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Dexter Kozen 

Positive  First-Order  Logic Is NP-complete 

The decision problem  for  positive $first-order logic with equality is NP-complete. More generally, if C i s  a $finite set of 
atomic sentences (i .e. ,  atomic  formulas of the form t ,  = t ,  or Rt,. . . t n  containing no variables) and negations of atomic 
sentences  and $4 is a  positivefirst-order  sentence, then the problem of determining whether is true in all models of C is 
NP-complete. 

Introduction 
Although it is undecidable in general whether a given 
sentence of first-order predicate logic is a theorem, algo- 
rithms have been discovered for various  special cases; in 
some  instances  the line between  the decidable and unde- 
cidable is finely drawn  (see [l, 21). Much effort has been 
directed toward  the development of sophisticated  tech- 
niques for  the decidable special cases,  such  as resolution, 
paramodulation, the  inverse  method,  and  their various 
refinements (see [3]). 

More  recently,  interest in the  inherent complexity of 
computational problems  has led to  the successful com- 
plexity-theoretic taxonomy of several  decision  problems 
in logic (see, e .g . ,  [4-91). In particular,  Lewis  [lo] 
discusses  the complexity of some solvable special cases 
of the decision problem  for first-order logic. 

In this note  we  show  that  the decision  problem for 
positive  first-order logic with equality is NP-complete 
[ll]. More generally, if C is a finite set of atomic 
sentences (i .e. ,  atomic formulas of the  form t ,  = t ,  or 
Rt; . . t ,  containing no variables) and negations of atomic 
sentences  and if 4 is a positive  first-order sentence,  then 
the problem of determining  whether 4 is true in all models 
of Z (in symbols, C k +) is NP-complete.  Unlike the 
decidable  special cases treated in [lo],  this  problem 
places no restriction on  the use of quantifiers. 

The result of this note characterizes exactly  the expres- 
sive power of positive sentences. Also, our nondetermi- 
nistic polynomial-time algorithm is quite  straightforward 
and does  not  use  any of the sophisticated  machinery of 

[12, 131, for  example,  yet it is optimal in the  sense  that its 
worst-case  complexity  cannot  be significantly reduced 
unless P = NP. 

The problem Z k 4 for positive 4 is of particular 
interest  because  many common  combinatorial  problems 
arising in computer  science  are special cases. For exam- 
ple, if G is a  graph with nodes c,, . . ., c,, C is the  set 

{ci # cj I i # j }  

U {c,Ec, I (c i ,  c,) is an  edge of G }  

U {i ciEc, I (ci,  c j )  is not an edge of G} 

and 4 is the positive sentence 

3x1 . . . ax, ( ~ , s i & s  j g n C i  = ",I 

A ( ~ l s ~ < n x i E x i + l )  A x @ ,  

then I: 1 C#J if and only if G has a  Hamiltonian  circuit. 

The  above  few lines  already show  that  the problem 
Z b 4 is at least NP-hard, since the Hamiltonian  circuit 
problem is known to be  NP-complete (see [14]). We show 
below that  the  problem  is NP-hard even  for C = 0. 

Notation  and  terminology 
The language L of first-order logic with equality  consists 
of a countably infinite set xo, x , ,  . . . of individual varia- 
bles, a  countably infinite set f, g, . . . of function  symbols 
for each  arity m 2 0, a countably infinite set R ,  . . . of 
relation symbols for each arity m 2 0 (of which one is the 
binary equality symbol =), logical symbols A, v, 1, 3, V, 
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and parentheses. Nullary  function  symbols are called 
constants and are  denoted c,  co, . ' -. 

A term is a variable, a constant,  or  an expression 
f t ,  . . . t,, where f is an m-ary function  symbol  and t , ,  . . ., 
t ,  are terms.  A term  is closed if it contains  no variables. 
Terms  are  denoted s, t ,  . . .. 

