R. L. Taylor

Low-End General-Purpose Systems

Since the announcement of the IBM System/3 in 1969, IBM has been incorporating leading-edge technology in products
referred to as small general-purpose systems. With the many models of the System/3, System/32, System/34, and System/
38, IBM has introduced many technological advances addressing the needs of diverse customers, from the novice, first-
time user to the experienced user in the distributed data processing account. By identifying the goals, objectives, design
themes, major salient features, and development constraints, this paper reviews and highlights the technical evolution of
these products in terms of their systems layout, processor architecture, machine structure, and programming support.

Introduction

The System/3 was announced by IBM in July 1969 and
shipped in January 1970. This was the first in what has
become a family of four system lines including the Sys-
tem/32, System/34, and System/38. This family has en-
Jjoyed significant success in addressing the computing re-
quirements of small general-purpose computer users. A
companion paper on IBM’s small real-time systems is
also included in this issue [1].

These general-purpose systems were originally in-
tended primarily for installations not previously using
computers, as was the 1401 [2], and there have been ex-
tensive enhancements to these systems in response to ex-
panding customer requirements. These enhancements
were affected by improving price/performance tech-
nologies which, in conjunction with expanding customer
needs, significantly affected the key development deci-
sions.

This paper relates the reasons for some of these deci-
sions. It is not intended to be a complete history, but
rather to provide some insight as to why certain direc-
tions were taken. The following section gives a brief de-
scription of technological improvements and key require-
ments and constraints for each system. The next three
sections address the system layout, CPU architecture,
and machine structure. This is followed by a section that

discusses the evolution of software supporting these
products, including operating systems, languages, and ap-
plications, and the final section presents a brief summary
of the paper and reflects upon future trends.

Small general-purpose systems overview

In 1969, logic technology at IBM had just achieved three
logic circuits per chip. In 1978, the System/38 was an-
nounced with 704 circuits per chip. In 1969, memory den-
sity was less than 100 bits per chip; by 1978, it was 64K
bytes per chip (K = 1024) [3]. In file technology, record-
ing densities went from 20 kilobits per square inch in 1969
to 6 megabits per square inch in 1978 [4, 5]. Additional
advances in technology have occurred in packaging,
power supplies, input and output devices, adapters, and
other system components.

These technological improvements have significantly
increased capacities. In 1969, a System/3 renting for
$2300 per month (without program products) had approxi-
mately 3000 circuits in the processor, 24K bytes of main
storage, and 10M bytes of file storage (M = 1 048 576).
Memory increments were in units of 8K bytes renting for
$28.75/K-bytes. In 1980, a System/38 with an equivalent
monthly lease charge (again excluding program products)
had approximately 20 000 circuits in the processor, 512K
bytes of main storage, and 130M bytes of file storage,

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (I)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. @ VOL. 25 e NO. 5 ¢ SEPTEMBER 1981

429

R. L. TAYLOR

430

R. L. TAYLOR

Figure 1 Time-line of small general-purpose systems.

Models
Systemi3- 55 (256K)-M15C S138
S” g Mi0Card (48K) M15B/C M4 (96K, 128K)-M15 M3
Model ystem MI0Disk M6 (64K) MISA M8 Mi2 M15D (512K)-M15 M5
numbers,
memory
and file 5132 s34 (96K) [64M] (256K)
sizes Systemi32- (128K) [128M] 194M
Systemi34 256M
1403 Pr.
MLTA, 3410 Tp.
Dystemiz. H.P. 444 F. Direct 3270
ystem BSCA 5445F.,3270L. 5203 Pr.-M1S -12{M8} 3600 Tm. 3rd, 4th BSCA-M15
300 LPMPr. 1442Card Diskette 3284 Pr.-M15 3741Tm. -30{M15} S448F.-M8,10 3287 Tm. 120 Tm.-M15
1o
Systemii2 Diskette BSCA MICR SNA 2nd CA 9-16 L.W.S. 5255, 5225 Pr.
Sy’[""‘ oy ~[10M] SDLC L.5250 Tm 5250 M12 Cntr. 3600 Tm.
yseem wi6d R.W.S. KANJI
M15 Function & Perf. Imp:
Mis A ~ 8138
System/3- C&DSCP M6, RPG Auto Report Multiprog. CPF
System/38 RPGII BASIC,TP COBOL,OLE SPOOL RPG Concurrent Transaction IDU $/38
ASM FORTRAN, CCP MRIE 3270 M15D Supp. diagnostics logging RPG COBOL
Prog
RPG, SEU RPG II FORTRAN ICF, BASIC
DFU, SCP WSU,DFU, COBOL DDFF
System/32- SEU. SDA
System/34
[-\ v)
v gl
IAPs (Applications) Applications, Enhancements
70 7 7 73 74 75 76 77 78 79 80 81

All dates refer to the year of first customer shipments.
() = memory capacities in bytes; K = 1024

[1= file sizes in bytes; M = 1 048 576

ASM = Assembler

BSCA = Binary Synchronous Communications Adapter
C&D SCP = Card & Disk System Control Program(s)
CA = Command Adapter

CCP = Communications Control Program

CPF = Control Program Facility

DDFF = Distributed Disk File Facility

DFU = Data File Utility

IAP = Installed Application Program(s)

ICF = Interactive Communications Feature
IDU = Interactive Data Utilities

LPM = Lines Per Minute

MICR = Magnetic Ink Character Recognition
MLTA = Multi-Line Terminal Adapter

with memory increments of 256K bytes available at ap-
proximately $.55/K-bytes, or a cost reduction of more
than 50 to 1. These advances have allowed corresponding
improvements in application justification, customer and
IBM support personnel productivity gains, enhanced
systems operation and functions, and architectural struc-
ture. The evolution of these systems is shown in Fig. 1.

® System/3

The initial System/3 was primarily directed toward the
new-account customer who was expected to use the sys-
tem for accounting and financial applications serially exe-
cuted with transactions batched. A key assumption in se-
lecting interfaces was that the customer would have few

MRIJE = Multileaving Remote Job Entry
OLE =.0On-Line Linkage Editor

SCP = System Control Program

SDA = Screen Design Aid

SDLC = Synchronous Data Link Control
SEU = Source Entry Utility

WSU = Workstation Utility

Cutr. = Controller

F. = File

H.P. = High Performance
L. = Local

Pr. = Printer

R. = Remote

Tm. = Terminals
Tp. = Tape
W.S. = Workstations

trained data processing personnel. The major assumption
was the target rental—between $1000 and $2500 per
month.

