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Evolution of  Real-Time  Computer  Systems  for  Manned 
Spaceflight 

This paper  describes the evolution of ground-based  command and  control systems used to  support NASA’s manned 
spaceflight program; it is an  encapsulation of twenty  years of development  ofreal-time command and control systems at 
NASA’s Real-Time Computer Complex (RTCC) in Houston,  Texas. A brief description of manned spaceflightprograms, 
their accomplishments, and IBMs  involvement  is provided  as background  information.  Emphasis is given  to the develop- 
ment of RTCC systems,  as well as  to the technological  and  architectural  changes affecting this development. Also 
described are  experiences  gained in the management of complex, real-time  software systems and the tools and tech- 
niques used in the development  process. 

Introduction 
IBM has designed, developed, and supplied computer 
hardware  and software systems  to support the U.S. 
manned space program  since its inception. From  Project 
Mercury, America’s first venture  into  space,  to  the  cur- 
rent  Space  Shuttle program, the primary U.S. space 
transportation  system for the  remainder of this century, 
IBM has contributed to  the  advancement of the  data  pro- 
cessing systems. Included have been  onboard computers 
and  programming for Gemini spacecraft,  Saturn  launch 
vehicles, the Skylab space  station,  and  Space  Shuttle or- 
biters.  Additionally, the  Corporation  has pioneered 
ground systems  to  support mission  control  activities  by 
providing computers  and developing  software systems for 
the real-time computer  complexes (RTCCs) of every 
manned spaceflight program to  date. 

This  paper is intended to highlight some of the  more 
significant factors in the evolution of RTCCs and  to  sum- 
marize important  advances made in technology, system 
architecture, and the development process. A brief sum- 
mary of U.S. manned spaceflight programs is followed by 
an  overview of the RTCCs  used to support these  pro- 
grams. The  paper  further details the evolution of RTCC 
hardware  and software from  both  architecture  and  tech- 
nology perspectives,  and  concludes with some of the sig- 
nificant lessons learned  concerning  the  software systems 
development  process. 

U.S. manned  spaceflight  programs 
Although studies were  made  by the U.S. Air Force  as 
early as 1956, serious  planning for a manned space  pro- 
gram did not begin until Project Mercury, which had  its 
technological roots in studies of the National  Advisory 
Committee for Aeronautics (NACA),  predecessor of the 
National  Aeronautics  and  Space Administration  (NASA). 
High points of Project Mercury were the launching of the 
first American into a 15-minute sub-orbital flight, and  the 
launching of the first American into  earth  orbit [l]. 

Project Gemini was  the  next  venture in U.S. manned 
spaceflight; it used a  two-man  spacecraft. Significant 
firsts  accomplished  during  this  program  included astro- 
naut-initiated spacecraft  maneuvers,  rendezvous of two 
spacecraft,  extended spaceflights equivalent to a lunar 
mission, a space walk by an American, and  astronaut- 
controlled reentry  and landing of a  spacecraft [2]. 

By 1961, Project Apollo began to take shape  to fulfill 
the national goal of a manned lunar landing by the  end of 
the 1960s. Three Apollo missions  especially captured  the 
attention of the world: the flight of Apollo 8, when three 
Americans  became the first human beings to  orbit  the 
moon;  the Apollo 11 mission, which was the culmination 
of centuries of anticipation as human beings walked the 
lunar  surface [3]; and the flight  of Apollo 13, which jeop- 
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ardized the mission and lives of the  crew  when  an oxygen 
tank exploded aboard  the spacecraft. 

With the  success of the  lunar landing  program, the  na- 
tion’s  manned spaceflight efforts  turned towards  an  earth- 
orbiting space  station  as  the  next  venture.  The  Skylab 
program differed significantly from previous  programs  in 
that  the  objectives were almost entirely  science- and engi- 
neering-oriented.  Despite damage to the huge  unmanned 
space  station during the initial launch [4], three  separate 
astronaut  crews visited the orbiting  laboratory for ex- 
tended  periods of time to  establish  the feasibility of the 
commercial uses of space. 

An historic  occasion  in astronautics  took  place  on July 
17,  1975, when an American  Apollo spacecraft  docked 
with  a Soviet  Soyuz  spacecraft in earth  orbit.  The  route  to 
this  historic event was not without problems involving 
language and engineering practices,  as well as  the  “inter- 
face”  between  the metric and English systems of units 
PI. 

Today,  the U.S. manned spaceflight program centers 
on  the  reusable  Space  Shuttle, a more  complex spacecraft 
than  its  predecessors, designed as a rocket,  spacecraft, 
and glider. Once  operational,  the  shuttle will allow travel 
to and  from  space  for performing a variety of scientific 
and engineering  activities. 

RTCC systems  for  manned  spaceflight 
The  basic  purpose of the RTCC systems  for  manned 
spaceflight has remained the  same through the  years:  to 
perform the necessary computations from  tracking and 
telemetry  data  to provide  Mission  Control Center (MCC) 
flight controllers with the information  needed to  ensure 
crew  safety  and mission success.  The fundamental  driv- 
ing force in the evolution of these RTCCs has  been  the 
requirement  to perform  real-time  command and  control, 
for increasingly  complex spacecraft with  increasingly 
complex missions, with a high degree of reliability. RTCC 
system  architecture  changes  have  been  driven by these 
requirements  as well as by advances in hardware  and 
software technology  and improvements in the  develop- 
ment process. 

Vunguurd RTCC 
Even  before America’s first astronauts orbited earth, 
IBM pioneered the  requisite computational  technology 
for manned spaceflight through  its  role in Project  Van- 
guard,  the nation’s first official artificial satellite program. 
The Vanguard RTCC was established in June 1957 at  the 
Vanguard  Computer  Center in  Washington,  DC. It con- 
sisted of an IBM 709 computer with a backup facility lo- 
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keepsie,  New York. Working in  coordination  with Naval 
Research  Laboratory  personnel, IBM programmers 
wrote a 40 000-instruction  program for  the Vanguard 
RTCC to support  orbit  determination calculations and 
tracking  data processing for  the unmanned  satellites [6]. 

Mercury RTCC 
The  Mercury RTCC,  established in 1960 at  the  NASA 
Goddard  Space Flight Center  (GSFC),  Greenbelt,  MD, 
represented a significant advance in the  evolution of 
RTCC  systems.  It consisted of three IBM 7090 computers 
and  associated communications and display equipment. 
Operating  in  conjunction  with  NASA’s  worldwide net- 
work of tracking sites  and  the launch  control center  at 
Cape  Canaveral,  the  Mercury  RTCC  processed real-time 
tracking data  from simultaneous sources  to  provide a con- 
tinually updated  status of the spacecraft [7]. 

