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Evolution of Small  Real-Time IBM Computer  Systems 

In parallel with the development of data  processing applications for  computers,  effort  was  directed  to  other  areas in 
which computers might provide benefits for the user. One early effort  was the  application of computers  to the monitoring 
and  control of industrial processes such as those used in oil refinery units,  steel  plants, and paper  machines. Over time, 
these early efforts were  generalized to  a broader class of applications in which the computer was  connected directly into 
an  external process which placed time response requirements on the computer  system. These systems  have  become 
known as real-time systems. In this paper, the evolution of ZBM small real-time  systems is traced  from the late 1950s to 
the present. Emphasis  is placed on a  few  features and  requirements which characterize these  systems. 

Introduction 
A significant portion of IBM’s effort in the 1950s was 
devoted to computers which eventually merged into  the 
single architecture of the  Systed360. Concurrently, how- 
ever,  other groups  were  exploring  new  opportunities for 
computers  that resulted in several other  computer se- 
quences. Although general-purpose,  these systems were 
optimized  for  characteristics different from those empha- 
sized in the  Systed360. 

One  such sequence  was aimed at moving data process- 
ing systems closer to  data  sources associated with the 
operational  aspects of the users’  enterprises. The initial 
application was the monitoring and  control of continuous 
industrial processes,  but,  over time, it has broadened to 
encompass diverse  operational  applications such as ener- 
gy management,  discrete manufacturing control,  labora- 
tory  automation, traffic control systems, and  telephone 
toll ticketing. The small real-time IBM computers used in 
these applications are represented by the 1720,  1710, 
1800, Systed7,  and,  currently, the Seriedl. 

Both  “real-time”  and  “small” are relative modifiers 
whose  quantitative meanings are application dependent. 

In  general, “real-time”  means  that the information pro- 
cessing, to  be useful, must be completed before some 
outside event occurs.  Depending  on the application, the 
time  available may range from a fraction of a second to 
hours. Similarly, a real-time computer need  not be small. 
In particular, many of the early machines (e .g . ,  SAGE, 
Whirlwind) were physically large and powerful comput- 
ers.  Nevertheless, most real-time applications today uti- 
lize physically small computers that are in the lower  range 
of computing  power. 

Requirements  for  small  real-time  computer  systems 
Although the initial trend was to  use existing architec- 
tures in early small real-time machines,  unique process 
control  requirements  were  major  forces in the evolution 
of today’s small real-time computers. 

Hostile environment Early data processing computers 
typically were installed in dedicated air-conditioned and 
filtered rooms which resembled a “clean room.” For 
industrial  process use,  however, the  computer  must  oper- 
ate  over a wide range of temperature and humidity in the 
presence of particulate  and  gaseous  contaminants. 
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Reliability  and  unattended  operation Many industrial 
plants operate 24 hours per  day,  7 days a week, and so 
must the computer. This placed emphasis on reliability 
and ease of repair. Bid requests requiring  availability  in 
excess of 99.9% were not uncommon  in the early 1%Os. 
In addition, the computer had to be  usable by plant 
operators who  had little knowledge of computers. This 
placed great emphasis on ease-of-use and  human factors 
long before these became the topics of interest that they 
are today. 

Sensor inputloutput subsystems In order to directly 
connect the computer to process equipment, a number of 
special subsystems were required [l]. Many process 
instruments generate analog  signals  derived from sensors 
such as thermocouples and strain gauges. These signals 
must  be converted into discrete digital representations to 
be used internally in the digital computer. 

Feature configurations Even in a given industry and a 
given process category, there is considerable variation in 
the design of process equipment. Thus, the designer of an 
industrial computer system must provide the means for 
incorporating virtually  any combination of features into  a 
system. 

Time  response A key requirement is predictable time 
response; this requires architectural features that assist in 
the timely  completion of a task  and  in  switching from one 
task to  another. The concept of interrupts to control the 
inputloutput equipment of a general-purpose computer 
was extended to include interrupt sources outside the 
computer. 

Environment  chronology 
The computer business is driven by user needs and the 
capabilities of available technologies. As the designer or 
user perceives new uses, the evolution of related designs 
is affected. Initially, small real-time systems were intend- 
ed  primarily for industrial process control and this strong- 
ly  influenced their characteristics. Over the past twenty 
years, however, our  view of the application set has 
changed to the point that the Seriedl satisfies the needs 
of  many different applications. It is useful, therefore, to 
consider a chronology of the environment over the past 
twenty or thirty years and  how this affected the products 
which evolved. 

The 1950s: Years of experimentation 
By the mid-l950s, work  had been started on using  com- 
puters for the control of industrial processes [2, 31. In 
early IBM studies, data-collection hardware was installed 
to gather actual process data from several plants. From 
these data,  a mathematical  model of the plant  was created 
and  utilized to optimize plant performance [4]. 442 
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On the basis of initial studies, a development team was 
formed to build a  “process control computer.” The first 
decision  was to choose between a 1400-series machine, 
then  in development, and a small computer known as 
CADET for use as  the central processing unit. CADET, 
which became the IBM  1620, was selected primarily 
because it was computationally oriented and the 1400 was 
a character machine.  This was despite the fact that the 
early 1620  did not have a hardware adder (it used table 
look-up arithmetic) or built-in  multiply [5]. Its variable- 
field-length data and its low cost, coupled  with adequate 
performance, were  winning factors. The resulting system, 
the IBM 1720 Process Control Computer System, had as 
its first users AMOCO  in  Whiting, Indiana, SOCAL  in  El 
Segundo, California,  and E. I. du Pont in  Wilmington, 
Delaware. These three pilot systems were installed in 
1961, and the AMOCO and SOCAL systems were opera- 
tional for many years. 

