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GRIN:  Interactive  Graphics  for  Modeling  Solids 

This paper  describes  an  experimental  system  for the  original generation  and  subsequent  modification of volume  models 
of complex  physical  objects, using interactive  computer  graphics. The models  are built up  from  primitive  volumes, e.g., 
cuboids,  cylinders,  swept  sutfaces,  etc.,  entered  by  a  mechanical  engineer  interacting  with  a  two  dimensional  projection 
of the  model  on  a  graphic  display  screen. The primitives  may  be  entered  at  any  orientation in 3-space  and  combined  to 
form  a  single  polyhedral  model. The central  issue is  the provision of an  eficient,  natural  means  for  generating  these 
models. 

Introduction 
For over twenty years,  computer aided design (CAD) has 
been  increasing  productivity in the  electronics industry 
by  providing designers with performance data before 
circuits are actually  fabricated [l]. In  recent  years, CAD 
has  come  to  the  forefront with the tantalizing  promise of 
techniques that may  someday do  for mechanical design 
what is already possible  for electronic  design. 

CAD itself consists of two distinct  disciplines,  graphics 
and modeling, both of which are  essential.  In  the elec- 
tronics  case, for instance,  the  interactive display of a 
logic diagram is  graphics, but the program that simulates 
the operation of this circuit is modeling. In  the mechani- 
cal case, a similar distinction may be  made between the 
display of an engineering drawing of a part and  the data 
base  that enables a program to  compute  the moments of 
inertia of that  part. 

The  experience  to  date in developing  mechanical CAD 
systems indicates that mechanics is a more complex 
domain  than electronics.  The  added difficulty is principal- 
ly due to the fact that mechanics tends  to deal with three 
dimensional (3D) parts  rather than 2D circuit  layouts. 
Since existing graphics displays are essentially all 2D, the 
added dimension requires extrapolation from a 2D display 
space  to a 3D object  space.  In modeling, there  are 
additional problems stemming  from the fundamental laws 
of physics, e . g . ,  no  two objects may occupy the  same 
space  at  the  same time. 

- 
At this laboratory, work on mechanical CAD  systems 

began in 1975, using  geometric modeling. Because this 
undertaking  proved to be so challenging, the initial focus 
of the work was solely on  the modeling domain  and  was 
limited to polyhedral representations. Specifically, a Geo- 
metric Design Processor (GDP) was built that provided 
data  structures  and programs for modeling complex me- 
chanical objects  from volume  primitives ( e . g . ,  cuboids 
and  polyhedral  approximations to cylinders)  and for 
deriving many of their engineering properties [2, 31. 

A model is represented  as a hierarchical structure 
which retains  primitives at  the lowest  level, as well as 
compositions of the  subtended primitives at higher nodes. 
GDP  has been used  to model complex  mechanical parts 
and assemblies from  the  computer,  aircraft,  heavy equip- 
ment, and architecture industries.  It has  also been  used in 
the modeling of industrial robots and the  parts,  processes, 
and  applications associated with them, e . g . ,  automated 
path planning [4] and model driven  vision [5 ] .  As in most 
existing  geometric modeling systems,  the  user interface 
was  a statement  oriented procedural  language [6] .  Unfor- 
tunately,  because  GDP lacked an  interactive graphic 
input  facility, it was  usable only by highly skilled pro- 
grammers. 

It was in this  environment that  the  research reported 
here was undertaken.  The work was intended  to  answer 
some  fundamental questions regarding mechanical  CAD 

Copyright 1 9 8 1  by  International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) 
each reproduction is  done without alteration and (2) the Journal reference and  IBM copyright notice are included on the first page. 
The title and  abstract  may be used without  further permission in computer-based and other information-service systems. Permission 
to republish other excerpts should be obtained from the Editor. 281 

IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981 WILLIAM FITZGERALD ET AL. 



1 .  

CONE 

CYLINDER 

"F*ISP*EPE 

Figure 1 Primitive  volumes and their  entry  points. 

systems: First,  can  computer graphics provide a simple 
means  for specifying  volume  models of 3D objects? 
Specifically, can a  simple  protocol for a  mechanical 
designer,  who is  not a programmer, result in generating 
the  data required for a  complex  geometric model? The 
second  question, raised  by the mechanical  community, is 
whether a mechanical designer, who is  trained  to design 
with points,  lines,  and  arcs in 2D orthographic views 
(either on a  drafting board or a  graphic  display),  could 
think  and  work  in terms of 3D volume primitives on a 2D 
graphic screen. 

The  approach  taken  was  to add an  interactive graphics 
input facility called GRIN (GRaphic INput subsystem) to 
GDP's modeling in order  to build a complete experimen- 
tal  mechanical  CAD system. An attempt  was made to 
retain the  power of the procedural  language by mapping, 
as  far  as  possible,  the  features of the language to the 
graphic  interface. The resulting  system was used by its 
developers  and found  to be effective in a  wide  variety of 
application demonstrations, several of which are de- 
scribed here.  It is currently being used  in  a pilot produc- 
tion  environment  by a mechanical  design group. 