The  computational  support  for  the Mercury  program 
was a radical departure  from earlier  support of unmanned 
satellites because it was real-time. The RTCC computers 
had to  accept  input  data  from multiple sources simultane- 
ously. The display technology  progressed from  analog to 
digital. The critical nature of supporting  manned space- 
flight meant  that  spacecraft  orbit  goho-go  computations 
had  to  be completed within ten  seconds of booster cutoff. 

Gemini RTCC 
The distinguishing characteristic of the  Project Gemini 
RTCC was that it had to control two maneuverable  space- 
craft in orbit  at  the  same time. Since existing  ground  sup- 
port capabilities  were inadequate, a decision was made  to 
establish  the Mission Control  Center  at  the Manned 
Spacecraft  Center  (now  Johnson  Space  Center) in Hous- 
ton to handle all multi-spacecraft missions. In  October 
1962, IBM received a prime contract from NASA to de- 
velop  the Gemini RTCC in Houston. 

The Gemini RTCC,  which  began  spacecraft  monitoring 
in 1965, consisted of five IBM 7094 computers,  inter- 
connected through a switching network,  and associated 
communications and display  equipment [8]. The configu- 
ration of the five computers allowed  two practice mis- 
sions  or a practice mission and  an  actual mission to be  run 
simultaneously.  Processing requirements were expanded 
to  include simultaneous  real-time  processing of both te- 
lemetry  and tracking data.  The computing load was  fur- 
ther  increased by the  requirements  to plan and command 
orbital  maneuvers  for  the  rendezvous of two  spacecraft. 

0 Apollo RTCC 
Project Apollo placed an  even  greater  demand  on  the 
RTCC. To track  the Apollo spacecraft,  the  Lunar Mod- 
ule,  and  the  Saturn  launch  vehicle,  the facilities of the 
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RTCC would have to maintain constant  contact with the 
astronauts  from lift-off through  insertion into  earth  orbit, 
insertion into cislunar trajectory,  then  lunar  orbit,  lunar 
landing, lift-off from  the  moon, rendezvous and docking 
with the orbiting Apollo spacecraft, and finally the  return 
to  earth  for direct reentry  and landing in the Pacific 
Ocean.  To accomplish  this task,  the RTCC was upgraded 
to five IBM  System 360/Model75  computing systems and 
interconnected through a switching  network  similar to  the 
Gemini 7094 network [9]. The roles of each 360/75 were 
similar to  those  associated with the 7094s. However,  the 
processing load was significantly increased. The signifi- 
cance of the Apollo RTCC requirements can  be  visualized 
from its  seven major  real-time  program subsystems: 

0 Launch subsystem-cyclically  updated  position  and 
velocity utilizing data from the impact-predictor com- 
puter  at Cape Canaveral, multiple  spacecraft sources, 
and multiple  tracking radar  sources. 

0 Telemetry subsystem-received and  processed teleme- 
try  data indicating performance of vehicle systems,  as- 
tronaut health, and  spacecraft  computer  status. 

0 Orbit computation  subsystem-calculated ephemerides 
for  the Apollo spacecraft  and  Lunar Module, deter- 
mined remote site acquisition,  and performed space- 
craft  attitude  and pointing computations. 

0 Trajectory determination  program  subsystem-pro- 
cessed  radar  data  to  determine  the  trajectory of the 
spacecraft,  detected  radar  errors, and  provided  infor- 
mation on  the  lunar landing site. 

0 Mission planning program  subsystem-calculated 
spacecraft maneuvers required  for plane changes  and 
phase  changes,  and  to accomplish translunar injection, 
mid-course corrections, lunar-orbit  insertion, descent 
to  the  lunar  surface,  ascent  from  the  surface,  ren- 
dezvous of lunar module  with  command  module, trans- 
earth injection,  and final mid-course corrections. 

0 Digital command  subsystem-uplinked data  to  the 
computers  aboard  the  spacecraft  and  the  Saturn launch 
vehicle. 

0 Reentry subsystem-simulated the onboard computer, 
predicted  the  reentry  trajectory,  and  alerted  remote 
tracking  sites  to  acquire  the  spacecraft. 

0 Skylab and Apollo Soyuz test  project RTCC 
Skylab  and  ASTP RTCC  real-time mission systems  were 
similar to the earth-orbit  portion of the Apollo RTCC and 
will not be discussed here. 

0 Space Shuttle RTCC 
The  Space  Shuttle  is proving to be just  as demanding as 
sending astronauts  to  the  moon, though the  astronauts of 
Space  Shuttle will not  leave  earth orbit. The  Shuttle 
RTCC  requirements  are much more  extensive  and  com- 
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plex than  the Apollo earth-orbit  requirements. The  com- 
plexity of the  Shuttle  orbiter,  the need for pinpoint  land- 
ing of the  orbiter  on a runway,  the need to  process  data 
simultaneously for  three  orbiters,  the need for rapid or- 
biter  turn-around between flights, and  the very high flight- 
rate  are  the principal Shuttle RTCC  requirements. An- 
other significant factor is the need to provide an  extensive 
command  and  control  capability for  attached  payloads. 

IBM’s  Space  Shuttle RTCC  involvement  began in June 
1974 with a contract to design and develop the  RTCC  pro- 
gramming for  the  Shuttle Mission  Control Center at the 
Johnson  Space  Center.  Two  years  later  another  contract 
was  awarded  to IBM to  provide the  RTCC  with three 
IBM 370/168 computers. Conceptually,  the three  comput- 
ers  do what their  counterparts in Projects Mercury, Gem- 
ini, and Apollo  had done:  provide centralized  ground  con- 
trol of the  space vehicle from lift-off, through orbit, to 
reentry.  However, they provide  three times the  computa- 
tional power of the 360/75 computers used in the  RTCC 
during  Apollo.  Additionally, they support  payload data 
processing, personnel  training,  and MCC testing and 
checkout. Generally, one  computer provides flight con- 
trol as the Mission Operational  Computer (MOC). During 
critical  periods of a mission, however,  two of the  comput- 
ers  process  data simultaneously while the third remains in 
a standby mode or  serves  as  the Payload Operations Con- 
trol  Computer (POCC) [lo]. The POCC provides  capabili- 
ties  to monitor  and control  experiments (payloads) car- 
ried into  orbit by the  Space  Shuttle. 