With the experience gained on the 1720, IBM’s  first 
commercially available offering, the 1710, was  defined to 
provide a lower entry price at less function than the 1720 
to broaden the application set. This machine  was an- 
nounced in early 1961, and several hundred machines 
were installed during its sales life; a number are still  in use 
after nearly twenty years. The 1720 and 1710 were 
technically successful machines that provided  rapid 
learning, by both IBM and the user, as  to  the needs of 
process control. Coupled  with changes in technology, this 
set the stage in the early 1960s for a machine  which  more 
nearly  satisfied the original  goals of the study teams and 
designers of the 1720. 

0 The 1960s: Industrial computers  come of age 
Numerous industrial control projects were attempted in 
the early 1960s.  Some were highly successful and some 
failed. It was  recognized that the mathematical-model 
approach initially pursued was  complex  and often re- 
quired vast resources. Alternatives were  sought by uni- 
versity and industrial researchers in an effort to  ease the 
task of applying computer control, since demonstrated 
advantages clearly existed. 

Of the approaches, Direct Digital  Control (DDC), 
championed by Dr. T. J.  Williams of Monsanto (currently 
with Purdue University), probably was the most  influen- 
tial in  guiding the technical evolution of process control 
computers [6]. The then-current (and still  used)  analog 
control method  utilized a specialized  analog computer, 
known as  a controller, which continuously solved the 
linear equation 

Output = K,e + K,de/dt + KJedt ,  
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where e ,  the error, is the difference  between the actual 
process parameter value and the desired value (the set- 
point), and the K s  are constants. A dedicated analog 
controller was  used for each process “loop” consisting of 
a sensor (possibly  more than one), which provided the 
current value, and a process actuator ( e . g . ,  a valve) 
driven by the controller output. 

The limitations of using the linear analog controller to 
control a nonlinear process were recognized by  Williams 
and others. In the DDC concept, the computer samples 
the loop input, calculates the digital equivalent of the 
analog controller equation, and drives the process actua- 
tor directly-thus the name “Direct Digital Control.” At 
computer speeds, a single computer can handle hundreds 
of loops on a time-shared basis. In addition, the computa- 
tional capabilities of the computer simplified the imple- 
mentation of advanced control algorithms, such as non- 
linear and adaptive control, without extensive process 
hardware changes. It initially  was estimated that DDC 
could  be justified if the amortized computer cost was less 
than $1000 per loop. 

This target price provided an elusive  goal for the 
designers of industrial control computers for most of the 
decade. The technology  was not yet ripe for this low cost 
and the broad acceptance of  DDC has only recently been 
realized. 

Although DDC was a persuasive force, other factors 
were important in  shaping the systems of the 1960s. 
Prices were continuously decreasing but process control 
computers still were expensive and proved  economically 
attractive only on rather large processes. But these large 
processes were complex  and economic justification often 
required that the total process, or even several small 
processes, be controlled by the same computer. This led 
to the early development of executive programming sys- 
tems which incorporated multiprogramming concepts, 
and to  the early use of high-level  languages and applica- 
tion packages such as FORTRAN and  PROSPRO for pro- 
cess use. 

It was in this environment that the IBM  1800 was 
developed-a new, high-function process control com- 
puter. It also was recognized, however, that related 
application areas such as high-speed data acquisition for 
wind tunnels and laboratory automation could  be  satisfied 
simultaneously by such a machine. Here, the emphasis 
was on data input rather than on feedback control. The 
1800 was designed to expand applications into new areas. 

The CPU used as the base for the 1800 was a small, 
scientifically oriented machine, announced as the IBM 

1130 [7]. It was a 16-bit binary machine, to which the 1800 
added parity, storage-protection bits, and additional fea- 
tures such as the preemptive priority interrupt structure 
PI.  

The 1800 was announced in November 1%4,  and  was a 
very successful machine: several thousand were pro- 
duced and many  remain installed today. The installation 
of the last new 1800 is scheduled for 1981, almost 
seventeen years after its initial announcement! 

The late 1960s: A period of transition 
Attention in 1966 was directed to an 1800 follow-on, 
dubbed the 18XX. A new factor was  emerging  in that  a 
number of very simple, very low-cost computers were 
becoming available. The low cost often  allowed the 
computer to be dedicated to a single task, thereby greatly 
simplifying the needed  programming system and the 
programmer’s work. These low-cost  machines were 
known as “minicomputers.” 

Two factors became obvious in the initial  planning. 
One  was that the 1800 architecture and its programming 
support could  not  be subset to the point at which  signifi- 
cant cost benefits  could  be derived. Secondly, process 
control applications were becoming a proportionally 
smaller and  slower-growing  segment of the new  emerging 
opportunities. As a result, the 18XX as a standalone 
system was abandoned, and attention was turned to 
alternative system configurations. 

The new system was to be  merely a front-end control- 
ler, without local storage or significant computational 
capability. It would maintain, however, the flexibility of 
the 1800  in terms of feature configuration, sensor input/ 
output subsystems, and  modular industrial-style packag- 
ing. The controller architecture was  relatively  primitive 
and great emphasis was placed on speed. 

As the design progressed, performance requirements 
dictated that the system have a small amount of local 
storage, and the evolution to  a standalone system had 
begun. It continued until the system became capable of 
standalone operation and  had  all the attributes of a small 
real-time computer system. The decision  was  made to 
incorporate the fastest semiconductor memory available 
(400 ns), despite lengthy debates and concern about the 
acceptability of volatile storage in  industrial control appli- 
cations. 

The initial host-dependence concept also was  reflected 
in the software. All program preparation was to be 
performed in a host  using cross compilers  and assem- 
blers. Since many  new applications were anticipated, the 443 
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programming system consisted of a set of facilities  which 
could  be  combined to build an optimized control program 
for each application. 