Prior art 
The beginnings of mechanical CAD can be traced  to 1%3 
in papers by Coons [7] on CAD requirements, Sutherland 
[8] on  the  Sketchpad  system, and Roberts [9] on  the now 

282 classical computer graphics  problem of hidden line re- 

Figure 2 Translated and rotated  polygons and their  entry 
points. 

moval. One of the earliest  production uses of computer 
graphics for mechanical  CAD was in the  aerospace indus- 
try,  reported by Chasen [lo] in 1965. 

A  number of CAD  systems  have been built in recent 
years for generating three dimensional computer models 
of physical objects  and mechanisms [ll-131. One of the 
most  interesting approaches  has been the combination of 
many instances of a few simple volumes to produce 
models of complex parts. This approach  is typified by the 
work of Braid [13] Baumgart [14], Voelcker [15], and 
Wesley et al. [2]. The primitive volumes are  cuboids, 
cylinders, cones,  swept polygons, etc.,  and  the  approach 
to manipulating the primitives is a statement oriented 
language allowing the  user  to  translate,  rotate,  and scale 
the primitives and  to combine  them with the  set opera- 
tions  union,  difference, and intersection.  A  particularly 
powerful  implementation of this procedural  approach is 
that of Grossman [6] because  the  procedural language is 
embedded in PL/I and  therefore  has all the computational 
power  and flexibility of a  general  programming language. 

The promise of these  systems  to  automate  the mechani- 
cal design and  manufacturing process  has  been very slow 
to materialize.  Only in the  last two or three  years  has  the 
use of graphics systems  for mechanical CAD begun to 
grow  rapidly,  and then primarily in the  automation of two 
dimensional desigddrafting  procedures. A small number 
of three dimensional systems  have been  successful, nota- 
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Figure 3 Methods for rendering visual displays of volume Figure 4 Automatic  production of views for engineering draw- 
models. ings. 

bly for  the design of sculptured  surfaces in the automobile 
and  aerospace  industries. 

As  late as 1978, in his review of graphical CAD 
systems, Elliott [ll] commented on  the  use of computer 
graphics  and  a  3D internal computer model by a mechani- 
cal designer: “. . . there  is a  fascinating and  open ques- 
tion as  to how he will work from the essentially ‘3D’ 
thought in his  mind,  through the 2D screen,  to a computer 
model which simulates his 3D concept. . . . The question 
has  attracted  the  attention of design methodologists, 
computer scientists,  engineers,  and psychologists from 
the time of the ‘3D sketching box’ of Gregory [16] to a 
recent  paper on the 3D wand and  head  mounted  display 
[17].” 

The question is especially  relevant and fascinating 
when the designer uses volume  primitives instead of lines 
and  arcs  to  generate a computer model. The  extensive 
review of geometric modeling done by Baer,  Eastman, 
and Henrion in 1979  [18] does not treat  the graphic user 
interface  in any detail.  Papers  on  geometric modeling 
have been concerned primarily with algorithms and not 
end users. 

A  recent paper by Johnson  and Dewhirst [19] reports 
on a volumetric  modeling  system based  on interactive 
computer  graphics,  but little  detail of the graphic user 
interface is given. 

User interface 

Overview 
We believe the  user  interface should receive more  atten- 
tion than  it  has  to  date.  It is a crucial factor in  determining 
whether volume modeling systems will be accepted by 
mechanical  designers. 

Using GDP/GRIN, the mechanical designer sits at a 
computer  graphics terminal  interacting with 2D projec- 
tions of the model. A model is built from  the primitives 
shown in Fig. 1 and  the  swept polygons in Fig. 2. The  user 
can view and  interact  from any angle with any  four views 
displayed  simultaneously. The  system  produces  either 
perspective  or parallel projections,  although  for  reasons 
discussed below,  parallel  projections are  used  for all 
interactive work. 

Figure 3 illustrates  various  methods of displaying the 
model of two intersecting cylinders.  A routine called 
Merge creates a single polyhedron  as  the  union, intersec- 
tion, or difference of two  arbitrary  polyhedra, in  this case 
two primitive  cylinders.  Figure 3(a) is  the wire frame 
mode  display of the merged cylinders. Note  that  the 
cylinders are solid and  the portions of the  surface of each 
cylinder  internal to  the  other  one  have  been eliminated. 
Figure 3(b) shows  the  results of standard hidden line 
removal. In Fig. 3(c), the  facet lines of the cylinders have 
been  removed to  produce a figure more suitable for 283 
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Figure 5 Defining views in GRIN. 

inclusion in a publication. Figure 3(d) has  the  facet lines 
removed  but  includes  hidden  lines  in dashed line type  to 
illustrate that hidden features can  be shown in a publica- 
tion quality figure. This  feature  can  be  used in views at 
any angle,  but its  primary significance is  that it enables 
the  automatic  production of correct  orthographic views 
for engineering drawings,  as  shown in Fig. 4. 