The  Shuttle  data processing  application  programs form 
one of the largest and most  complex  real-time  program- 
ming systems  ever  produced. Fundamentally, these  pro- 
grams  process telemetry and  radar  data  into information 
for flight controllers  to  make decisions and  take  sub- 
sequent  actions.  The real-time  portion consists of five 
subsystems (with over 600  000 lines of programming): tra- 
jectory,  telemetry,  command,  network  communications, 
and  control. 

The  trajectory programs comprise  the largest of the ap- 
plications subsystems (some 220 000 lines of code). Mon- 
itoring and evaluation functions  are performed  during the 
launch  and landing phases,  where  radar tracking data  are 
converted  to vehicle  position and velocity and utilized to 
determine  and evaluate spacecraft  maneuvers. Prediction 
and  planning  routines are used  during orbit  to  compute 
information such  as  sunset  and sunrise  times and  space- 
craft  maneuvers  for  orbit,  reentry,  and landing. 

The  telemetry  programs, with  more  than 138 000 lines 
of code,  are designed to  receive more  than 3600 parame- 



ters of discrete  measurements  per  second  from  onboard 
systems  and  an additional 3600 parameters  per  second of 
recorded  data from  a  tracking  site. The telemetry  sub- 
system  converts  these  raw  data  into engineering units and 
checks  certain  parameters of data against  predetermined 
limits to  assist in monitoring the  status of the  onboard 
systems. 

The command subsystem  formats and  provides data  for 
transmission to  the  Shuttle  onboard  computers. Among 
the  tasks accomplished are  the real-time transmission of 
commands  to back up or relieve crew members of tasks 
that  can be  performed in mission  control. The  command 
subsystem  also uplinks navigational data,  computations 
for  maneuvers, and  changes  in crew  procedures,  as well 
as updating  software for  the  onboard  computers. 

The  network communications  subsystem  configures 
and monitors the  status of communications into  the Mis- 
sion  Control Center (MCC). It  also configures the MCC to 
receive and  route  data  from  the tracking  and  communica- 
tions network  to  the  appropriate MCC destinations  for 
processing. 

The  control  subsystem  ties  the  other  four applications 
subsystems together  by initializing systems, managing 
work and  data, interfacing terminals, managing and for- 
matting displays, and  recovering from  errors.  The  control 
subsystem  consists of over 135 000 lines of programming 
and frequently interfaces with the operating systems  serv- 
ices  by  requesting data  access  routines, storage control, 
and restart processing. 

In addition to  these real-time programs, support  pro- 
grams  for  checkout and  configuration  processing are  pro- 
vided along with special  programs for  the POCC. The 
checkout programs,  consisting of over 115 000 lines of 
,ode,  generate and analyze data  for testing the command 

and control  software. The configuration processing pro- 
gram maintains  a file of information to  produce configura- 
tion tables  for  the command  and  control subsystem  pro- 
grams  and  consists of over 200 000 lines of programming, 
using IBM’s IMSNS  data  base management program. 
The  POCC programs provide  both developmental support 
and real-time  payload  command  and  control to  Shuttle 
payload users. 

Development of RTCC systems 

Systems architecture 
The evolution of RTCC systems  architecture  has  been 
driven by ever-increasing requirements,  advances in 
hardware  and software  technology, the need to  improve 
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and  managers.  This section  summarizes some of the more 
significant advances in software systems  architecture. 

Control program evolution 
An essential element of any real-time  system is the  execu- 
tive or control  program, which provides the  interface  to 
hardware  components  and  controls  the  sequence of oper- 
ations.  The  architecture of control programs has evolved 
throughout  the  era of manned spaceflight. Some of these 
changes  have  been  driven by expanded mission  require- 
ments,  but many have  resulted  from taking advantage of 
improving  technology  in both  hardware  and  software 
products.  The  trend in RTCC  systems  has been to utilize 
more and  more off-the-shelf products,  thus reducing ini- 
tial development  costs  and ongoing  maintenance costs 
while improving  transportability to  other  systems. 

During the Mercury era,  the  control program  was  a  spe- 
cial-purpose  monitor  providing limited multi-program- 
ming capabilities. The  Mercury monitor  was  tailored  spe- 
cifically to  support  the real-time  mission  operational  envi- 
ronment with separate facilities  provided to  support  the 
job-shop  environment used  for  software  development. 

A  new executive program developed  for  the 7094 com- 
puters  for Gemini was again specifically designed to sup- 
port  the Gemini mission environment.  Some  advance- 
ments  were  made in providing  more  generalized services 
which were applicable to  both  the simulation and mission 
support;  features  such  as limited device independence 
were  introduced. While the  separate executive was re- 
quired for mission support,  the  trend toward the  use of a 
standard operating system began  with the  use of the  IBM 
7094 system (IBSYS) to  support  standard  job  shop. 

The  standard operating system provided for  the Apollo 
RTCC 360/75 computers  represented a significant ad- 
vancement.  Features  such  as multitasking and dynamic 
storage  allocation were a part of the  standard operating 
system. The Apollo control program took full advantage 
of these  features,  but  because of the stringent response 
time and reliability requirements  to  support manned 
spaceflight,  additional features  were still required.  The 
Apollo Real-Time Operating System (RTOS) was devel- 
oped during  this  period. RTOS  was a customized  version 
of the  standard IBM 360 Operating System,  and  achieved 
a significant advancement with the ability to  support all 
RTCC  activities,  from  job  shop  to real-time operational 
support, with a single control program. 

As  the spaceflight activity  moved into  the  Space 
Shuttle  era,  the  use of standard operating systems  contin- 
ued to increase. All phases of the development process 
and mission operations  are  supported with the  standard 
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IBM 370 Operating System (MVS). Standard features 
such as virtual  memory are used extensively. In order to 
achieve this, while  still supporting the extreme response 
time and reliability requirements of a manned  spaceflight 
mission, the concept of providing centralized system 
services to interface with the standard operating system 
was introduced. The system services execute as normal 
application programs, but provide services which are re- 
quired by a number of the operational programs. Features 
normally associated with the control program, such as 
data routing and error recovery, are accommodated with- 
out modification to the standard operating system. 

The maximum use of standard operating systems sup- 
plemented by  common systems services routines has 
been an unqualified success during the development of 
the Shuttle RTCC. The cost of maintenance  has  been 
reduced and the transportability of the system has been 
demonstrated. 

Use of process control tables 
A fundamental architectural concept of the Shuttle real- 
time  command  and control system is its use of process 
control tables. These tables are tabular specifications of 
the actions to be performed by the executable real-time 
routines. Their elements generally consist of processing 
codes, control codes, pointers to related data, and data 
constants. 

