S.E. James

Evolution of Real-Time Computer Systems for Manned

Spaceflight

This paper describes the evolution of ground-based command and control systems used to support NASA’s manned
spaceflight program; it is an encapsulation of twenty years of development of real-time command and control systems at
NASA’s Real-Time Computer Complex (RTCC) in Houston, Texas. A brief description of manned spaceflight programs,
their accomplishments, and IBM’s involvement is provided as background information. Emphasis is given to the develop-
ment of RTCC systems, as well as to the technological and architectural changes affecting this development. Also
described are experiences gained in the management of complex, real-time software systems and the tools and tech-

niques used in the development process.

Introduction

IBM has designed, developed, and supplied computer
hardware and software systems to support the U.S.
manned space program since its inception. From Project
Mercury, America’s first venture into space, to the cur-
rent Space Shuttle program, the primary U.S. space
transportation system for the remainder of this century,
IBM has contributed to the advancement of the data pro-
cessing systems. Included have been onboard computers
and programming for Gemini spacecraft, Saturn launch
vehicles, the Skylab space station, and Space Shuttle or-
biters. Additionally, the Corporation has pioneered
ground systems to support mission control activities by
providing computers and developing software systems for
the real-time computer complexes (RTCCs) of every
manned spaceflight program to date.

This paper is intended to highlight some of the more
significant factors in the evolution of RTCCs and to sum-
marize important advances made in technology, system
architecture, and the development process. A brief sum-
mary of U.S. manned spaceflight programs is followed by
an overview of the RTCCs used to support these pro-
grams. The paper further details the evolution of RTCC
hardware and software from both architecture and tech-
nology perspectives, and concludes with some of the sig-
nificant lessons learned concerning the software systems
development process.

U.S. manned spaceflight programs

Although studies were made by the U.S. Air Force as
early as 1956, serious planning for a manned space pro-
gram did not begin until Project Mercury, which had its
technological roots in studies of the National Advisory
Committee for Aeronautics (NACA), predecessor of the
National Aeronautics and Space Administration (NASA).
High points of Project Mercury were the launching of the
first American into a 15-minute sub-orbital flight, and the
launching of the first American into earth orbit [1].

Project Gemini was the next venture in U.S. manned
spaceflight; it used a two-man spacecraft. Significant
firsts accomplished during this program included astro-
naut-initiated spacecraft maneuvers, rendezvous of two
spacecraft, extended spaceflights equivalent to a lunar
mission, a space walk by an American, and astronaut-
controlled reentry and landing of a spacecraft [2].

By 1961, Project Apollo began to take shape to fulfill
the national goal of a manned lunar landing by the end of
the 1960s. Three Apollo missions especially captured the
attention of the world: the flight of Apollo 8, when three
Americans became the first human beings to orbit the
moon; the Apollo 11 mission, which was the culmination
of centuries of anticipation as human beings walked the
lunar surface [3]; and the flight of Apollo 13, which jeop-

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM ). RES. DEVELOP. ® VOL. 25 @ NO. 5 e SEPTEMBER 1981

417

S. E. JAMES




418

S. E. JAMES

ardized the mission and lives of the crew when an oxygen
tank exploded aboard the spacecraft.

With the success of the lunar landing program, the na-
tion’s manned spaceflight efforts turned towards an earth-
orbiting space station as the next venture. The Skylab
program differed significantly from previous programs in
that the objectives were almost entirely science- and engi-
neering-oriented. Despite damage to the huge unmanned
space station during the initial launch [4], three separate
astronaut crews visited the orbiting laboratory for ex-
tended periods of time to establish the feasibility of the
commercial uses of space.

An historic occasion in astronautics took place on July
17, 1975, when an American Apollo spacecraft docked
with a Soviet Soyuz spacecraft in earth orbit. The route to
this historic event was not without problems involving
language and engineering practices, as well as the *‘inter-
face’” between the metric and English systems of units

[51.

Today, the U.S. manned spaceflight program centers
on the reusable Space Shuttle, a more complex spacecraft
than its predecessors, designed as a rocket, spacecraft,
and glider. Once operational, the shuttle will allow travel
to and from space for performing a variety of scientific
and engineering activities.

RTCC systems for manned spaceflight

The basic purpose of the RTCC systems for manned
spaceflight has remained the same through the years: to
perform the necessary computations from tracking and
telemetry data to provide Mission Control Center (MCC)
flight controllers with the information needed to ensure
crew safety and mission success. The fundamental driv-
ing force in the evolution of these RTCCs has been the
requirement to perform real-time command and control,
for increasingly complex spacecraft with increasingly
complex missions, with a high degree of reliability. RTCC
system architecture changes have been driven by these
requirements as well as by advances in hardware and
software technology and improvements in the develop-
ment process.

o Vanguard RTCC

Even before America’s first astronauts orbited earth,
IBM pioneered the requisite computational technology
for manned spaceflight through its role in Project Van-
guard, the nation’s first official artificial satellite program.
The Vanguard RTCC was established in June 1957 at the
Vanguard Computer Center in Washington, DC. It con-
sisted of an IBM 709 computer with a backup facility lo-
cated at IBM’s research computing center in Pough-

keepsie, New York. Working in coordination with Naval
Research Laboratory personnel, IBM programmers
wrote a 40 000-instruction program for the Vanguard
RTCC to support orbit determination calculations and
tracking data processing for the unmanned satellites [6].

® Mercury RTCC

The Mercury RTCC, established in 1960 at the NASA
Goddard Space Flight Center (GSFC), Greenbelt, MD,
represented a significant advance in the evolution of
RTCC systems. It consisted of three IBM 7090 computers
and associated communications and display equipment.
Operating in conjunction with NASA’s worldwide net-
work of tracking sites and the launch control center at
Cape Canaveral, the Mercury RTCC processed real-time
tracking data from simultaneous sources to provide a con-
tinually updated status of the spacecraft [7].

The computational support for the Mercury program
was a radical departure from earlier support of unmanned
satellites because it was real-time. The RTCC computers
had to accept input data from multiple sources simultane-
ously. The display technology progressed from analog to
digital. The critical nature of supporting manned space-
flight meant that spacecraft orbit go/no-go computations
had to be completed within ten seconds of booster cutoff.

