Communication

Dexter Kozen

Positive First-Order Logic Is NP-Complete

The decision problem for positive first-order logic with equality is NP-complete. More generally, if X is a finite set of
atomic sentences (i.e., atomic formulas of the formt =t or Rt . . . t_containing no variables) and negations of atomic
sentences and if ¢ is a positive first-order sentence, then the problem of determining whether ¢ is true in all models of 2.is

NP-complete.

Introduction

Although it is undecidable in general whether a given
sentence of first-order predicate logic is a theorem, algo-
rithms have been discovered for various special cases; in
some instances the line between the decidable and unde-
cidable is finely drawn (see [1, 2]). Much effort has been
directed toward the development of sophisticated tech-
niques for the decidable special cases, such as resolution,
paramodulation, the inverse method, and their various
refinements (see [3]).

More recently, interest in the inherent complexity of
computational problems has led to the successful com-
plexity-theoretic taxonomy of several decision problems
in logic (see, e.g., [4-9]). In particular, Lewis [10]
discusses the complexity of some solvable special cases
of the decision problem for first-order logic.

In this note we show that the decision problem for
positive first-order logic with equality is NP-complete
[11]. More generally, if X is a finite set of atomic
sentences (i.e., atomic formulas of the form ¢, = ¢, or
Rt - -t containing no variables) and negations of atomic
sentences and if ¢ is a positive first-order sentence, then
the problem of determining whether ¢ is true in all models
of 3 (in symbols, 3 F ¢) is NP-complete. Unlike the
decidable special cases treated in [10], this problem
places no restriction on the use of quantifiers.

The result of this note characterizes exactly the expres-
sive power of positive sentences. Also, our nondetermi-
nistic polynomial-time algorithm is quite straightforward
and does not use any of the sophisticated machinery of

[12, 13], for example, yet it is optimal in the sense that its
worst-case complexity cannot be significantly reduced
unless P = NP.

The problem X F ¢ for positive ¢ is of particular
interest because many common combinatorial problems
arising in computer science are special cases. For exam-
ple, if G is a graph with nodes ¢, - - -, c,, 2 is the set

{c; # ¢, i #j}

U {c.Ec, | (c;, c;) is an edge of G}

U {— cEc, | (c,, c,) is not an edge of G}
and ¢ is the positive sentence

3x, -+ 3x, (/\155511\/ G = xj)

1=j=n"i

AN x.Ex

1si<n”{ i+l) N an‘xl *

then 3 F ¢ if and only if G has a Hamiltonian circuit.

The above few lines already show that the problem
3 F ¢ is at least NP-hard, since the Hamiltonian circuit
problem is known to be NP-complete (see [14]). We show
below that the problem is NP-hard even for %, = (.

Notation and terminology

The language L of first-order logic with equality consists
of a countably infinite set x,, x,, - - - of individual varia-
bles, a countably infinite set f, g, - - - of function symbols
for each arity m = 0, a countably infinite set R, - - - of
relation symbols for each arity m = 0 (of which one is the
binary equality symbol =), logical symbols n,v,, 3, V¥,

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. @ VOL. 25 @ NO. 4 ¢ JULY 1981

327

DEXTER KOZEN

328

and parentheses. Nullary function symbols are called
constants and are denoted c, ¢, - - -

A rerm is a variable, a constant, or an expression
ft,+- - t,, where fis an m-ary function symbol and z,, - - -,
t, are terms. A term is closed if it contains no variables.
Terms are denoted s, ¢, - - -.

Formulas are defined inductively: If t, -, I, are
terms and R is an m-ary relation symbol, then Rz - -1, is
an artomic formula, and if ¢, ¢ are formulas, then
oY, oV, 1, Txp, and V¢ are. A formula is closed if
it contains no free (unquantified) variables. A closed
formula is called a sentence. A formula is positive if it

contains no occurrence of —.

We write ¢(x,, - - -, x,) and Kx,, - -+, x,) to indicate that
all free variables of formula ¢ and term ¢ are among x,,
-+, x,. If ¢(x) is a formula and 7 is a term, then ¢(2)
denotes ¢(x) with all free occurrences of x replaced by ¢.

