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Number of Vias: A Control  Parameter  for Global Wiring 
of High-Density  Chips 

In integrated circuits,  components are frequently interconnected by horizontal and  vertical wires in respective wiring 
planes whether on chip,  card, or board. The wire changes  direction through “vias” that  connect the orthogonal wiring 
planes. Because of technology constraints, the arrangement of vias must conform with certain  neighborhood restrictions. 
We present results on the  guaranteed minimum number and  maximum possible number of vias in a given wiring cell for 
various technology constraints. These numbers provide an early  means of control on global wiring routes to further the 
success of the exact  embedding process that follows global  wiring. 

1.  Introduction 
The masterslice or the gate array is a common arrange- 
ment of components and wire tracks on LSI or VLSI 
chips [l-51. The logic gates are placed  in a rectangular 
array, and the terminals of these gates are interconnected 
by horizontal and vertical wire tracks on the respective 
wiring planes. The group of available  wiring tracks in a 
row or a column  of gates is called the horizontalhertical 
wiring channel. The wires  change directions by accessing 
the orthogonal  wiring plane through “vias” programmed 
at the intersections of horizontal and vertical wire tracks. 
The intersection of the horizontal and vertical channels, 
together with the corresponding gate component, is called 
a cell. 

Wiring  of a masterslice chip  usually proceeds in  two 
phases [3, 41. The first phase is the global  routing of nets, 
i . e . ,  the connections between terminals that have to be 
electrically  common. The route of each net  wire is 
determined in  cell resolution. The exact embedding phase 
that follows  then determines the detailed  assignment of 
wire  segments  globally  allocated to the cells to the 
individual tracks. 

The first objective of global  wire  routing is usually to 
avoid  violating the channel capacity of any  cell  boundary 
(uniform  wiring density, if possible); the second objective 

is to produce a near-minimal total wire length. In deciding 
upon a particular connection segment, the global  wiring 
process finds several (or all if exhaustive) feasible routes 
and selects a near-minimal-length path that does not 
“crowd” the cell boundaries en route. It usually  involves 
a cost function reflecting the number of tracks available at 
each cell boundary. The path cost is then the sum  of all 
the boundaries crossed by the path. Of course, some 
global  algorithms are greedy and choose the first  (usually 
the shortest) route found to be feasible, with the conse- 
quence that the success rate of the global  wiring process 
may decrease. 

2.  The  via  problem  and  summary of results 
The wire  routing problem arises mainly because there are 
a limited number of tracks available. As the number of 
components and the proportional number of nets grow in 
VLSI, the difficulty is compounded  and  more is demand- 
ed of the global process to ensure the success of overall 
wiring.  Even  when  all the nets are routed successfully at 
the end of the global phase, some of the wire  segments 
may not  be embeddable in the tracks within the global 
route. The resulting overflow  wires  must be handled by 
time-consuming  manual re-routing and  embedding.  One 
of the main causes of this problem  is the via  placement 
restriction. 
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Figure 1 Via  restrictions: (a) %neighbor exclusion; (b) 4-neigh- 
bor exclusion; (c) vertical exclusion; (d) horizontal exclusion; (e) 
no exclusion. 

Because of various technology constraints vias  cannot 
be placed in certain configurations. Some of the most 
prevalent  restrictions are shown in Fig. 1. For a given via 
position (o),  the forbidden neighbor positions (x) for  other 
vias are shown on  the  track intersections. 

What happens if the vias are not  considered at the 
global phase  can  be illustrated by a simple  example. 
Consider a cell with one wiring track in the horizontal  and 
one in the  vertical  direction. The global routing may 
assign two bending wires to the cell without violating the 
channel  capacities. But  there is only one via placement 
possible at  the cell even if there were no via exclusions! 
In general, for a given cell of n horizontal  and  m vertical 
tracks (referred to  as  an n x m cell), there is a maximum 
number of vias that  can  be allowed for  each via placement 
restriction.  Beyond this maximum number, V(n, m), no 
clever  arrangement of vias  can satisfy the restrictions. 
Obviously, V( 1, 1) = 1 for all restrictions. 