Formulas are defined inductively: If t , ,  . . ., t ,  are 
terms  and R is an m-ary relation symbol,  then Rt; . . t ,  is 
an atomic  formula, and if 4, I,$ are  formulas, then 
$A+, +VI,$, 14, 3x+, and VX#I are. A formula is closed if 
it contains no  free (unquantified) variables.  A  closed 
formula is called a sentence. A formula is positive if it 
contains no  occurrence of 1. 

We write $(x , ,  . . ., x,) and t(x, ,  . . ., x,) to indicate that 
all free variables of formula 4 and term t are among x l ,  

denotes 4 ( x )  with all free  occurrences of x replaced by t. 
. . .  , x,. If 4(x) is a formula and t is a term,  then +(t) 

A structure A for L consists of a set IAl and  an 
interpretation f A ,  R A for  each function and relation  sym- 
bol f, R .  I f f  is  an m-ary  function symbol, then f A  is a 
function lAlm + IAl (constants c" are  elements of IAl), and 
if R is an m-ary relation  symbol,  then R A  is a relation 
IAl" + {true, false}. The equality symbol = is always 
interpreted as  the identity  relation. 

We write A k if sentence 4 is true in A .  A sentence is 
satisfiuble iff it is true in some structure  and valid if it is 
true in all structures, i . e . ,  if its negation is not satisfiable. 
We write k 4 to  denote  that 4 is valid. 

Efficient  representation of  formulas as  labeled 
graphs 
Although formulas are officially strings of symbols,  for 
the  purpose of efficient computation we represent them as 
labeled  rooted directed acyclic graphs. A constant c or 
variable x is represented  as a single node labeled c or x ,  
and a term f t,. . ' t ,  is represented as a rooted directed 
acyclic  graph whose root  node is labeled f and  has m 
edges  numbered 1 ,  . . ., m pointing to  the  representations 
of the terms t , ,  . . ., t,. 

The reason for  this particular representation  is  that  it 
allows consolidation of common subterms. For example, 
we often  want to  replace all free  occurrences of a variable 
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x in a  term t with another  term u,  and  the  representation 
we  have  chosen allows us  to  do this  by making some 
edges in the graph  point to u instead of x .  This  avoids 
duplication of the  term u so that  the  representation  does 
not  grow too big. Atomic formulas s = t are  represented 
as undirected edges between the  roots of the  representa- 
tions of s and t .  

The Herbrand structure 
A  particularly  useful structure is the Herbrand structure 
T. The  elements of Tare the closed terms of L. Function 
symbols are given their  syntactic interpretation 

f T ( t , ,  . . ., t,) = f t ;  . ' t ,  . 
Relation  symbols other  than = are  interpreted  as univer- 
sally false. 

The  Herbrand  structure  is useful here  because  the 
validity  problem for a positive sentence 4 is equivalent to 
the problem of whether 4 is true in T. This well-known 
fact  is established  in the following lemma. 

Lemma 1 
For any  positive sentence 4, k 4 iff T k 4. 

Proof The direction (+) is trivial. Now  suppose q5 is 
true in T, and  let A be any finite or countable structure. 
We show that 4 is  true in A.  It then  follows  from the 
Lowenheim-Skolem Theorem  that 4 is true in all struc- 
tures. 

Let a,, u2, . . . be a list of all the  elements of A 
(repetitions allowed in case A is finite), and define h(cJ = 
a,. The function h extends uniquely to  the  set of all closed 
terms according to  the  rule 

h ( f t ;  ' .t,) = f A ( h ( t , ) ,  . . ., h(tJ).  