A structure A for L consists of a set |Al and an
interpretation f*, R* for each function and relation sym-
bol f, R. If fis an m-ary function symbol, then f* is a
function |AI™ — 1Al (constants ¢* are elements of IA}), and
if R is an m-ary relation symbol, then R* is a relation
|IAI™ — {true, false}. The equality symbol = is always
interpreted as the identity relation.

We write A F ¢ if sentence ¢ is true in A. A sentence is
satisfiable iff it is true in some structure and valid if it is
true in all structures, i.e., if its negation is not satisfiable.
We write F ¢ to denote that ¢ is valid.

Efficient representation of formulas as labeled
graphs
Although formulas are officially strings of symbols, for
the purpose of efficient computation we represent them as
labeled rooted directed acyclic graphs. A constant ¢ or
variable x is represented as a single node labeled c or x,
and a term ft- -t is represented as a rooted directed
acyclic graph whose root node is labeled f and has m
edges numbered 1, - - -, m pointing to the representations
of the terms ¢, - - -, 1.
The reason for this particular representation is that it
allows consolidation of common subterms. For example,
we often want to replace all free occurrences of a variable
x in a term ¢ with another term «, and the representation
we have chosen allows us to do this by making some
edges in the graph point to u instead of x. This avoids
duplication of the term u so that the representation does
not grow too big. Atomic formulas s = ¢ are represented
as undirected edges between the roots of the representa-
tions of s and ¢.

DEXTER KOZEN

The Herbrand structure

A particularly useful structure is the Herbrand structure
T. The elements of T are the closed terms of L. Function
symbols are given their syntactic interpretation

fT(tl’ ceey tm) = ftl. . .tm'

Relation symbols other than = are interpreted as univer-
sally false.

The Herbrand structure is useful here because the
validity problem for a positive sentence ¢ is equivalent to
the problem of whether ¢ is true in 7. This well-known
fact is established in the following lemma.

® Lemma 1
For any positive sentence ¢, E ¢ iff TE¢.

Proof The direction (=) is trivial. Now suppose ¢ is
true in 7, and let A be any finite or countable structure.
We show that ¢ is true in A. It then follows from the
Lowenheim-Skolem Theorem that ¢ is true in all struc-
tures.

Let a,, a,, --- be a list of all the elements of A
(repetitions allowed in case A is finite), and define A(c) =
a,. The function h extends uniquely to the set of all closed
terms according to the rule

h(ft;--t) =fA(h(t1), <oy Bt).

Because =" is syntactic identity and all other R” are
universally false,

RT(II’ Y tm) - RA(h(tt)’ Tt h(tm)) (1)

for all terms ¢, - - -, ¢, and relation symbols R (including
=). It now follows inductively that for any positive

d)(xl’) -x,,)9
TEdt, - t,) > AF(h(r), - - - hl2))- @

The basis is exactly (1), and it is trivial to show that (2) is
preserved by the logical operators v, A, and
3. The case for V is almost as trivial but uses the fact that
f is onto. (]

Normal form

In order to show that the decision problem for a positive
sentence ¢ is in NP, we first show that we can make
certain assumptions about the form of ¢ without loss of
generality. First we can assume that ¢ is in prenex form,
thatis, ¢ = Qx, - - - Q,x, ¢ and ¢ is quantifier free, since
there is a simple polynomial-time algorithm for convert-
ing formulas to this form (see, e.g., [15]). The quantifier
string Q x, - - - @ x, is called the prefix, and the quantifier
free part is called the matrix. We can also assume that ¢
contains no relation symbols except =, since every

IBM J. RES. DEVELOP. @ VOL. 25 ¢ NO. 4 ¢ JULY 1981

relation symbol other than = is universally false in T; thus
any Rt---t, can be replaced by ¢, = c,, which is also
false in T.

We can also limit our attention to existential sentences,
i.e., those not containing any universal quantifiers. This
is done by replacing each universally quantified variable y
with g(x,, - - -, x,), where x,, - - -, x, are the variables
which occur to the left of y in the quantifier prefix and g is
a new function symbol. The resulting formula is valid just
in case the original one was (see [1]).

NP-completeness of the validity problem for positive
sentences

Let ¢ be a positive sentence. We show in this section that
the problem of deciding whether F ¢, or equivalently
whether Tk ¢, is NP-complete. This is the special case X
= & of the more general validity problem X F ¢,
where ¥ is a finite set of atomic sentences and negations
of atomic sentences, which we treat in the next section.