On the  other  hand,  there is a minimum number, 
v(n, m), of vias that  can  be placed in a cell such  that if any 
number  less  than u(n, m) is embedded in the cell,  one  can 
always find another legal via position,  regardless of the 
configuration of vias.  Therefore, if the vias  allocated in a 
cell do not  exceed v(n, m), it is  almost certain  that  the 
exact embedding will not fail in the  cell due  to the via 
placement restrictions. 

Given  these two  parameters,  for  each cell on the chip, 
most global routing algorithms can be easily modified to 
accommodate the via  restrictions. That  is, when the 
selection  is to be made from many feasible routes for a 
segment, the  cost of vias must be added to  the  cost of 
each route. The  cost of each via en  route  can  be comput- 
ed  as follows. 

1. It is  almost zero if the number of vias assigned in the 
cell so far is  less than v(n, m); 

2. It increases  exponentially if the  number of vias already 
used in the cell  is between v(n, m) and V(n,  m), such 
that the  cost is infinite if the number used equals 

262 V(n, m). 

The infinite cost means that the  route  is  not  a feasible 
one, i . e . ,  no additional bending wires can be globally 
allocated to  the cell. A via cost of this  nature  can be 
adopted  for any specific global routing algorithm. 

The calculation of the minimum and maximum number 
of vias is somewhat  involved. We first derive the v(n, m) 
and V(n, m) values for  the eight-neighbor exclusion  case 
and then treat  the other cases in a similar fashion. For 
ease of explanation we  cast  the problem in terms of a 
game  on an n X m chess board with pebbles  representing 
where the vias are  placed. Once a pebble, x, is placed at 
position ( i ,  j ) ,  none of its eight neighboring cells (not the 
cells of the chip, which is the whole chess board in this 
game) may contain another pebble. We say these exclud- 
ed cells are  covered by distance to  x.  Furthermore, each 
placed  pebble excludes  another pebble being placed in 
any of the four  L-shaped lines bending at  the pebble and 
extending to  the  two orthogonal  boundaries of the  chess 
board. We say these cells are covered by the line of the 
pebble  x. Figure 2 illustrates the four  possible coverings 
by line. 

The values of v(n,  m) and V(n, m), the minimum and 
maximum number of pebbles placeable on the board 
under various  conditions, are summarized in the follow- 
ing equations. The values for small n and m are listed in 
Tables 1-5, shown later. 

I .  Neighboring  condition (a)  

v(n,  n) = n - 3, for n 2 7. 

v(n, n + 1) = n - 2, for n 2 5 .  

v(n, n + 2) = n - 2,  for n 2 7. 

v(n, n + 3) = n - 1, for n 2 3. 

n(n, n + 4) = n - 1, for n 2 5 .  

v(n, n + 5 )  = n, for n 2 1.  

v(n, m) = n, form > n  + 5 , n  2 1, 

and 

V(n, m) = 2 min (n,  m) if max (n,  m) 2 9. 

2. Neighboring  conditions (b) ,  (c) ,  ( d ) ,  and (e )  

v(n, m) = min (n ,  m) under  conditions  (b), (c), (d), and (e). 

2 min (n, m) for max (n, m) 2 4, under 
conditions (b), (c), and (d); 
2 min (n ,  m) for max (n ,  m) 2 2, under 
condition (e). 1 V(n, m) = 

Note that  condition (d) just means transposing  Table 5. 
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Sections 3 and 4 are  devoted  to  the establishment of 
values of v(n, m) under condition (a). Section 5 is for  the 
value of V(n,  m) under  the same condition. In Section 6, 
other conditions are considered. 

3. Lower  bounds  for v(n, m) under  condition (a) 
We first have  the following two obvious  lemmas. 

Lemma I 
v(n, m) 5 V(n, m) 5 2 min (n, m). 

Proof 
It follows  from the  fact  that each row  and  each column 
can have  at most two pebbles. 

0 Lemma 2 
v(n, m) 5 v(n’, m’),  

V(n, m) 5 V(n‘, m’), 

for n 5 n’,  and m 5 m’. 

Proof 
Immediate. 

In  the following, we first prove  the  lower  bounds  for 
v(n, m). 

0 Lemma 3 
v(n,  n + 1) > n - 3, n 5 5 .  

Proof 
Suppose  the  assertion  is not true.  Then  there  are  at  least 
three  empty rows and  four empty  columns. 