Viewing 
One of the  requirements of a successful 3D design system 
is a quick, natural method of seeing the  objects  from 
different viewpoints. GRIN provides this  convenience by 
(1) defining viewing angles and viewing translations inde- 
pendently, making them available to  the  user  as  separate 
commands,  and (2) using  orthographic  projection. 

The common projections  for drawings are  perspective, 
orthographic (including isometric,  dimetric,  and trimet- 
ric), and oblique [20]. The principal advantage of the  last 
is that it is  easiest  to  generate manually. Since  the 
computer can produce any of the  three  and  the first two 
appear more  realistic to  the  eye, oblique projections  are 
not used here.  An  orthographic projection is  the limiting 
case of a perspective projection as  the  eyepoint  is moved 
farther away from  the  object [21]. This  reduces by one  the 
number of viewing parameters (distance from the  object) 
which must  be  specified  by the  user. When the eyepoint is 
close  to  the  object,  perspective projections tend  to  pro- 
duce cluttered areas  near  the vanishing points.  In addi- 

284 tion, mechanical designers  do not  generally  work with 

perspective  projections. For these  reasons orthographic 
projections are  used. 

The viewing angles  are described for a simple notched 
block, as  shown in the  center of Fig. 5 .  If the eyepoint is 
at A looking at  point G and  the projection  plane (screen of 
the display) is between  these points and perpendicular to 
the line of sight, view A is  produced. Similarly, as  the 
eyepoint is changed  to  points B and C, still looking at  G, 
their corresponding  views are obtained.  Point G is called 
the gaze point,  and if azimuth  and  elevation are measured 
with respect  to  it, views can  be identified by these  two 
angles. A one-to-one relationship between  the views  and 
angle  pairs is  achieved by making the azimuth  modulo 360 
degrees and limiting the elevation between +90 degrees. 
Note that at  the  north  and south  poles  (elevation of +90 
degrees) different values of azimuth produce views D and 
D'. The viewing screen is wider than it is high,  and it is 
the orientation of the  screen with respect  to  the image (or 
vice  versa) that  is  the difference between  views D and D'. 
These  two views are useful  as top views for views  A  and 
C, respectively. The projection is displayed so that  the 
image of G always  appears  at  the  center of the  screen. 

If the  user  wishes to change the point of interest, 
perhaps  to  part of the  object which is off the  screen, yet 
keep  the  same viewing  angles, the image of G can be 
translated in the projection  plane. This translation in- 
volves adding the  same 2D vector  to  both  the 3D eye and 
gaze  points, which  calculates a new gaze point  without 
changing the azimuth or elevation. 

The  approach outlined above is embodied in a set of 
simple viewing commands which allow the  user  to change 
angle by rotating the  eye (1) left,  right, up, or down, (2) to 
an  absolute azimuth or elevation, (3) to look along any 
coordinate system  axis,  or (4) to a standard isometric 
view. The  eyepoint  can  be translated left, right, up, or 
down,  or a new  image center  can be selected with the 
graphic cursor.  In  addition,  the 2D image can  be scaled. 

Entry of models in three  dimensional  space 
As mentioned earlier,  GRIN  is  the  graphic  input subsys- 
tem of a geometric modeling system  that  generates com- 
plex  volumes by combining many instances of simple 
volumes. The major  function of GRIN  is  to provide a 
quick, natural  way to  enter  these simple  volume primi- 
tives. 

The model coordinate system is called the World 
Coordinate  System (WCS). An axis  indicator  with six legs 
is displayed on  the  screen, indicating the orientation of 
the  three mutually perpendicular axes (x, y ,  z )  of the WCS 
and their negatives (see Fig. 1). The legs have  the  same 

WILLIAM FITZGERALD ET AL. IBM J. RES.  DEVELOP. VOL. 25 0 NO. 4 0 JULY 1961 



lengths  in three dimensional space, but as the view  point 
is changed, the orientations and  lengths of the vectors in 
the axis indicator also change to reflect the new  view 
point. 

Because it may be convenient for the user to work at 
times  in a coordinate system other than the WCS, a 
second coordinate system called the Rotated Coordinate 
System (RCS)  can  be  defined interactively. Its directions 
(u ,  v, w) are shown on a second  axis indicator (see Fig. 1). 
The RCS can be  defined as  a rotation about an axis of 
either coordinate system. It can also be  specified  with 
three points, the first two defining the origin and the u 
direction, the third  defining the plane containing the u and 
v directions, with the w direction equal to the cross 
product of u and v. 