These requirements translated into a number of system
objectives. Hardware and maintenance costs had to be
substantially reduced compared to those of systems then
available. Built-in capacity for on-site functional expan-
sion had to be provided. The user’s installation problems
had to be minimized by making the system compact and
the programming support easy to use. The System/3
Model 10 was IBM’s response to these objectives [6].
Based on the new 96-column card and its associated pro-
cessing machines, a new version of the RPG programming

.

IBM J. RES. DEVELOP. & VOL. 25 4 NO. 5 & SEPTEMBER 1981

language called RPG 11, new I/O devices including fixed
and removable disks, and a new systems architecture,
this system was widely accepted as an easy-to-use small
batch system. (Cost consideration prohibited use of the
System/360 architecture [7].) In March 1971, the support
for the System/3 Model 6 offered comparable facilities in
a small, versatile, operator-oriented system available
without card equipment for batch processing.

The product characteristics of the System/3 resulted in
customer application growth and demands for product en-
hancements. These demands took three major forms.
First, support the system as an interactive workstation-
oriented system. Second, expand to larger, more diverse
configurations with the software to use them efficiently.
Finally, provide an interactive operator-oriented system
with a rental substantially less than $1000 per month. The
following paragraphs expand upon each of these.

Through 1970 and 1971, hardware communications fea-
tures were announced, but the software support was re-
stricted to single-line Binary Synchronous Communica-
tions (BSC) [8] support via an RPG feature and assembler-
written user control code. This level of support did not
lead to the wide utilization of interactive terminals which
was being experienced on large systems [8]. Thus, in May
1972, IBM announced the System/3 Communications
Control Program (CCP), which supported an on-line net-
work of terminals with function similar to that provided
with larger systems. It enabled users at terminals to in-
voke applications, allowed programs to access a common
set of disk files, monitored the execution of several con-
currently executing tasks, and was tailored to suit both
batch and on-line environments. This feature provided
the facilities necessary to make the System/3 a strong,
competitive, interactive system.

Extensive interactive use with CCP and a larger num-
ber of transactions processed by a growing number of
batch applications resulted in the second major expansion
requirement. As Fig. 1 illustrates, this was addressed
through a number of extensions/additions of memory ca-
pacities, file sizes, magnetic tape, 80-column card equip-
ment, additional printer options, etc. In July 1973, the
third System/3 model was announced, the Model 15. This
model provided SCP support for multiprogramming, in-
cluding muitiple batch job streams, spooling, device-inde-
pendent data management, system history area, and a
new operator interface. The system and its software, in
conjunction with CCP, have provided the base for a mul-
tiprogramming, multitasking system which has had many
enhancements. There were also three additional versions
of this machine model and three new smaller interactive
models (Models 4, 8, and 12).

IBM J. RES. DEVELOP. & VOL. 25 @ NO. 5 SEPTEMBER 1981

® System/32

The third major expansion requirement was for an oper-
ator-oriented system leasing for substantially less than
$1000 per month. IBM’s response was the announcement
of the System/32 in January 1975. This was a full-scale,
fully-integrated computing system, the size of a desk, for
the price of adding a clerk. It incorporated substantial us-
ability features, powerful procedure capability, and ex-
tensive industry-oriented applications, allowing installa-
tion and use without customer programmers.

® System/34

Demand for a lower-cost, interactive, multiple-work-
station system with System/32-usability characteristics
led to IBM’s announcement of the System/34 in April
1977. The System/34 was a powerful, low-cost system
available for both batch and interactive environments. In-
tegrated into the system and its System Support Program
(SSP), the multitasking workstation support made the
System/34 an effective solution for the new-account user,
an existing user migrating to the new product, and the
larger account employing distributed data processing.

Satistying these objectives required many features not
commonly associated with products in this price range.
Examples included multiple processors, including a pro-
cessor executing system control code; new memory-man-
agement functions; microprocessors for device attach-
ment; productivity features; usability and installability
improvements; flexible scheduling of work; multinational
language support; and broad communications support un-
der the Interactive Communications Feature (ICF). As
shown in Fig. 1, the growth in functional capability and
options on this system has paralleled that of the System/3.

® System/38

In July 1980, IBM shipped to customers the System/3 suc-
cessor—the System/38. Employing the latest advances in
LSI logic circuitry, MOSFET main storage, RAM MOS-
FET and bipolar control store, system organization, and
processor structure, this system supported a new ap-
proach to systems design. It provided a high level of func-
tion, integrated data base facilities, excellent usability
characteristics, highly productive application and sys-
tems programmer facilities, and nondisruptive growth.

Examples of unique system functions included flexible
facilities for the scheduling of work in the system, com-
prehensive security and authorization support, powerful
message handling facilities, and a unique single-level-
store concept. The integrated data base facilities provided
described data, simultaneous use of shared data files, in-
tegrity facilities, full data save and restore functions, and
program independence from stored file structures.

431

R. L. TAYLOR

432

R. L. TAYLOR

Major usability characteristics included a new control
language, a data-description language for defining data-
base-file and display-screen formats, a powerful com-
mand-selection menu, and a prompting facility. Enhance-
ments in the installation of new applications were ad-
dressed through simplified programming facilities. In-
cluded were a new RPG III programming language, on-line
program debugging, powerful interactive source and data
entry utilities, and a query utility.

Nondisruptive growth was enhanced by the archi-
tectural approach. This architecture was structured in a
series of horizontal layers, each providing a consistent,
uniform, well-architected interface to the implementation
above it, allowing replacement through a given layer with
minimal impact. Subsequent sections of this paper ana-
lyze these systems in terms of their component parts. It is
important to remember that in each component area deci-
sions were made on a total system basis. There was no
attempt to individually optimize any component.

System organization and 1/O device attachment
Advances in technology have had a significant impact on
the selection of I/O and its attachment. The I/O character-
istics have, in turn, had a major impact on the archi-
tecture of the other system elements. Examination of
these components shows an evolution in terms of

o Unbuffered, program-controlled, native I/O adapters to
fully buffered, autonomous channel attachment.

o Fully synchronous data transfer between device and
central processor to fully asynchronous transfer be-
tween decoupled processor and channel.