By the arguments of the previous section, we can
assume that ¢ is in prenex form and has only existential
quantifiers. Since

TE3x -+ 3x, (¢ v) iff either
TE3x,- - 3x,por TEIx --- Ax 4, 3)

we can reduce the problem nondeterministically to one in
which the sentence has a conjunctive matrix, as follows.
Suppose the matrix is of the form ¢ A - -A¢, and each ¢,
is of the form ¢, v - ~v¢, . To determine whether

TE3x - Ax A Ay,

nondeterministically choose some ¢, ; from each ¢, and
ask whether

T':Elxl"'3xn¢1,f,A"’A¢k,;k'

If the original sentence is true in 7, then the right choice
will yield a sentence that is also true in T, by (3). If the
original sentence is false in 7, then no choice will yield a
true sentence. This process can be repeated until all
occurrences of v have been eliminated.

Thus it remains to show how to test T F3x, - -+ x4,
where ¢ is conjunctive. This is an instance of the so-
called unification problem, for which very efficient deter-
ministic algorithms are known [16, 17]. We reproduce
here the naive algorithm, which is slightly but not sub-
stantially less efficient.

® Lemma 2

There is a deterministic polynomial-time algorithm for
deciding whether T k¢, where ¢ is a positive existential
prenex conjunctive sentence.

IBM J. RES. DEVELOP. e VOL. 25 ¢ NO. 4 ¢ JULY 1981

Proof Let ¢ be the sentence 3x, - - - Ax, s, where is a
conjunction of atomic formulas s = ¢. The conjunction
is represented as a set of undirected edges on the graph
representation of the terms in ¢.

If s = ¢ appears in ¢ and s and ¢ begin with different
function symbols, then the sentence can immediately be
declared false, because no choice of variables can satisfy
s = t. If s and t are identical constants, then s = ¢ is
trivially true and can be eliminated from s by removing
the edge corresponding to s = ¢. If s = fs- - -5, and ¢ =
ft; - -t then s = f can be replaced with s, = £, A+ - A5, =
t,. This process is repeated until at least one side of each
atomic formula in ¢ is a variable. This takes only polyno-
mial time and results in no significant increase in size,
since we only manipulate edges in the graph.

We now show how to eliminate any variable x such that
some x = u appears in . If x appears in u, then the entire
formula can immediately be declared false, since no term
can be equal to a proper subterm of itself. Otherwise,
since all variables are existentially quantified, we can
rearrange the prefix so that x is rightmost. Now ¢ is in the
form

QIx(x=unolx, 7)),

where Q is the part of the prefix not containing 3x.
Replace all occurrences of x in o(x, - - *) with u to get
o(u, - - -). This is done by redirecting edges in the graph
representation of the formula, so there is no substantial
increase in size. Note that x does not occur in o(u, - - *),
since x does not occur in u. Now ¢ is of the form

an(x‘—’u/\o'(u,“-)),

which is equivalent to

Q(@Exx=wnrou,--),

since x does not occur in o(u, --7). But 3x x = u is
trivially true in T for all choices of variables in Q, so we
can delete it to get

Q 0’(”5 tC ')’

which does not contain the variable x. If x was the last
variable in ¢, then we declare ¢ true. The new formula is
not substantially bigger than the original, due to our
directed acyclic graph representation.

We repeat the entire procedure until it eventually halts,
declaring ¢ either true or false. This must happen within
polynomial time, since each pass eliminates a variable. [

329

DEXTER KOZEN

330

® Theorem 3
The validity problem for positive sentences is NP-com-
plete.

Proof The above sequence of lemmas shows that the
problem is in NP. To show that it is NP-complete, we
encode the Boolean satisfiability problem, a well-known
NP-complete problem.

