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GRIN: Interactive Graphics for Modeling Solids

This paper describes an experimental system for the original generation and subsequent modification of volume models
of complex physical objects, using interactive computer graphics. The models are built up from primitive volumes, e.g.,
cuboids, cylinders, swept surfaces, etc., entered by a mechanical engineer interacting with a two dimensional projection
of the model on a graphic display screen. The primitives may be entered at any orientation in 3-space and combined to
form a single polyhedral model. The central issue is the provision of an efficient, natural means for generating these

models.

Introduction

For over twenty years, computer aided design (CAD) has
been increasing productivity in the electronics industry
by providing designers with performance data before
circuits are actually fabricated [1]. In recent years, CAD
has come to the forefront with the tantalizing promise of
techniques that may someday do for mechanical design
what is already possible for electronic design.

CAD itself consists of two distinct disciplines, graphics
and modeling, both of which are essential. In the elec-
tronics case, for instance, the interactive display of a
logic diagram is graphics, but the program that simulates
the operation of this circuit is modeling. In the mechani-
cal case, a similar distinction may be made between the
display of an engineering drawing of a part and the data
base that enables a program to compute the moments of
inertia of that part.

The experience to date in developing mechanical CAD
systems indicates that mechanics is a more complex
domain than electronics. The added difficulty is principal-
ly due to the fact that mechanics tends to deal with three
dimensional (3D) parts rather than 2D circuit layouts.
Since existing graphics displays are essentially all 2D, the
added dimension requires extrapolation from a 2D display
space to a 3D object space. In modeling, there are
additional problems stemming from the fundamental laws
of physics, e.g., no two objects may occupy the same
space at the same time.

At this laboratory, work on mechanical CAD systems
began in 1975, using geometric modeling. Because this
undertaking proved to be so challenging, the initial focus
of the work was solely on the modeling domain and was
limited to polyhedral representations. Specifically, a Geo-
metric Design Processor (GDP) was built that provided
data structures and programs for modeling complex me-
chanical objects from volume primitives (e.g., cuboids
and polyhedral approximations to cylinders) and for
deriving many of their engineering properties [2, 3].

A model is represented as a hierarchical structure
which retains primitives at the lowest level, as well as
compositions of the subtended primitives at higher nodes.
GDP has been used to model complex mechanical parts
and assemblies from the computer, aircraft, heavy equip-
ment, and architecture industries. It has also been used in
the modeling of industrial robots and the parts, processes,
and applications associated with them, e.g., automated
path planning [4] and model driven vision [5]. As in most
existing geometric modeling systems, the user interface
was a statement oriented procedural language [6]. Unfor-
tunately, because GDP lacked an interactive graphic
input facility, it was usable only by highly skilled pro-
grammers.

It was in this environment that the research reported
here was undertaken. The work was intended to answer
some fundamental questions regarding mechanical CAD
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Figure 1 Primitive volumes and their entry points.

systems: First, can computer graphics provide a simple
means for specifying volume models of 3D objects?
Specifically, can a simple protocol for a mechanical
designer, who is not a programmer, result in generating
the data required for a complex geometric model? The
second question, raised by the mechanical community, is
whether a mechanical designer, who is trained to design
with points, lines, and arcs in 2D orthographic views
(either on a drafting board or a graphic display), could
think and work in terms of 3D volume primitives on a 2D
graphic screen.

The approach taken was to add an interactive graphics
input facility called GRIN (GRaphic INput subsystem) to
GDP’s modeling in order to build a complete experimen-
tal mechanical CAD system. An attempt was made to
retain the power of the procedural language by mapping,
as far as possible, the features of the language to the
graphic interface. The resulting system was used by its
developers and found to be effective in a wide variety of
application demonstrations, several of which are de-
scribed here. It is currently being used in a pilot produc-
tion environment by a mechanical design group.

Prior art

The beginnings of mechanical CAD can be traced to 1963
in papers by Coons [7] on CAD requirements, Sutherland
[8] on the Sketchpad system, and Roberts [9] on the now
classical computer graphics problem of hidden line re-

WILLIAM FITZGERALD ET AL.