® Primary reliance of unit-record input to reliance on dis-
play-oriented and industry-oriented terminals.

® System/3

One of the most important new elements of the System/3
was its medium—the 96-column card. Although capacity
was increased, higher performance was achieved by re-
ducing the mass and size of the card. Reduced product
cost was realized through a design requiring smaller and
fewer parts. More reliable techniques for cornering,
stacking, etc. were provided, and the card I/O equipment
was made more compact. Finally, increased capacity
through use of 96 columns was achieved.

A second feature, which subsequently became stan-
dard on these products, was an embedded, fixed disk us-
ing the fixed-block architecture [9]. The 5444 disk storage
drive achieved its low-cost, high-reliability, and capacity
requirements by providing two 14-inch magnetic coated
disks mounted on a common spindle. Because low-cost
load dump media such as diskettes were not available, the

upper disk was removable in a cartridge to control con-
tamination and facilitate handling. This allowed system
and frequently used application code and data to be resi-
dent, with remaining programs and data off line.

The importance of product cost influenced the choice
of device adapter characteristics. Two modes of data
transfer were provided. For most operations, devices
transferred data utilizing a noninterrupting multiplex
channel via cycle steal (suspension of processor activity
while a memory access was made to service I/0). This
reduced the main storage needed for interrupt handling to
that required to interrogate I/O completion. In situations
where device interrupts were required (e.g., communica-
tions) or program execution could not continue (e.g., pro-
gram check), eight prioritized interrupt levels, each with
separate registers, were provided.

To allow concurrent operation of a batch job stream
with the Serial I/0 Channel, telecommunications, or oc-
casional operator inquiry, a Dual Program Feature (DPF)
was provided on the Model 10. This feature allowed two
programs to be resident in main storage, with control
passing from one to the other.

Expansion into the multiprogramming, multitasking en-
vironment required more effective task and I/O data
transfer mechanisms. This resulted in an evolution ending
with the Model 15D including hardwired (personalized at
the AND/OR level with many part numbers) micro-
processors performing outboard control of displays, files,
and console; masking interrupts by level; two-byte chan-
nel operation; and four unique interrupt levels [10].

® System/32

The System/32 cost reduction objective required a dif-
ferent approach from the System/3 trend toward more
powerful /O handling. The removable file was deleted
and a diskette was provided. The display and keyboard
were integrated into the base system, which, with the
software support providing messages requiring indicators
on the System/3, gave enhanced service. To minimize
cost, all I/O operations and data transfer were controlled
by the central processor [11].

The native instruction set of the System/32 was opti-
mized for effective I/O control. The logic in the device
adapters was minimal. The processor performed data
transfer, including transfer by keystroke for the
keyboard, by byte for the diskette, and by sector for the
file. To properly control I/O and error conditions, an in-
terrupt mechanism was provided, consisting of seven in-
terrupt levels, each level having a complete complement
of registers.

IBM J. RES. DEVELOP. @ VOL. 25 @ NO. 5 « SEPTEMBER 1981

Denser FET nonlinear load circuits and logic tech-
nology and packaging considerations allowed the pro-
cessor and channel to be packaged on one logic board,
and the I/O adapters on single cards.

In attaching the 1255 Magnetic Character Reader, the
System/32 began a trend followed by the later systems.
This adapter included a programmable microprocessor
which had been originally developed for the System/7 [1].
This microprocessor, with a 4-bit data flow, provided for
16-bit instructions and 16-bit addresses. This unique com-
bination of data flow, address, and instruction lengths re-
sulted in a low product cost with efficient bit handling.

o System/34

In choosing attachment mechanisms on the System/34
and System/38, programmable microprocessors were
used as adapters. This had substantial advantages:

® Increased efficiency in the handling of data transfer and
device control.

e Expandability; for example, the movement of code exe-
cuting in the central processor to the adapter.

o Flexibility, allowing changes during development.

® Development, by minimizing engineering-change cost.

e Terminal independence with the potential of handling
device-unique functions in the microcode [12].

e Configurability, potentially providing on-line operation
diagnostics and service.

The System/34 employed the same microprocessor used
by the System/32 not only for 1255 attachment but also
for printer and workstation attachment. With more de-
manding attachments resulting from more workstations
and networking than this microprocessor could contain
(e.g., multiline telecommunications), a more powerful
controller was required. A choice of a more powerful mi-
croprocessor was required. The requirements for such a
microprocessor included device-handling functions, buf-
fering, multiple interrupt levels, effective polling func-
tions, reasonable product cost, and a straightforward in-
struction set for ease in programming. These were nearly
the same objectives used in the design of the System/32
processor. A processor with this architecture was already
included in the System/34 CPU complex, so the choice
was straightforward. A version of this processor was in-
cluded as the second System/34 controller.

Performance requirements for the high data transfer
rates of direct disk access devices required that these de-
vices on the System/3, System/32, and System/34 be at-
tached with hardwired controllers.

® System/38
These trends toward a more powerful I/O structure con-

IBM J. RES. DEVELOP. « VOL. 25 e NO. 5 e« SEPTEMBER 1981

tinued with the System/38 [13]. The demands of larger
configurations joined with the opportunities of new cost/
performance technology to provide a sophisticated sys-
tem organization. The following objectives were identi-
fied:

® Use the system’s virtual addresses in the channel.
e Exploit LSI technology.

e Provide multiple I/O attachment interfaces.

e Make the processor and channel asynchronous.

e Allow multiprogramming in the channel program.

This system employed a sophisticated virtual memory
addressing scheme. To avoid the problems inherent in
channel use of real addresses, such as programming relo-
cating addresses, a Virtual Address Translator interface,
separate from that of the processor, was provided. This
enabled the channel to execute commands or programs
containing virtual addresses, and by saving the translated
real addresses, to then cycle steal data into locations
identified by these real addresses. Special controls al-
lowed addresses to be retranslated during I/O operations.