The system was announced as the Systed7 in late 1YO 
[9]. Initial reaction to the machine was poor due  to  the 
lack of native programming support, the requirement for 
host support, and  modularity increments which resulted 
in expensive small configurations. Over the next few 
years, native program preparation was provided, and 
considerable resource was devoted to application devel- 
opment. The system ultimately was successful, but in 
areas not entirely anticipated by its designers, and,  as 
intended, mostly  in areas other than process control. In 
retrospect, it was an expensive machine, ahead of its time 
in its orientation to host support and hierarchical inter- 
connection, which often was at  a disadvantage when 
compared to less sophisticated, standalone minicomput- 
ers. 

The 1970s: The  “minicomputer”  era 
By the early 197Os, it was clear that the minicomputer 
would  be the pervasive small  machine of the decade. It 
was intended that the Systed7 evolve to meet these 
changing conditions by extending its function and reduc- 
ing cost. Analysis showed, however, that the controller 
orientation of the Systed7 was not  easily extendable to 
the higher-function instructions becoming  common  in 
minicomputers. It finally  was decided to develop a new 
architecture which  was of much  higher function, imple- 
mentable as  a family of models, and extendable, while 
still retaining some important features of the Systed7. 

The resulting Series/l family  was announced in 1976 
[lo], and was  hailed in the press as “IBM’s entry into the 
minicomputer business.” Looking back, it  might more 
accurately be seen as a  “reentry,” since the IBM  1620 
and 1130 clearly were minicomputers before the name 
was coined in the late 1960s. Since 1976, numerous 
Series/l enhancements have been announced, including 
new processors, additional peripherals, and  two  signifi- 
cant operating systems. 

Evolution of  engineering features 
The architecture and most features of small real-time 
computer systems are not unique or remarkable when 
compared to those of large data processing machines. In 
many cases, new functions or features on  small machines 
are well  known  on larger computers. The design innova- 
tion often is in  providing such a function on the small 
machine  within severe cost and space constraints. Three 
areas, however, always have been of particular concern 
to the designers and tend to characterize small real-time 
systems. These are the sensor inputloutput subsystems, 
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e Analog input subsystem 
The sensor I/O subsystems necessary to make measure- 
ments of, and provide control signals to, the physical 
world are lumped into four main  classifications:  analog 
input, digital input, analog output, and  digital output. Of 
these, the analog input (AI) subsystem always has repre- 
sented the most  challenging  design task, primarily due to 
the difficulty of accurately handling  low-level  analog 
signals  in the presence of high-level electrical noise. 

Two  common  analog process variables are tempera- 
tures measured with thermocouples and forces measured 
with strain gauges. The AI subsystem must  be able to 
read this information  without  adding expensive equip- 
ment for each input. Unfortunately, the signals from 
these devices are differential  signals  in the low  millivolt 
range that may be  imposed  on a common voltage to 
ground  (common  mode voltage, or CMV)  of many volts. 
To detect temperature changes of a few degrees with a 
thermocouple, for instance, it  may be necessary to mea- 
sure microvolt signal  differences  in the presence of 5-volt 
CMV and random process noise. In analog control sys- 
tems, heavy filtering  is used to eliminate  noise effects. To 
utilize the speed of a computer, however, individual 
readings  must  be taken in  milliseconds or less. Thus, the 
shared equipment  must have a wide bandwidth, and 
consequently is subject to errors from the high-frequency 
and transient noise  common  in an industrial plant. To 
achieve a total subsystem error of less than 0.1%, each of 
the units in the AI subsystem must contribute less than 
0.01 to 0.05% error. 

The first unit in the subsystem is a multiplexer required 
to switch the relatively expensive analog-to-digital  con- 
verter (ADC)  between hundreds or thousands of low- 
level analog inputs. For the 1710 and 1720,  IBM  pio- 
neered with the C. P. Clare Company in the development 
of miniature card-mounted mercury-wetted relays that 
matched computer packaging  and drive requirements 
[ 111. These relays provided the basis for a low-level  signal 
multiplexer with excellent signal  switching characteris- 
tics. 

The 1800 multiplexer  utilized  similar card-mounted 
dpdt mercury-wetted-contact relays in a “flying capaci- 
tor” configuration [12]. In this approach, a 300- to 600-pF 
nonpolarized capacitor is connected between the arma- 
tures of a dpdt multiplexer relay. With the relay not 
actuated, the capacitor is connected to the differential 
signal input through  two resistors, forming a balanced 
single-pole RC filter.  When actuated, the relay switches 
the charged capacitor to the high-impedance input of the 
ADC.  During the measurement period, therefore, the 
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subsystem physically  is disconnected from the process, 
providing  excellent  isolation  from external CMV and 
noise sources. 

The 1800 system also was  designed for the high-speed 
data-acquisition application requiring sampling rates of 
thousands of readings per second. For this, the “Bright 
Switch,” a back-to-back inverted matched  bipolar tran- 
sistor pair, provided  linear switching with a reasonably 
low  offset  voltage [13]. In the Systed7 and Series/l, the 
inherently low  offset  voltage of FET switching technolo- 
gy provides for high-speed electronic multiplexing  down 
to the 50-millivolt  full-scale range. 

Unbalanced leakage paths also cause errors due to the 
conversion of  CMV into a normal  mode  signal. To 
minimize this, leakage resistances to ground  must be 
maintained at more than 1000  megohms  in a 95% relative 
humidity  ambient environment. This finally  was achieved 
in  early systems through  empirically determined card 
layouts with  maximized leakage paths, by special card 
coatings, and by the use of desiccants in the multiplexer 
enclosure. 