Figure 2 Translated and rotated polygons and their entry
points.

moval. One of the earliest production uses of computer
graphics for mechanical CAD was in the aerospace indus-
try, reported by Chasen [10] in 1965.

A number of CAD systems have been built in recent
years for generating three dimensional computer models
of physical objects and mechanisms [11-13]. One of the
most interesting approaches has been the combination of
many instances of a few simple volumes to produce
models of complex parts. This approach is typified by the
work of Braid [13] Baumgart [14], Voelcker [15], and
Wesley et al. [2]. The primitive volumes are cuboids,
cylinders, cones, swept polygons, etc., and the approach
to manipulating the primitives is a statement oriented
language allowing the user to translate, rotate, and scale
the primitives and to combine them with the set opera-
tions union, difference, and intersection. A particularly
powerful implementation of this procedural approach is
that of Grossman [6] because the procedural language is
embedded in L/ and therefore has all the computational
power and flexibility of a general programming language.

The promise of these systems to automate the mechani-
cal design and manufacturing process has been very slow
to materialize. Only in the last two or three years has the
use of graphics systems for mechanical CAD begun to
grow rapidly, and then primarily in the automation of two
dimensional design/drafting procedures. A small number
of three dimensional systems have been successful, nota-
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Figure 3 Methods for rendering visual displays of volume
models.

bly for the design of sculptured surfaces in the automobile
and aerospace industries.

As late as 1978, in his review of graphical CAD
systems, Elliott [11] commented on the use of computer
graphics and a 3D internal computer model by a mechani-
cal designer: *‘. . . there is a fascinating and open ques-
tion as to how he will work from the essentially ‘3D’
thought in his mind, through the 2D screen, to a computer
model which simulates his 3D concept. . . . The question
has attracted the attention of design methodologists,
computer scientists, engineers, and psychologists from
the time of the ‘3D sketching box’ of Gregory [16] to a
recent paper on the 3D wand and head mounted display
[171.”

The question is especially relevant and fascinating
when the designer uses volume primitives instead of lines
and arcs to generate a computer model. The extensive
review of geometric modeling done by Baer, Eastman,
and Henrion in 1979 [18] does not treat the graphic user
interface in any detail. Papers on geometric modeling
have been concerned primarily with algorithms and not
end users.

A recent paper by Johnson and Dewhirst [19] reports
on a volumetric modeling system based on interactive
computer graphics, but little detail of the graphic user
interface is given.
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Figure 4 Automatic production of views for engineering draw-
ings.

User interface

o Overview

We believe the user interface should receive more atten-
tion than it has to date. It is a crucial factor in determining
whether volume modeling systems will be accepted by
mechanical designers.

Using GDP/GRIN, the mechanical designer sits at a
computer graphics terminal interacting with 2D projec-
tions of the model. A model is built from the primitives
shown in Fig. 1 and the swept polygons in Fig. 2. The user
can view and interact from any angle with any four views
displayed simultaneously. The system produces either
perspective or parallel projections, although for reasons
discussed below, parallel projections are used for all
interactive work.

Figure 3 illustrates various methods of displaying the
model of two intersecting cylinders. A routine called
Merge creates a single polyhedron as the union, intersec-
tion, or difference of two arbitrary polyhedra, in this case
two primitive cylinders. Figure 3(a) is the wire frame
mode display of the merged cylinders. Note that the
cylinders are solid and the portions of the surface of each
cylinder internal to the other one have been eliminated.
Figure 3(b) shows the results of standard hidden line
removal. In Fig. 3(c), the facet lines of the cylinders have
been removed to produce a figure more suitable for
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Figure 5 Defining views in GRIN,

inclusion in a publication. Figure 3(d) has the facet lines
removed but includes hidden lines in dashed line type to
illustrate that hidden features can be shown in a publica-
tion quality figure. This feature can be used in views at
any angle, but its primary significance is that it enables
the automatic production of correct orthographic views
for engineering drawings, as shown in Fig. 4.

® Viewing

One of the requirements of a successful 3D design system
is a quick, natural method of seeing the objects from
different viewpoints. GRIN provides this convenience by
(1) defining viewing angles and viewing translations inde-
pendently, making them available to the user as separate
commands, and (2) using orthographic projection.