® Gemini RTCC

The distinguishing characteristic of the Project Gemini
RTCC was that it had to control two maneuverable space-
craft in orbit at the same time. Since existing ground sup-
port capabilities were inadequate, a decision was made to
establish the Mission Control Center at the Manned
Spacecraft Center (now Johnson Space Center) in Hous-
ton to handle all multi-spacecraft missions. In October
1962, IBM received a prime contract from NASA to de-
velop the Gemini RTCC in Houston.

The Gemini RTCC, which began spacecraft monitoring
in 1965, consisted of five IBM 7094 computers, inter-
connected through a switching network, and associated
communications and display equipment [8]. The configu-
ration of the five computers allowed two practice mis-
sions or a practice mission and an actual mission to be run
simultaneously. Processing requirements were expanded
to include simultaneous real-time processing of both te-
lemetry and tracking data. The computing load was fur-
ther increased by the requirements to plan and command
orbital maneuvers for the rendezvous of two spacecraft.

e Apollo RTCC

Project Apollo placed an even greater demand on the
RTCC. To track the Apollo spacecraft, the Lunar Mod-
ule, and the Saturn launch vehicle, the facilities of the

IBM J. RES. DEVELOP. & VOL. 25 ¢ NO. 5 o SEPTEMBER 1981




RTCC would have to maintain constant contact with the
astronauts from lift-off through insertion into earth orbit,
insertion into cislunar trajectory, then lunar orbit, lunar
landing, lift-off from the moon, rendezvous and docking
with the orbiting Apollo spacecraft, and finally the return
to earth for direct reentry and landing in the Pacific
Ocean. To accomplish this task, the RTCC was upgraded
to five IBM System 360/Model 75 computing systems and
interconnected through a switching network similar to the
Gemini 7094 network [9]. The roles of each 360/75 were
similar to those associated with the 7094s. However, the
processing load was significantly increased. The signifi-
cance of the Apollo RTCC requirements can be visualized
from its seven major real-time program subsystems:

e Launch subsystem—cyclically updated position and
velocity utilizing data from the impact-predictor com-
puter at Cape Canaveral, multiple spacecraft sources,
and multiple tracking radar sources.

o Telemetry subsystem—received and processed teleme-
try data indicating performance of vehicle systems, as-
tronaut health, and spacecraft computer status.

e Orbit computation subsystem—calculated ephemerides
for the Apollo spacecraft and Lunar Module, deter-
mined remote site acquisition, and performed space-
craft attitude and pointing computations.

o Trajectory determination program subsystem—pro-
cessed radar data to determine the trajectory of the
spacecraft, detected radar errors, and provided infor-
mation on the lunar landing site.

e Mission planning program subsystem-—calculated
spacecraft maneuvers required for plane changes and
phase changes, and to accomplish translunar injection,
mid-course corrections, lunar-orbit insertion, descent
to the lunar surface, ascent from the surface, ren-
dezvous of lunar module with command module, trans-
earth injection, and final mid-course corrections.

e Digital command subsystem—uplinked data to the
computers aboard the spacecraft and the Saturn launch
vehicle.

e Reentry subsystem—simulated the onboard computer,
predicted the reentry trajectory, and alerted remote
tracking sites to acquire the spacecraft.

o Skylab and Apollo Soyuz test project RTCC

Skylab and ASTP RTCC real-time mission systems were
similar to the earth-orbit portion of the Apollo RTCC and
will not be discussed here.

® Space Shuttle RTCC

The Space Shuttle is proving to be just as demanding as
sending astronauts to the moon, though the astronauts of
Space Shuttle will not leave earth orbit. The Shuttle
RTCC requirements are much more extensive and com-

IBM J. RES. DEVELOP. ® VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

plex than the Apollo earth-orbit requirements. The com-
plexity of the Shuttle orbiter, the need for pinpoint land-
ing of the orbiter on a runway, the need to process data
simultaneously for three orbiters, the need for rapid or-
biter turn-around between flights, and the very high flight-
rate are the principal Shuttle RTCC requirements. An-
other significant factor is the need to provide an extensive
command and control capability for attached payloads.

IBM’s Space Shuttle RTCC involvement began in June
1974 with a contract to design and develop the RTCC pro-
gramming for the Shuttle Mission Control Center at the
Johnson Space Center. Two years later another contract
was awarded to IBM to provide the RTCC with three
I1BM 370/168 computers. Conceptually, the three comput-
ers do what their counterparts in Projects Mercury, Gem-
ini, and Apollo had done: provide centralized ground con-
trol of the space vehicle from lift-off, through orbit, to
reentry. However, they provide three times the computa-
tional power of the 360/75 computers used in the RTCC
during Apollo. Additionally, they support payload .data
processing, personnel training, and MCC testing and
checkout. Generally, one computer provides flight con-
trol as the Mission Operational Computer (MOC). During
critical periods of a mission, however, two of the comput-
ers process data simultaneously while the third remains in
a standby mode or serves as the Payload Operations Con-
trol Computer (POCC) [10]. The POCC provides capabili-
ties to monitor and control experiments (payloads) car-
ried into orbit by the Space Shuttle.

The Shuttle data processing application programs form
one of the largest and most complex real-time program-
ming systems ever produced. Fundamentally, these pro-
grams process telemetry and radar data into information
for flight controllers to make decisions and take sub-
sequent actions. The real-time portion consists of five
subsystems (with over 600 000 lines of programming): tra-
jectory, telemetry, command, network communications,
and control.

The trajectory programs comprise the largest of the ap-
plications subsystems (some 220 000 lines of code). Mon-
itoring and evaluation functions are performed during the
launch and landing phases, where radar tracking data are
converted to vehicle position and velocity and utilized to
determine and evaluate spacecraft maneuvers. Prediction
and planning routines are used during orbit to compute
information such as sunset and sunrise times and space-
craft maneuvers for orbit, reentry, and landing.

The telemetry programs, with more than 138 000 lines
of code, are designed to receive more than 3600 parame-

419

S. E. JAMES




420

S. E. JAMES

ters of discrete measurements per second from onboard
systems and an additional 3600 parameters per second of
recorded data from a tracking site. The telemetry sub-
system converts these raw data into engineering units and
checks certain parameters of data against predetermined
limits to assist in monitoring the status of the onboard
systems.