In addition to an accurate multiplexer, the AI subsys- 
tem requires an ADC to digitize the low-level  signals  in 
the same difficult environment. The conventional ap- 
proach was to amplify the low-level  signal to a value 
compatible with  digital technology, usually +5 volts full 
scale. However, high-speed,  high-precision dc amplifiers 
were difficult  and expensive devices to build  in the 1960s, 
so the 1710/1720 utilized a unique low-level  ADC that 
performed digitization at the low  millivolt  level  in an 
electrically isolated front end [14]. This reduced error 
sources by converting to a digitized  value as early in the 
circuit flow as possible and obviated the need for a 
separate dc amplifier. 

To provide high performance at lowest cost, IBM 
offered the “Dual-Ramp” ADC  in 1%6 [15]. This  design 
uses a “ramp-up/ramp-down” technique that converts 
the analog  signal into a digital count in a manner that 
causes most component inaccuracies and drifts to cancel. 
It produces a result that is dependent primarily  on the 
long-term stability of the precision reference voltage and 
the short-term (millisecond) stability of all other compo- 
nents. This technique has been used in the vast majority 
of low-cost ADCs and  digital voltmeters since the early 
1970s. Since the technique is  limited  in speed, however, 
the Systed7 developed the “Triple-Ramp ADC.” This 
technique utilizes the same low-cost error-compensation 
concepts of the dual-ramp  ADC, but incorporates a high- 
speed “slew” and  low-speed “trim” approach to provide 
a much  higher conversion speed [16]. 
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Time response  features 
The primary architectural characteristic that distin- 
guishes small  real-time systems from  many other ma- 
chines is the interrupt structure. The real-time system 
must  be responsive to process events. Typically, the most 
important CPU responses are  to exceptional conditions 
which appear very infrequently, such as an  imminent 
unsafe condition. 

The characteristics of preemptive priority interrupt 
structures have evolved over the years to achieve a 
twofold purpose: First, they ensure that the highest- 
priority jobs  are initiated promptly, without  requiring 
completion of a lower-priority task currently executing. 
Secondly, they ensure that the CPU  is  spending  more 
time  on responding to events, rather than on  analyzing 
just what the event is. Without  any interrupt structure, 
the system must constantly poll under program control to 
look for these infrequent occurrences and, with hundreds 
of potential interrupt sources, this overhead could cause 
significant performance degradation. In contrast, the ear- 
ly general-purpose systems only  had to contend with a 
dozen or so interrupt sources, usually associated with 
inputloutput equipment. 

The IBM  1720 provided an interrupt system by adding 
hardware, outboard from the 1620 mainframe, to continu- 
ously scan nineteen internal and  up to fifty process- 
interrupt signals [17]. The interrupt system could  be 
masked and unmasked as a whole, and it was a preemp- 
tive system in that interrupts could  be nested (a second 
interrupt could interrupt the servicing of a first interrupt). 
Hardware vectoring of the interrupt was  provided to 
cause an automatic program branch to a service routine 
uniquely associated with each interrupt source. Howev- 
er, there was  no  multilevel hardware priority, so that each 
service routine had to decide whether an interrupt should 
be handled  immediately or deferred. 

The 1710 provided a less complex, nonpreemptive 
system in which  many events could capture the attention 
of the CPU software and an interrupt routine had to be 
completed before any  new interrupt could  be recognized. 
Identification of the interrupt source and the storage 
location of its service routine was  determined by custom- 
er-written software. This approach did not require the 
outboard hardware of the 1720 and  was  much lower in 
cost-a prime consideration in  designing the 1710. This 
simple interrupt system was comparable to “priority 
processing” in contemporary data processing systems. 

Based  on the experience with the 1720 and 1710, the 
IBM 1800 system in 1964 provided a true preemptive 
interrupt structure with  up to 24 priority levels, each with 445 
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16 sublevels. While servicing an interrupt, the system 
could  be interrupted only by a request on a higher level, 
and interrupts could  be nested indefinitely. Interrupts on 
lower levels were queued until  all  higher-level interrupts 
had been serviced. Each interrupt level  could be masked 
individually  by software to block interrupts from that 
level. When accepted, an interrupt caused a hardware 
branch to a service routine associated with the level. 

In these systems, the basic interrupt action was to 
cause a forced branch in the program  and to retain the 
address of the next instruction so that the interrupted 
program  could  be resumed after servicing the interrupt. 
In most cases, considerable “housekeeping” was needed 
to save the intermediate results of the interrupted pro- 
gram before servicing the new interrupt. Typically, all 
registers, accumulators, and indicators would have to be 
stored and return linkages established. This housekeeping 
delayed the response to the interrupt. 

In 1970, on the System/7, IBM  first  utilized the power- 
ful concept of duplicating the complete register set  for 
each interrupt level. A separate instruction address regis- 
ter, eight general-purpose registers, and registers for 
status information  were provided for each of four priority 
levels. This was equivalent to providing  multiple proces- 
sors with a common set of controls and  main storage. 
Thus, no intermediate results were saved explicitly; an 
interrupt simply activated a new set of registers. Conse- 
quently, within 800 ns (two storage cycles) of the occur- 
rence of an interrupt, the processor could be servicing the 
interrupt. The four System/7 interrupt levels each had 16 
sublevels. The sublevels provided direct hardware vec- 
toring for up to 16 interrupt sources on that level, 
avoiding software analysis to determine the source of the 
interrupt. 

Another very powerful concept introduced in the Sys- 
t e d 7  was the ability to change the priority of interrupting 
devices under program control. In previous systems, the 
priority was  hardwired at installation. In many real-time 
applications, however, the true importance of an inter- 
rupt depends on the process state at that instant. In the 
Systed7, the software, through a PREPARE instruction, 
could  modify the priority, setting both the level and 
sublevel for each interrupting device. The Series/l system 
provides essentially the same interrupt structure and 
functions. 