The common projections for drawings are perspective,
orthographic (including isometric, dimetric, and trimet-
ric), and oblique [20]. The principal advantage of the last
is that it is easiest to generate manually. Since the
computer can produce any of the three and the first two
appear more realistic to the eye, oblique projections are
not used here. An orthographic projection is the limiting
case of a perspective projection as the eyepoint is moved
farther away from the object [21]. This reduces by one the
number of viewing parameters (distance from the object)
which must be specified by the user. When the eyepoint is
close to the object, perspective projections tend to pro-
duce cluttered areas near the vanishing points. In addi-
tion, mechanical designers do not generally work with
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perspective projections. For these reasons orthographic
projections are used.

The viewing angles are described for a simple notched
block, as shown in the center of Fig. 5. If the eyepoint is
at A looking at point G and the projection plane (screen of
the display) is between these points and perpendicular to
the line of sight, view A is produced. Similarly, as the
eyepoint is changed to points B and C, still looking at G,
their corresponding views are obtained. Point G is called
the gaze point, and if azimuth and elevation are measured
with respect to it, views can be identified by these two
angles. A one-to-one relationship between the views and
angle pairs is achieved by making the azimuth modulo 360
degrees and limiting the elevation between =90 degrees.
Note that at the north and south poles (elevation of =90
degrees) different values of azimuth produce views D and
D’. The viewing screen is wider than it is high, and it is
the orientation of the screen with respect to the image (or
vice versa) that is the difference between views D and D’.
These two views are useful as top views for views A and
C, respectively. The projection is displayed so that the
image of G always appears at the center of the screen.

If the user wishes to change the point of interest,
perhaps to part of the object which is off the screen, yet
keep the same viewing angles, the image of G can be
translated in the projection plane. This translation in-
volves adding the same 2D vector to both the 3D eye and
gaze points, which calculates a new gaze point without
changing the azimuth or elevation.

The approach outlined above is embodied in a set of
simple viewing commands which allow the user to change
angle by rotating the eye (1) left, right, up, or down, (2) to
an absolute azimuth or elevation, (3) to look along any
coordinate system axis, or (4) to a standard isometric
view. The eyepoint can be translated left, right, up, or
down, or a new image center can be selected with the
graphic cursor. In addition, the 2D image can be scaled.

o Entry of models in three dimensional space

As mentioned earlier, GRIN is the graphic input subsys-
tem of a geometric modeling system that generates com-
plex volumes by combining many instances of simple
volumes. The major function of GRIN is to provide a
quick, natural way to enter these simple volume primi-
tives.

The model coordinate system is called the World
Coordinate System (WCS). An axis indicator with six legs
is displayed on the screen, indicating the orientation of
the three mutually perpendicular axes (x, y, z) of the WCS
and their negatives (see Fig. 1). The legs have the same
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lengths in three dimensional space, but as the view point
is changed, the orientations and lengths of the vectors in
the axis indicator also change to reflect the new view
point.

Because it may be convenient for the user to work at
times in a coordinate system other than the WCS, a
second coordinate system called the Rotated Coordinate
System (RCS) can be defined interactively. Its directions
(u, v, w) are shown on a second axis indicator (see Fig. 1).
The RCS can be defined as a rotation about an axis of
either coordinate system. It can also be specified with
three points, the first two defining the origin and the u
direction, the third defining the plane containing the « and
v directions, with the w direction equal to the cross
product of « and v.

Since primitives are entered by specifying points,
methods for entering these elements are discussed first.
The concept of a 3D ‘‘current point’’ is used for moving
about in 3-space. A diamond is always displayed on the
screen at the current point, which can be positioned in
absolute coordinates or by pointing to an existing point
with the graphic cursor. The user must ensure the unique-
ness of the 2D projection of the chosen point by changing
the view if necessary. The current point can also be
moved relatively along any of the six axes a specified
distance or be limited by a point. For example, in Fig. 6, if
the current point is at F, moving 2 units along the y axis
will move it to H, but moving it along y limited by point D
will move it to G. The current point may be moved any
number of times until the user is satisfied with its position
in 3-space. A user-initiated command then accepts the
coordinates of the current point, e.g., to specify a posi-
tioning point of a primitive.