The System/38 contained two types of adapters, one
hardwired for high-speed devices [14], the other micro-
programmed for lower-speed devices [12]. In the latter
case, a standard microprogrammed I/O processor had
multiple uses. This microprocessor, packaged with the
channel adapter as a field-replaceable unit, provided de-
vice control function. Separate data store was provided
for buffers, control tables, channel queues, and work
areas. The microprocessor had an 8-bit data flow, 8-bit
data addresses, 13-bit control store addresses, 32 LSRs
(Local Storage Registers) in the first 32 storage locations,
and two program levels with a single interrupt. This con-
troller was used for unit-record devices, for local work-
station support, and for the communications adapter [12].
The other adapter type was hardwired for high-speed
magnetic media control. It provided for high-speed data
transfer and multiple overlapped time-shared execution
of RAM instructions. Although not providing simultane-
ous data transfer from multiple drives, it did allow seek
overlap and rotational sensing identifying which drive
was ready. It also provided a standard, consistent data
flow supporting the channel interface and functions [14].

The requirements of multiplexing subchannels and in-
terfacing with control programs of the main processor are
not unlike those of multitasking system programs. This
function was provided in the task dispatcher of the sys-
tem, implemented as a part of the microcode of the ma-
chine. To ensure decoupling of channel and processor op-
eration, this same mechanism was used for channel oper-
ation. This had the further advantage of allowing
multiprogramming at the channel program level.

433

R. L. TAYLOR

434

R. L. TAYLOR

Central processing unit (CPU) architecture
Fundamental decisions in CPU design involve the archi-
tecture and functional organization. The primary factors
influencing both these areas include the cost of logic and
memory; the expected ‘‘typical’’ use of the system, in-
cluding importance of high storage efficiency and func-
tional levels of the instruction set; performance consid-
erations such as the relationship of internal processor
clock time to memory cycle; architectural independence
of technology choices; ease of implementation (e.g., com-
pleteness and symmetry of data types); and extendibility
considerations in the operation encoding, size of address-
ing space, number of registers, nature of data types, etc.

e System/3

The key objective was lowest cost on a system basis. The
target was execution of commercial programs written us-
ing RPG 11. Efficiently compiling RPG 11 source code into
machine-readable object code was essential. Relatively
high storage cost demanded high storage efficiency. The
original system was planned to have models with as much
as 24K, but extendibility to 64K was to be allowed. Lim-
ited multiprogramming was to be supported. Transaction
data had to be exchangeable with other systems.

On the basis of these considerations, the data types
chosen were characterized by EBCDIC bytes and in-
cluded both zoned and packed decimal for RPG II manipu-
lation of data entered from character-oriented devices.
Binary format data in two’s complement form was sup-
ported for interchange as well as for control program effi-
ciency. For storage utilization reasons, the byte was cho-
sen as the addressable unit, with two-byte addresses al-
lowing addressability to 64K. Storage efficiency also
caused selection of variable-length instructions of three to
six bytes with three operand-addressing formats. Each in-
struction contained a one-byte operation code and a one-
byte extender. For reasons of cost and expected use, no
general-purpose registers and only three index registers
were provided [10].

The processor was implemented via hardwired Mono-
lithic System Technology (MST) logic utilizing approxi-
mately 3000 circuits, yielding a processor with a cycle
time of approximately 1.5 us. The speed of the logic tech-
nology allowed the processor to perform multiple sub-
cycles within each cycle. Typical device operation was
designed without operation-end interrupts, and multi-
programming support was limited to the Dual Program-
ming Feature. The processor utilized a one-byte data path
for both instruction fetch and execution cycles.

With extension into larger configurations and more
complex environments, many decisions in the functional
organization changed in newer models. The instruction
set, for compatibility reasons, remained almost the same.
This can be exemplified by the Model 15D.

Through address translation, the maximum main stor-
age size was increased to 512K bytes, ECC (Error Cor-
recting Code) was introduced to provide correction of
single-bit errors and detection of double-bit errors, and
write/fetch storage protection under program control was
provided in 2K-byte segments. The address-translation
function used 32 8-bit registers residing between the
Storage Address Register and main storage. The pro-
cessor saved the 11 low-order bits of a logical address,
and used the 5 high-order bits to select one of 32 trans-
lation registers. The 8 bits from this register were con-
catenated to the 11 low-order bits to form a 19-bit ad-
dress, thereby allowing 512K-byte addressability. This
accommodated programs up to 64K.

The data path of the processor was further changed,
allowing a two-byte data channel and instruction-fetch, a
privileged mode of operation, maskable operation-end in-
terrupts from all devices for prioritized task switching,
and complete overlap of all I/O without data overrun.

o System/32

The System/32 processor, for product cost reasons, had
to fulfill a dual role. In addition to executing the stored
program, it had to be an efficient device controller. Since
the System/3 architecture had been formulated, the cost
of storage had been substantially reduced. The objective
was to effectively use this reduced storage cost to maxi-
mum benefit, and to maintain the System/3 instruction set

_to reduce development cost and time by reusing portions

of the System/3 control code. The hardwired control
function in the processor was replaced with writable-con-
trol-storage-resident code—microcode, which emulated
the System/3 instruction set [11].

The instruction set included register-to-register, regis-
ter-immediate, and register-storage instructions, with
eight 16-bit registers. The unit of addressing was a 16-bit
word with 16-bit addresses. Five interrupt levels were
used, with each having a full complement of eight regis-
ters for high-speed interruptibility ensuring no data over-
run when handling device data transfer.

o System/34

The objectives for the System/34 processor included im-
provement in price/performance; sufficient processor ca-
pacity to support an integrated multitasking, multi-
programming environment; substantial extendibility; Sys-

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

tem/32 compatibility to utilize some control code from
that system; and addressability beyond 64K.

An effective way of providing additional processing
performance is to add more processors. This technique
was used to offload 1/0 control by utilizing micro-
processors, resulting in more cycles available for program
execution. However, an additional step was required to
meet all the objectives: multiple processors for CPU func-
tions. Requirements previously stated made the approach
straightforward: nonhomogeneous processors each per-
forming special-purpose functions, one for system control
and one for execution of stored programs. The compati-
bility requirement made the choice of processor archi-
tectures obvious: the System/32 processor architecture
for the former (referred to as the Control Store Processor
or CSP), the System/3 processor for the latter (referred to
as the Main Storage Processor or MSP).