Industrial packaging 
The cost of the physical package is significant  in  small 
systems. Beyond its primary purpose of providing means 
to mount and enclose the electronic components, it must 

446 satisfy a range of requirements from  withstanding vibra- 

tion to aesthetic appeal. In addition, there is a strong 
economic incentive to use the mass-produced  packaging 
technology of larger  IBM systems. 

Modularity An important packaging requirement is 
modularity-so that the broad range of applications can 
be  satisfied  with a single system. For example, some 
applications require hundreds of analog inputs, some only 
a few, and some  none at all. Since the beginning, the 
package design has been oriented such that space, power, 
and cost need  not  always  be provided for the maximum 
system, only to be left unused by the smaller  typical 
system. The 1710/1720 systems followed the conventional 
computer physical  design  in that almost  every optional 
feature had a fixed reserved location. The sensor I/O 
termination blocks, matching cards, and  input-signal mul- 
tiplexing were the only areas where a modular,  building- 
block  design  was incorporated. The 1800 system also 
utilized  IBM standard boards and gates, but was  given 
added  flexibility by use of “floating features.” In this 
approach, certain gate locations (the same space and 
power) could house one of several different sensor I/O 
features. The  floating features, however, caused appre- 
ciable diiliculties  in  specifying cable lengths, providing 
build and test instructions, servicing the system, and 
determining the validity of a customer order. 

The Systeml7 introduced the first truly modular system 
in the evolution. Rack-style enclosures with  common 
power supplies were offered, providing two, three, six, 
nine, or twelve modular subframe positions, with the  dc 
power and system internal interface bussed to each 
position. The CPU and features were housed in individual 
subframes which,  with  few restrictions, could be used in 
any position. The approach proved to have its limitations, 
primarily  in  penalizing  small  configurations  with relative- 
ly  high cost. The common power supplies, designed to 
power two, three, or six modules, resulted in extra costs 
when  all  module positions were not utilized. 

Advances in  technology  allowed the Series/l to carry 
the modularity/flexibility concept much further. The use 
of high-frequency  switching techniques allowed  small 
low-cost power supplies to be incorporated in most 
individual  modules, thereby closely matching power ca- 
pacity to actual requirements. The use of higher-density, 
lower-unit-power integrated circuits provided the oppor- 
tunity for housing  more function in a module, thereby 
amortizing package cost over several features. A feature 
which required a separate subframe in Systed7 often 
requires only a single card in Seriedl. 

Interestingly enough, continuingly  increasing integrat- 
ed circuit densities are tending to resurrect the System/7 
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problem of  high packaging costs for small  configurations. 
When a total CPU, 128K bytes of storage (K = 1024), and 
an input-output adapter all fit  on  two or three cards in a 
module  which can accommodate about twenty cards, the 
package cost represents a significant portion of the total 
cost of a small  configuration.  Although  it is likely that 
industry standard rack enclosures will continue to be 
used, it is obvious that continued evolution and innova- 
tion in packaging can be expected. 

Industrial  environment The 1720 system  was designed 
principally for the heavy industries of petroleum  refining, 
steel plants, power generation, and the like. It was the 
first complete IBM system designed for such an industrial 
environment. The enclosure was  built of  IO-gauge steel, 
designed to survive an inadvertent impact  from a fork lift 
truck. The operating limits were specified at 40" to 122" F 
and 0 to 95% relative  humidity (85" F maximum  wet bulb 
temperature). The entire system had a vibration specifica- 
tion of k0.25 G ,  which required testing 2500-pound units 
at this vibration level. In addition the covers were gasket- 
ed and  closed with screw locks to allow  them to be 
maintained at a slight positive pressure to exclude hazard- 
ous or contaminating gases. 

The 1800 system was installed in a number of locations 
that had very corrosive atmospheres, particularly in 
paper pulp  mills. Initially, a few 1800 systems required 
mechanical replacement in less than a year due to corro- 
sion  which  would destroy the copper interconnections. A 
special impervious coating was developed for all circuit 
cards and boards to protect them from  rapid deteriora- 
tion. 

As a result of the 1800 experience, extensive testing 
was done to establish the quantitative corrosive effects of 
several common industrial gases and airborne particu- 
lates on standard IBM printed-circuit cards, boards, and 
mechanical devices. Several severity categories were 
identified for specification purposes based on the long- 
term effect  on IBM equipment. 

The Systend7 was designed to function in these envi- 
ronments without the need for special coatings  on  individ- 
ual cards and boards. An optional feature, the "Internal 
Air Isolation" (IAI) feature, offered a nonrefrigerating 
heat exchanger mounted on top of the enclosures. Recir- 
culated air inside the machine enclosure passes through a 
finned air-to-air heat exchanger to provide  cooling  with- 
out an interchange of inside and outside air. 

Several environmental monitoring devices were devel- 
oped in cooperation with the Field Engineering Division. 
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In a proposed installation suspected of having  high con- 
tamination levels, the Installation Planning Repre- 
sentative installed the device at the site prior to system 
installation. If the device showed unacceptable levels of 
gaseous contaminants, the  use of the IAI feature was 
required to validate the rental or maintenance agreement. 

Except for standard card coatings, no special provi- 
sions for gaseous and particulate contaminants were 
taken for the Seriesh. Several factors entered into this 
decision: The IBM semiconductor component packages 
had been improved and were less susceptible to corrosive 
gases. The fans in each module produced sufficient air 
velocity that particulates would  not collect on the cards, 
even though the filters had been eliminated. Finally, an 
analysis of applications showed that extra expense for 
additional protection was not warranted since relatively 
few systems would  be subjected to hostile environments. 
The air analyzer is still used to provide guidance to the 
user in  identifying severe environments so that appropri- 
ate measures, such as special air conditioning, can be 
employed. 