® Entry of primitive volumes

The user issues a command specifying the primitive to be
added to the model. The point entry procedures are used
to enter the points required to define that primitive. The
primitive is displayed automatically after the last point
has been entered. If it is not correct, the graphic modifica-
tion commands may be used or the primitive may be
canceled. Any other command will accept the primitive
and make it a permanent part of the model.

The positioning points required for specifying primi-
tives are shown in Fig. 1. Points must be specified in the
order indicated. The primitive is then built to match the
entered points. For example, when two points are entered
for a hemisphere, the center is placed at the first point,
the distance between the points determines the radius,
and the hemisphere is oriented so its pole is at the second
point. A cuboid can be entered by specifying the location
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Figure 6 An illustration of moving the current point in 3-space.

Figure 7 Defining the rotation of objects.

of one vertex and the three adjacent vertices which
determine the height, width, length, and orientation.

GRIN frees the user from the requirement of maintain-
ing perpendicularity among the specified edges. As
shown in the cuboid of Fig. 1, point 3 can be anywhere on
the unbounded line suggested by the dotted line through 3
and still provide the correct length and orientation for the
associated edge. Point 4 need only be in the proper
unbounded plane indicated by the two dotted lines con-
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Table 1 Some GRIN commands.

Input commands

CB Enter a cuboid

CO Enter a cone

CY Enter a cylinder

HE Enter a hemisphere

PT Enter a translated polygon
PR Enter a rotated polygon

Points and line segments (used within other commands)

ABxyz Enter absolute coordinates of a point

Cu Display cursor, to select an existing point

a{n) Move n units in the a direction from current
point, where aisanaxis(a=X,Y,Z,U, V, or

EN Accept coordinates of current point
RJ Reject last entered point or arc
ARC Enter a circular arc in a polygon

Editing commands

EO Erase object

MO Move object

ROX Rotate object about an axis

ROP Rotate object about a point

ROS Rotate and scale object about a point

POm Reset polarity mode to m = H for hole, S for

solid. For m = R, polarity of selected object is
reversed, without changing mode.

F (n) Set the number of facets for new primitives. If
defaulted, permits refaceting of a selected
primitive.

RC a-)n Alter rotated coordinated system. Rotates n

degrees (counter)clockwise about the a axis
X,Y,Z,U,V,orw)
Display commands

RLn,RRn,RUn,RDn
Rotate eyepoint left, right, up, or down n

degrees

RI Rotate to standard isometric angle

RX (-)a Rotate to axis a (X, Y, Z, U, V,or W)

RAn Rotate to absolute azimuth of n degrees

REn Rotate to absolute elevation of n degrees

T Translate so indicated point is centered on
screen

TC Automatically center picture and scale to fit
screen

TL n, TRn, TUn, TD n
Translate eyepoint left, right, up, or down n

units

DS (n) Scale smaller or larger by n. (Default is 2.)

DL (n)

DwW Set wire frame display mode

DH (m) Set hidden line display mode. For m = d,
shows hidden lines dashed; for m = f, shows
facet lines of curved surfaces; for m = df,
shows both.

DR Redraw display

DN (m) Display numeric values of coordinates of a
point, or a variety of other data.

Miscellaneous

CC Cancel current command

M Merge new primitives

TX Enter text on picture

MATHC Enter desk calculator mode

FETCH n Fetch a named model from storage

FILE n File current model under specified name
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necting that point to the volume in order to provide the
correct length for the associated edge. If point 4 is
specified on the side of the plane 123, which is the
opposite of that shown in Fig. 1, the system will reflect
the cuboid, so that the user need not concern himself with
this reflection.

The first two points on the cylinder or cone specify its
length and orientation. The third and fourth points specify
radii. The dotted circular and straight lines through these
points indicate that they can be anywhere on an unbound-
ed cylindrical surface including the associated circle on
the object.

& Entry of swept polygons

Volume primitives can also be created by sweeping
polygons either in a straight line (as in an extrusion) or
along the arc of a circle (to produce a solid of revolution)
[14]. The polygon is defined by entering points as in Fig.
2(a). The arc of the polygon is entered by specifying its
end points and center; the system approximates it with
the straight lines indicated. To sweep in a straight line, a
vector is entered, and a volume such as that shown in Fig.
2(b) is produced. To sweep along the arc of a circle, the
axis of revolution and either a number of degrees or a
starting and ending point are entered to produce a volume
such as that of Fig. 2(c).