Offloading of device control allowed execution of con-
trol program functions, such as task dispatching and
memory management, in the CSP. This multiprocessing
approach required an architectural extension to provide
for processor synchronization. For the MSP, a supervi-
sory call function requesting service from the CSP was
added. CSP changes included an interrupt level dedicated
to MSP service, additional instructions for control of the
MSP, and a control-mode register to save status when
interrupted by an MSP-executing program.

The requirement to address more than 64K of main
store was satisfied with address translation as it had been
on the System/3. For the System/34, memory was shared
by two processors, so two sets of address-translation reg-
isters were provided [15].

o System/38

The processor on this system was designed to exploit LSI
technology to support the high-level architecture. An ex-
ample of how this was achieved is provided by the func-
tional organization of the interface to memory and its
management [16]. Objectives for memory included:

e Take full advantage of the minimum size to provide the
lowest cost while supporting full function.

e Facilitate nondisruptive growth by incremental storage
growth with no loss of natural performance.

e Decouple processor and memory technology.

e Utilize efficiently the very dense, low-cost, but rela-
tively low-speed memory.

A microprogrammed executable interface for the func-
tions supporting the high-level machine was highly desir-
able. However, the main-memory speeds prohibited use
of this memory for the control code. Thus performance

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

demands required that control store be decoupled from
main store, so 8K 32-bit words of RAM control store
were added to the system. However, even this control
store had cycle times that were relatively long when com-
pared to the possible internal processor clock cycle.
Thus, resources in the data flow were partitioned so thata
single microinstruction could simultaneously operate on
multiple elements. The interface was supported by 32-bit
instructions that employed this parallelism and were di-
rectly executed by the hardware. Providing the functions
through these relatively wide microinstructions (horizon-
tal microcode) had the further advantage of reducing the
size of relatively expensive control store needed.

Extendibility and generality considerations demanded
very large addressability at this executable interface. This
objective was satisfied by providing a 48-bit virtual ad-
dress yielding a 281-trillion-byte address space. This was
very large when compared to the maximum electronic
store available with the system. Thus, a sophisticated ad-
dress-translation process was developed [17].

Providing the high-level function at the executable in-
terface supported by horizontal microcode was a multi-
level queue-driven task-control structure. This included a
prioritized task dispatcher integrating I/O and program
processing tasks, a queued message-handling facility,
stack-manipulation functions, sharing, index handling,
and a powerful call/return mechanism.

This internal interface included 16 six-byte registers
which were used as six-byte base registers or partitioned
into four-byte and two-byte registers. Eight of the regis-
ters could be further partitioned into 16 one-byte regis-
ters. The scalar data types supported were binary, zoned,
and packed decimal data, character data, and two- or six-
byte address data. The instruction formats were very sim-
ilar to those employed by System/360-370.

High-ievel machine structure

The System/32 processor executed instructions for I/0O
control and instruction-set emulation. The addressable
storage for each function was separate from the other.
During development, it became clear that the memory for
the nucleus of the operating system and the microcode
executing in control store would both be exceeded. This
would have required two additional storage increments, a
major product cost increase. However, by recoding some
portions of the nucleus in control-store code, only a single
increment was required.

With the addition of a second processor, the offioading
of I/O control to microprocessors, and the decreased cost
of storage, the System/34 was implemented with more

435

R. L. TAYLOR

436

R. L. TAYLOR

Applications
"~ System/34
MSP
suj ted
System/38| El?g;:gteive High-level e
C};F ssp Ut languages System/34
SSP
< System/34
CSP interface
Machine interface e
| Verticalmicrocode _ _ _ _ _ _ _ _ L~ - System/34
System/38 CSP hardware
HMC
System/38
hardware Hardware

Figure 2 High-level system architecture. Legend: CPF—Con-
trol Program Facility; HMC—Horizontal Microcode; SSP—
System Support Program; MSP—Main Storage Processor;
CSP—Control Store Processor.

system-control code written in microcode executed by
the CSP. This included supervisor-call handling, I/O con-
trol functions, memory management, transient handling,
and task dispatching. As it was enhanced, the System/34
experienced another benefit. Movement of this code to
the CSP effectively made the MSP instruction set more
functional and allowed enhancements and algorithmic re-
placement of CSP code without change to MSP code.

The System/38 formalized this concept [18]. As shown
in Fig. 2 for both System/34 and System/38, the system
structure was based on a set of horizontal layers, each
presenting an architected opaque interface to the next
layer. The hardware interface was provided through a set
of instructions to the horizontal microcode, which inter-
faced through the executable interface to the vertical mi-
crocode, which interfaced to the program products and
applications through an architected Machine Interface
(MI). Executing through the machine interface, the Sys-
tem Support Program, called the Control Program Facil-
ity (CPF), interfaced to the other program products
through a controlled set of macros, and to the customer
applications and operations through the Command Lan-
guage (CL) and the Data Description Specifications
(DDS). The focus of this section is the vertical microcode
supporting the architected Machine Interface (MI). The
key objectives addressed by this interface included

® Increased program and data independence from hard-
ware implementation and configuration.

® Increased consideration of RAS.

e Extended integrity functions in the machine.

® Machine-supported security and authorization.

o Efficiently supported, commonly used functions.

e Supported key system functions.

This resulted in a machine interface functionally similar
to a typical high-level language definition. System inde-
pendence was achieved by absorbing hardware depen-
dencies into vertical microcode. Examples included ad-
dressing all elements as if they were a part of a single-
level store, and relying on the microcode to handle store
allocation and transfers between levels of store; no archi-
tected bit representation for objects; hidden internal data
structures and relationships; and generic instructions
late-bound with respect to data type and length.

The MI enhanced RAS considerations [19] in several
ways. Every function had a well-defined, consistent, ar-
chitected interface for which there was completeness,
symmetry, and mapping among all data types, and for
which there was only one way of performing each func-
tion. Internally there were standard synchronous and
asynchronous mechanisms. Extensive machine service
functions were available to diagnose, isolate, and correct
problems. Approaches conducive to providing reliability
in code written against that interface (e.g., standard ma-
chine-supported call/return mechanisms) were provided.

The MI improved system integrity characteristics
through an object-oriented interface in which each con-
struct (program data object, control block, work space,
etc.) was explicitly created with certain capabilities de-
fined in the ubject and checked prior to use. Addressing
of any object was via a symbolic pointer which the ma-
chine resolved and which, if modified, could no longer be
used for addressing. The machine also assumed responsi-
bility for the management of user-oriented data, providing
facilities for the backup, retrieval, and maintenance of the
data.