The command subsystem formats and provides data for
transmission to the Shuttle onboard computers. Among
the tasks accomplished are the real-time transmission of
commands to back up or relieve crew members of tasks
that can be performed in mission control. The command
subsystem also uplinks navigational data, computations
for maneuvers, and changes in crew procedures, as well
as updating software for the onboard computers.

The network communications subsystem configures
and monitors the status of communications into the Mis-
sion Control Center (MCC). It also configures the MCC to
receive and route data from the tracking and communica-
tions network to the appropriate MCC destinations for
processing.

The control subsystem ties the other four applications
subsystems together by initializing systems, managing
work and data, interfacing terminals, managing and for-
matting displays, and recovering from errors. The control
subsystem consists of over 135 000 lines of programming
and frequently interfaces with the operating systems serv-
ices by requesting data access routines, storage control,
and restart processing.

In addition to these real-time programs, support pro-
grams for checkout and configuration processing are pro-
vided along with special programs for the POCC. The
checkout programs, consisting of over 115 000 lines of
'ode, generate and analyze data for testing the command
and control software. The configuration processing pro-
gram maintains a file of information to produce configura-
tion tables for the command and control subsystem pro-
grams and consists of over 200 000 lines of programming,
using IBM’s IMS/VS data base management program.
The POCC programs provide both developmental support
and real-time payload command and control to Shuttle
payload users.

Development of RTCC systems

® Systems architecture

The evolution of RTCC systems architecture has been
driven by ever-increasing requirements, advances in
hardware and software technology, the need to improve
productivity, and the maturing experience of designers

and managers. This section summarizes some of the more
significant advances in software systems architecture.

Control program evolution

An essential element of any real-time system is the execu-
tive or control program, which provides the interface to
hardware components and controls the sequence of oper-
ations. The architecture of control programs has evolved
throughout the era of manned spaceflight. Some of these
changes have been driven by expanded mission require-
ments, but many have resulted from taking advantage of
improving technology in both hardware and software
products. The trend in RTCC systems has been to utilize
more and more off-the-shelf products, thus reducing ini-
tial development costs and ongoing maintenance costs
while improving transportability to other systems.

During the Mercury era, the control program was a spe-
cial-purpose monitor providing limited multi-program-
ming capabilities. The Mercury monitor was tailored spe-
cifically to support the real-time mission operational envi-
ronment with separate facilities provided to support the
job-shop environment used for software development.

A new executive program developed for the 7094 com-
puters for Gemini was again specifically designed to sup-
port the Gemini mission environment. Some advance-
ments were made in providing more generalized services
which were applicable to both the simulation and mission
support; features such as limited device independence
were introduced. While the separate executive was re-
quired for mission support, the trend toward the use of a
standard operating system began with the use of the IBM
7094 system (IBSYS) to support standard job shop.

The standard operating system provided for the Apollo
RTCC 360/75 computers represented a significant ad-
vancement. Features such as multitasking and dynamic
storage allocation were a part of the standard operating
system. The Apollo control program took full advantage
of these features, but because of the stringent response
time and reliability requirements to support manned
spaceflight, additional features were still required. The
Apollo Real-Time Operating System (RTOS) was devel-
oped during this period. RTOS was a customized version
of the standard IBM 360 Operating System, and achieved
a significant advancement with the ability to support all
RTCC activities, from job shop to real-time operational
support, with a single control program.

As the spaceflight activity moved into the Space
Shuttle era, the use of standard operating systems contin-
ued to increase. All phases of the development process
and mission operations are supported with the standard

IBM J. RES. DEVELOP. ¢ VOL. 25 » NO. 5 e SEPTEMBER 1981




IBM 370 Operating System (MVS). Standard features
such as virtual memory are used extensively. In order to
achieve this, while still supporting the extreme response
time and reliability requirements of a manned spaceflight
mission, the concept of providing centralized system
services to interface with the standard operating system
was introduced. The system services execute as normal
application programs, but provide services which are re-
quired by a number of the operational programs. Features
normally associated with the control program, such as
data routing and error recovery, are accommodated with-
out modification to the standard operating system.

The maximum use of standard operating systems sup-
plemented by common systems services routines has
been an unqualified success during the development of
the Shuttle RTCC. The cost of maintenance has been
reduced and the transportability of the system has been
demonstrated.

Use of process control tables

A fundamental architectural concept of the Shuttle real-
time command and control system is its use of process
control tables. These tables are tabular specifications of
the actions to be performed by the executable real-time
routines. Their elements generally consist of processing
codes, control codes, pointers to related data, and data
constants.

Usage of process control tables began during Gemini
and increased for Apollo. The prime motivator was the
goal of divorcing the basic execution logic from the spe-
cific processing descriptions to facilitate testing, since ta-
bles can usually be revised or replaced with little or no
real-time code change. To meet the Shuttle program’s
unique environment of rapid flight turn-around and con-
current support for multiple, differently configured vehi-
cles, the process control table concept has been broad-
ened to maximize both the flight-to-flight and in-flight re-
configurability of the real-time system.

Numerous new table applications were designed for
Shuttle. Previous telemetry subsystems, for example,
used tables to unpack, calibrate, limit-sense, and display
vehicle data. The Shuttle software design extends to ex-
tracting the subsets of telemetry parameters required by
the trajectory and command subsystems via table-driven
routines. Also controlled via tables are the computing of
additional quantities and event indicators from the con-
verted input data. Even the specifications for processing
sequences, which can vary depending on the vehicle and
data class, are controlled via tables; and multiple table
versions afford dynamic control over the number of pa-
rameters processed each second. A major advance engi-

IBM J. RES. DEVELOP. & VOL. 25 & NO. 5 « SEPTEMBER 1981

neered in the trajectory and command subsystems was
implementation of a table-driven data retrieval process. It
collects data from an assortment of tables of varying
structures for input to the spacecraft command load gen-
eration and trajectory/command display functions.