Let Bbe a Boolean formula with n variables P, -, P,.
By DeMorgan’s laws we can assume without loss of
generality that all negations are applied to the P, only. Let
B’ be formed by replacing each P, by x, = c, and each
TP by x, = ¢,. If Bis satisfiable over {true, false}, then
B’ is satisfiable over {c,, c,} by assigning c, to x, if P, is
assigned true and ¢ to x,if P, is assigned false. Therefore,
B’ is satisfiable over T. Conversely, if B’ is satisfiable
over T, then B’ is satisfiable over {c,, ¢}, by reassigning
any x, not assigned to ¢, or c, to either ¢, or c,. The
monotonicity of B’ guarantees that the new assignment
also satisfies B'. From this we get a satisfying assignment
for B in the obvious way. Thus B is satisfiable over {true,
false} iff 7+3x, ---3x, B'. O

The general problem

In this section we show that the more general positive
validity problem 3, & ¢ is NP-complete, where 3. is a finite
set of atomic sentences or negations of atomic sentences.
We established in the previous section that it is NP-hard,
even in the special case X = (.

First we can assume without loss of generality that X
contains only positive atomic sentences, since

SU{Rt -1} iffZERL -1, v .

Once we have eliminated negated atomic sentences
from 3, we can construct an Herbrand domain as above.
This structure, denoted 7/3, will consist of the closed
terms T modulo the congruence relation =~ induced by the
equalities in 3. That is, we define = to be the smallest
equivalence relation on elements of T such that s ~ ¢ for
all identities s = ¢ in X, and whenever f is an m-ary
function symbol and s, = ¢, 1 < i < m, then fs - -5, =
St - t,. Equivalently, s ~ ¢ iff there is a sequence s, 5.,
-+ -, s,withs = 5 and s, =t such that s, is obtained from
s; by replacing an occurrence of a subterm « by v, where
u = v € X. The elements of 7I/S are then the
~-congruence classes [1] of terms ¢. The function symbols
are interpreted in 773 as

lez([tll) [tm]) = [ﬁl . tm] .
The relation symbol = is interpreted as the identity
relation; thus for closed terms s, ¢,

TREs=tiff s=1¢.

DEXTER KOZEN

For the other relation symbols R, we define R™*([t], - - -,

[r,]) = true if there exist s, - - -, 5, such that s, ~ 1, for
1 <i =mandRs; - s, €3; otherwise Rm([tl], D
= false.

The following lemma is a more general form of Lemma
1. The proof is similar and is left to the reader.

o Lemmad
For any positive sentence ¢ and set of atomic sentences
S, 2k iff TIZ k. O

As before, we can assume ¢ is in prenex form and
contains no universal quantifiers. Also, since (3) holds for
T/%, we can nondeterministically make the matrix con-
junctive. We now show that we can eliminate all relation
symbols but = from X and ¢.

& Lemma 5

For any relation symbol R, let A, be the set of all m-tuples
of closed terms ¢, - - -, ¢, such that Rz,- - -t, appears in 3.
Then

T/2FVx, - Vx, (Rx; - x,

(_)\/An(xlz tl/\...Axmz tm))

m

Proof This says that for all terms s, - - -, s

R*([s), - [s,) oV, Gs)=0]r - rls,]=1[1,])

(_)\/An(slztl/\”./\smttm)'

But this is exactly the definition of R™. O

This result allows us to assume without ioss of general-
ity that neither 3 nor ¢ contains an occurrence of a
relation symbol other than =, since each Ru, - u,
in ¢ can be replaced with \/AR Niziem¥; = t;» Actually,
Ruy - -u,, will be replaced with one of the N\ _,_ u, = ¢,
where the ¢, - - -, t,, € A, is chosen nondeterministically.
Once there are no more occurrences of R in ¢, the
presence or absence of any Rr-- -t in X cannot affect
the truth of ¢, so we might as well remove all Rt - ¢

from 2.

m

It will be more convenient for the remainder of the
argument to work in T instead of in 7/3. For this purpose
let us append a symbol =~ to L and interpret = in T as the
congruence relation on Tinduced by 3, as defined above.
Then

TS es=tif TEs ~1,
and it follows by induction on formula structure that

T3k o), L DIETES (1, -, 1)

IBM J. RES. DEVELOP. ¢ VOL. 25 ¢ NO. 4 § JULY 1981

for any formula ¢(x,, - - -, x,), where ¢~ is the formula
obtained from ¢ by replacing = with = throughout.