Because = T  is  syntactic identity  and all other R T  are 
universally false, 

R ' ( t , ,  . . ., t,) + R A ( h ( t J ,  . . ., h(t,)) (1) 

for all terms t , ,  . . ., t ,  and relation  symbols R (including 
=). It now follows  inductively that  for  any positive 
+(x1,  . . ., X J ,  

Ti; 4 ( t l ,  . . ., t,) + A k 4 ( h ( t l ) ,  . . -, h(t,,)). (2) 

The basis is exactly (I) ,  and it is trivial to  show  that (2) is 
preserved by the logical operators v, A, and 
3.  The  case  for V is almost as trivial but  uses  the  fact  that 
h is onto. 0 

Normal  form 
In  order  to show that  the decision  problem for a  positive 
sentence 4 is in NP, we first show  that  we  can make 
certain assumptions  about  the form of 4 without loss of 
generality. First  we  can  assume  that 4 is inprenex  form, 
that  is, 4 = Q,x, . . . Q,,x, + and + is quantifier free, since 
there is a simple polynomial-time algorithm for convert- 
ing formulas to  this  form  (see, e .g . ,  [15]). The quantifier 
string Q,x,  . . . Q,x, is called the prefix, and  the quantifier 
free  part + is called the matrix. We can  also  assume that 4 
contains no relation  symbols except =, since  every 
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relation symbol other than = is universally false in T; thus 
any Rti . ' t ,  can  be  replaced by co = c,, which is also 
false in T. 

We  can also limit our  attention  to existential sentences, 
i . e . ,  those not  containing any universal  quantifiers.  This 
is done by replacing each universally quantified  variable y 
with g(x,, . . ., xk), where x], . . ., x, are  the variables 
which occur  to  the left of y in the quantifier prefix and g is 
a new function symbol.  The resulting formula is valid just 
in case  the original one  was  (see [l]). 

NP-completeness of the  validity  problem for positive 
sentences 
Let 4 be a positive sentence. We show in  this  section that 
the problem of deciding whether 1 4, or equivalently 
whether T 14, is NP-complete. This is the special case Z 
= 0 of the more  general validity problem Z 1 +, 
where Z is a finite set of atomic sentences and  negations 
of atomic sentences, which we treat in the next section. 

By the arguments of the  previous section, we can 
assume  that 4 is  in prenex form and  has only  existential 
quantifiers.  Since 

T k3x1 . . . 3x, (4 v $) iff either 

T k 3x, . . . ax,+ or T k 3x1 . . . 3x,$, (3) 

we  can  reduce  the  problem nondeterministically to one in 
which the  sentence  has a  conjunctive  matrix, as follows. 
Suppose  the matrix is of the form 4 , ~  . .A& and  each 4t 
is of the form +i,lv. . .v+~,,. To determine whether 

T k ax , .  , . ~X,,$J~ A .  . . A $J~, 

nondeterministically choose some $J~,,~ from each + i  and 
ask whether 

T 1 ax, . * . 3~,4,, j, A . . . A 4k,,k. 
If the original sentence is true in T, then the right choice 
will yield a sentence  that  is also true in T ,  by (3). If the 
original sentence  is  false in T ,  then  no  choice will yield a 
true  sentence.  This  process can  be repeated until all 
occurrences of v have been  eliminated. 

Thus it remains to  show how to  test T k 3xl . . . 3xn$, 
where is conjunctive.  This is  an  instance of the so- 
called unijication problem, for which very efficient deter- 
ministic algorithms are known [16, 171. We reproduce 
here  the naive  algorithm, which is slightly but not sub- 
stantially less efficient. 

Lemma 2 
There is a deterministic polynomial-time algorithm for 
deciding whether T k 4, where 4 is a positive  existential 
prenex  conjunctive sentence. 

Proof Let 4 be  the  sentence 3x, . . . 3x,$, where J, is a 
conjunction of atomic formulas s = t .  The conjunction J, 
is represented as a set of undirected edges  on  the graph 
representation of the  terms in $. 

If s = t appears in $ and s and t begin with different 
function symbols,  then  the sentence can immediately be 
declared false,  because  no choice of variables can satisfy 
s = t .  If s and t are identical constants,  then s = t is 
trivially true  and  can be eliminated from by removing 
the edge  corresponding to s = t .  If s = fs; . .sk and t = 

fti . .t,, then s = t can be  replaced with s1 = t ,  A .  . . A s, = 

t,. This process  is  repeated until at  least  one  side of each 
atomic  formula in J, is a variable.  This takes only polyno- 
mial time and  results in no significant increase in size, 
since we only manipulate  edges in the  graph. 