& Graphic modification of volumes

After a volume has been entered, it may be modified
graphically. Modification is not limited to primitives,
however. The graphical editing commands operate on any
polyhedron at any node in the hierarchical tree of the
model. If the editing of a polyhedron will invalidate higher
level polyhedra, the user has the option of retaining or
discarding the higher level polyhedra.

We use commands to move and rotate previously
entered objects to illustrate modification. In these com-
mands, the user first specifies the motion of the object(s).
Motion for a move is specified by entering the end points
of a vector in 3-space (‘‘from’ and ‘‘to’’ points). For
rotation, the user specifies an axis of rotation and the
amount of rotation about that axis, or rotation about a
point may be specified by entering 3 points. For example,
the polyhedron of Fig. 7(a) may be rotated to that of Fig.
7(b) by entering points S, A, and A’, or to that of Fig. 7(c)
by S, B, and B'. Using the rotate and scale command, the
polyhedron of Fig. 7(a) can be rotated and stretched to
that of Fig. 7(b) by entering S, A, and A". After the
motion is specified, the first object to be modified is
selected by pointing to it with the graphic cursor or typing
its name if a previously assigned name is known. Subse-
quently selected objects will be moved or rotated through
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the same relative motion as the first. Objects may also be
modified to change their polarity to hole or solid and to
change their names. Cylinders, cones, and hemispheres
may be edited to change the number of facets used to
approximate their curved surfaces.

® GRIN commands

Table 1 shows some of the GRIN commands. They are
currently implemented by function keys on an alphanu-
meric keyboard and a joystick for graphic pointing, but
are being converted to menu and light pen operation on
the IBM 3250 Graphic Display Terminal.

A work session scenario

The experience of using an interactive 3D graphic system
certainly cannot be conveyed as well with a written
description as with a live demonstration. However, we
use a series of figures in an attempt to give the reader a
feeling for designing with computer graphics and volume
modeling by illustrating the major steps performed in
constructing a model of the complex part shown in Fig. 8.

Except for the appendage on the top, the part is
symmetrical about the horizontal and vertical planes
through the axis of the cavity in the part. Therefore, the
creation of one quarter of the body is begun by construct-
ing a four sided polygon in space and revolving it about
the bottom edge to form one quarter of a truncated cone,
as shown in Fig. 9. A fillet, blending the conical surface
with a vertical planar surface (perpendicular to the y
axis), is shown. It is entered by constructing a rectangle
in a plane perpendicular to the z axis and revolving it
about an axis parallel to the x axis. After the fillet material
was created, it was translated and rotated in the vertical
plane to give the best fit to the conical surface. Figure 9(b)
is a view along the approximate line of tangency of the
fillet and the cone. Figure 9(c) is a view along the axis of
the part. The 3D viewing commands allow these views to
be generated quickly and easily.

Negative volumes are shown in dashed line style. Fig.
10 is a top view of the merged primitives of Fig. 9,
including a negative cuboid which is used to trim off the
right end of the part. A negative translated polygon is
used to trim off the left end and construct a fillet.

Figure 11 is the trimmed, filleted object of Fig. 10 with
the addition of a quarter cylinder on the left and of a
translated polygon which generates the ramp on the top of
the part.

The negative volume of Fig. 12(a) is generated by

rotating the polygon about the vertical edge at the left of
the picture. Figure 12(b) results from removing the nega-
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Figure 8 The completed part with section view.

tive volume from the object of Fig. 11. This complex
topology would be difficult for the designer to visualize
and translate into a 2D engineering drawing.

The object of Fig. 13 was modeled as four instances of
that shown in Fig. 12(b). A horizontal cylindrical cap has
also been added to the vertical cylindrical surface.

Figure 14 shows the addition of a complex cavity to the
part. Figure 14(a) is a side view of the negative volume
defining the cavity. It was generated by constructing a
complex polygon representing half the cross section of
the cavity and revolving that polygon 360 degrees. Figure
14(b) is the result of removing the cavity from the part.