Since primitives are entered by specifying points, 
methods for entering these elements are discussed first. 
The concept of a 3D “current point” is used for moving 
about in 3-space. A diamond  is  always displayed on the 
screen at the current point, which can be positioned in 
absolute coordinates or by pointing to an existing  point 
with the graphic cursor. The user must ensure the unique- 
ness of the 2D projection of the chosen point by changing 
the view if necessary. The current point can also be 
moved  relatively  along  any of the six axes  a specified 
distance or be  limited by a point. For example, in  Fig. 6 ,  if 
the current point  is at F, moving 2 units along the y axis 
will move  it to H, but moving  it  along y limited by point D 
will  move  it to G .  The current point  may  be  moved  any 
number of times  until the user is satisfied  with its position 
in 3-space. A user-initiated command then accepts the 
coordinates of the current point, e . g . ,  to specify a posi- 
tioning  point of a primitive. 

Entry of primitive volumes 
The user issues a command  specifying the primitive to be 
added to the model. The point entry procedures are used 
to enter the points required to define that primitive. The 
primitive  is displayed automatically after the last point 
has  been entered. If it is not correct, the graphic modifica- 
tion  commands may be  used or the primitive may be 
canceled. Any other command will accept the primitive 
and  make it a permanent part of the model. 

The positioning points required for specifying  primi- 
tives are shown in Fig. 1. Points  must  be  specified in the 
order indicated. The primitive  is then built to match the 
entered points. For example, when two points are entered 
for a hemisphere, the center is placed at the first point, 
the distance between the points determines the radius, 
and the hemisphere is oriented so its pole is at the second 
point. A cuboid can be entered by specifying the location 

Figure 6 An illustration of moving the  current point in 3-space. 

Figure 7 Defining the rotation of objects. 

of one vertex and the three adjacent vertices which 
determine the height, width, length,  and orientation. 

GRIN frees the user from the requirement of maintain- 
ing perpendicularity among the specified  edges. As 
shown  in the cuboid of Fig. 1, point 3 can be anywhere on 
the unbounded  line  suggested by the dotted Iine  through 3 
and  still provide the correct length  and orientation for the 
associated edge. Point 4 need  only be in the proper 
unbounded plane indicated by the two dotted lines con- 285 
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Table 1 Some GRIN commands. 

Input commands 

CB 
co 
CY 
HE 
PT 
PR 

Points  and line segments  (used within other  commands) 
A B x y z  
cu 

Enter absolute coordinates of a point 
Display cursor, to select an existing point 

a ( 4  Move n units in the a direction from current 
point, where a is an axis (a = X ,   Y ,  Z, U, V, or 
W) 

Enter a cuboid 
Enter a cone 
Enter a cylinder 
Enter a hemisphere 
Enter a translated polygon 
Enter a rotated polygon 

EN Accept coordinates of current point 
RJ Reject last entered point or arc 
ARC Enter a circular arc in a polygon 

Editing commands 
EO 
MO 
ROX 
ROP 
ROS 
PO m 

F ( n )  

RC a(-)n 

Erase object 
Move object 
Rotate object about an axis 
Rotate object about a point 
Rotate and scale object about a point 
Reset polarity mode to m = H for hole, S for 
solid. For m = R, polarity of selected object is 
reversed, without changing mode. 
Set  the number of facets for new primitives. If 
defaulted, permits refaceting of a selected 
primitive. 
Alter rotated coordinated system. Rotates n 
degrees (counter)clockwise about the a axis 
(X, Y, Z, U, V, or W) 

Display  commands 
RL n, RR n, RU n, RD n 

Rotate eyepoint left, right, up, or down n 

RI 
degrees 
Rotate to standard isometric angle 

RX (-)a Rotate to axis a (X, Y, Z, U, V ,  or W) 
RA n 
RE n 

Rotate to absolute azimuth of n degrees 

T 
Rotate to absolute elevation of n degrees 
Translate so indicated point is centered on 
screen 

TC Automatically center picture and scale to fit 

TL n, TR n, TU n, TD n 
screen 

Translate eyepoint left, right, up, or down n 
units 

DS (n) Scale smaller or larger by n. (Default is 2.) 
DL (n ) 

DH (m) Set hidden line display mode. For m = d, 
shows hidden lines dashed; for m = f, shows 
facet lines of curved surfaces; for m = df, 
shows both. 
Redraw display 

point, or a variety of other  data. 

DW Set wire frame display  mode 

DR 
DN (m) Display numeric values of coordinates of a 

Miscellaneous 

cc 
IM 

Cancel current command 

TX 
Merge  new primitives 

MATHC 
Enter text on picture 
Enter desk calculator mode 

FETCH n 
FILE n 

Fetch a named  model from storage 
File current model under specified  name 
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necting that point to  the volume in order  to provide the 
correct length for  the associated  edge. If point  4 is 
specified on  the  side of the plane 123, which is the 
opposite of that shown in Fig. 1, the  system will reflect 
the cuboid, so that  the  user need not concern himself with 
this reflection. 

The first two  points  on  the cylinder or cone specify its 
length and  orientation.  The third and fourth  points specify 
radii. The  dotted  circular  and straight  lines  through these 
points indicate that  they can  be anywhere  on  an unbound- 
ed cylindrical surface including the associated  circle on 
the object. 