Software generalization is the key feature of the Shuttle
table-driven design. Because orbiter flight turn-around
will approach fourteen days in the mature operations era,
flight-specific software development and management of
the attendant multiple software versions would be im-
practical. Hence, the real-time software is designed to
support a wide range of functional capabilities; flight- and
vehicle-specific definitions are introduced into the system
solely through off-line-generated process control tables.
Additionally, much of the real-time software is reentrant
code; that is, a single program copy can be executed con-
currently to support several different vehicles, data
classes, or other processes. This feature combines with
the process control table organization and the extensive
user configuration controls to optimize efficient computer
memory utilization. The process control tables are stored
on disks, by flight, in a hierarchical structure. At the top
level of the hierarchy are tables containing specifications
applicable to all vehicles within a flight; the next level
contains vehicle-specific specifications; and at the bottom
level are those specifications that vary by data class (real-
time, playback/dump) for a given vehicle. Based on a se-
quence of user configuration requests, access paths are
dynamically established, and only those tables required at
a particular mission point are loaded into computer mem-
ory. Even a totally new flight definition may be copied to
the on-line disk storage and subsequently accessed for
real-time support without impact to the ongoing flight ac-
tivities.

Much of the processing specification is under further
user control at the individual entry level, to enable rapid
changes in flight. Generally, these in-flight reconfigura-
tions take the form of changing data constants (e.g., cali-
bration coefficients, limit-sensing values, mathematic-for-
mulation values) or process controls (e.g., disabling a pa-
rameter’s limit sensing, redefining the parameter set on a
configurable display). Changes generally can be made ei-
ther to memory- or disk-resident table copies, with mem-
ory-resident changes usually preserved by copying the ta-
bles back to secondary storage when the software config-
uration they are supporting is finished.

As the real-time system has undergone significant evo-
lution, so have the off-line programs which produce the
process control tables. For previous projects, the reconfig-
uration task was accomplished by a collection of inde-
pendent preprocessors, each generally consisting of spe-

421

S. E. JAMES



422

S. E. JAMES

cially developed software to create intermediate data
bases which were subsequently accessed for in-storage
construction of tables. Other tables were coded and as-
sembled using Basic Assembler Language or special data-
table-formatting macros.

For Shuttle, these preprocessors have been consoli-
dated into a single Configuration Requirements Process-
ing (CRP) system, which provides a much faster, more
efficient, and more reliable system to configure a specific
Shuttle flight. CRP runs on the 370/168 and uses IMS/VS
for data base management. The system is capable of pro-
cessing multiple flights and multiple updates to a single
flight concurrently, and incorporates significantly more
automated input and product validation processing than
its predecessors.

Managing complex systems memory and CPU resources
Computer memory and CPU resource management have
continually been a challenge in RTCC development, since
requirements have tended to drive the systems to the lim-
its of their resources. The method used to manage RTCC
CPU and memory can be characterized as controlled, pri-
oritized competition among cyclic and demand/response
application functions. As a part of system design, appli-
cation functions are characterized in terms of resource
utilization, frequency of execution, and allowable-
elapsed-time-to-complete (response time).

Demand/response functions are user-requested and ex-
ecute at irregular intervals. The definition of an explicit
required response time for these functions is critical,
since they generally execute at the lower end of the prior-
ity structure. The most important of these functions, from
a system performance point of view, are those which re-
quire significant CPU time and memory to complete.
These typical functions perform complex trajectory-re-
lated computations such as trajectory determination,
ephemeris generation, and maneuver planning, and are
serialized to prevent unreasonable competition for re-
sources among themselves.

Cyclic functions are driven by timers or by the regular
arrival of data. Typical functions are those which process
telemetry data from the network and those which output
display information on a time cycle. Their frequency of
execution is defined explicitly, and execution time is ex-
tremely important since they generally execute at the top
of the system priority structure. Each of these functions
must complete sufficiently ahead of its next execution to
allow lower-priority functions to meet their explicitly
stated response times.

At the beginning of the Shuttle RTCC design phase,
specific memory and CPU limits were established as de-
sign constraints. Systems designers and analysts then put
together a profile of application functions which allowed
them to predict the percentage of CPU and memory
needed for cyclic functions. Each of the demand/response
functions was then analyzed to determine whether it
could meet its required response time within the remain-
ing CPU and fit within the remaining memory. Design al-
ternatives and requirements tradeoffs were then exer-
cised until the projected system performance was within
the design constraints. Memory and CPU budgets were
established for the overall system and each major system
component. System performance was managed against
established budgets throughout the development period
with the same rigor used in managing cost and schedule.

Reliability through redundancy

The reliability requirements for RTCC systems have re-
mained similar from Gemini through the Shuttle program:
during critical periods of flight operations, the system
must achieve a 0.9995 reliability and, during noncritical
flight operations, if system support is lost it must be re-
covered with a relatively current data state. The basic ap-
proach to satisfying these requirements has also remained
the same.

For critical flight operations, the approach to satisfying
the 0.9995 reliability requirement is through redundant
systems with a prime Mission Operational Computer
(MOC) system backed up by a fully functioning Dynamic
Standby Computer (DSC) system. Locally developed
system software provides a High-Speed Restart function,
which creates a DSC as a mirror image of a functioning
MOC in preparation for critical operations. In addition, a
Selectover function provides DSC-to-MOC role switch-
ing, in case MOC support is lost.

During noncritical operations, a single command and
control system (the MOC) is used. Locally developed
system software provides a System Tape Checkpoint
function which, on user request, transfers to tape the total
system state for subsequent use in case of a loss of system
support. Also provided is a System Tape Restart func-
tion, which uses the data recorded by System Tape
Checkpoint to start up a new MOC in the same state as
existed at checkpoint time.

Although this basic approach has remained similar
across programs, system software has been adapted to
increasingly complex system environments. In the Gem-
ini environment, for example, all system control pro-
grams were locally developed and customized. This made
it relatively simple to suspend all MOC processing re-

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢« SEPTEMBER 1981




quired for High-Speed Restart and System Tape Check-
point. This task has become much more complex in the
Shuttle environment, which features standard system
software such as MVS, VTAM, and JES3.

In addition, the performance of High-Speed Restart
and System Tape Checkpoint has been challenged to min-
imize the time required for data transfer despite the tre-
mendous growth in the volume of data. This growth is
illustrated in Table 1.