Advances were provided in security and authorization
through MI. By ensuring process execution indepen-
dence, each user was isolated from others. All resources
were owned through an object called a user profile which
determined the user’s protection domain. All objects
were referenced through capability addressing.

The MI provided efficient support for commonly used
program functions. For example, late binding with re-
spect to data type, length, and location for computational
instructions was provided by dictionary addressing, refer-
encing values within a space object associated with the
code in that program. Powerful generic instructions were
provided. Complex data types such as array processing
were supported.

Efficient execution in the multitasking, muiti-
programming environment required machine provision
for control functions. The MI contained either total sys-

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 « SEPTEMBER 1981

tem support or substantial facilities, particularly in the ex-
ecution phases (as opposed to creation or maintenance)
for management of storage, processor allocation, events
and exceptions, source/sink device and data handling,
data base, communications, and resource management.

One way of characterizing a system is to examine its
concurrency attributes. Most systems have provided for
some level of asynchronous machine operation, mini-
mally I/0O transfer. The MI substantially increased the
number and changed the nature of asynchronously exe-
cuting facilities. These included dispatching functions,
storage management functions such as memory and
DASD page reclamation and directory management, ob-
ject creation, system recovery functions, save/restore op-
erations, and asynchronous linkage facilities. Synchro-
nous operation was maintained in the scan, decode, and
execution of computational and control instructions,
security and authorization checking, and exception han-
dling.

Usability and productivity considerations were primar-
ily directed to the external user interface. The intent was
to assume as much management of resources by the sys-
tem as possible. Machine independence considerations,
in turn, required that these resources be managed by the
machine. These requirements had to be balanced against
performance considerations, requiring at least partial re-
source management by MI processes. Care was exercised
in such instances to ensure that these resource manage-
ment functions were not tied to specific choices of appli-
cation structure, functions, or attributes. This allowed
performance tuning and configuration changes to be made
without affecting the application. Further, user in-
volvement was minimized by containing these functions
within the CPF.

The following are examples of special provisions for
performance. MI control of resource management con-
structs was provided, allowing a dispatching priority to be
specified for a process. Main store could be pooled, so a
specific set of processes was limited in the number of
pages used for its working store. Pages could be grouped
by affinity to allow access by group. Multirecord sequen-
tial data base transfer could be specified, and was particu-
larly useful for performing functions such as sorting. In-
tegrity of address pointers was ensured through use of
special memory tags set if a pointer was modified, thereby
disallowing use of that pointer for addressing. Alterna-
tively, objects containing pointers could have been re-
quired to be in segments separate from data. Finally, the
overhead considerations in the interpretation of the ge-
neric late-bound high-level instruction set resulted in a
step to prebind an MI program.

IBM J. RES. DEVELOP. & VOL. 25 & NO. 5 ® SEPTEMBFR 1981

This concept of an architected, high-level machine in-
terface was the logical evolution of the increased capabili-
ties of the system hardware. It represented an effective
way to address major design issues for the entire system.
As the largest and latest of these products, the System/38
represented a continuation of a trend that began with the
introduction of the System/32.

Operating systems/languages

Since productivity dictates data processing personnel
costs, the software support has substantial leverage on
the customers’ investment. The key decisions made rela-
tive to the software concerned 1) its operational ef-
fectiveness, 2) the choice of system environments and ap-
plication structures, 3) the technical concepts employed
in the design, 4) the nature of interfaces, 5) the distribu-
tion of system support, and 6) IBM-supplied applications.

Operational effectiveness refers to two factors. First
are the human factors provided for each user. The second
refers to the system performance attributes measured
both in terms of batch and interactive transaction rate and
interactive response time. As technology costs allowed
addressing of new environments and higher transaction
rates, additional system functions and interfaces were
provided. The programming support increased in general-
ity through, for instance, remote/local transparency for
displays. It provided the new 5250 terminal family sup-
port with enhanced operator guidance such as menu se-
lections, levels of system messages, etc. It supplied more
powerful functional capabilities, including workstation
application tasks which were interruptible. Additionally
provided were increased recovery facilities such as auto-
matic system recovery following power failures, and sim-
plified installation with the system operational as distrib-
uted.

System environment types include batch, real-time,
and interactive. The original System/3 supported only the
batch environment. (The systems described in this paper
do not address the real-time environment [1].) With the
System/3 CCP, the user had available a subsystem sup-
porting general-purpose interactive transactions and lim-
ited transaction-driven processing. The System/34 gener-
alized this through inclusion of the necessary support in
the System Support Program [15]. The System/38 contin-
ued this trend by providing full functional capability for
general-purpose interactive transactions and by enhanc-
ing transaction-driven applications through a transaction-
routing facility with a control language interface. It also
addressed time-sharing with such interactive productivity
aids as the ability to dynamically set checkpoints or dis-
play variables interactively.

437

R. L. TAYLOR

R. L. TAYLOR

Technical concepts include a number of topics: the
means by which a system binds data to programs, data
and programs to store, etc.; units of and algorithms allo-
cating resources; asynchronism of task execution depen-
dent on sharing; the means of handling data; and con-
currency attributes as defined by the degree to which the
system supports multitasking and multiprogramming.
Space limitations prohibit a detailed examination of the
evolution within these systems of each of these attributes.
Concurrency will, however, serve as a typical example of
the increasing capability in these systems over time.

System/3 allowed for single-job-stream execution with
all system resources not required by the supervisor avail-
able to each program. With CCP, a subsystem executing
under control of SCP for such functions as program load,
1/0, console management, and physical communications,
up to 15 multiple predefined tasks concurrently resident
and executing could share a limited number of predefined
system resources including data files and terminals.

The Model 15D expanded concurrency by supporting
three independent partitions, multiprogrammed with
SPOOL, to which serially reusable resources could be al-
located. Memory was allocated during system generation
allowing later modification. The user could prioritize the
scheduling of jobs and dispatching of tasks [6].

Generalization continued with the System/34 SSP. The
interactive support was integrated. No absolute con-
straint was provided on the number of tasks concurrently
executing. The SSP dynamically managed prioritized bal-
ancing of workstation response characteristics with batch
throughput. A single workstation could initiate multiple
tasks and a single task could perform at multiple work-
stations. Program swapping between the file and memory
allowed storage overcommitment. Diagnostics could run
concurrently with user tasks [15].