Usage of process control tables began  during  Gemini 
and increased for Apollo. The prime motivator was the 
goal of divorcing the basic execution logic  from the spe- 
cific processing descriptions to facilitate testing, since ta- 
bles can usually be revised or replaced with little or no 
real-time code change. To meet the Shuttle program’s 
unique environment of rapid  flight turn-around and con- 
current support for multiple,  differently  configured  vehi- 
cles, the process control table concept has been broad- 
ened to maximize  both the flight-to-flight  and  in-flight re- 
configurability of the real-time system. 

Numerous new table applications were designed for 
Shuttle. Previous telemetry subsystems, for example, 
used tables to unpack, calibrate, limit-sense, and display 
vehicle data. The Shuttle software design extends to ex- 
tracting the subsets of telemetry parameters required by 
the trajectory and  command subsystems via table-driven 
routines. Also controlled via tables are the computing of 
additional quantities and event indicators from the con- 
verted input data. Even the specifications for processing 
sequences, which can vary depending on the vehicle and 
data class, are controlled via tables; and  multiple table 
versions afford  dynamic control over the number of pa- 
rameters processed each second. A major advance engi- 

neered in the trajectory and command subsystems was 
implementation of a table-driven data retrieval process. It 
collects data from an assortment of tables of varying 
structures for input to the spacecraft command  load  gen- 
eration and trajectorylcommand display functions. 

Software generalization  is the key feature of the Shuttle 
table-driven design. Because orbiter flight turn-around 
will approach fourteen days in the mature operations era, 
flight-specific software development and management of 
the attendant multiple software versions would  be im- 
practical. Hence, the real-time software is designed to 
support a wide  range of functional capabilities; flight- and 
vehicle-specific  definitions are introduced into  the system 
solely  through  off-line-generated process control tables. 
Additionally, much of the real-time software is reentrant 
code; that is,  a single  program copy can  be executed con- 
currently to support several different vehicles, data 
classes, or other processes. This feature combines  with 
the process control table organization  and the extensive 
user configuration controls to optimize  efficient computer 
memory utilization. The process control tables are stored 
on disks, by flight, in a hierarchical structure. At the top 
level of the hierarchy are tables containing  specifications 
applicable to all  vehicles  within a flight; the next level 
contains vehicle-specific specifications; and at the bottom 
level are those specifications that vary by data class (real- 
time, playback/dump) for a given  vehicle.  Based  on a se- 
quence of user configuration requests, access paths are 
dynamically established, and only those tables required at 
a particular mission  point are loaded into computer mem- 
ory. Even a totally new  flight definition may  be  copied to 
the on-line  disk storage and subsequently accessed for 
real-time support without impact to the ongoing  flight ac- 
tivities. 

Much of the processing specification  is under further 
user control at the individual entry level, to enable rapid 
changes in  flight. Generally, these in-flight reconfigura- 
tions take the form of changing data constants (e .g . ,  cali- 
bration coefficients,  limit-sensing values, mathematic-for- 
mulation values) or process controls (e .g . ,  disabling a pa- 
rameter’s limit sensing, redefining the parameter set on a 
configurable display). Changes  generally can be  made  ei- 
ther to memory- or disk-resident table copies, with  mem- 
ory-resident changes  usually preserved by copying the ta- 
bles  back to secondary storage when the software config- 
uration they are supporting is  finished. 

As the real-time system has undergone  significant evo- 
lution, so have the off-line programs which produce the 
process control  tables. For previous  projects, the reconfig- 
uration task was  accomplished by a collection of inde- 
pendent preprocessors, each generally  consisting of spe- 421 
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cially  developed software to create intermediate data 
bases which  were subsequently accessed for in-storage 
construction of tables. Other tables were  coded  and as- 
sembled  using  Basic  Assembler  Language or special data- 
table-formatting  macros. 

For Shuttle, these preprocessors have  been  consoli- 
dated into a single  Configuration  Requirements Process- 
ing  (CRP) system, which provides a much faster, more 
efficient,  and  more reliable system to configure a specific 
Shuttle flight.  CRP  runs  on the 370/168 and uses IMS/VS 
for data base management.  The  system is capable of pro- 
cessing  multiple  flights  and  multiple updates to a single 
flight concurrently, and incorporates significantly  more 
automated input  and product validation  processing  than 
its predecessors. 

Managing  complex systems  memory and CPU resources 
Computer  memory  and CPU resource management have 
continually been a challenge in  RTCC development, since 
requirements have  tended to drive the systems to the lim- 
its of their resources. The method  used to manage  RTCC 
CPU  and  memory  can  be characterized as controlled, pri- 
oritized  competition  among  cyclic  and demandlresponse 
application functions. As a part of system  design,  appli- 
cation functions are characterized in terms  of resource 
utilization, frequency of execution, and  allowable- 
elapsed-time-to-complete (response time). 

Demand/response functions are user-requested and  ex- 
ecute at irregular intervals. The definition of an  explicit 
required response time for these functions is critical, 
since  they  generally execute at the lower  end of the prior- 
ity structure. The most important of these functions, from 
a system performance  point of view, are those which re- 
quire significant  CPU  time  and  memory to complete. 
These typical  functions  perform  complex trajectory-re- 
lated computations such as trajectory determination, 
ephemeris generation, and  maneuver  planning, and are 
serialized to prevent unreasonable competition for re- 
sources among themselves. 

Cyclic functions are driven by timers or by the regular 
arrival of data. Typical functions are those which process 
telemetry data from the network and those which output 
display  information  on a time cycle. Their frequency of 
execution is  defined explicitly, and  execution  time  is  ex- 
tremely important since they  generally execute at the top 
of the system priority structure. Each of these functions 
must complete sufficiently ahead of its next execution to 
allow  lower-priority functions to meet their explicitly 
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At the beginning of the Shuttle RTCC  design phase, 
specific  memory  and  CPU  limits  were  established as de- 
sign constraints. Systems designers and analysts then put 
together a profile of application functions which  allowed 
them to predict the percentage of  CPU and  memory 
needed for cyclic functions. Each of the demandlresponse 
functions was then analyzed to determine whether it 
could  meet its required response time  within the remain- 
ing  CPU  and  fit  within the remaining  memory.  Design  al- 
ternatives and requirements tradeoffs  were then exer- 
cised  until  the  projected system performance  was  within 
the design constraints. Memory  and  CPU  budgets were 
established for the overall system and  each  major system 
component. System performance was  managed  against 
established budgets  throughout the development  period 
with the same  rigor  used in managing cost and schedule. 

