
No. SC34-0312-2, available through IBM branch offices.

24. R. M. Bakke, “Adaptive Gain Tuning Applied to Process
Control,” Proceedings Znstrument Society of America 19th
Annual Conference and Exhibit, New York, October 12-15,
1964.

25. P. E. A. Cowley, “Pilot Plant Puts DDC to the Test,”
Control Engineering 13, 53-56 (1%6).

26. ZBM System17 Maritime ApplicationslBridge System Gener-
al Information, Order No. GA34-0010-1, available through
IBM branch offices.

27. ZBM System17 Centralized Automatic Message Accounting
Computerized (CAMA-C), Order No. SA34-1526, available
through IBM branch offices.

111-121 (1955).

Received October 23, 1980; revised January 6, 1981

Thomas J . Harrison and Hal K . St. Clair are located at
the IBM Information Systems Division laboratory, P.O.
Box 1328, Boca Raton, Florida 33432. Bruce W . Landeck
is located at the IBM General Systems Division head-
quarters, P.O. Box 2150, Atlanta, Georgia 30301.

451

THOMAS J. HARRISON ET AL.

"l-

n

4' -i n (i:j

44 IBM Systemi370 maintenance console