Evolution of IBM  real-time  operating  systems 
The IBM  1720  did not have an operating system, as such; 
the operating system functions were integrated directly 
into the application program. This increased the complex- 
ity of the application program, limited  flexibility,  and 
increased maintenance problems. The lack of a separate 
operating system on the 1720, however, clearly estab- 
lished the need for operating systems on future real-time 
hardware products. As a result, the Basic Executive 
System was developed for use on the IBM 1710 in 1962. 
This was a minimum-function dedicated operating system 
which provided an interrupt handler and  I/O driver sup- 
port for the real-time input/output channel. Its use was 
minimal, however, because a new operating system, 
Executive 11, was developed for the 1710 in 1963. 

Executive I1 was a major extension in function and 
design  and  was the first  IBM system to provide disk 
residence for user and system programs. It provided a set 
of error recovery routines for the I/O devices, as well as 
facilities for automatically exercising and testing I/O 
devices on line so as to enhance system availability. 
Further, Executive I1 provided for real-time  scheduling of 
user application programs based on  time interval, time-of- 
day clock, and external events. The concept of using 
external events (interrupts) as the scheduling stimulus 
was a significant advance over the batch orientation of 
then-current business-oriented computers. Application 
program preparation for Executive I1 was done off line 
using sps-11, a symbolic assembly language. Executive I1 
was a widely  used  and successful operating system. 447 
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The third operating system for the IBM  1710 was 
released in  1964. It was  called the FORTRAN Executive 
and  was a significant milestone in the evolution of real- 
time systems, since, for the first time, the high-level 
language FORTRAN was available for use by the real-time 
application programmer. While FORTRAN Executive had 
limited acceptance because it came late in the life of the 
IBM  1710,  it  pointed the direction for the use of high-level 
languages  in  real-time applications. All subsequent real- 
time systems have provided FORTRAN or other high-level 
languages for application development. 

In November 1964, the Time-sharing Executive (TSX) 
system was announced in conjunction with the IBM  1800. 
When delivered in early 1966, TSX  was the first  IBM 
operating system to provide real-time support with con- 
current background batch capability. This  allowed the 
user to  prepare, compile, and  link into real-time applica- 
tion programs without  taking the system off line. The 
background batch capability further allowed commercial 
and  engineering programs to  be compiled  and executed 
concurrently with  real-time programs. FORTRAN was the 
primary user real-time  language under TSX. The use of 
assembler language  could  be relegated to those areas 
where the performance or size of the generated code from 
FORTRAN was unacceptable. 

A specialized control program facility, called  PROS- 
PRO, was  developed  in 1966 to reside on top of TSX. It 
was intended primarily for use in the control of continu- 
ous processes such as those found in an oil refinery. 
PROSPRO  provided  built-in functions familiar to the 
process engineer, such as  the controller equation de- 
scribed earlier, which  could  be  invoked  using  terminology 
known to control engineers. In addition, it featured a 
“fill-in-the-blanks’’  programming technique whereby 
data from forms prepared by the control engineer were 
used to create tables that determined program sequences 
and computer responses needed to control the process. It 
allowed the control engineer to utilize the system with 
very little specialized knowledge of computers [18]. In its 
original release, it effectively supported the supervisory 
(setpoint) control philosophy, but a later release (PROS- 
PRO 11) for MPX provided  DDC. 

In 1%7,  IBM announced a new  operating system for 
the IBM 1800, called the Multiprogramming Executive 
System (MPX). It was the first IBM  system to provide 
multiple  fixed partitions into which  programs  could  be 
scheduled on the basis of external events, time-of-day 
clock, time interval, operator command, and the batch 
job control language [19].  MPX was capable of controlling 
multiple independent real-time processes, with batch 
program preparation and business and engineering  appli- 
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MPX introduced a number of new  facilities to  the real- 
time environment. For example, it was the first  IBM real- 
time system that effectively  could support communica- 
tions to  other systems and terminals using either Bisync 
or Stop/Start protocols. MPX also supported file sharing 
between systems. This allowed two MPX/1800 systems to 
be connected to an IBM 23  11 Disk File and concurrently 
use it for communications between the systems and for 
shared-data-set residence. In terms of support facilities, 
MPX provided the first Macro Assembly  Program for use 
on an IBM  real-time system. 

MPX made  significant advances in the area of error 
recovery, an important consideration for continuously 
running processes. First, while MPX  was a disk-resident 
system, it was not disk dependent and the system contin- 
ued to function if the disk failed. All  of MPX’s error- 
recovery facilities still  were operational with the disk 
down, as well as any user routines that were main-storage 
resident. The system also was  designed so that a custom- 
er engineer  could take a device off line, work on it, 
exercise it, and then bring it back on line after repair 
without having to  take  the system down. Multiple  levels 
of automatic backup were provided for I/O devices upon 
failure. Also, when power returned to the system after a 
power failure, MPX  would  automatically restart the sys- 
tem  and the application. 

MPX was  the  culmination of all the development 
knowledge  and experience obtained starting with the 
Basic Executive System back in 1%2. In 1968, the 
mission was moved  from San Jose, California to Boca 
Raton, Florida, resulting  in an almost completely  new 
development group. That, coupled with the initial con- 
troller orientation of the next system, resulted in a new 
series of real-time operating systems which evolved dur- 
ing the 1970s. 