Reliability  through  redundancy 
The reliability requirements for RTCC systems have re- 
mained  similar  from  Gemini  through  the Shuttle program: 
during  critical  periods of  flight operations, the system 
must achieve a 0.9995 reliability and, during noncritical 
flight operations, if system support is lost  it  must  be  re- 
covered with a relatively current data state. The basic ap- 
proach to satisfying these requirements has also  remained 
the same. 

For critical flight operations, the approach to satisfying 
the 0.9995 reliability requirement is  through redundant 
systems with a prime  Mission  Operational Computer 
(MOC) system backed up by a fully  functioning  Dynamic 
Standby Computer  (DSC) system. Locally developed 
system software provides a High-speed Restart function, 
which creates a DSC as a mirror image  of a functioning 
MOC  in preparation for critical operations. In addition, a 
Selectover function provides DSC-to-MOC role switch- 
ing, in case MOC support is lost. 

During  noncritical operations, a single  command  and 
control system (the MOC) is used. Locally  developed 
system software provides a System Tape  Checkpoint 
function which,  on user request, transfers to tape the total 
system state for subsequent use in case of a loss of system 
support. Also  provided  is a System Tape Restart func- 
tion, which  uses the data recorded by System Tape 
Checkpoint to start up a new  MOC  in the same state  as 
existed at checkpoint  time. 

Although  this  basic approach has remained  similar 
across programs, system software has  been adapted to 
increasingly  complex system environments. In the Gem- 
ini environment, for example, all  system control pro- 
grams were locally  developed  and  customized. This made 
it relatively simple to suspend all MOC processing re- 
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quired for High-speed Restart and  System  Tape  Check- 
point.  This  task  has  become  much  more  complex in the 
Shuttle environment, which features standard system 
software such as MVS,  VTAM,  and JES3. 

In addition, the performance of High-speed Restart 
and  System  Tape  Checkpoint has been  challenged to min- 
imize the time  required for data transfer despite the tre- 
mendous  growth in the volume of data. This  growth is 
illustrated in Table 1. 

Although the software is  optimized to transfer data in 
the shortest time  possible, total MOC support inter- 
ruption at the required frequency for System Tape Check- 
point  is  still  undesirable  for the Shuttle operation era.  To 
address this problem, the basic system software functions 
are being  augmented  with  an  application-data checkpoint/ 
restore. The  application  Flight  Checkpoint  function will 
be  used frequently at user request, with  minimal  impact 
to MOC support, to capture and  record  all important 
MOC data related to the user-selected flight. The corre- 
sponding  application  Flight Restore function will be  used 
in the recovery process, to restore, in a functioning MOC, 
the data previously recorded by  Flight  Checkpoint. 

Unique  features of the  payload  operations  control 
computer  (POCC)  architecture 
The POCC  simultaneously supports multiple independent 
real-time users in monitoring  and  controlling experiments 
onboard the Shuttle Orbiter. It embodies a number of 
unique architectural characteristics which distinguish it 
from its RTCC predecessors. 

The basic architecture provides the user independence, 
error protection, and guaranteed CPU  and  memory  re- 
sources afforded  by a distributed system  while  retaining 
the resource-sharing flexibility of a centralized system. 

The fundamental elements of this architecture are the 
Executive Address Space (Exec); Inter-Address Space 
Communications  through a Common Service Area 
(CSA);  and User Address Spaces (UASs). The Exec re- 
ceives multiple  telemetry streams from a “front-end” 
computer system  which interfaces with an external com- 
munications system, isolates parameters according to the 
user group which  is authorized to process them, and  dis- 
tributes these parameters to one of the several UASs- 
each of which supports a given user group. A storage area 
(CSA) addressable by  all  UASs  is  used as the transfer 
medium and  is protected from  unauthorized or inadver- 
tent “reads” and “writes” by an authorized  SVC. 

UASs for different user groups are dynamically created 
and terminated by the Exec according to the mission-sup- 

Table 1 Data  transfer growth. (Note: M = 1 048 576.) 

Project  Transfer data volume Data residence 
(M bytes) 

Gemini 0.3 Main  memory 
Apollo 5.0 Main  memory, LCS 
Shuttle 32.0 Real  memory, disk 

port timeline. UASs operate independently  and asynchro- 
nously, execute computations  unique to a given user, and 
are protected from  each other’s potential  malfunction by 
standard MVS error-recovery software.  Computation  re- 
sults are placed in  CSA where  they will be  available to all 
UASs for viewing  on displays. UASs  which  send  experi- 
ment-control information to onboard  equipment do so 
through the Exec, which provides the interface to the ex- 
ternal communications system. Most  functions  which are 
common across UASs  and the Exec are supported by a 
single, reentrant copy of the required  software  which  is 
loaded into write-protected  CSA  and is therefore execut- 
able by  all address spaces as required. MVS-SE  time- 
slice  and rotate-priority functions are employed to ensure 
equitable CPU resource distribution across address 
spaces. 

Display support software (DSS)  executing in each ad- 
dress space uses MVS  VTAM to communicate  with a dis- 
tributed display control system (DCS).  The DCS consists 
of a minicomputer  and several attached display terminals 
with  minicomputer capability. DSS operates as a data-re- 
trieval service only, leaving the functions of display  com- 
position  (off-line  definition),  display  formatting (arrange- 
ment of data on  viewing surface), and  units conversion to 
terminal-resident software. Given standard DSS/DCS 
communication conventions, DCS  hardware or software 
changes  remain transparent to the POCC 370/168. 

An off-line  POCC 370/168 program  interfaces  with each 
user group via DCS to accept a group’s  unique FORTRAN- 

defined  computations  and to integrate  them  into  individual 
UASs for execution in real time. Each  group’s computa- 
tion  definitions are retained in separate libraries  which are 
updated both  before the mission  and  during  flight support. 

e Computer  hardware  technology 
From  Mercury  through  Apollo,  some  significant elements 
of hardware technology were driven by the  unique  re- 
quirements for real-time support of  manned  spaceflight. 
For Shuttle, the emphasis has shifted to take advantage of 
existing  leading-edge hardware technology to satisfy  pro- 
gram requirements. The required processor speed and 
memory  capacity  have increased by a factor of approxi- 
mately 65 from  Mercury to Shuttle. Additionally,  aggre- 423 
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gate channel rates have increased by a factor of eight over 
this same period. 

Early in the Gemini program, the need for fast auxiliary 
memory  led to  the development of the four-megabyte 
Large Core Storage that was used throughout Project 
Apollo.  Beginning  with a 96K-byte core file (where 
K = 1024), the auxiliary  memory progressed through 
256K and  512K versions before reaching 4096K bytes. 
Much  of this activity provides a base  knowledge for the 
design and development of today’s virtual systems. 