Although the software is optimized to transfer data in
the shortest time possible, total MOC support inter-
ruption at the required frequency for System Tape Check-
point is still undesirable for the Shuttle operation era. To
address this problem, the basic system software functions
are being augmented with an application-data checkpoint/
restore. The application Flight Checkpoint function will
be used frequently at user request, with minimal impact
to MOC support, to capture and record all important
MOC data related to the user-selected flight. The corre-
sponding application Flight Restore function will be used
in the recovery process, to restore, in a functioning MOC,
the data previously recorded by Flight Checkpoint.

Unique features of the payload operations control
computer (POCC) architecture

The POCC simultaneously supports multiple independent
real-time users in monitoring and controlling experiments
onboard the Shuttle Orbiter. It embodies a number of
unique architectural characteristics which distinguish it
from its RTCC predecessors.

The basic architecture provides the user independence,
error protection, and guaranteed CPU and memory re-
sources afforded by a distributed system while retaining
the resource-sharing flexibility of a centralized system.

The fundamental elements of this architecture are the
Executive Address Space (Exec); Inter-Address Space
Communications through a Common Service Area
(CSA); and User Address Spaces (UASs). The Exec re-
ceives multiple telemetry streams from a ‘“‘front-end”’
computer system which interfaces with an external com-
munications system, isolates parameters according to the
user group which is authorized to process them, and dis-
tributes these parameters to one of the several UASs—
each of which supports a given user group. A storage area
(CSA) addressable by all UASs is used as the transfer
medium and is protected from unauthorized or inadver-
tent ‘‘reads’’ and ‘‘writes’’ by an authorized SVC.

UAS:s for different user groups are dynamically created
and terminated by the Exec according to the mission-sup-

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981

Table 1 Data transfer growth. (Note: M = 1 048 576.)

Project Transfer data volume Data residence
(M bytes)

Gemini 0.3 Main memory

Apollo 5.0 Main memory, LCS

Shuttle 320 Real memory, disk

port timeline. UASs operate independently and asynchro-
nously, execute computations unique to a given user, and
are protected from each other’s potential malfunction by
standard MVS error-recovery software. Computation re-
sults are placed in CSA where they will be available to all
UASs for viewing on displays. UASs which send experi-
ment-control information to onboard equipment do so
through the Exec, which provides the interface to the ex-
ternal communications system. Most functions which are
common across UASs and the Exec are supported by a
single, reentrant copy of the required software which is
loaded into write-protected CSA and is therefore execut-
able by all address spaces as required. MVS-SE time-
slice and rotate-priority functions are employed to ensure
equitable CPU resource distribution across address
spaces.

Display support software (DSS) executing in each ad-
dress space uses MVS VTAM to communicate with a dis-
tributed display control system (DCS). The DCS consists
of a minicomputer and several attached display terminals
with minicomputer capability. DSS operates as a data-re-
trieval service only, leaving the functions of display com-
position (off-line definition), display formatting (arrange-
ment of data on viewing surface), and units conversion to
terminal-resident software. Given standard DSS/DCS
communication conventions, DCS hardware or software
changes remain transparent to the POCC 370/168.

An off-line POCC 370/168 program interfaces with each
user group via DCS to accept a group’s unique FORTRAN-
defined computations and to integrate them into individual
UASs for execution in real time. Each group’s computa-
tion definitions are retained in separate libraries which are
updated both before the mission and during flight support.

e Computer hardware technology

From Mercury through Apollo, some significant elements
of hardware technology were driven by the unique re-
quirements for real-time support of manned spaceflight.
For Shuttle, the emphasis has shifted to take advantage of
existing leading-edge hardware technology to satisfy pro-
gram requirements. The required processor speed and
memory capacity have increased by a factor of approxi-
mately 65 from Mercury to Shuttle. Additionally, aggre-

423

S. E. JAMES




424

S. E. JAMES

gate channel rates have increased by a factor of eight over
this same period.

Early in the Gemini program, the need for fast auxiliary
memory led to the development of the four-megabyte
Large Core Storage that was used throughout Project
Apollo. Beginning with a 96K-byte core file (where
K = 1024), the auxiliary memory progressed through
256K and 512K versions before reaching 4096K bytes.
Much of this activity provides a base knowledge for the
design and development of today’s virtual systems.

A significant contribution to evolution of today’s byte-
and block-multiplexer channels was the need to accom-
modate the continual growth of both the number and
speed of digital data streams. The 7281 Data Communica-
tions Channel (DCC) used on Project Mercury was, for its
time, highly innovative in its approach to the hardware/
software design tradeoffs needed to handle I/0 traffic and
interrupt rates. The DCC function was provided by the
2902 Multiplexer Line Adapter through Project Apollo
and by the 2909 Asynchronous Data Channel in today’s
Shuttle RTCC.

Another significant requirement was the need to con-
figure the wide array of peripherals among as many as
eight different processors. This led to the development of
the 2914 control unit string switch, the 2844 DASD
switch, and designs for channel-to-channel inter-
connection. The resulting speed and reliability have
greatly influenced today’s data processing system de-
signs.

® Software technology

The emphasis on quality, performance, and reliability ne-
cessitated by manned spaceflight has provided the in-
centives to use the most current software engineering
techniques and to develop sophisticated software tools.
These incentives provided the basis for several standard
software products, including tools for automated output
spooling and products utilized in electric utility and oil
refinery applications. Many currently accepted software
management concepts also originated in the RTCC proj-
ects, and significantly influenced the evolution of soft-
ware engineering techniques.

It was discovered in 1963, during the early days of Proj-
ect Gemini, that one of the fundamental prerequisites to
successful development of large software systems is early
visibility and control of the developing systems. From a
program code perspective, these were provided by creat-
ing a master system at the beginning of code development
and putting it under strict configuration control. From a
work planning and tracking perspective, this was accom-

plished by regularly publishing a development plan con-
taining all the significant development and test milestones
and current status relative to these milestones.

In the late 1960s, on the Apollo project, top-down sys-
tem development was used by several subsystems. Begin-
ning in 1970, the simulation systems required for flight
controller training used top-down system development
and structured programming across the total system.
Since 1975, the Shuttle RTCC has used systematic esti-
mating techniques, top-down development, structured
programming, design inspections, and code inspections.
The Shuttle Payload Operations Control Center is using
all the latest FSD Software Engineering Practices [11].