We now show  how  to eliminate  any  variable x such  that 
some x = u appears in $. If x appears in u,  then  the  entire 
formula can  immediately  be  declared false,  since  no term 
can  be  equal to a proper  subterm of itself. Otherwise, 
since all variables are existentially  quantified, we can 
rearrange the prefix so that x is rightmost. Now 4 is in the 
form 

Q 3~ (X = u A U ( X ,  . . .)), 

where Q is the  part of the prefix not containing 3x. 
Replace all occurrences of x in U ( X ,  . . .) with u to  get 
u ( u ,  . . .). This is  done by  redirecting edges in the graph 
representation of the  formula, so there  is  no substantial 
increase in size. Note  that x does not occur in u(u, . . .), 
since x does not occur in u. Now 4 is of the  form 

which is equivalent to 

Q ((3~ X = U) A U ( U ,  . . .)), 

since x does not occur in ~ ( u ,  . . .). But 3x x = u is 
trivially true in T for all choices of variables  in Q, so we 
can delete it to  get 

which does not contain  the variable x. If x was  the last 
variable in 4, then  we declare 4 true.  The new formula is 
not  substantially bigger than  the original, due  to  our 
directed  acyclic  graph  representation. 

We repeat  the  entire  procedure until it eventually halts, 
declaring 4 either  true or false.  This  must happen within 
polynomial time,  since  each  pass eliminates a variable. 329 
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0 Theorem 3 
The validity problem for positive sentences is NP-com- 
plete. 

Proof The  above  sequence of lemmas shows  that  the 
problem is in NP.  To  show  that  it  is  NP-complete, we 
encode  the Boolean satisfiability problem, a well-known 
NP-complete problem. 

Let B be a  Boolean formula with n variables PI, . . ., P,. 
By DeMorgan's  laws we can assume without  loss of 
generality that all negations are applied to  the Pi only. Let 
B' be formed by  replacing  each Pi by xi  = c,  and  each 
1 Pi by xi  = co. If B is satisfiable over {true,  false}, then 
B' is satisfiable over {co, c,} by assigning cl to xi  if Pi is 
assigned true and co to xi if Pi is assigned false. Therefore, 
B' is satisfiable over T. Conversely, if B' is satisfiable 
over T, then B' is satisfiable over {co, cl}, by reassigning 
any x i  not  assigned to co or c ,  to  either co or cl. The 
monotonicity of B' guarantees  that  the new  assignment 
also satisfies B'. From this we get a satisfying  assignment 
for B in the obvious  way. Thus B is satisfiable over {true, 
false} iff T i .  3x ,  . . . a x ,  B'. 0 

The  general  problem 
In this  section we  show  that  the  more general  positive 
validity problem C k 4 is NP-complete, where C is a finite 
set of atomic sentences or negations of atomic  sentences. 
We established  in the  previous section that it is NP-hard, 
even in the special case Z = 0. 

First we can  assume without loss of generality that C 
contains only positive atomic  sentences, since 

I; u { i R t ;  . .t,} 1 4 iff C b R t i  . .tn v 4 . 

Once we have eliminated negated atomic  sentences 
from C, we can construct  an  Herbrand domain as  above. 
This structure,  denoted TIC, will consist of the closed 
terms T modulo the  congruence relation = induced by the 
equalities  in 8. That  is,  we define = to  be  the smallest 
equivalence  relation on elements of T such  that s = t for 
all identities s = t in 2, and  whenever f is an m-ary 
function  symbol and si i= t i ,  1 5 i I m, then f s i  . 's, = 
f t i  . .tm. Equivalently, s i= tiff  there  is a sequence so, sl, 
. . ., s,with s = so and s, = t such  that si+, is  obtainedfrom 
si by replacing an  occurrence of a subterm u by v, where 
u = v E 2. The elements of TIC are then the 
=-congruence classes [ t ]  of terms t .  The function  symbols 
are interpreted  in TIC as 

f T'%t,~, . . ., [ t , ] )  = [ft; . .',I . 
The relation  symbol = is  interpreted  as  the identity 
relation;  thus  for closed terms s, t ,  