Figure 8 shows the completed part and a section view.
It illustrates the complexity handled by the algorithms
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Figure 9 One quarter of a cone with-fillet added.

Figure 10 Trimming the object with translated polygons.

XX

Figure 11 Ramp and vertical quarter cylinder added to the
object.

and demonstrates that a true volume model has been
created and can be sliced to reveal inner material.

Key input algorithms
e8gAlgorithm for orienting and stretching cuboids

The algorithm is described first for the cuboid, and then
the variations are noted for other primitives. Figure 15(a)
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Figure 12 Removing material to produce a slot.

shows a cuboid of arbitrary size and orientation and a unit
cube at the origin. Beginning with the unit cube as the
master, the objective is to find the transformations neces-
sary to convert a copy of the master into the orientation
and size of the cuboid. As noted before, the user defines
the cuboid by four points, denoted p’, r’, s” and ¢ in Fig.
15(a). The corresponding points on the master are un-
primed.
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Figure 13 The result of reflecting and replicating objects in 3-
space.

We first find the inverse transformation required to
convert the primed points into the unprimed points and
from these calculate the desired forward transformations.
The translation of p' to p = 0, 0, 0 is just —p’, which can
be represented [21] by a homogenous matrix T™'. Point r’
is translated by —p’ to ¥’ (/" = FT™" so that the next
transformations take place with respect to the origin.
Figure 15(b) shows that ’ is rotated to the z axis to be
consistent with r by first rotating —a degrees about the z
axis and then —b degrees about the y axis. The rotation
matrices R;' and R, which represent these operations
require the sines and cosines of these angles, which are

” "
r ¥
> ¥ X
sina=—,cosa= —,

f f
F=V)+ o),

sinb= — ,cos b= ",
g 4

g = V) + () + ()

Next " is put through these transformations to produce s,
which is then in a position consistent with the new
positions of p’ and r':

" tm—lp—lp—1
s =sT R R, .

Figure 15(c) shows that if 5" is rotated —c degrees about
the z axis, it will be consistent with s. This rotation matrix
R_’is the same as R and is obtained by replacing r’ with
5" in the corresponding formulas.

IBM J. RES. DEVELOP. ¢, VOL. 25 ¢,NO. 4 ¢JULY 1981

Figure 14 Removal of material to form a complex cavity in the
part.
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Figure 15 Orienting and stretching a cuboid.

If the vertices of the primed cuboid of Fig. 15(a) are
represented by v" and each is put through these transfor-
mations
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Figure 16 GRIN system architecture.

mo_ vl -l 1y -1
v’ =vT R RR,

the resulting orientation would be as shown in Fig. 15(d).
The cuboid now only differs from the master in its size.
The three dimensions are given by 5", ¢,", and r; . These
values are sent to a subroutine which generates a cuboid
of this size. The vertices of that cuboid, v", are then
subjected to the forward transforms in the opposite order
from that used above,

v = v"RR,R,T,

to orient the cuboid as specified by the primed points in
Fig. 15(a). If ) <0, the cuboid is to be reflected about
the y = 0 plane by the matrix F and so

v’ = v"FRRRT

is used instead.

It is not necessary for the user to specify all points on
the corners of a cuboid. A rigid object has three degrees
of freedom of translation and three degrees of freedom of
rotation. The cuboid has in addition three degrees of
freedom in its length, width, and height, a total of nine.
Each of the four points p’, r', s’, and ¢’ represents three
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constraints, totaling twelve. Three of these constraints
are not used by the algorithm and can be used to ease the
user’s job. The coordinates s, 7, and ¢, are the ones
not used. This accounts for the dotted lines associated

with the cuboid shown in Fig. 1 and discussed earlier.

® Algorithm for orienting and stretching other primitives
The algorithm described for the cuboid is used for the
other primitives with minor modifications. Reflection is
not used for other primitives. In each case where they are
used in Fig. 1, the pointings 1-4 determine p’, r’, s’, and
t', respectively. After 1 and 2 are put through the inverse
transformation of the algorithm, the value of the z coordi-
nate of 2 determines the height of the cylinder and cone
and the radius of the hemisphere. Similarly, the value of
the inverse transformed x coordinate of 3 [compare s/ in
Fig. 15(d)] determines the radius of the cylinder and the
radius of the base of the truncated cone. The magnitude
of the inverse transformed x and y coordinates of 4
determines the other radius of the cone.