Entry of swept polygons 
Volume  primitives can  also be created by sweeping 
polygons  either in a  straight line (as in an extrusion) or 
along the  arc of a circle  (to  produce a solid of revolution) 
[14]. The polygon is defined by entering points  as in Fig. 
2(a). The  arc of the polygon is  entered by specifying its 
end points and center;  the system approximates it with 
the straight lines indicated.  To  sweep in a straight  line,  a 
vector  is  entered,  and a  volume such  as  that  shown in Fig. 
2(b) is produced. To  sweep along the  arc of a  circle, the 
axis of revolution and either  a  number of degrees or a 
starting  and  ending point  are  entered  to  produce a  volume 
such  as  that of Fig. 2(c). 

Graphic  modification of volumes 
After a volume has  been  entered, it may be modified 
graphically. Modification is not limited to primitives, 
however.  The graphical editing commands  operate on any 
polyhedron at  any  node in the hierarchical tree of the 
model. If the editing of a  polyhedron will invalidate higher 
level  polyhedra, the  user  has  the option of retaining or 
discarding the higher level polyhedra. 

We use  commands  to move and  rotate previously 
entered  objects  to illustrate modification. In  these com- 
mands,  the  user first specifies the motion of the object(s). 
Motion for a move  is specified by entering the  end points 
of a vector in 3-space (“from” and  “to” points). For 
rotation,  the  user specifies an axis of rotation and the 
amount of rotation  about  that  axis,  or  rotation about  a 
point may be specified by entering  3 points. For example, 
the polyhedron of Fig. 7(a) may be rotated  to  that of Fig. 
7(b) by entering points S, A,  and  A’, or to  that of Fig. 7(c) 
by S, B ,  and B’. Using the  rotate  and  scale  command,  the 
polyhedron of Fig. 7(a) can  be rotated and  stretched  to 
that of Fig. 7(b) by entering S, A,  and A .  After the 
motion is specified, the first object to be modified is 
selected by pointing to it with the graphic cursor or typing 
its name if a  previously  assigned  name is known.  Subse- 
quently  selected objects will be moved or rotated through 
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the  same relative  motion as  the first. Objects may also be 
modified to  change  their polarity to hole or solid and  to 
change  their names. Cylinders, cones, and  hemispheres 
may be  edited to  change  the number of facets used to 
approximate their  curved surfaces. 

0 GRIN commands 
Table  1  shows some of the  GRIN commands.  They are 
currently  implemented by function keys  on  an alphanu- 
meric  keyboard and a joystick for graphic  pointing,  but 
are being converted  to menu and light pen  operation  on 
the IBM 3250 Graphic Display Terminal. 

A work  session  scenario 
The  experience of using an interactive 3D graphic  system 
certainly cannot  be conveyed as well with a written 
description as with a live demonstration. However, we 
use a  series of figures in an  attempt to give the reader a 
feeling for designing with  computer  graphics and volume 
modeling by illustrating  the  major steps performed in 
constructing a model of the complex part shown in Fig. 8. 

Except  for  the  appendage  on  the  top,  the  part is 
symmetrical  about the horizontal and vertical  planes 
through the axis of the cavity in the  part.  Therefore,  the 
creation of one  quarter of the body is begun by construct- 
ing a four sided polygon  in space  and revolving it about 
the bottom  edge to  form  one  quarter of a truncated  cone, 
as shown in Fig. 9. A fillet, blending the conical  surface 
with a  vertical planar surface  (perpendicular to  the y 
axis), is shown. It  is  entered by  constructing a rectangle 
in a plane  perpendicular to the z axis  and revolving it 
about  an axis  parallel to  the x axis.  After the fillet material 
was  created, it was  translated and  rotated in the vertical 
plane to give the  best fit to  the conical  surface.  Figure 9(b) 
is a view along the approximate line of tangency of the 
fillet and  the  cone.  Figure 9(c) is a view along the axis of 
the  part.  The 3D viewing commands allow these views to 
be generated quickly and easily. 

Negative  volumes are shown in dashed line style. Fig. 
10 is a top view of the merged primitives of Fig. 9, 
including a negative  cuboid which is used  to trim off the 
right end of the  part. A negative translated polygon is 
used to trim off the left end and construct a fillet. 

Figure 11 is the trimmed, filleted object of Fig. 10 with 
the addition of a quarter cylinder on  the left and of a 
translated polygon which  generates the  ramp on the top of 
the  part. 

The negative volume of Fig. 12(a) is  generated by 
rotating the polygon about the vertical edge  at  the left of 
the picture.  Figure 12(b) results  from  removing the nega- 
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Figure 8 The completed part with section view. 

tive  volume from  the  object of Fig. 11. This complex 
topology would be difficult for  the designer to visualize 
and  translate  into a 2D engineering drawing. 

The object of Fig. 13 was modeled as  four  instances of 
that shown  in Fig. 12(b). A  horizontal  cylindrical cap  has 
also been added  to  the vertical  cylindrical surface. 