330 T / C k s  = t i f f s  = t .  
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For the  other relation  symbols R ,  we define ?"([t,], . . ., 
[t,]) = true if there  exist s,, . . ., s, such  that si = ti for 
1 5 i s m and Rs; . 's, E C; otherwise @"([t,], . . ., [t,]) 
= false. 

The following lemma  is a more  general  form of Lemma 
1. The proof is similar and is left to  the  reader. 

0 Lemma 4 
For any  positive sentence 4 and  set of atomic  sentences 
2, C k + i f f  TIC k 4 .  0 

As  before, we can  assume 4 is in prenex form  and 
contains no universal  quantifiers. Also,  since (3) holds for 
TIC, we can nondeterministically  make the matrix con- 
junctive. We now show  that we can eliminate all relation 
symbols  but = from I; and 4. 

Lemma 5 
For any relation  symbol R ,  let A, be  the  set of all m-tuples 
of closed  terms t , ,  . . ., t ,  such  that Rt;  . ' t ,  appears in 2. 
Then 

TIC 1 Vx1 . . . V X ,   ( R X L  . ' X ,  - v,, (x1  = t ,  A .  . . A X ,  = t,)). 

Proof This says  that  for all terms s,, . . ., s,, 

But  this is exactly the definition of RT". 0 

This  result  allows us  to  assume without loss of general- 
ity that neither Z nor 4 contains an  occurrence of a 
relation  symbol other than =, since  each Rui . .urn 
in 4 can be replaced with y R  AtSismui = t i .  Actually, 
R u i  . .urn will be replaced with one of the Alrismui = t i ,  

where  the t , ,  . . ., t ,  E A, is chosen nondeterministically. 
Once  there  are  no  more  occurrences of R in 4, the 
presence or absence of any R t ;  . ' t ,  in C cannot affect 
the  truth of 4, so we might as well remove all Rt; . ' t ,  
from X. 

It will be  more convenient for  the remainder of the 
argument to work in T instead of in TIC. For this  purpose 
let us append a symbol = to L and  interpret = in Tas  the 
congruence  relation on  Tinduced by C, as defined above. 
Then 

T1Zi.s = tiff T k s  = t ,  

and it follows by  induction on  formula  structure that 

T/C k +([ t , ] ,  . . ., [ t , ] )  iff T k 4=(t1, . . ., t,) 
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for  any formula 4(xl, . . ., x,), where 4- is the formula 
obtained  from 4 by  replacing = with = throughout. 

We  now observe  some  properties of the relation =. If s 
and  t are closed terms, define s - t if s and t begin with 
the  same m-ary function symbol and si ?= ti for all 1 I i 5 
m, where si and ti are  the ith maximal proper  subterms of 
s and t ,  respectively. In  case s and  tare  constants, s - tiff 
s = t. Let S be the  set of all subterms of terms in Z. 

Lemma 6 
For any  closed terms s, t, s = t iff either s - t or there 
exist u,  v E S such  that s - u = v - t. 
Proof Recall that s = tiff there  exists a sequence s = so, 
sl, . . ., s, = t such  that sifl is obtained from si by 
substituting v for  some  occurrence of u, where u = v E Z. 
If none of these  substitutions is ever  made  at  the  root of 
some si, then s - t. Otherwise  let si, si+] be  the first time a 
substitution is  made  at  the  root,  and let sj, sj+] be the last 
time. Take u = si and v = sj+]. 0 

Lemma 7 
Let u(x) be a term  with one  occurrence of the variable x, 
but u # x. If t = u(t), then  t = s for  some s E S. 

Proof If t = u(t),  then 

t = u(t) = u(u(t)) = u(u(u(t))) = . . . = U k ( t )  = . 