In October of  1970, the IBM Systed7 was announced 
with the Modular System Prograd7 (MSP/7) as  its oper- 
ating system. As noted earlier, Systed7 was designed to 
rely on the  Systed37O for host support functions, such as 
program preparation. As such, the first release of  MSPl7 
was  designed to be  only a kernel for a real-time operating 
system. The initial  level of function was  similar to, but 
less than, that of Executive I1 on the IBM  1710. The first 
release primarily  was a collection of modules  which the 
user combined, with some additional programming, to 
create a control program tailored to the application. Due 
to  its assumed host dependency, MSPl7  did not support 
user or system program residency on a disk, but did 
support communications back to a Systed370 host. 
Program preparation was  provided by the Systed370, 
with  only  minimal  capability off line on the Systed7. 
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Version 5 of  MSP/7 was released in  1972 with  two 
major  new facilities. The first  was  Symbolic  File Support 
(SFS) and the second  was the Disk Support System (DSS/ 
7). These new  facilities provided for program transients 
resident on disk  and a monitor for off-line batch opera- 
tion. Functionally, Version 5 was similar to the FORTRAN 

Executive system on the IBM  1710. Further, the primary 
applications for MSP/7 were  now  in the communications 
systems area. In 1974, Version 9 of  MSP/7 was released 
and provided for a multipartition monitor  similar to MPX, 
essentially completing the evolution of  MSP/7. 

During the 1974-1975 time period, three other operat- 
ing systems were  developed for the Systend7 by groups 
other than the MSP/7 development organization. These 
were the Event-Driven Executive (EDW7), the Applica- 
tion  Program Generator (APG),  and the Application  Mon- 
itor. EDX/7  was developed at the IBM San Jose Research 
facility. It was  originally  designed as a laboratory-auto- 
mation  real-time system, but then was  generalized into 
IBM’s  first  real-time interactive system. APG was devel- 
oped at  the Application  Development Center in  Palo Alto. 
It was primarily oriented toward the continuous process 
control environment. Its significance  is  that it was the 
first  IBM  real-time system to provide PL/I as the primary 
user interface to the real-time facilities [20]. The Applica- 
tion Monitor was developed in  Boca Raton, and intro- 
duced several new concepts. Primary among these was 
the late binding of resources to an application  program 
m1. 

The IBM Seriesll was announced in November 1976 
with the Control Program Support System (CPS). This 
system was  similar  in concept to Release 1 of MSP/7. In 
April  1977, the second system announced for the  Series/l 
was the Real-time  Programming System (RF’S) [22]. RPS 
is a full-function, real-time operating system supporting 
dedicated, host, and interactive environments. The de- 
sign  of RPS was  heavily  influenced by the Application 
Monitor System, MSP/7 Release 9, and MPW1800. 

RPS is strong in the communications area with support 
of Start/Stop,  Bisync, and SDLC communications proto- 
cols. It also provides a multiple  terminal  management 
facility to aid  the user in communication  and interactive 
applications. It provides great depth of function in the 
areas of multiprogramming,  multitasking, data manage- 
ment, and program preparation. The program preparation 
facility under RPS is interactive in  design and supports 
FORTRAN, PLI, COBOL,  BASIC, and  Macro  Assembly lan- 
guages. Further,  the system provides for both late and 
early binding of system resources to application pro- 
grams. RPS is being  utilized in commercial, communica- 
tions, and real-time process applications. 

The Event-Driven Executive (EDX)  was announced on 
the Series/l in September 1977. This  was the first  time an 
IBM control program  had  bridged  totally  different  hard- 
ware architectures. The first release of  EDX was compat- 
ible with EDW7  and has been enhanced to support 
FORTRAN, COBOL, and PWI through its user interface [23]. 
For the user who does not require the power, flexibility, 
and  full function of RPS, EDX provides an alternative 
with the emphasis on ease of use and performance. 

Contributions  to  real-time  applications 
Throughout the evolution of these IBM real-time sys- 
tems, there has  been considerable effort  toward under- 
standing and supporting particular computer applications 
in industry. Literally hundreds of these applications have 
been developed by  IBM  singly  or  in cooperation with 
customers and many have contributed to advances in 
fields other than computers. It is not  possible to exhaus- 
tively examine these contributions in this paper but 
several will  be  noted on the basis of their significance or 
other unusual aspects. 

Shortly after the decision to build  the  1720, several 
technical support and research groups were established in 
San Jose. The groups participated in several early studies 
and  made contributions in the area of mathematical 
modeling and adaptive control [24].  As part of the activi- 
ty, a small distillation column, controlled by an 1800, was 
installed at the plant site in San Jose. This  was used to 
develop and test control algorithms [25].  It was also used 
for human-factors studies relating to consoles for use in 
the process industries. 

In addition to many process control applications, the 
1800 was used in oceanographic research aboard seagoing 
vessels. It provided the capability of collecting and ana- 
lyzing data from  towed transducers. Previous methods 
had involved the recording of data on magnetic tape 
which was returned to port for reduction  and analysis. 

Following the Systed7 announcement, a major  appli- 
cation development effort  was undertaken. Included was 
the development of the IBM  Bridge System [26]. The 
system included a ruggedized Systed7 interconnected 
with the ship radar, autopilot, and  navigational receivers, 
and a special operators’ console. The primary application 
of the system, and its main justification, is to assess the 
possibility of collision between the ship  and other ships in 
the vicinity. The system  digitizes the radar signal, auto- 
matically detects targets, and determines their courses 
and speeds. Using this information and a collision-assess- 
ment algorithm, the ship’s  officer is provided  with a 
prioritized display of potential collisions. In response, the 
officer can enter a tentative course or speed correction 449 

THOMAS J. HARRISON ET AL. IBM J.  RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981 



and, through  simulation, determine if this action will 
avoid the collision  without  creating another potential 
collision. If so, the officer initiates the action to alter the 
ship’s motion. In addition to collision assessment, other 
applications  include  position  fixing, route planning  sub- 
ject  to longitudinal  and other constraints, route tracking, 
and control of the autopilot utilizing adaptive control 
algorithms that take into account the state and character- 
istics of the ship ( e . g . ,  loaded or unloaded, minimum 
turning radius, etc.). 