1. We first show that  the bottom  row cannot  be  empty. 
Since  there  are  at  least four empty  columns, if the 
bottom row  were  empty, the four cells a, b, c,  and  d, 
i . e . ,  the  intersection of the  bottom row  and  the  four 
empty columns, must be covered by distance. Assume 
that pebble x,  covers cells a and b and x, covers cells  c 
and d,  as  shown in  Fig. 3(a). These two  pebbles cover 
exactly  six  cells. The remaining ( n  + 1) - 6 = n - 5 
cells  must  be covered by line and require at  least n - 5 
pebbles.  Excluding x, and x, we have exactly n - 5 
pebbles  available. Let  us  denote  the  two  zones,  each 
three columns  wide,  by A, and A,, as  shown in Fig. 
3(a). Thus, we have  the following placement  condi- 
t ions,   i .e. ,  we require (a) that  the remaining  pebbles be 
placed outside  the  zones A, and A, and (b) that  each 
column receive-exactly  one pebble. It is easy  to  see 
that, if either of the placement  conditions is violated, 
we will have a contradiction. Now,  due  to  the place- 
ment of two pebbles x,  and x, in the  same  row,  there 
are at least  three  more empty rows.  Let us consider 
the  top  two  empty  rows R, and R,, as  shown in Fig. 
3(b) such  that  row R, is at least  one row apart  from R, 

X * 

- 
X 1 

Figure 2 Four possible coverings by  line of x. 

in which x, and x, lie.  Consider  then the  four designat- 
ed cells of R, and R, in zones A, and A,, respectively 
[Fig. 3(b)]. These designated cells must  be covered by 
distance. Since  each  row  can  have  at  most  two peb- 
bles,  to  cover  these eight cells while satisfying  place- 
ment  condition (a) we will be  forced to place  two 
pebbles  in a column, violating condition  (b). 

2. Suppose  that  the  bottom i rows are  nonempty, i 2 1, 
and the ( i  + 1)th row  is  empty. We prove  that none of 
these i nonempty rows  can  be  occupied  by two peb- 
bles. To  show  this let us assume  that  the j t h  row, 1 5 j 
5 i, is occupied  by two pebbles  x and y and  that all the 
rows below j are occupied  by one  pebble.  Observe  that 
the pebbles  in rows below j cannot cover by distance 
any cells in rows  above  the j t h  row. Although the 
pebble in the ( j  - 1)th row  can cover by distance some 
cells of the j t h  row,  these cells, in fact, all the cells of 
the j t h  row,  are  covered by  pebbles  x and  y. We can 
therefore  remove  the j - 1  pebbles below  the j t h  row 
and the  columns  occupied by  them without affecting 
the  “coverability” of the remaining pebbles covering 268 
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Figure 3 Illustration for the proof of Lemma 3.  

the remainder of the board  with n - ( j  - 1) rows  and 
(n + 1) - ( j  - 1) columns.  That is, if n - 3 pebbles are 
sufficient to cover a board of size n by n + 1, with the 
removal o f j  - 1 pebbles, the  remaining  pebbles (n - 3) 
- ( j  - 1) must  be able to cover the remainder of the 
board.  But by induction, v(n - ( j  - l), (n + 1) - 
( j  - 1)) > n - ( j  - 1) - 3, i . e . ,  n - ( j  - 1) - 3 pebbles 
are not  sufficient to cover a board of size n - ( j  - 1) by 
n - ( j  - 1) + 1, and we conclude that n - ( j  - 1) - 3 
+ ( j  - 1) = n - 3 pebbles are not  sufficient, a 
contradiction. 

3.  We therefore can assume that if row R, is the first 
empty  row  from the bottom, then there exists at least 
one nonempty  row  below  it and, furthermore, these 
nonempty  rows are each  occupied by one  pebble. 
Similar results hold for the first  empty  row  from the 
top. Now let us distinguish  two cases: (a) R,  is covered 
by distance by  two pebbles, and (b) R, is  covered by 
distance by three pebbles.  (Recall that the row  below 
R, is  occupied by only  one  pebble.) 
(a) R, is covered by distance by two pebbles, x, and 

x,.  If x, and x, cover by distance only  five or fewer 
cells of R,, then the remaining  cells  must  be 
covered by line and require at least n - 4 pebbles, 
a contradiction. Thus, x, and  x,  must  cover  six 
cells of  R,. Let us denote the  two zones induced by 