Figure 14 shows  the addition of a complex  cavity to  the 
part. Figure 14(a) is a side view of the negative  volume 
defining the cavity. It  was generated  by  constructing a 
complex polygon representing half the cross section of 
the cavity  and  revolving that polygon 360 degrees. Figure 
14(b) is  the result of removing the cavity from  the  part. 

Figure 8 shows the completed part  and a section view. 
It illustrates the complexity handled by the algorithms 
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Figure 9 One quarter of a cone with-fillet  added. 

I - 

Figure 10 Trimming the  object  with  translated polygons. 

Figure 11 Ramp  and vertical quarter cylinder added to the 
object. 

Figure 12 Removing  material to produce  a slot. 

and demonstrates that a true volume  model has been 
created and  can  be  sliced to reveal inner material. 

Key input  algorithms 

Algorithm  for  orienting  and  stretching  cuboids 
The algorithm is described first  for the cuboid, and  then 

288 the variations are noted for other primitives.  Figure 15(a) 

shows a cuboid of arbitrary size and orientation and a unit 
cube at the  origin.  Beginning  with the unit cube as the 
master, the objective is to find the transformations neces- 
sary to convert a copy of the master  into the orientation 
and  size of the cuboid. As noted before, the user defines 
the cuboid  by four points, denoted p ' ,  +, s' and I )  in  Fig. 
15(a). The corresponding  points  on the master are un- 
primed. 
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Figure 13 The result of reflecting  and replicating objects in 3- 
space. 

We first find the  inverse transformation  required to 
convert  the primed points  into  the unprimed points and 
from these  calculate  the desired  forward  transformations. 
The translation of p' to p = 0, 0, 0 is  just -p ' ,  which can 
be  represented [21] by a homogenous matrix T-'. Point r' 
is translated by -p' to r" (r"  = r'T-') so that  the next 
transformations take  place with respect  to  the origin. 
Figure 15(b) shows  that r' is  rotated  to  the z axis to be 
consistent with r by  first  rotating -a degrees  about  the z 
axis and then -b  degrees about the y axis.  The rotation 
matrices Ri'  and Rb' which represent  these operations 
require the sines and cosines of these  angles, which are 

r +; 
sin a = , cos a = - f f '  

f t-; s i n b =  - , c o s b =  - ,  
g E? 

Next s' is put through these transformations to produce S", 
which is then in a position consistent with the new 
positions of p' and r': 

s)) = s ' ~ - l ~ ; l ~ ; l  , 

Figure 15(c) shows  that if s" is rotated - c  degrees about 
the z axis, it will be  consistent with s. This rotation matrix 
RT' is the  same  as R,' and is obtained by replacing r" with 
s)) in the  corresponding formulas. 

Figure 14 Removal of material to form  a complex cavity in the 
part. 

Z Z 

'X 

(C)  (dl 

Figure 15 Orienting  and stretching a cuboid. 

If the  vertices of the primed cuboid of Fig. 15(a) are 
represented by v' and  each is put through these transfor- 
mations 289 
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constraints, totaling twelve.  Three of these  constraints 
are not  used by the algorithm and can be used  to  ease  the 
user's  job.  The  coordinates sr, t z ,  and t r  are  the  ones 
not used. This accounts  for  the  dotted lines  associated 
with the cuboid shown in Fig. 1 and  discussed earlier. 

Algorithm  for  orienting  and  stretching  other  primitives 
The algorithm described  for  the cuboid is used for  the 
other primitives  with  minor modifications. Reflection is 
not used for  other primitives. In each  case  where they are 
used  in Fig. 1, the pointings 1-4 determine p' , r' , s' ,  and 
t ' ,  respectively. After 1  and 2 are  put through the inverse 
transformation of the algorithm, the value of the z coordi- 
nate of 2 determines  the height of the cylinder and  cone 
and  the radius of the hemisphere.  Similarly, the value of 
the  inverse transformed x coordinate of 3 [compare s: in 
Fig. 15(d)] determines  the radius of the cylinder and the 
radius of the  base of the truncated cone.  The magnitude 
of the inverse transformed x and y coordinates of 4 
determines  the  other radius of the  cone. 

Other GDP 
functions 

bI calculator 

Figure 16 GRIN system architecture. 

u'" = u'~-l~;l~;l~;l , 

the resulting orientation would be  as  shown in Fig. 15(d). 
The cuboid now  only differs from  the  master in its size. 
The  three dimensions are given by s z ,  t: , and rr  . These 
values are  sent  to a subroutine which generates a cuboid 
of this  size. The  vertices of that  cuboid, u" ' ,  are  then 
subjected to  the  forward transforms in the  opposite  order 
from  that  used  above, 

u' = u"'R,R,R$, 

to orient the cuboid as specified by the primed points in 
Fig. 15(a). If t t  < 0, the cuboid is to be reflected about 
the y = 0 plane by the matrix F and so 

u' = u"'FRcRbRaT 

is used instead. 