Soon after announcement of the Systed7, it was 
recognized that it had potential in the communications 
industry, primarily because of its high speed  and  unique 
interrupt structure. As a result, a dedicated  development 
group  was  established to explore applications, particular- 
ly  in connection with telephone central offices. A number 
of applications were  developed  and sold, including the 
use of the system to record initiation  and  termination 
times of toll  calls to use as the basis for billing.  Special- 
ized operating systems  and  application  programs were 
developed for this and related communications uses [27]. 
This  work has been continued and  now utilizes the 
Series/ 1. 

Of particular significance in this  application  develop- 
ment is that it  was of benefit to both‘the user and IBM. 
Particularly in the early days, the potential of the comput- 
er was  not understood by all  engineers in the process 
industries. Through studies and  application development, 
industry became aware of the potential  and  how the 
computer  could  be  used to improve the control of pro- 
cesses and thereby improve the economic return for the 
customer. For IBM, it offered  an  opportunity to sell 
systems and, perhaps more importantly, to understand 
the needs of the industries so that future computers could 
more  efficiently or easily satisfy applications. 

Today, many users have the necessary expertise to 
apply computers with little or no assistance from the 
vendor. Nevertheless, application  development contin- 
ues as an aid to multiple-unit  marketing  and to make the 
use of computers easier for businesses and for individuals 
who are not  professional  programmers or engineers. 

Projections  for  the  future 
The evolution of  IBM real-time systems has not been a 
simple  straight-line extrapolation of the past. It has been 
influenced  by a large  number of economic  and technical 
factors. It is likely that the future will have the same 
characteristics, complete  with a few  dead ends and false 
starts. There are few, if any of us, who  in  1958 when we 
started on  this  evolution  could have foreseen where we 
would be today; the rate of change of technology has 
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rithmic extrapolation, the computer world twenty-five 
years  from now on the fiftieth anniversary of the Journal 
cannot be predicted by these authors. 

Some observations can  be  made  which  point a direction 
to the future. The “minicomputer” was spawned  some 
fifteen years ago as a minimum-capability stored-program 
machine, driven by the desire for low cost and  con- 
strained by  minimizing circuit counts. It was  devoid of 
any  significant software support and it flourished in an 
environment of experimentation as entrepreneurs sought 
to exploit it.  It has evolved to a sophisticated  machine 
with  significant software support and  computational  pow- 
er. It is pervasive throughout industry and  is produced by 
the tens of thousands every year. 

Now the “microprocessor” has appeared, as a result of 
the capability of semiconductor technology. It appears 
that the evolutionary cycle of the minicomputer is being 
repeated, only at an accelerated pace. The  first  micro- 
processor on a chip  was rudimentary compared to its 
minicomputer predecessor. It had  4-bit  words  and  only a 
few instructiqns and  was  very  slow.  Like the original 
minicomputer, the desire was  low cost and the constraint 
was the number of circuits that could  be fabricated on a 
single  silicon  chip with economic  yields.  But in a few 
years, more circuits became  available as a result of 
semiconductor technology advances and the 8-bit  micro- 
processor appeared. Soon after, the 16-bit microproces- 
sor was  announced  and is now in  common use, with  32-bit 
designs close behind. In the 1950s, computers were built 
one at a time, in the 1960s it was  by the thousands, and in 
the 1970s  by the tens of thousands. The microprocessor 
has already reached the hundreds of thousands and  is 
expected to reach  millions  in a few years. 

The software is lagging but, again, the rate of progress 
is  much faster than in the case of the minicomputer.  High- 
level  languages are available for the microcomputer  and 
operating systems have  been  developed.  Although the 
level of sophistication is less than that of minicomputer 
software, there is  no reason to believe  that it will remain 
so for long. 

What, then, is the future of the small  real-time comput- 
er? It already is obvious that many  of the real-time 
functions are being  assigned to microprocessors  buried in 
instrumentation, terminals, automobiles, television sets, 
and other equipment.  This will continue as the general- 
purpose programmable nature of the  computer and the 
low cost of the microprocessor make possible endless 
applications. The minicomputer will continue, but often 
in the role  played  in the past by the larger data processing 
host computers. Furthermore, the microcomputer has 
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become a component available for incorporation in larger 
computers as a replacement for random  logic. Its exis- 
tence  as  a component in a bigger system may or may  not 
be visible to the programmer or user of the system. When 
visible, it could provide an opportunity for parallel pro- 
cessing which will enhance the computing power of the 
system. But it also will require greater understanding on 
the part of the programmer concerning the control of 
concurrent processes. It is likely that new programming 
techniques and tools will be  developed to assist the 
programmer in this control. 

Although people in general are accustomed to bills, 
letters, and mailing lists produced by computers, they are 
not computer programmers  in the traditional sense, and 
never will be. The challenge of the future for computer 
companies is in  making computers available to the gener- 
al  public  without  requiring that they become experts in 
programming. The computer must be  as easy to  use  as the 
telephone and  must have the same transparency that 
masks the complex equipment, the call-routing  algo- 
rithms, and the like. The challenge of the future, there- 
fore, is human factors applied to  the use of computers. 
With a friendly user interface, the power of the computer 
as an information processor will  be  available to everyone 
as  a means of increasing productivity and  enhancing the 
quality of life. 
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