264 pebbles  x,  and x,  by A, and A, [Fig.  3(c)].  These 

two zones may or may  not  be adjacent. Since the 
remaining n + 1 - 6 = n - 5 cells of  R, are to be 
covered by line and  we have n - 5 pebbles 
available, we have the  same  placement  conditions 
as in case (1). Recall now that we have two  more 
empty rows, R,  and  R,, above R,. Consider  the 
four  designated  cells a,  b,  c, and d of R, and R,  in 
zone A, [Fig.  3(c)]. In order to cover these four 
cells  without  violating the placement conditions, 
rows R, and R, must  be one row apart, and  two 
pebbles, x, and x4, must  be  placed  in  the  row 
between R, and R,  and  in the columns adjacent to 
zone A,, as shown.  Due to the placement of two 
pebbles in one row, we can find  an  additional 
empty row, R,. To cover the two  cells of  R,  in zone 
A,, we  will  need to place pebbles in the same 
columns as x, and x4, violating  condition (b). 

(b) R,  is covered by distance by three pebbles  x,, x,, 
and x3 (n 2 6). In this case we have  two  pebbles in 
the row above R, and  one  below R,, and we have 
n - 6 pebbles available  and three more  empty 
rows  R,, R,,  and  R,.  Assume that R, is the topmost 
empty row. Note that the row  RS,  which  is above 
R,, must be occupied by exactly  one  pebble by the 
same arguments given  in (2). We distinguish sever- 
al cases depending on the number of cells of R, 
that are covered by distance by  x,,  x,, and  x3. In 
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fact,  we only need  to consider four  cases, i . e . ,  they 
cover by distance 7, 8 ,  and 9 cells of R,. 
Case 1 .  Nine  cells [Fig. 3(d)]. There  are n - 8 

cells of R, remaining, and we need to  reserve 
n - 8 pebbles  to  cover them  by  line. That  is, 
we  have  two  extra pebbles. Ifjpebbles (0 s j  
I 2) are in the  zones A,, A,, and A,, then  we 
have  the following placement  conditions: (a) 
the remaining n - 8 + (2 - j )  pebbles must 
be  placed  outside  zones A,, A,, and A,; (b) 
exactly 2 - j columns receive  two  pebbles, 
and the  rest receive one  pebble  each. We 
further distinguish three  subcases depending 
on the  value of j. 
Subcase 1: j = 0. That  is,  the remaining n - 

8 + 2 pebbles are placed outside A,, A,, 
and A,. Consider the six designated  cells 
of R, in zones A,, A,, and A, [Fig. 3(d)]. 
Since RS can  receive one  pebble,  we 
cannot  cover  these six  cells  entirely. 

Subcase 2: j = 1. Call the  pebble  x.  Note 
that x cannot be in the middle zone A,. 
Otherwise, the four cells of R, in zones 
A,  and A, cannot be  covered.  Suppose 
that x is in zone A,. The  case when  x is in 
zone A, is similar. To  cover  the  four cells 
of R, in zones A, and A,, we need to 
place  two pebbles in the row  below R, 
and  one pebble in the  row  above R,, and 
they  must  be placed in columns  adjacent 
to zones A, and A,. [See Fig. 3(d).] As a 
consequence,  zones A, and A, must be 
one column apart.  (Otherwise, we have a 
contradiction immediately.) Due  to  the 
placement of x, and x, in the same row, 
we  can find an additional empty row R. 
Together with R, and R, we have  three 
empty  rows. Assume that R is  the middle 
of the  three empty rows.  Thus, R must 
be at  least two rows  apart  from R, and R, 
so that  its cells cannot be covered by 
distance by  pebbles x,, x,, x,, and x,. To 
cover  the  four designated  cells a,  b, c, 
and d of R, we will be placing pebbles in 
columns adjacent to  zones A, and A, and 
violating  condition  (b), which allows 
only one column to receive two pebbles. 