In the case of the translated polygon, the plane of the
polygon is determined by its first point [1 on Fig. 2(a)] and
the translation vector, which is normal to the plane of the
polygon. The other points defining the polygon need not
be in this plane but will be projected along the translation
vector onto the plane before the primitive is constructed.
Point 1 is used as p', and the other end of the translation
vector is used as r'. This inverse transforms the plane of
the polygon into the z = 0 plane, where the primitive is
constructed. It is then transformed forward into the
orientation specified by the user.

For the rotated polygon the first point of the polygon
and the axis, points 1, 9, and 10 of Fig. 2(c), determine the
plane of the polygon. Other points defining the polygon
need not be on this plane, but will be rotated about the
axis into the plane before the primitive is constructed.
Points 9, 10, and 1 are used as p’, r', and §’, respectively,
so that the polygon is inverse transformed into the y = 0
plane, where the primitive is constructed. The completed
primitive is then transformed forward to the orientation
specified by the user.

Parameterized objects and movement

In order to retain as much as possible of the power of a
procedural language, interactive facilities have been in-
cluded to (a) save and replay user input sequences with
specific values substituted for symbolic names, (b) use
symbolic names in place of constant data, and (c) define
mathematical functions to be included in graphic com-
mands. The commands are collected as they are entered
and executed, so that the user sees graphically the
consequences of the command being collected. Wherever
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the user would normally enter a numeric value while
generating a graphic model (e.g., a coordinate, distance,
angle, etc.), a symbolic name can be substituted. An
interpretive facility has been included which permits the
user to enter FORTRAN assignment statements, evaluate
them as part of a command, and assign their value to a
symbolic name. This facility allows parameterization,
branching, and iteration (looping). Using these interactive
facilities, a completely new graphical function, such as
finding the intersection of two straight lines, could be
added to the system without program recompilation.
Examples of these facilities are described in the section
on application feasibility. A similar facility implemented
in APL for a 2D graphic system has been reported by
Bleher et al. [22].

System architecture

The GDP/GRIN system runs under the VM/CMS Operat-
ing System. The user interacts with a dialog monitor (see
Fig. 16), which collects user input and invokes a GRIN
command scanner.

Of major importance are the GRIN commands to
generate primitive volumes. These commands collect
user input and call routines that generate the data struc-
ture and display the resulting object. Other commands
perform modification of existing objects (move, rotate,
refacet, erase, merge, etc.) or change the viewing param-
eters (scale, view type, viewing angle). Where a GRIN
command requires function that already exists in GDP,
the corresponding GDP routine is used where practicable.
This is done for the generation and merging of polyhedra
and for display with hidden lines removed. These func-
tions were adapted, where necessary, for interactive
rather than batch operation.

The hardware configuration consists of a standard IBM
3270 alphanumeric display equipped with the Graphic
Attachment feature, which allows a storage tube display
such as a 19-inch Tektronix 618 to be attached. This
results in a dual screen display station with graphic
commands transmitted to the display head at a very high
rate. The Graphic Attachment feature includes a graphic
cursor controlled by a joystick. The display station is
attached to an IBM System/370 Model 168.

Application feasibility demonstrations
Several applications in mechanical design have been
examined, and the feasibility of implementing them with
computer graphics, volume primitives, and a geometric
modeling system has been demonstrated.

The bulldozer of Fig. 17(a) is an example of the use of
volume modeling for mechanism design. The object was
to find the range of lift and tilt that could be applied to the
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RIGID BAR

LEFT PUSHER

TILT CYLINDER

Figure 17 (a) A bulldozer blade mechanism design problem. (b)
Results of blade lift and tilt motion.

blade without causing interference between members.
This range determines the extensions required of the
piston-cylinder pairs, which cause the blade movement.