A more systematic approach to software quality assur-
ance has evolved with the development of the Shuttle
RTCC. An independent software quality assurance or-
ganization was established to participate in all major proj-
ect reviews and to provide periodic audits and spot
checks of the development process and products. Work-
ing in conjunction with other software development
mechanisms, such as project development plans, the soft-
ware quality assurance activity provides increased visibil-
ity, control, and independent checks and balances
throughout the development process.

In the early years, it became evident that the develop-
ment of tools which are essential to implementation, test-
ing, and even design itself must begin with the design of
the operational system. For example, programs to gen-
erate test data, to measure performance, to log and delog
data in real time, to take snapshots of code and data
areas, and to execute programs without access to real-
time interfaces are all typically designed along with the
design of each new or modified system.

The size, complexity, and performance requirements of
RTCC systems led to early development of sophisticated
design and system-performance-monitoring software
tools. Computer system models were used, beginning
with Apollo, to evaluate systems performance for can-
didate designs. For Shuttle, parametric analysis tech-
niques have been developed which are less costly and
time-consuming than the earlier models and have proved
to be very effective. System-performance-monitoring
software tools have been used, beginning with Apollo,
and have continuously been improved, culminating with
the comprehensive Advanced Statistics Collector soft-
ware used for Shuttle.

The criticality of the RTCC systems has resulted in de-

velopment of testing approaches and techniques which
have significantly influenced the industry. This includes

1BM J. RES. DEVELOP. e VOL. 25 ¢ NO. 5 ¢ SEPTEMBER 1981




test tools, test planning and specifications, role of inde-
pendent verification, and the relationship between devel-
opment and independent verification.

o Software development process

The RTCC software development methodology has made
significant advancements over the years. The catalysts
for this continuing improvement have been the size and
complexity of the systems, ever-increasing requirements,
and the continuing need for improving the predictability,
manageability, and cost-effectiveness of the software de-
velopment. This progress has occurred over a long time
period and has been evolutionary, not revolutionary, in
nature.

A significant advancement over the years has been a
progressively clearer view of the steps necessary for ef-
fective software development: define and control require-
ments; select/document implementation approach; de-
velop/control system design; estimate cost, schedule, and
development resources; establish detailed development
and test plans; and continually assess progress vs plans.
A brief discussion of these factors with illustrations of
how they have evolved follows.

Define and control requirements

The evolution and growth of the space program from proj-
ect to project has been paralleled by a corresponding
change in the software requirements and the require-
ments generation process. The trend has been character-
ized by a growing level of detail in the requirements, an
earlier documentation schedule, more uniform and con-
sistent control procedures, and more effective change
control.

During Mercury and Gemini, there were essentially
two levels of requirements which were provided by
NASA to IBM: an initial set which provided an identifica-
tion of the functions the system was to perform, and a
final set which was used primarily to describe the outputs
required by the flight controllers. The details of the re-
quirements were negotiated between the NASA technical
interface and IBM lead programmers. The initial require-
ments were provided by NASA fairly early in the devel-
opment process along with a transmittal form directing
IBM to implement them. The final requirements were
agreed upon but not completely documented until the
program implementation was near completion. This pro-
vided a great deal of latitude in making program changes,
since the requirements and change control were ef-
fectively in the hands of the NASA technical interface
and the lead programmer.

The increased size and complexity of the Apollo proj-
ect demanded additional formalization of the require-

IBM J. RES. DEVELOP. @ VOL. 25 ¢ NO. 5 « SEPTEMBER 1981

ments definition and control process. To facilitate this
formalization, another NASA requirements delivery
termed ‘‘Basic Requirements’’ was included between ini-
tial and final. A formal change procedure was also estab-
lished. ‘‘Basic Requirements’’ was, in fact, a NASA-pub-
lished draft of the final requirements for use in estab-
lishing the detailed requirements. Final requirements still
were not transmitted by NASA until late in the implemen-
tation cycle. This earlier documentation of requirements
and procedures for approval of changes put more of the
monitoring and control of requirements in the hands of
NASA and IBM management. During Apollo, the major
emphasis was the technical aspect of a lunar landing, and
very few requirements were rejected on other than tech-
nical grounds. Skylab’s less flexible budget made the de-
cision to make a requirement mandatory dependent on its
cost as well as technical considerations. A new procedure
was developed to allow an evaluation of potential require-
ments changes from a cost and schedule impact stand-
point prior to final approval.

The Shuttle program re-evaluated the requirements
process and established a system with four levels of re-
quirements intended to parallel software development.
Level A requirements are generic and identify the major
system functions. Level B requirements provide a com-
plete description of the capabilities of each function and
are sufficient to develop subsystem design. Level C re-
quirements provide the final detail and are sufficient for
completing program implementation. Level D require-
ments describe certain reconfigurable items such as data
formats which are updated beyond Level C cutoff. These
requirement levels are scheduled and formally delivered
by NASA to IBM during the appropriate program devel-
opment phase. IBM has a documented, formal change as-
sessment and control process which provides increased
requirements visibility and change control to the pro-
grammers, line management, and project management.

Select and document the development approach

The success of any system development depends to a
large extent on how effective the planning is in the initial
stages. Not only must plans be established, but they must
be communicated and understood by the people who
have performance responsibility. For a project to run effi-
ciently, the management approach as well as the technical
aspects of the work must be understood and agreed upon.

As a result of these considerations, IBM published a
comprehensive management plan during the system defi-
nition phase of the Shuttle RTCC project. This plan de-
scribes the cohesive management and technical ap-
proaches which are used in system design, development,
and test; it serves as a project standard to be followed by
all elements of the organization. The management plan

425

S. E. JAMES




426

S. E. JAMES

serves not only to educate people on how the project is
run, but also as a guide for development of more specific
plans and project procedures. The management plan ad-
dresses the following major topics: organization responsi-
bility and authority, requirements management plan,
project phases and milestones, configuration manage-
ment, schedule and resource management, computer sys-
tems analysis plan, documentation plan, and standard
techniques and tools.