Subcase 3: j = 2. Call these  two  pebbles x 
and  y.  In this case  we  cannot  place  two 
pebbles in the  same column outside  the 
zones A,, A,, and A,. Note  that both x 
and y cannot be  placed in rows adjacent 
to R,; otherwise,  we will need at least 
two  more pebbles to  cover  the remaining 
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designated cells of R, and will have  to 
place  two pebbles in the  row  above R,, 
which is not allowed. On the  other  hand, 
if both x and y are not placed in rows 
adjacent  to R,, we can always find at 
least  three cells  among the six  designated 
cells of R, which are  not  covered by x 
and y. These  three  uncovered cells  re- 
quire  at  least  three  pebbles x’,  y ‘, and z’ , 
and  two of them  must be placed in the 
row below R, and in columns adjacent to 
the corresponding zones.  Because of 
these  two  pebbles being in the  same  row, 
we  can find another  empty  row R. That 
is,  we  have  three  empty  rows R, R,, and 
R,. Suppose R is  the middle of these 
three  empty rows. Since  there  are  three 
zones A,, A,, and A,, we  can find at  least 
one  zone,  say A,, such  that it does not 
contain x or y. To  cover  the  two desig- 
nated cells of R in this zone, A,, we have 
to  place  two pebbles  in columns adjacent 
to  zone A,, one of which is occupied by 
x’, y’, or  z’,  and violates  condition (b) 
that no two pebbles occupy  the  same 
column. 

Case 2. Eight  cells are covered  by  distance. In 
this case  we  have  two  zones,  as shown in 
Fig. 3(e). We remark that in zone A, of Fig. 
3(e) the  two pebbles  covering  five cells of R, 
need not be in the  same  row. We  must 
reserve n + 1 - 8 = n - 7 pebbles  to  cover 
by  line the remaining cells of R,. In other 
words, we have  one  extra  pebble. But since 
cell d as shown cannot  be  covered by peb- 
bles outside  the  zones,  the  extra  pebble must 
be placed in zone A, to  cover  it.  Thus  we 
have  the  same placement  conditions that  the 
remaining  pebbles are to  be placed  outside 
the  zones  and no two  pebbles outside the 
zones  occupy  the  same column. Let us call 
the  extra  pebble x. If x is  used  to  cover  the 
three designated  cells in zone A,, then to 
cover  the remaining designated  cells we need 
to  place  two pebbles in the  row below R,, 
thereby creating an additional empty row. 
Thus, we have  three  empty  rows,  and cell d’ 
of the middle empty  row R in zone A, cannot 
be  covered, a contradiction.  But if x is used 
to  cover by  line, it must  be used  to  cover cell 
d.  To  cover  the designated  cells of R,, we 
have  to  place  two pebbles  in the  row below 
R,. Following the  same line of reasoning, we 
will find two pebbles  placed  in a column 
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Figure 4 Illustration for the proof of Lemma 7. 

adjacent  to  the  zones, which violate the 
placement condition. 

Case 3. Seven cells are  covered by  distance. 
Since we have n - 6 cells to  be  covered by 
line, we  do not  have extra pebbles.  We 
therefore  have  the placement  condition that 
the remaining  pebbles are placed  outside 
zones A, and A,, and no  two pebbles are in 
one  column. Considering the  four designated 
cells of row R, [Fig. 3(f)] and following the 
arguments given earlier, we will be  forced to 
violate the placement  condition. 

Corollary 4 
v(n, n + 2 )  > n - 3 ,  n 2 7. 

Proof 
By Lemma 2 ,  v(n,  n + 2 )  r - v ( n ,  n + 1) > n - 3. 

Corollary 5 
v(5, 7) > 3. 

Proof 
By contradiction. Suppose three  pebbles are sufficient. 
There  are  at  least  two  empty  rows, R, and R,. Consider 
row R,. It must be  covered by distance by two  pebbles, x, 
and x,. Pebbles x,  and x, cover six  cells of R,, and  the 
remaining cell is  covered by line by the  last pebble. Thus, 
we  can find an  empty cell in row R, which is left 
uncovered-a contradiction. 

Corollary 6 
46,  8 )  > 4. 

Proof 
Similar to the proof of Corollary 5. 

Lemma 7 
266 v(n, n + 3) > n - 2 ,  n 2 3. 