This increase in flexibility continued in the System/38
[20]. Resource management functions were implemented
in the machine with all objects contained in a single level
of storage. The requirement to support a wide variety of
interactive transaction types resulted in a new concept,
the user-defined subsystem. This allowed the user to tai-
lor one or more operating environments into which his
jobs could be grouped, without restricting the application,
through a single rule-driven mechanism [16].

The interfaces to a system include 1) the traditional
high-level languages specifying the algorithms in the ap-
plication; 2) specification languages defining the configu-
ration, screen formats, record formats, etc.; 3) utility
functions; and 4) languages for operator and job control.

Key to understanding the interfaces on these systems is
the role played by RPG. The most commonly used pro-
gramming languages in the 1960s were COBOL, FORTRAN,
BASIC, and PL/i. These languages are all procedural, re-
quiring the programmer to think through his execution se-
quence and explicitly control files, labels, data structures,
etc. This meant that the programmer’s time had to be di-
vided between the application and the system. It also
meant that additional effort was required to document and
debug programs. These attributes were judged to be unac-
ceptable for the users of these systems, even in light of
their corresponding advantages, which included complete
control and support for all forms of I/O and the ability to
optimize on resources. Thus, the decision was made to
provide these systems with RPG as the primary language.

RPG was defined in the 1950s to execute on the IBM
1401, providing easy preparation of business reports from
record descriptions. It was a nonprocedural language exe-
cuting with fixed-flow logic allowing the programmer to
focus on his file and record descriptions and data opera-
tions, not on system characteristics, resources, house-
keeping, and documentation. A new version was defined
and implemented on the System/3—RPG 11.

As these systems addressed larger configurations, more
complex applications, and different operating modes, two
directions were taken. First, other high-level languages
were provided on some systems (FORTRAN, COBOL, and
BASIC are supported). Second, the disadvantages inherent
in RPG as a nonprocedural language were addressed
through additional extensions. A new language version,
RPG 111 [21], was provided on the System/38. This version
enhanced execution sequence control for I/O and data
base processing, data and device independence, struc-
tured programming, and variable binding of any program
element through prespecification.

RPG was primarily oriented toward the batch processing
of application data. With the emphasis for on-line inter-
active applications on the System/34, a new tool for pro-
gram development was produced —the System/34 Work
Station Utility (wsU). wsSU was a nonprocedural, fixed-
format application language based on RPG. It was in-
tended for fast transition to workstation applications per-
forming interactive entry, edit, and correction.

The second class of interfaces consisted of the specifi-
cation languages. System/3 required that each program
contain its own version of the environment: its device de-
scriptions, record formats, file formats, and screen de-
scriptions. Evolving use required a new set of principles
emphasizing modularity in application construction
through the separation of definitions from logic flow.

IBM J. RES. DEVELOP. & VOL. 25 @ NO. 5 & SEPTEMBER 1981

Various tools were provided, including screen defini-
tion via the System/3 Display Format Facility, device as-
signment via the control language, etc. On the System/38,
the Data Description Specification [22] provided the inter-
face for both data base physical descriptions and logical
usage [23] and screen format definition. In addition to
standard system-utility functions, the increasingly inter-
active orientation of these systems required inclusion of
display-oriented interfaces, including

e Nonprogrammer handling of data files.

e Source entry, including syntax checking.

® Screen design for easily defining, updating, and dis-
playing screen formats.

® Inquiry and query facilities to display information.

The final interface, the control language, controlled
system operation. System/3 employed a single syntax
supporting its two control language functions: The Opera-
tion Control Language (OCL) used in batch processing
provided the basis for job streams, and the Operation
Control Commands (OCC) allowed operator control from
the system console. As the system expanded into new
modes of operation, additional interfaces were provided.
For example, CCP had two additional interfaces for its
generation and for the assignment of specific sets of ter-
minals, files, programs, and system environment.

The System/32 and the System/34 incorporated their in-
teractive support as part of the base product. These func-
tions were included within more powerful implementa-
tions of ocL and OCC, providing parameter passing, sub-
stitutions, conditional statements, and nesting.

The System/38 continued this integration, including
within its control language interfaces to its significant new
functions. However, the need for a flexible control lan-
guage allowing system function to be invoked from a pro-
gram, the system console, and a remote or local terminal
with user tailorability demanded a new syntax. The Sys-
tem/38 control language used a free-form syntax with
commands allowing keyword or positional parameters
[24]. Its implementation was based on a rule-driven ap-
proach in which a detailed description of each command
was stored in a rule describing validity checking, defaults,
prompt text, etc. This resulted in improved command
consistency and reduced development requirements. In
addition to command procedures for inclusion in batch
job streams, it provided a compiler offering display opera-
tion, declared variables, and IFF-THEN/ELSE and DO func-
tions.

Another area which experienced growth was the distri-
bution of data processing. Requirements in this area

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 « SEPTEMBER 1981

evolved over time from remote job entry utilities with
batch transmission to facilities allowing the user to write
applications with the system handling all communications
protocol and remote system dependencies. The best ex-
ample of the latter type of support was the System/34 In-
teractive Communications Feature (ICF) [25]. ICF al-
lowed the user program to interface to a remote system in
exactly the same manner it interfaced to a display. ICF
handled all device and communication dependencies,
provided the communications link and error recovery,
supported batch and interactive communications, al-
lowed remote invocation of System/34 programs, and in-
terfaced with CICS/VS, IMS/VS, 3270 BSC emulation to
System/370, CCP, and other devices using BSC pro-
tocols. In addition, the Distributed Disk File Facility al-
lowed an application program to access a disk file located
on another System/34 or System/3 Model 15D.

A critical element in the marketing success of these
systems has been the IBM-provided application products.
The typical customer, without trained data processing
personnel, wanted end-use application solutions. IBM,
with the relatively low cost of these systems, needed to
reduce marketing expense by increasing field productiv-
ity. The solution was to provide industry-oriented and
country-specific application products consisting of com-
mercial and financial applications, tailorable to specific
requirements, allowing service for each user’s specific
system and skill level. The intent was to provide turnkey
solutions to customer application needs.