Develop/control system design

Design for both large and small systems is a process re-
quiring creativity, knowledge, and discipline. Similarities
in the design process end rapidly, however, as the design
becomes the framework in which hundreds of program-
mers will produce hundreds of thousands or even millions
of lines of code. For a large system, design quickly ex-
ceeds the span of control of individual designers, and the
need to support a cohesive design process becomes of
great importance. This process must bring out the best
creativity in individuals while maintaining discipline.

The IBM RTCC approach has been to use an organiza-
tional structure in which there are no separate ‘‘design’’
or ‘“‘architecture’’ departments. Lead technical people
are expected to be designers and implementors. This in
no way de-emphasizes the design function, but rather em-
phasizes the design process and not the designer as an
individual. A major influence on the RTCC systems
achieving good design, with structural integrity, effi-
ciency, and other desirable attributes, has been moving
the design process out into the open. For design of the
Shuttle RTCC, a systems architecture group was estab-
lished. This group is not an organizational entity, but con-
sists of senior technical representatives from each major
RTCC subsystem.

Planned customer reviews and internal audits review
and validate the design at key points in the development
process. Customer reviews are formal, scheduled, and
rigorous. Two major reviews are conducted during the
design of each subsystem; these are the Preliminary De-
sign Review at completion of the functional design, and
the Critical Design Review, which serves as a final check-
point before the majority of the design is committed to
code. These reviews usually last for several days and are
preceded by IBM internal reviews which in themselves
are effective architectural controls. Design reviews are at-
tended by NASA customers, consultants, and other con-
tractors. Questions raised in these reviews lead to docu-
mented action items which require formal responses to
the questioner and to a smaller design control board es-
tablished for this purpose. Once this formal review pro-
cess is completed, the design is placed under strict change
control.

Overall system architecture, logic and data flow, and
interfaces between programs are documented in plain
English in the functional design. Module design is ex-
pressed in a Program Design Language.

Estimate/budget cost, schedule, and development re-
sources

Accurate resource estimating has been a continuing chal-
lenge for the software developer. Many factors contribute
to this, not the least of which has been the lack of a sys-
tematic approach to estimating and the absence of valid
reference points. For many years, resource estimating de-
pended almost solely on the experience of the individual
programmer, Estimates were developed from the bottom
up in a rather ad hoc fashion.

Although resource estimation is still not an exact sci-
ence, significant improvements have been made. In the
development of the RTCC system for the early Shuttle
orbital flights, resource predictions have been very close
to target. This was accomplished while a system of one
million lines of code was being developed over a three-
year period.

The first step in any estimating process is to understand
the job. This involves two major elements: understanding
the environment, and understanding the requirements.
Key elements of the environment include stability of
computer hardware and operating system, newness of de-
sign, level of experience, and status of development
tools. Understanding the requirements involves identi-
fying each software product and the associated cost com-
ponents, as well as laying out the key milestones. The
second step involves the establishment of a clear set of
ground rules for obtaining customer agreement. The
ground rules define the assumptions and criteria to be
used in the estimating process as well as in the estab-
lishment of an estimating model. The model is developed
using available history data and experience. Throughout
the development process, historical data (e.g., lines of
code produced, computer hours used) are maintained. Pe-
riodically, the historical data are analyzed and the estima-
tion model is recalibrated. By obtaining customer con-
currence on the ground rules and applying them consis-
tently across the project, many of the problems
associated with estimating and negotiating resources are
eliminated.

Establish detailed development and test plans

A critical factor in the RTCC software development pro-
cess has been the use of formal Project Development
Plans (PDPs) and Test Plans. These plans document de-
tails of the project’s top-down development process, de-
scribing the development philosophy and specific activi-
ties of the development and test processes.

IBM J. RES. DEVELOP. & VOL. 25 ¢ NO. 5 & SEPTEMBER 1981




Prior to Space Shuttle, the RTCC Project Development
Plan depicted schedules in terms of a prose, tabular for-
mat; the Shuttle Development Plan uses both tables and
Program Evaluation Review Technique (PERT) charts to
describe development and test schedules. The PDP is
used to track all of the RTCC project activities from initial
design studies through final system delivery. Key mile-
stones described in the plan include requirements dates;
system design reviews; preliminary and critical design re-
views for each subsystem; initial, basic, and final system
releases for each subsystem; and final system delivery.
These milestones and accompanying subsystem/system-
level PERTSs are carried in the summary volume of the
PDP and are used for reviews with upper-level NASA
management. Targets for detailed development activi-
ties—design inspections, code inspections, development
test specifications, development test completion dates,
periodic system builds, Independent Verification (IV) test
completion dates—are described in additional volumes of
the PDP and are used by first-line IBM and NASA man-
agement to track development of each module of the sub-
systems.

A primary activity in establishing the schedules in the
PDP is the resolution of interdependencies. These include
the dependency of the software developer on NASA re-
quirements, the dependency of software testing on hard-
ware availability, and the dependency of software devel-
opment on other software elements. This has proven to
be the most time-consuming part of the scheduling pro-
cess, as it usually requires several iterations and involves
a number of parties including IBM, NASA, and other
contractors. The results of these negotiations are clearly
documented as dependencies on the summary PERTSs and
in a special detailed interdependency volume of the PDP.

Another element which has proven to be a primary fac-
tor in development planning is projecting the performance
of the real-time mission software. For Gemini and Apollo,
these projections were made using detailed digital com-
puter simulation models. These models have been re-
placed for Space Shuttle by a parametric analysis tech-
nique [12]. This concept reduces requirements and design
to a set of key parameters (¢.g., average number of dis-
plays updated per second) to be monitored throughout the
development process. As design is finalized, initial pro-
jections are updated and used by IBM and NASA man-
agement to make key requirement and performance
tradeoffs. The key parameters are listed in the PDP, and
regular updates and presentations to NASA are sched-
uled at significant milestones in the development process.

Software developed for the RTCC prior to the Shuttle
followed the traditional test hierarchy of unit, subsystem,

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢ NO. 5 ¢« SEPTEMBER 1981

and system testing. This hierarchy was followed from the
earliest days of RTCC software development through the
ASTP era. Beginning with the Space Shuttle, RTCC soft-
ware is being developed using structured programming
with two levels of testing—Development Testing and In-
dependent Verification (IV) Testing. The Shuttle Test
Plan was originally generated during the system design
phase and has been updated periodically at key project
and requirements milestones. The Test Plan defines
guidelines for Development Testing and IV Testing.