We now observe some properties of the relation =. If s
and ¢ are closed terms, define s ~ ¢ if s and ¢ begin with
the same m-ary function symbol and s, = t,forall 1 =i =<
m, where s, and ¢, are the ith maximal proper subterms of
sand ¢, respectively. In case s and ¢ are constants, s ~ ¢iff
s = t. Let § be the set of all subterms of terms in X.

& Lemma 6
For any closed terms s, t, s = ¢ iff either s ~ ¢ or there
exist u, v € Ssuch that s ~ u = v ~ ¢.

Proof Recall that s ~ ¢iff there exists a sequence s = s,
s, +-+ §, = t such that s, is obtained from s, by
substituting v for some occurrence of u, where u ~ v € 3.
If none of these substitutions is ever made at the root of
some s, then s ~ £, Otherwise let s, 5, be the first time a
substitution is made at the root, and let s,, s,,, be the last
time. Take u = s,and v = 5, . O

o Lemma 7
Let u(x) be a term with one occurrence of the variable x,
but u # x. If t = u(t), then ¢t =~ s for some s € §.

Proof 1If t = u(t), then
t= u(t) ~ u(u(t)) = u(u@)) ~ -~ u"@®) ~ - -

Let & be greater than the depth of 7 and let 7 be the path
from the root of u*(x) to x. Then = is of length at least ,
and ¢ occurs in #*(f) at position 7. If u*(f) ~ t via the
sequence u*(f) = s,, s, -+, s, = ¢, then eventually a
substitution must be applied for the first time to an
ancestor of the subterm at , for if not then the depth of
the terms in the sequence would never fall below &, and ¢
could never be derived. At that point, the subterm at
position 7= must be in §, since it appears in some u = v €
3., and it must be congruent to ¢, since previously the only
substitutions that have been made have been to subterms
of the term at 7 or to occurrences of subterms disjoint
from the term at . [J

& Lemma 8

Let (x,, - - -, x,) be a conjunction of atomic formulas of
the form s = ¢. There is a nondeterministic polynomial-
time algorithm to determine whether T £ 3x, - - - 3x ¢

Proof The proofis very similar to that of Lemma 2 with
some notable exceptions, so we outline the argument with
emphasis on the novel points.

First we reduce the problem to one in which each
atomic formula in ¢ is of the form either x =~ u, where x is
a variable, or s =~ ¢, where s and ¢ are closed terms. (This

IBM J. RES. DEVELOP. & VOL. 25 & NO. 4 ¢ JULY 1981

was done deterministically above, but here it requires
nondeterministic choices.) If u = v € and neither u nor
v are variables but one of u, v contains a variable, then
u = v is equivalent to

u~vv\u~sns=tnt~v,

where the join is taken over all 5,7 € §, by Lemma 6.
We can replace u =~ v with either u ~ v or
u~sns=tnt~ vforsome s, t €S, where the choice is
made nondeterministically. Now for each r ~ w produced
in this way, neither r nor w is a variable. If r and w begin
with different function symbols, then the sentence
can immediately be declared false, by definition
of ~. Otherwise r ~ w can be replaced with
r,=w A---Ar, =~ w, where r, and w, are the ith
maximal proper subterms of r and w, respectively; or if r
and w are both constants, then r = w, so r ~ w can be
deleted from the conjunction. This process is repeated
until every atomic formula in y is of the form x = u or s =
t, where s, t € S.

For every s = t € such that s and ¢ are both closed
terms, it is decidable in polynomial time whether s =~ ¢,
using the polynomial-time congruence closure algorithm
of [18]. If not s =~ ¢, then the entire sentence can
immediately be declared false, and otherwise s = ¢ can be
eliminated from the conjunction . Also, any x = x can be
eliminated from . We repeat this until every formula in ¢
is of the form x = u, where x is a variable and u # x.

Now we eliminate some variable x such that x = u
appears in . If x does not appear in u, then x can be
eliminated from exactly as in the previous section.
However, unlike the previous section, if x appears in u,
then the sentence is not necessarily false. But if this is the
case, x ~ u implies \/,,x =~ ¢t by Lemma 7; there-
fore, t € S can be chosen nondeterministically and x =~ ¢
appended to . Then ¢ can be used to eliminate the
variable x, since f contains no variables.