Proof 
By contradiction. Suppose n - 2 pebbles  are sufficient. 
There  are at least  two empty rows  and five empty 
columns. By arguments similar to  those used  in proving 
(1) and ( 2 )  of Lemma  3, we conclude that 

1. The bottom row  cannot be empty,  and 
2 .  If the  bottom i rows  are nonempty and  the ( i  + 1)th 

row is  empty,  then none of these i nonempty  rows 
receives more  than  one pebble. 

3. Now, we consider  the first empty row  from the 
bottom, R,. If R, is covered by distance by only  two 
pebbles,  then  there  are  at least ( n  + 3) - 6 = n - 3 
cells of R, to  be  covered by line. It is rather obvious 
that n - 2 pebbles will never be sufficient. In  fact, all 
the empty rows must be covered  by distance by at 
least  three  pebbles.  For n = 3 or 4, we have  at most 
two pebbles available, and a contradiction  results. 

Thus,  assume  that  we  have a configuration as shown in 
Fig. 4 and  that  these  three  pebbles,  x,, x,, and x,, cover 
by  distance  nine  cells of R,. We therefore need to reserve 
n + 3 - 9 = n - 6 pebbles  to  cover by line the remaining 
cells of R,, and  there  is only one  extra  pebble. Since we 
have  at least two  more empty rows, let us consider the 
topmost empty row R6, and its six designated cells. It is 
easy to  show  that  when  the remaining n - 5 pebbles are 
placed  outside the  zones A,, A,, A, we cannot  cover 
these six  cells of R6 by using three  pebbles. We therefore 
assume  that  the  extra pebble is inside the  zones.  The 
extra pebble  can cover  at most  two cells of Rb, so we need 
to place two  pebbles in the row  below Rb and  one (which 
is  the only  possibility)  pebble above R6 to  cover  the 
remaining four cells of R6. As a result we  have at least two 
more  empty rows, R, and R,. Notice  that  the pebble 
placed  in the  row  above R6 must  be in a column  adjacent 
to  the  zones A,,  A,, or A,. Without loss of generality 
assume  that  it  is placed  in a column to  the left of zone A,, 
as shown in Fig. 4. Now consider the  empty row R,, 
which is the first empty  row below R6, and  the cell c as 
shown.  To  cover cell c we must place a pebble in the 
column  occupied by x,  thus violating the placement 
condition that  no  two  pebbles outside the  zones  are 
placed  in the  same column. In  the  case  when  the  three 
pebbles x,, x,, and x, cover fewer than  nine cells of R,, 
we  can easily argue  that a contradiction will result. 

Corollary 8 
v(n, n + 4) > n - 2, n 2 5 .  

Remark 
By Lemma 7 ,  we can  in fact  prove  that v(n, n + 4) > n - 2 
for n 2 3. But for n = 3 ,  4, we have a better bound as 
follows. 

D. T. LEE ET AL. IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981 



Corollary 9 
4 3 ,  7 )  > 2, v(4, 8) > 3. 

Proof 
Similar to  Lemma 7 .  

Lemma 10 
v(n, n + 5 )  > n - 1 for n 2 1. 

Proof 
By contradiction. Suppose n - 1 pebbles are sufficient. 
There exists at  least  one empty row, R,, and six  empty 
columns. By similar arguments we  have 

1.  The bottom row must not be  empty; 
2. If the bottom i rows  are nonempty and  the ( i  + 1)th 

row  is  empty,  then none of these i rows receives  more 
than  one pebble. 

The proof of the  lemma follows. 

Suppose R, is the first  empty  row from  the bottom and 
is  covered by three  pebbles x,, x,, and x3, as shown in 
Fig. 5. These  three  pebbles must cover  exactly nine cells 
of R,; otherwise we will have a contradiction  immediate- 
ly. Since  we  have n - 4  pebbles  available and exactly 
n - 4  cells of  R, to  be covered  by line,  the remaining 
pebbles  must  be placed outside A,, A,, and A,, and  each 
column  receives exactly  one pebble. Due to the place- 
ment of two  pebbles  in  the row above R,, we have  at  least 
one more  empty row, R',,. Assume that  it  is  the topmost 
empty row. As before, consider the six  designated  cells of 
Ri in  zones A,, A,, and A,. First note  that Rk cannot  be 
one row apart  from R,. Otherwise the  two designated 
cells in zone A, require  that  two pebbles be placed in the 
row  above RL, which is not allowed for  the  same reason 
that we cannot  have  two pebbles in the  row below R,. 
Note  that R i  is not one row apart  from R, and  the  rows 
adjacent to R',, can receive  at most three  pebbles;  it  is  easy 
to  see  that  the  three  pebbles cannot cover  the six desig- 
nated cells of R',,. 