It is not necessary  for  the  user  to specify all points on 
the  corners of a cuboid. A rigid object has  three  degrees 
of freedom of translation and three  degrees of freedom of 
rotation.  The  cuboid  has in addition three  degrees of 
freedom in its  length, width, and height, a total of nine. 

290 Each of the  four  points p ' ,   r ' ,  S I ,  and t' represents  three 

In  the  case of the  translated polygon, the plane of the 
polygon is determined by  its first point [l on Fig. 2(a)] and 
the translation vector, which is normal to  the plane of the 
polygon. The  other  points defining the polygon  need not 
be in this  plane but will be projected along the translation 
vector  onto  the  plane before the primitive is  constructed. 
Point  1 is used as p ' ,  and  the  other end of the translation 
vector is used as r' .  This  inverse  transforms  the plane of 
the polygon into  the z = 0 plane,  where  the primitive is 
constructed.  It  is  then transformed forward  into  the 
orientation specified by the  user. 

For  the  rotated polygon the first  point of the polygon 
and  the  axis,  points 1,9, and 10 of Fig. 2(c), determine  the 
plane of the polygon. Other points defining the polygon 
need  not be  on this plane,  but will be  rotated about the 
axis into  the plane  before the primitive is  constructed. 
Points 9, 10, and 1 are used asp', r' ,  and s', respectively, 
so that  the polygon is  inverse transformed into  the y = 0 
plane,  where  the primitive is  constructed.  The completed 
primitive is then transformed forward to  the orientation 
specified by the  user. 

Parameterized objects and  movement 
In  order  to retain as much as possible of the  power of a 
procedural language,  interactive  facilities have been in- 
cluded to (a) save  and replay user  input  sequences with 
specific values substituted  for symbolic names, (b) use 
symbolic  names  in place of constant  data,  and (c) define 
mathematical functions  to be  included in graphic  com- 
mands. The  commands  are collected as they are  entered 
and executed, so that  the  user  sees graphically the 
consequences of the command being collected. Wherever 
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the  user would normally enter a  numeric  value while 
generating  a graphic model (e.g. ,  a coordinate,  distance, 
angle, etc.), a symbolic name can be  substituted. An 
interpretive facility has been included which permits the 
user  to  enter FORTRAN assignment statements, evaluate 
them as part of a command, and assign their value to a 
symbolic  name. This facility allows parameterization, 
branching,  and iteration (looping). Using these interactive 
facilities, a completely new graphical function,  such  as 
finding the  intersection of two  straight lines, could be 
added  to  the  system without  program  recompilation. 
Examples of these facilities are described in the section 
on application  feasibility.  A similar facility implemented 
in APL for a 2D graphic system has been reported by 
Bleher et ul.  [22]. 

System  architecture 
The GDP/GRIN system runs under  the VM/CMS Operat- 
ing System.  The  user  interacts with a dialog monitor  (see 
Fig. 16), which collects  user input and  invokes a GRIN 
command scanner. 

Of major importance  are  the  GRIN  commands  to 
generate primitive  volumes. These  commands collect 
user input and call routines  that  generate  the  data struc- 
ture  and display the resulting object.  Other commands 
perform modification of existing objects (move,  rotate, 
refacet,  erase, merge, etc.)  or change the viewing param- 
eters  (scale, view type, viewing angle).  Where  a GRIN 
command  requires  function that already exists in GDP, 
the corresponding GDP routine is used  where  practicable. 
This is done  for  the generation  and merging of polyhedra 
and  for display with hidden lines removed.  These func- 
tions  were adapted, where necessary,  for interactive 
rather than  batch operation. 

The  hardware configuration  consists of a standard IBM 
3270 alphanumeric  display  equipped with the Graphic 
Attachment feature, which allows a storage  tube display 
such  as a 19-inch Tektronix 618 to be attached. This 
results in a dual screen display  station with graphic 
commands  transmitted  to  the display  head at a very high 
rate.  The Graphic Attachment  feature includes  a  graphic 
cursor controlled by a joystick.  The display  station is 
attached  to  an  IBM  Systed370 Model 168. 

Application  feasibility  demonstrations 
Several applications in mechanical design have been 
examined, and  the feasibility of implementing  them with 
computer  graphics, volume  primitives, and a geometric 
modeling system has been demonstrated. 

The bulldozer of Fig. 17(a) is an example of the  use of 
volume modeling for mechanism  design. The object  was 
to find the range of lift and tilt that  could  be  applied to  the 

LIFT CYLINDERS 

LEFT PUSHER 

Figure 17 (a) A bulldozer blade mechanism design problem. (b) 
Results of blade  lift  and tilt motion. 

blade  without  causing  interference between members. 
This  range determines  the extensions  required of the 
piston-cylinder pairs, which cause  the blade  movement. 

The end of the sway bar visible in Fig. 17(a) is attached 
to  the  chassis,  and  the  other end is attached  to  the right 
pusher. This  complicates the motion by causing the blade 
to move  horizontally as it is driven  vertically by the lift 
cylinders. 