The above process is repeated until it halts and declares
the formula either true or false. This must occur in
polynomial time, since each pass eliminates a variable. []

Combining Lemmas 4, 5, and 8, we have proved

& Theorem 9
The problem X E ¢ is NP-complete. [J

Although the unification problem (Lemma 2) has an
efficient deterministic algorithm, the algorithm given for
its generalized version (Lemma 8) is nondeterministic. It 331

DEXTER KOZEN

332

is interesting to note that the problem of Lemma 8 is itself
NP-complete; therefore Lemma 2 does not hold in the
general case unless P = NP,

Acknowledgments

I sincerely thank Jan Mycielski, Richard Statman, and an
anonymous referee, whose ideas have greatly improved
the paper. Mycielski and the referee observed that the
construction leading to Lemma 2 reduces the problem to
an instance of unification. The observation following
Theorem 9 is due to the referee. Statman provided the
reduction of Lemma 5.

References and note

1. B. Dreben and W. B. Goldfarb, The Decision Problem:
Solvable Classes of Quantificational Formulas, Addison-
Wesley Publishing Company, Reading, MA, 1979.

2. H. R. Lewis, Unsolvable Classes of Quantificational For-
mulas , Addison-Wesley Publishing Company, Reading, MA,
1979.

3. Machine Intelligence, Vol. 4, B. Meltzer and D. Michie,
Eds., American Elsevier, New York, 1969.

4. J. Ferrante and C. Rackoff, ‘‘The Computational Complex-
ity of Logical Theories,”” Springer-Verlag Lecture Notes in
Mathematics 718, 1979.

5. M. J. Fischer and M. O. Rabin, ‘‘Super-exponential Com-
plexity of Presburger Arithmetic,” STAM-AMS Proceedings
VII, American Mathematical Society, Providence, RI, 1974.

6. L. Berman, ‘‘The Complexity of Logical Theories,”” Theor.
Comput. Sci. 10, 71-77 (1980).

7. D. Kozen, ‘“‘Complexity of Boolean Algebras,’’ Theor. Com-
put. Sci. 10, 221-247 (1980).

8. D. Oppen, ““‘An Upper Bound on the Complexity of Pres-
burger Arithmetic,”” J. Comput. Syst. Sci. 16, 323-332
(1978).

9. C. Rackoff, ‘““On the Complexity of the Theories of Weak
Direct Products: Preliminary Report,”’ Proceedings of the
6th ACM Symposium on Theory of Computing, May 1974,
pp. 149-160.

DEXTER KOZEN

10. H. R. Lewis, ‘‘Complexity of Solvable Cases of the Decision
Problem for the Predicate Calculus,”” Proceedings of the
19th IEEE Symposium on Foundations of Computer Sci-
ence, Oct. 1978, pp. 35-47.

11. Part of this research was done at Cornell University and
supported by NSF grant DCR75-09433.

12. G. Robinson and L. Wos, ‘‘Paramodulation and Theorem-
Proving in First-Order Theories with Equality,”” Machine
Intelligence, Vol. 4, B. Meltzer and D. Michie, Eds., Ameri-
can Elsevier, New York, 1969.

13. E. E. Sibert, ‘A Machine-Oriented Logic Incorporating the
Equality Relation,”” Machine Intelligence, Vol. 4, B.
Meltzer and D. Michie, Eds., American Elsevier, New
York, 1969.

14. M. R. Garey and D. S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness, Freeman,
San Francisco, 1979.

15. 8. C. Kleene, Introduction to Metamathematics, Vol. 1, 7th
Ed., North-Holland Publishing Company, Amsterdam,
1974.

16. J. A. Robinson, ‘‘Computational Logic: The Unification
Computation,”” Machine Intelligence, Vol. 6, B. Meltzer
and D. Michie, Eds., American Elsevier, New York, 1971,
pp. 63-72.

17. M. S. Paterson and M. N. Wegman, ‘‘Linear Unification,”
J. Comput. Syst. Sci. 16, 158-167 (1978).

18. D. Kozen, ‘‘Complexity of Finitely Presented Algebras,”
Proceedings of the 9th ACM Symposium on Theory of
Computing , May 1977, pp. 164-177.

Received January 8, 1981; revised February 9, 1981

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELOP. @ VOL. 25 ® NO. 4 e JULY 1981