The end of the sway bar visible in Fig. 17(a) is attached
to the chassis, and the other end is attached to the right
pusher. This complicates the motion by causing the blade
to move horizontally as it is driven vertically by the lift
cylinders.

The traditional solution to this problem involves writ-
ing and solving the simultaneous equations which repre-
sent the constraints on the system. Our approach frees
the mechanical designer from this task by using a power-
ful new ‘‘graphic programming by example’’ technique. A
volume model was built with the labeled members in Fig.
17(a) as subparts. The system of mechanical constraints
could then be modeled by a sequence of GRIN commands
to rotate the appropriate subparts. Since the extent of the
lift and tilt pistons was to be an output of the design, the
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(b)

Figure 18 Objects produced from parameterized graphic dia-
log: (a) screw, (b) sinusoid.

Figure 19 Examples of architectural applications using GDP/
GRIN.

WILLIAM FITZGERALD ET AL.

cylinders and associated pistons were not initially part of
the model, providing two degrees of freedom in the
mechanism (lift and tilt angles). For connected parts
which must be rotated about different axes, iteration is
required in order to preserve their connection. Iteration
must continue until a solution of desired accuracy is
obtained.

The sequence of rotation commands entered by the
user to lift the blade and its connected members a specific
number of degrees was collected as the commands were
executed, so that the collection could be re-executed as a
single command. Iteration and parameterization were
subsequently introduced into the collected sequence of
commands, producing a procedure for lifting an arbitrary
number of degrees. A similar procedure for tilt was
generated.

After rotation, analyses of various kinds can be per-
formed on the model. The interference routine can be
invoked to find that there is interference between the
right pusher and track in the position shown in Fig. 17(b).
At any position, the length to be spanned by each piston-
cylinder combination can be measured digitally, complet-
ing the design process.

The volume model allows the designer to activate the
mechanism as though it were a physical model, which
helps him to visualize the consequences of changes, while
providing him with the accuracy of a digital computer
representation.

Figure 18 shows examples of parameterized objects
containing a sinusoidal surface and a thread. A specific
model of each type was built using GRIN and CMS
interpreted commands. The commands were collected
during execution and parameters added to generalize
them. The user can now build a customized sinusoidal
surface by invoking the resulting program by name and
specifying the number of degrees per step and the number
of steps. This causes the collected commands to be re-
executed and the volume model to be built. The model
can then be scaled independently in each axis, translated,
and rotated as desired. To build the basic thread the user
invokes the collection of commands by name and supplies
as parameters the OD, pitch, length, and number of
facets. The bottom of the thread has been cut off and a
piece of cylinder added to the top to produce the model
shown in Fig. 18(a).

Examples of the use of GDP/GRIN for architectural
applications are shown in Fig. 19. Using the GRIN
viewing commands, the user could take a simulated walk
through the houses.
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Figure 20 An example of power supply mechanical design
using GDP/GRIN.

Within IBM, the use of geometric modeling for the
design of computer hardware is being investigated. Fig-
ures 20 and 21 show the results of feasibility demonstra-
tions in power supply mechanical design and three dimen-
sional cable routing. Figure 22 illustrates that the system
is able to produce color graphics output in checking for
interference among a welded frame, cable (in green on the
display), and piping (in blue on the display) for water
cooled power frames.

Conclusions

Several questions posed in the introduction can now be
addressed. The first asks whether a simple protocol
between a designer and a computer graphics system can
generate the data required by a geometric modeling
system. The answer has been shown to be positive for
some very complex models.

Another question asked whether mechanical designers
would be able to think and work in terms of volume
primitives on a 2D graphic screen. The section on applica-
tion feasibility reports several nontrivial applications
which have been demonstrated. The system has had a
number of users other than the developers. Although
GDP/GRIN is an experimental research tool, it is now
being used in a pilot production system for mechanical
designers in one of IBM’s operating divisions. Their
reactions to date have been positive.

The success of the applications described in the preced-
ing section seems sufficient to encourage further develop-
ment and testing to determine the economics and extent
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Figure 21 Three dimensional cable design using GDP/GRIN.

of penetration of this approach into mechanical design.
Regardless of these results, it seems clear that computer
graphics is an important, probably indispensable, compo-
nent of a geometric modeling system for mechanical
design.
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