Summary and conclusions

IBM has provided small general-purpose systems which
have employed and initiated advances in technology, sys-
tems architecture, and software support to meet customer
needs. The original System/3 concept has evolved to the
point where, in the System/34, it continues to provide a
solid architectural base for future expansion. A revolu-
tionary new approach to systems design and architecture
in the System/38 has been used to provide unique capabil-
ities to its users. These systems have demonstrated how
the advantages of lower-cost, better-performing tech-
nologies were used to provide expanded system capabili-
ties meeting ever-growing customer needs.

These trends can be expected to continue. Tech-
nological developments and customer requirements will
continue to allow, if not demand, continued expansion of
the product line. This expansion will occur in three di-
mensions: in terms of cost, both upward and downward;
in function, by addressing new, advanced application
areas of data processing, including support of new indus-
try-oriented terminals; and in continued improvement of
price/performance. Continuing improvements and expan-

439

R. L. TAYLOR

440

R. L. TAYLOR

sions of distributed data processing support can be ex-
pected. Further technological advances will be applied to
continue to reduce the complexity of using these systems.
These changes can be expected to be both evolutionary
and revolutionary, achieving new system breakthroughs.

References

1.

10.

11.

12.

13.

Thomas J. Harrison, Bruce W. Landeck, and Hal K. St.
Clair, ‘‘Evolution of Small Real-Time IBM Computer Sys-
tems,” IBM J. Res. Develop. 25, 441-451 (1981, this issue).

. C.J. Bashe, W. Buchholz, G. V. Hawkins, J. J. Ingram, and

N. Rochester, ‘“The Architecture of IBM’s Early Comput-
ers,”” IBM J. Res. Develop. 25, 363-375 (1981, this issue).

. E. W. Pugh, D. L. Critchlow, R. A. Henle, and L. A.

Russell, “‘Solid State Memory Development in IBM,”’ IBM
J. Res. Develop. 25, 585-602 (1981, this issue).

. L. D. Stevens, ‘‘The Evolution of Magnetic Storage,”” IBM

J. Res. Develop. 25, 663675 (1981, this issue).

. Andrew A. Gaudet and Bobby J. Smith, ‘‘An Overview of

the Technology in the IBM 3370 Direct Access Storage,”
Disk Storage Technology, 1-2 (1980); Order No. GA26-1665-
0, available through IBM branch offices.

. The IBM System/3 Model 15D Cyclopedia, Order No. Z280-

0076, available through IBM branch offices.

. A. Padegs, ‘‘System/360 and Beyond,” IBM J. Res. De-

velop. 28, 377-390 (1981, this issue).

. David R. Jarema and Edward H. Sussenguth, ‘‘IBM Data

Communications: A Quarter Century of Evolution and Prog-
ress,”’ IBM J. Res. Develop. 25, 391-404 (1981, this issue).

. David L. Nelson, ‘“The Format of Fixed-Block Architecture

in the IBM 3370 DAS,”’ Disk Storage Technology, 34-35

(1980); Order No. GA26-1665-0, available through IBM

branch offices.

IBM System/3 Models 8, 10, 12, and 15 Components Refer-

ence Manual, Order No. GA21-9236, available through IBM

branch offices.

S/32 Functions Reference, Order No. GA21-9176, available

through IBM branch offices.

E. F. Dumstorff, ‘‘Application of a Microprocessor for I/O

Control,”” IBM System/38 Technical Developments, 28-31

(1978); Order No. G580-0237, available through IBM branch

offices.

R. L. Hoffman and F. G. Soltis, ‘‘Hardware Organization of

the System/38.”” IBM System/38 Technical Developments,
A

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.

25.

19-21 (1978); Order No. G580-0237, available through IBM
branch offices.

J. W. Froemke, N. N. Heise, and J. J. Pertzborn, ‘‘System/
38 Magnetic Media Controller,”” IBM System/38 Technical
Developments, 41-43 (1978); Order No. G580-0237, avail-
able through IBM branch offices.

System/34 System Support Reference, Order No. SC21-
5155, available through IBM branch offices.

L. A. Belady, R. P. Parmelee, and C. A. Scalzi, ‘“The IBM
History of Memory Management Technology,” IBM J. Res.
Develop. 25, 491-503 (1981, this issue).

M. E. Houdek and G. R. Mitchell, ‘‘Translating a Large Vir-
tual Address,” IBM System/(38 Technical Developments,
22-24 (1978); Order No. G580-0237, available through IBM
branch offices.

S. H. Dahlby, G. G. Henry, D. N. Reynolds, and P. T. Tay-
lor, ‘‘System/38—A High-Level Machine,”’ IBM System/38
Technical Developments, 47-50 (1978); Order No. G580-
0237, available through IBM branch offices.

M. Y. Hsiao, W. C. Carter, J. W. Thomas, and W. R. String-
fellow, ‘‘Reliability, Availability, and Serviceability of IBM
Computer Systems: A Quarter Century of Progress,”” IBM
J. Res. Develop. 25, (1981, this issue).

H. T. Norton, R. T. Turner, K. C. Hu, and D. G. Harvey,
*‘System/38 Work Management Concepts,’”’ IBM System/38
Technical Developments, 81-82 (1978); Order No. G580-
0237, available through IBM branch offices.

S/38 RPG III Reference and Programmer’s Guide, Order
No. SC21-7725, available through IBM branch offices.

C. D. Truxal and S. R. Ridenour, ‘‘File and Data Definition
Facilities in System/38,”’ IBM System/38 Technical Develop-
ments, 87-90 (1978); Order No. GS580-0237, available
through IBM branch offices.

W. C. McGee, ‘‘Data Base Technology,”” IBM J. Res.
Develop. 25, 505-519 (1981, this issue).

J. H. Botterill and W. O. Evans, ‘‘The Rule-Driven Control
Language in System/38,”’ IBM System/38 Technical Devel-
opments, 83-86 (1978); Order No. G580-0237, available
through IBM branch offices.

System/34 Data Communications Reference, Order No.
SC21-7703, available through IBM branch offices.

Received June 27, 1980; revised November 7, 1980

The author is located at the IBM Information Systems
Division laboratory, 3605 Highway 52N, Rochester, Min-
nesota 55901.

IBM J. RES. DEVELOP. & VOL. 25 ¢4 NO. 5 ¢ SEPTEMBER 1981

L J