The traditional  solution to this  problem  involves writ- 
ing and solving the simultaneous equations which repre- 
sent  the  constraints  on  the system.  Our approach  frees 
the mechanical designer from  this  task by using a  power- 
ful new “graphic programming by example”  technique. A 
volume model was built with the labeled members in Fig. 
17(a) as  subparts.  The system of mechanical constraints 
could then  be  modeled by a  sequence of GRIN commands 
to  rotate  the  appropriate  subparts.  Since  the  extent of the 
lift and tilt pistons  was to be an  output of the design, the 291 
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Figure 18 Objects produced from  parameterized  graphic  dia- 
log: (a) screw, (b) sinusoid. 

III I I  r 

292 
Figure 19 Examples of architectural  applications using GDP/ 
GRIN. 

WILLIAM FITZGERALD ET AL 

cylinders and  associated pistons  were  not initially part of 
the model,  providing two degrees of freedom in the 
mechanism (lift and tilt angles). For  connected  parts 
which must be rotated  about different axes, iteration is 
required in order  to  preserve their connection.  Iteration 
must continue until a solution of desired  accuracy is 
obtained. 

The  sequence of rotation  commands entered by the 
user  to lift the blade and  its connected members a specific 
number of degrees was collected as  the  commands were 
executed, so that  the collection could be re-executed as a 
single command.  Iteration and parameterization were 
subsequently introduced  into  the collected sequence of 
commands, producing  a procedure  for lifting an arbitrary 
number of degrees. A similar procedure  for tilt was 
generated. 

After rotation,  analyses of various  kinds can be  per- 
formed on  the model. The interference routine can be 
invoked to find that  there is interference  between  the 
right pusher  and  track in the position shown in Fig. 17(b). 
At  any  position, the length to  be spanned by each piston- 
cylinder  combination can be  measured  digitally,  complet- 
ing the design process. 

The volume model allows the designer to  activate  the 
mechanism as though it were a physical  model, which 
helps him to visualize the  consequences of changes, while 
providing him with the accuracy of a digital computer 
representation. 

Figure 18 shows examples of parameterized objects 
containing  a  sinusoidal surface and a thread. A specific 
model of each  type  was built using GRIN  and CMS 
interpreted  commands.  The commands  were  collected 
during  execution and  parameters  added  to generalize 
them.  The  user  can now build a customized  sinusoidal 
surface by invoking the resulting  program  by  name  and 
specifying the  number of degrees per  step  and  the number 
of steps. This causes  the collected commands  to  be re- 
executed  and  the  volume model to be  built. The model 
can  then be  scaled  independently in each  axis,  translated, 
and rotated as  desired. To build the basic thread  the  user 
invokes  the collection of commands by name  and supplies 
as  parameters  the OD, pitch, length, and number of 
facets.  The  bottom of the  thread  has  been  cut off and  a 
piece of cylinder added  to  the  top  to  produce  the model 
shown in Fig. 18(a). 

Examples of the  use of GDP/GRIN for architectural 
applications are  shown in Fig. 19. Using the  GRIN 
viewing commands,  the  user could take a  simulated walk 
through the  houses. 
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Figure 20 An example of power supply mechanical design 
using GDP/GRIN. 

Within IBM, the  use of geometric modeling for  the 
design of computer  hardware is being investigated. Fig- 
ures 20 and 21 show the results of feasibility demonstra- 
tions in power supply  mechanical  design and  three dimen- 
sional  cable  routing. Figure 22 illustrates that  the system 
is able  to  produce  color graphics output in checking for 
interference among a welded frame,  cable (in green  on  the 
display),  and  piping (in blue on  the display) for  water 
cooled power  frames. 

Conclusions 
Several questions  posed in the  introduction can now be 
addressed.  The first asks whether  a  simple  protocol 
between a designer and a computer  graphics  system can 
generate  the  data required  by  a geometric modeling 
system.  The  answer  has been  shown to  be positive for 
some very  complex  models. 

Another  question  asked whether  mechanical  designers 
would be  able  to think  and work in terms of volume 
primitives on a 2D graphic screen. The section on applica- 
tion feasibility reports several  nontrivial  applications 
which have been demonstrated.  The  system  has had a 
number of users  other than the  developers. Although 
GDP/GRIN is an  experimental research tool,  it is now 
being used in a pilot production  system for mechanical 
designers in one of IBM’s  operating  divisions.  Their 
reactions to  date  have been  positive. 

The  success of the applications described in the preced- 
ing section seems sufficient to  encourage  further develop- 
ment and testing to  determine  the  economics  and  extent 

I 

Figure 21 Three dimensional cable design  using GDP/GRIN. 

of penetration of this  approach  into mechanical design. 
Regardless of these  results, it seems  clear  that  computer 
graphics is an important, probably  indispensable,  compo- 
nent of a geometric modeling system for mechanical 
design. 
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