Development Testing encompasses all testing per-
formed during the development phase. Beginning with the
testing of the application control programs, the develop-
ment testing follows an orderly process of requirements-
oriented testing of each function both before and after it is
incorporated into the master system. This testing contin-
ues until all elements of the software are tested together,
at which time it is delivered to the IV group as the Final
System Release (FSR).

IV testing is done by an organization independent of
the development organization, using test specifications
and system test environments unique to IV. This test ac-
tivity begins following receipt of the FSR system from the
development organization. Initial testing verifies that the
software is capable of supporting all required mission
configurations. This is followed by interface tests to ver-
ify internal and external interfaces, error recovery, and
restart and selectover. As interface testing concludes,
emphasis is shifted to performance measurements which
will measure memory, CPU, and I/O utilization and be
used to validate the performance projections in the PDP.
Following the successful completion of IV testing, the
system is delivered to NASA for flight controller training
and mission support.

Continually assess progress vs plans

The Project Development Plan is a ‘‘working’’ document
used to continually assess the progress of software devel-
opment. All parts of the PDP, from the summary sections
through the detailed sections, are monitored on a daily or
weekly basis by IBM managers and programmers and
their NASA counterparts. Formal meetings are held
weekly with NASA to review the status and problems
noted in the PDP. This continual monitoring of status
yields the significant benefit of identifying problems early,
thereby allowing adjustment of dependent activities or
schedules while the greatest number of options are still
available. The PDP is republished every two weeks to re-
flect updated status and actions taken.

Formal development plans have been used for all
RTCC projects. The content of the plans has been up-

427

S. E. JAMES




428

S. E. JAMES

graded to reflect advances in programming technology
and sophistication of both the IBM team and NASA per-
sonnel. In most respects, the current PDP includes more
detail than those of the earlier RTCC era. This is primar-
ily a result of a greater understanding of the criticality of
timely status monitoring and the need to clearly commu-
nicate the detailed interfaces and interdependencies of
today’s more complex systems.

Summary

Throughout the U.S. manned spaceflight programs, IBM-
developed RTCC systems have been at the forefront of
technology. The fundamental driver in the evolution of
these RTCCs has been the requirement to perform real-
time command and control for increasingly complex mis-
sions. RTCC improvements have resulted from these
changing requirements, advances in hardware and soft-
ware technology, the need for improving productivity,
and the maturing experience of the technical and manage-
ment team.

One notable aspect of the RTCC evolution has been the
continuing movement from highly specialized systems,
containing much unique hardware and system software,
to a more generalized computing complex with emphasis
on maximum use of standard hardware and system soft-
ware.

Through the years, major emphasis has been placed on
improving software development by establishing a pro-
cess that ensures software visibility and control through-
out the development cycle. The objective is to ensure
consistent, predictable achievement of cost, schedule,
and quality commitments. IBM has maintained an ex-
cellent record of achievement in this regard.

Acknowledgments

This nation’s space program would not have been pos-
sible without the combined energies of the many thou-
sands of members of the NASA/Industry team over the
last two decades. On a much smaller scale, this paper
would not have been possible without the combined sup-
port and encouragement of a number of people at IBM
Houston. In particular, the author appreciates the contri-

butions from E. L. Campbell, G. H. Evans, W. S. Har-
ner, H. Hulen, W. J. Kloster, G. E. Morris, H. L. Nor-
man, R. G. Olin, F. M. Riddle, W. D. Sigler, C. K.
Waund, and L. S. Wright.

References

1. I. M. Grimwood, Project Mercury, a Chronology, National
Aeronautics and Space Administration, Washington, DC,
1963, p. 38.

2. B. C. Hacker and J. M. Grimwood, On the Shoulders of Ti-
tan, a History of Project Gemini, National Aeronautics and
Space Administration, Washington, DC, 1977, p. v.

3. W. von Braun and F. I. Ordway, History of Rocketry and
Space Travel, 3rd Ed., Thomas Y. Crowell Co., New York,
1975, p. 237.

4. W. G. Holder and W. D. Siuru, Jr., Skylab, Pioneer Space
Station, Rand McNally and Co., 1974, p. 84.

5. E. C. Ezell and L. N. Ezell, The Partnership, a History of
the Apollo-Soyuz Test Project, National Aeronautics and
Space Administration, Washington, DC, 1978, p. vii.

6. C. M. Green and M. Lomask, Vanguard, a History, Na-
tional Aeronautics and Space Administration, Washington,
DC, 1970, p. 160.

7. “Final Report, Project Mercury,” prepared for National
Aeronautics and Space Administration, March 1, 1962.

8. ‘‘Project Gemini Final Report,”” submitted to National Aero-
nautics and Space Administration, Manned Spacecraft Cen-
ter, Houston, TX 77058, March 5, 1968, IBM Federal
Systems Division, Houston, TX.

9. “‘Apollo Lunar Landing Report, Interim,”” submitted to Na-
tional Aeronautics and Space Administration, Manned
Spacecraft Center, Houston, TX 77058, November 25,
1970, IBM Federal Systems Division, Houston, TX, p. 5.3.

10. ‘‘Space Transportation System Mission Control Center Sys-
tem Specifications for the Shuttle Ops Time Frame,”’ Na-
tional Aeronautics and Space Administration, Houston, TX,
April 1979.

11. H. D. Mills, D. O’Neill, R. C. Linger, M. Dyer, and R. E.
Quinnan, ‘“‘The Management of Software Engineering,”
Parts I-V, IBM Syst. J. 19, 414-477 (1980).

12. J. M. Mohon, ‘‘Performance Projections During Design Us-
ing a Parametric Analysis Tool,”” Proceedings of the IBM
Design ’79 Symposium, Santa Teresa, CA. April 1979, p.
379.

Received July 7, 1980; revised October 21, 1980

The author is located at the IBM Federal Systems Divi-

sion facility at 1322 Space Park Drive, Houston, Texas
77058.

1BM J. RES. DEVELQP. e VOL. 25 e NO. 5 ¢ SEPTEMBER 1981