A significant contribution to evolution of today’s byte- 
and block-multiplexer channels was the need to accom- 
modate the continual growth of both the number and 
speed of digital data streams. The 7281 Data Communica- 
tions Channel (DCC) used on Project Mercury was, for  its 
time, highly innovative in its approach to the hardwarel 
software design  tradeoffs needed to handle  I/O  traffic and 
interrupt rates. The DCC function was  provided  by the 
2902 Multiplexer Line Adapter through Project Apollo 
and by the 2909 Asynchronous Data  Channel in today’s 
Shuttle RTCC. 

Another significant requirement was the need to con- 
figure the wide array of peripherals among as many as 
eight different processors. This led to the development of 
the 2914 control unit string switch, the 2844 DASD 
switch, and  designs for channel-to-channel inter- 
connection. The resulting speed and  reliability have 
greatly influenced today’s data processing system de- 
signs. 

Software technology 
The emphasis on quality, performance, and  reliability  ne- 
cessitated by manned  spaceflight has provided the in- 
centives to use the most current software engineering 
techniques and to develop sophisticated software tools. 
These incentives provided the basis for several standard 
software products, including tools for automated output 
spooling  and products utilized  in electric utility and oil 
refinery applications. Many currently accepted software 
management concepts also originated in the RTCC  proj- 
ects, and  significantly  influenced the evolution of soft- 
ware engineering techniques. 

It was discovered in 1963, during the early days of Proj- 
ect Gemini, that one of the fundamental prerequisites to 
successful development of large software systems is early 
visibility and control of the developing systems. From a 
program code perspective, these were  provided by creat- 
ing a master system at the beginning of code development 
and putting it under strict configuration control. From a 

424 work  planning and tracking perspective, this was accom- 
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plished by regularly  publishing a development plan con- 
taining  all the significant development and test milestones 
and current status relative to these milestones. 

In  the late 1960s, on the Apollo project, top-down sys- 
tem development was used by several subsystems. Begin- 
ning  in  1970, the simulation systems required for flight 
controller training used top-down system development 
and structured programming across the total system. 
Since 1975, the Shuttle RTCC has used systematic esti- 
mating techniques, top-down development, structured 
programming, design inspections, and code inspections. 
The Shuttle Payload Operations Control Center is using 
all the latest FSD Software Engineering Practices [ 111. 

A more systematic approach to software  quality assur- 
ance has evolved  with the development of the Shuttle 
RTCC. An independent software quality assurance or- 
ganization was established to participate in all  major  proj- 
ect reviews and to provide periodic audits and spot 
checks of the development process and products. Work- 
ing  in conjunction with other software development 
mechanisms, such as project development plans, the soft- 
ware quality assurance activity provides increased visibil- 
ity, control, and independent checks and balances 
throughout the development process. 

In  the early years, it became evident that the develop- 
ment of tools which are essential to implementation, test- 
ing, and even design  itself  must  begin  with the design of 
the operational system. For example, programs to gen- 
erate  test  data,  to measure performance, to log and delog 
data in real time, to take snapshots of code and data 
areas, and to execute programs without access to real- 
time interfaces are all  typically  designed  along  with the 
design  of each new or modified system. 

The size, complexity,  and  performance  requirements of 
RTCC systems led to early development of sophisticated 
design  and system-performance-monitoring software 
tools. Computer system models were used, beginning 
with Apollo, to evaluate systems performance for can- 
didate designs. For Shuttle, parametric analysis tech- 
niques have been developed which are less costly and 
time-consuming than the earlier models  and have proved 
to be very effective. System-performance-monitoring 
software tools have been used, beginning  with Apollo, 
and have continuously been improved, culminating  with 
the comprehensive Advanced Statistics Collector soft- 
ware used for Shuttle. 

The criticality of the RTCC systems has resulted in de- 
velopment of testing approaches and techniques which 
have significantly  influenced the industry. This includes 
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test  tools,  test planning and specifications,  role of inde- 
pendent verification, and  the relationship between devel- 
opment  and independent  verification. 

Software  development  process 
The  RTCC software development methodology has  made 
significant advancements  over  the  years.  The  catalysts 
for this  continuing  improvement have been the  size  and 
complexity of the  systems, ever-increasing requirements, 
and  the continuing  need for improving the predictability, 
manageability, and cost-effectiveness of the software  de- 
velopment. This progress  has  occurred  over a long time 
period and  has been evolutionary, not revolutionary, in 
nature. 

ments definition and  control  process.  To facilitate  this 
formalization,  another  NASA requirements  delivery 
termed  “Basic  Requirements” was  included between ini- 
tial and final. A  formal change  procedure was also  estab- 
lished. “Basic  Requirements”  was, in fact, a NASA-pub- 
lished draft of the final requirements  for  use in estab- 
lishing the detailed requirements. Final requirements still 
were not  transmitted by NASA until late in the implemen- 
tation  cycle.  This earlier documentation of requirements 
and  procedures  for  approval of changes put  more of the 
monitoring and control of requirements in the  hands of 
NASA  and IBM management.  During  Apollo, the major 
emphasis  was  the technical aspect of a lunar landing, and 
very few  requirements were  rejected on  other  than  tech- 
nical grounds. Skylab’s less flexible budget made  the  de- 

A significant Over the years has been a cision to  make a requirement mandatory dependent  on  its 
progressively clearer view of the  steps  necessary  for ef- cost  as well as technical considerations. A  new procedure 
fective software development: define and  control  require- was developed to allow an evaluation of require- 
ments;  select/document implementation approach;  de- ments changes from a cost and schedule impact stand- 
velopkontrol system  design; estimate  cost,  schedule,  and point prior to final approval. 
development  resources; establish  detailed development 
and test  plans;  and continually assess progress vs plans. 
A brief discussion of these  factors with illustrations of 
how they  have evolved  follows. 

Define and  control  requirements 
The  evolution and  growth of the  space program from proj- 
ect  to  project  has been  paralleled  by a corresponding 
change in the software requirements and the  require- 
ments generation  process.  The  trend  has been character- 
ized by a growing  level of detail in the  requirements,  an 
earlier documentation  schedule,  more uniform and  con- 
sistent  control  procedures,  and  more effective change 
control. 