Let k be greater  than  the  depth of t and let r be  the path 
from the root of u”(x) to x. Then r is of length at least k ,  
and t occurs in u”(t) at position T. If uk(t) = t  via the 
sequence u”(t) = so, sl, . . ., s ,  = t, then eventually a 
substitution  must  be  applied for  the  fist time to  an 
ancestor of the  subterm  at r, for if not then the  depth of 
the terms in the  sequence would never fall below k ,  and t 
could never be derived. At that  point,  the  subterm  at 
position T must be in S, since it appears in  some u = v E 
Z, and it must  be congruent  to t,  since  previously the only 
substitutions that  have  been made have been to  subterms 
of the term at T or to  occurrences of subterms disjoint 
from the term at r. 0 

Lemma 8 
Let $(xI, . ’ ., x,) be a conjunction of atomic formulas of 
the form s = t. There  is a nondeterministic polynomial- 
time algorithm to  determine whether  T k 3x1 . . . 3x,+. 

Proof The proof is  very similar to  that of Lemma 2 with 
some notable exceptions, so we outline the argument with 
emphasis on the novel  points. 

First  we  reduce  the problem to  one in which each 
atomic  formula in $ is of the form either  x = u, where x is 
a variable, or s = t ,  where s and ta re  closed terms. (This 
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was  done deterministically above,  but  here  it requires 
nondeterministic choices.) If u = v E $ and neither u nor 
v are variables but  one of u ,  v contains  a  variable,  then 
u = v is equivalent to 

U - V v V ( U - S A S = t A t - V ) ,  

where  the  join  is  taken  over all s, t E S ,  by Lemma 6 .  
We can replace u = v with either u - v or 
u-sss=tAt-vforsomes , tES,where thechoice is  
made nondeterministically.  Now for each  r - w produced 
in this way, neither r nor w is a variable. If rand w begin 
with different function symbols, then  the  sentence 
can  immediately be declared false, by definition 
of -. Otherwise  r - w can  be  replaced with 
rl = w1 A . . . A rm = wm, where ri and wi are the ith 
maximal proper  subterms of r and w, respectively; or if r 
and w are both constants, then  r = w, so r - w can be 
deleted  from the conjunction.  This process  is repeated 
until every atomic  formula in is of the  form x = u or s = 
t,  where s, t E S. 

For  every s = t E $ such  that s and t are both  closed 
terms, it is decidable in polynomial time whether s ?= t, 
using the polynomial-time  congruence closure algorithm 
of [18]. If not s = t, then  the  entire  sentence  can 
immediately be  declared  false,  and  otherwise s = t  can  be 
eliminated from  the conjunction +. Also, any x = x  can  be 
eliminated from +. We repeat this until every formula in $ 
is of the form  x = u,  where x is a  variable and u # x. 

Now  we eliminate some variable  x such  that x = u 
appears in +. If x does not appear in u,  then x can be 
eliminated from $ exactly  as in the  previous section. 
However, unlike the previous section, if x appears in u, 
then  the  sentence  is  not necessarily  false. But if this is  the 
case, x = u implies v,,x = t by Lemma 7; there- 
fore, t E S can  be chosen nondeterministically and x = t 
appended to +. Then t can be used  to eliminate the 
variable x, since  t contains  no variables. 

The  above  process  is repeated until it halts and declares 
the formula either  true or false.  This  must occur in 
polynomial time,  since  each  pass eliminates  a  variable. 0 

Combining Lemmas 4, 5 ,  and 8, we have proved 

Theorem 9 
The problem Z k is NP-complete. 0 

Although the unification problem (Lemma 2) has  an 
efficient deterministic  algorithm, the algorithm given for 
its generalized version  (Lemma 8) is nondeterministic. It 331 
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is interesting to  note  that  the problem of Lemma 8 is itself 
NP-complete; therefore  Lemma 2 does not hold in the 
general case  unless P = NP. 
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