During  Mercury and Gemini, there were  essentially 
two levels of requirements which  were provided by 
NASA to IBM: an initial set which provided an identifica- 
tion of the  functions  the  system  was to perform,  and a 
final set which was  used primarily to describe the  outputs 
required by the flight controllers.  The details of the  re- 
quirements  were negotiated between  the  NASA  technical 
interface  and IBM lead programmers.  The initial require- 
ments  were provided  by NASA fairly  early  in the devel- 
opment  process along  with  a  transmittal  form  directing 
IBM to implement them.  The final requirements were 
agreed upon but  not  completely  documented  until the 
program  implementation  was near completion. This  pro- 
vided a great deal of latitude in making program changes, 
since the requirements and change  control were ef- 
fectively in the hands of the NASA  technical interface 
and  the lead  programmer. 

The  increased  size  and complexity of the  Apollo  proj- 
ect  demanded additional  formalization of the  require- 
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The  Shuttle program  re-evaluated the  requirements 
process  and established a system with four levels of re- 
quirements  intended  to parallel  software development. 
Level A requirements are generic  and identify the major 
system  functions.  Level B requirements  provide a com- 
plete  description of the capabilities of each  function  and 
are sufficient to  develop  subsystem design. Level C re- 
quirements  provide  the final detail and are sufficient for 
completing  program  implementation. Level D require- 
ments  describe  certain reconfigurable  items such as data 
formats which are  updated  beyond  Level C cutoff. These 
requirement levels are  scheduled  and formally delivered 
by NASA  to IBM during the  appropriate program  devel- 
opment  phase. IBM has a documented, formal  change as- 
sessment  and control process which  provides increased 
requirements visibility and  change control to  the  pro- 
grammers, line management, and project  management. 

Select and  document the development  approach 
The  success of any  system development depends  to a 
large extent  on how  effective the planning is in the initial 
stages.  Not only  must  plans be  established, but  they  must 
be  communicated and  understood by the  people  who 
have  performance responsibility. For a project to  run effi- 
ciently,  the management approach  as well as  the  technical 
aspects of the work  must  be understood and  agreed upon. 

As a result of these  considerations, IBM published a 
comprehensive management plan during the  system defi- 
nition phase of the  Shuttle  RTCC project. This plan  de- 
scribes  the cohesive  management  and  technical  ap- 
proaches which are used  in system design, development, 
and  test;  it  serves  as a project  standard  to be  followed  by 
all elements of the organization. The management  plan 425 
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serves not only to educate people on how the project is 
run, but also as a guide for development of more  specific 
plans  and project procedures. The management  plan ad- 
dresses the following major topics: organization responsi- 
bility and authority, requirements management plan, 
project phases and milestones, configuration  manage- 
ment, schedule and resource management, computer sys- 
tems analysis plan, documentation plan, and standard 
techniques and tools. 

Developlcontrol  system  design 
Design for both large  and  small systems is a process re- 
quiring creativity, knowledge, and discipline. Similarities 
in the design process end rapidly, however, as the design 
becomes the framework in  which hundreds of program- 
mers will produce hundreds of thousands or even millions 
of lines of code. For  a large system, design  quickly ex- 
ceeds the span of control of individual designers, and the 
need to support a cohesive design process becomes of 
great importance. This process must  bring out the best 
creativity in  individuals  while  maintaining discipline. 

The IBM  RTCC approach has been to use an organiza- 
tional structure in  which there are no separate “design” 
or  “architecture” departments. Lead technical people 
are expected to be designers and implementors. This in 
no way de-emphasizes the design function, but rather em- 
phasizes the design process and not the designer as an 
individual. A major  influence  on the RTCC systems 
achieving  good design, with structural integrity, effi- 
ciency, and other desirable attributes, has been moving 
the design process out into the open. For design of the 
Shuttle RTCC, a systems architecture group  was estab- 
lished. This group is  not an organizational entity, but con- 
sists of senior technical representatives from each major 
RTCC subsystem. 

Planned customer reviews and internal audits review 
and validate the design at key points in the development 
process. Customer reviews are formal, scheduled, and 
rigorous. Two  major reviews are conducted during the 
design of each subsystem; these are the Preliminary  De- 
sign Review at completion of the functional design, and 
the Critical Design Review, which serves as  a final check- 
point before the majority of the design is committed to 
code. These reviews  usually last for several days and are 
preceded by  IBM internal reviews which  in themselves 
are effective architectural controls. Design  reviews are at- 
tended by  NASA customers, consultants, and other con- 
tractors. Questions raised in these reviews  lead to docu- 
mented action items  which require formal responses to 
the questioner and to a smaller design control board es- 
tablished for this purpose. Once this formal  review pro- 
cess is completed, the design is placed under strict change 
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Overall system architecture, logic  and data flow,  and 
interfaces between programs are documented in  plain 
English  in the functional design. Module  design is ex- 
pressed in a Program  Design  Language. 

Estimatelbudget  cost,  schedule, and development re- 
sources 
Accurate resource estimating has been a continuing chal- 
lenge for the software developer. Many factors contribute 
to this, not the least of which has been the lack of a sys- 
tematic approach to estimating and the absence of  valid 
reference points. For many years, resource estimating de- 
pended almost solely on the experience of the individual 
programmer. Estimates were developed from the bottom 
up in a rather ad hoc fashion. 

Although resource estimation is still not an exact sci- 
ence, significant improvements have been made. In the 
development of the RTCC system for the early Shuttle 
orbital flights, resource predictions have been very close 
to target. This was accomplished while a system of one 
million lines of code was  being developed over a three- 
year period. 

The first step in  any estimating process is to understand 
the job. This involves two major elements: understanding 
the environment, and understanding the requirements. 
Key elements of the environment include stability of 
computer hardware and operating system, newness of de- 
sign, level of experience, and status of development 
tools. Understanding the requirements involves identi- 
fying each software product and the associated cost com- 
ponents, as well as laying out the key milestones. The 
second step involves the establishment of a clear set of 
ground rules for obtaining customer agreement. The 
ground rules define the assumptions and criteria to be 
used in the estimating process as well as in the estab- 
lishment of an estimating model. The model  is developed 
using available history data and experience. Throughout 
the development process, historical data (e.g. ,  lines of 
code produced, computer hours used) are maintained. Pe- 
riodically, the historical data  are analyzed  and the estima- 
tion  model  is recalibrated. By obtaining customer con- 
currence on the ground rules and  applying them consis- 
tently across the project, many of the problems 
associated with  estimating and negotiating resources are 
eliminated. 

Establish  detailed  development and test  plans 
A critical factor in the RTCC software development pro- 
cess has been the use of formal Project Development 
Plans (PDPs)  and Test Plans. These plans document de- 
tails of the project’s top-down development process, de- 
scribing the development philosophy  and  specific activi- 
ties of the development and test processes. 
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Prior to  Space  Shuttle,  the RTCC  Project  Development 
Plan depicted  schedules in terms of a prose,  tabular for- 
mat;  the  Shuttle Development Plan uses  both  tables  and 
Program  Evaluation Review Technique (PERT) charts  to 
describe  development  and test schedules. The  PDP is 
used to  track all of the RTCC project activities from initial 
design studies  through final system delivery. Key mile- 
stones described in the plan  include  requirements dates; 
system design reviews; preliminary and critical design re- 
views for each subsystem; initial, basic,  and final system 
releases  for  each  subsystem; and final system  delivery. 
These milestones  and  accompanying  subsystemlsystem- 
level PERTs  are carried in the summary volume of the 
PDP  and  are used for reviews with upper-level NASA 
management.  Targets for detailed  development  activi- 
ties-design inspections, code inspections,  development 
test specifications,  development test completion dates, 
periodic  system  builds, Independent Verification (IV) test 
completion  dates-are  described in additional volumes of 
the  PDP and are used by first-line IBM and NASA man- 
agement to track  development of each module of the sub- 
systems. 

A  primary activity in establishing  the  schedules in the 
PDP is the resolution of interdependencies. These include 
the dependency of the software  developer  on  NASA re- 
quirements, the  dependency of software  testing on hard- 
ware  availability,  and  the dependency of software  devel- 
opment on  other software  elements.  This has  proven  to 
be  the most time-consuming part of the scheduling pro- 
cess,  as it usually requires several iterations  and  involves 
a number of parties including IBM, NASA,  and other 
contractors.  The results of these negotiations are clearly 
documented  as dependencies on  the summary PERTs  and 
in a special  detailed  interdependency volume of the PDP. 

Another element which has proven  to  be a primary  fac- 
tor in development planning is  projecting the performance 
of the real-time mission software. For Gemini and  Apollo, 
these projections  were  made using detailed digital com- 
puter simulation models. These models have been  re- 
placed for  Space Shuttle by a parametric  analysis  tech- 
nique [12]. This concept  reduces requirements and design 
to a set of key parameters (e .g . ,  average  number of dis- 
plays updated  per second) to  be monitored throughout the 
development  process. As design is finalized, initial pro- 
jections  are updated  and  used by IBM and NASA man- 
agement to make key  requirement and performance 
tradeoffs. The key parameters  are listed in the  PDP, and 
regular updates and presentations  to NASA are sched- 
uled at significant milestones in the development process. 

Software developed for  the RTCC  prior to  the  Shuttle 
followed the traditional test hierarchy of unit, subsystem, 

and system testing.  This  hierarchy  was followed from the 
earliest days of RTCC software  development  through the 
ASTP  era. Beginning with the  Space  Shuttle, RTCC soft- 
ware is being developed using structured programming 
with two levels of testing-Development Testing and In- 
dependent Verification (IV) Testing. The Shuttle Test 
Plan was originally generated during the system  design 
phase and has been  updated periodically at key project 
and  requirements  milestones. The  Test Plan defines 
guidelines for Development  Testing  and IV Testing. 

Development  Testing  encompasses all testing  per- 
formed  during the development phase. Beginning with the 
testing of the application control programs, the develop- 
ment  testing follows an  orderly  process of requirements- 
oriented  testing of each function  both before and after it is 
incorporated into  the  master system.  This  testing  contin- 
ues until all  elements of the software are tested  together, 
at which time  it  is  delivered to  the  IV group as the  Final 
System Release (FSR). 

IV testing  is done by an organization  independent of 
the development  organization, using test specifications 
and system  test environments  unique to  IV. This test ac- 
tivity begins following receipt of the FSR system from  the 
development  organization. Initial testing verifies that  the 
software  is  capable of supporting all required mission 
configurations.  This  is  followed by interface tests  to ver- 
ify internal  and  external  interfaces, error  recovery, and 
restart  and selectover. As interface  testing concludes, 
emphasis  is shifted to performance  measurements which 
will measure memory, CPU, and  I/O utilization and be 
used to validate  the  performance  projections in the PDP. 
Following the successful  completion of IV testing, the 
system is  delivered to NASA for  fight controller training 
and mission support. 

Continually assess  progress vs plans 
The Project  Development Plan is a “working” document 
used to continually assess the  progress of software devel- 
opment. All parts of the  PDP,  from the  summary sections 
through the detailed sections,  are monitored on a daily or 
weekly basis by IBM managers  and  programmers  and 
their NASA counterparts.  Formal meetings are held 
weekly with NASA to review the  status  and problems 
noted in the PDP. This  continual monitoring of status 
yields the significant benefit of identifying problems early, 
thereby allowing adjustment of dependent  activities or 
schedules while the greatest  number of options are still 
available. The PDP  is  republished every two weeks  to re- 
flect updated status and actions  taken. 

Formal development  plans have been  used for all 
RTCC  projects. The  content of the plans  has been up- 
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graded  to reflect advances in programming technology 
and sophistication of both  the  IBM  team  and  NASA  per- 
sonnel.  In  most  respects,  the  current PDP includes more 
detail than  those of the  earlier RTCC era. This is primar- 
ily a result of a greater  understanding of the criticality of 
timely status monitoring and  the need to clearly  commu- 
nicate  the detailed  interfaces and  interdependencies of 
today’s  more complex systems. 

Summary 
Throughout  the U.S. manned spaceflight programs,  IBM- 
developed  RTCC  systems  have  been  at  the  forefront of 
technology. The  fundamental  driver in the  evolution of 
these  RTCCs  has been the  requirement  to perform real- 
time command and control  for increasingly complex mis- 
sions. RTCC  improvements  have resulted  from these 
changing requirements,  advances in hardware  and soft- 
ware technology, the need for improving productivity, 
and  the maturing experience of the technical and manage- 
ment  team. 

One  notable  aspect of the  RTCC evolution has  been  the 
continuing  movement from highly specialized systems, 
containing  much  unique hardware  and  system  software, 
to a more generalized  computing  complex  with emphasis 
on maximum use of standard  hardware  and  system soft- 
ware. 

Through the  years, major emphasis  has  been  placed  on 
improving  software development by establishing a pro- 
cess  that  ensures software visibility and control through- 
out  the  development  cycle.  The objective is to  ensure 
consistent, predictable achievement of cost,  schedule, 
and quality  commitments. IBM  has maintained an ex- 
cellent record of achievement in  this  regard. 
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