Corollary I 1  
v(n, m) > n - 1  for m > n + 5 .  

Proof 
By Lemma 2. 

Lemma 12 
v(n, n) > n - 4, n 2 7. 

Proof 
By induction. Assume  that it is true  for n. Then  we  have 

v(n + 1 ,  n + 1) > v(n, n + 1) by Lemma 2. 

v(n, n + 1) > n - 3 = ( n  + 1) - 4 by Lemma 3. 

Thus, ~ ( n ,  n) > n - 4. 

L___ 

AI 
" 

A2 A3 

Figure 5 Illustration for the proof of Lemma 10. 

4. Realization  of  lower  bounds  for v(n, m) under 
condition  (a) 
Next, we show how  these  lower bounds can  be achieved 
by exhibiting explicit construction rules. 

For example, by Lemma 3, we have v(n,  n + 1) > 
n - 3 ,  i .e . ,  v(n, n + 1) 2 n - 2 for n 2 . 5 .  It suffices to give 
a placement for  an n X (n + 1) board  requiring  exactly 
( n  - 2) pebbles. To  do  this, we start with a specific 
construction for n = 5 [Fig. 6(a)]. Inductively, if we 
already have a placement  for  an n x ( n  + 1) b o d  
requiring ( n  - 2) pebbles,  then we can put this  in one of 
the  four  corners of an (n + 1) X (n + 2) board and one 
more pebble  in one of the  three remaining corner cells so 
that this  new pebble  is  not in conflict with the (n  - 2) 
pebbles already placed. An example is given  in Fig. 6(b). 
Consequently, we  have a placement for  an (n + 1) X 

(n + 2) board with (n - 1) pebbles. 

Similar construction works for all the  other lemmas 
pigs.  6(c)-6(h)]. 

Finally, we display the building blocks for v(n, n), . . ., 
v(n, n + 4) for small  values of n in Figs. 6(i) through 6(m). 
For all these  cases,  it is easy  to check that  the number of 
pebbles placed is indeed minimum. 

All these  results  are shown in Table 1. 

5. The number V(n, m) 
We prove  that V(n,  rn) = 2 min (n ,  rn) if max (n ,  rn) 2 9. 
Recall that V(n, m) 5 2 min (n,  m) is always true.  Thus, 
as long as we can give a construction where  the number of 
pebbles is equal  to 2 min (n ,  m), it is maximum. 267 

IBM J. RES.  DEVELOP. VOL. 25 NO. 4 e JULY 1981 D. T. LEE ET AL. 



1 2   3 4  5 1 6  
A 

-+or 

* "_ - 

t- --- + 

t --I- - 

n + 2  - 
f 

i t  (b) General construction 
(a)Buildingblockforu(n,n+l)=n"2forn>-5 

(e )  Building block for 
u(n,n+3)=n- l forn>3 t v 

(f) Building block for 
u(n,n+4)=n- l forn>5 

+ 1 

1 2 3 . 4  f 5 6 71 8 9 
A 

f f t 
(c) Building block for 

u(n,n+2)=n-2forn27 o(n,n)=n-3forn57 
(d)  Building block for 

1 2 3 4 5 6  
1 """ + 

1 2 ... (m - n + 1) 
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f t 
(g)  Building block for (h )  Building block for 

u(n,n+5)=nforn>- l   u(n,m)=nform>n+5,n51 

1 2 3   1 2 3  q"+ q - q +  
3 

t v 
( j )  Building block for 

( i )  Building block for u ( n , n + l ) = n - l f o r 2 S n < J  
u(n,n)=n"2for3Sn<7 

t ( I )  Building block for (m) Building block for 
u(n,n+3)=nforn=1,2  u(n,n+4)=nforlsn<5 

(k) Building block for 
u (n ,n+2)=n- l for3sn<7  

Figure 6 Construction  rules  and  building  blocks for specific  realizations. 
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Figure 7 Construction  with n = 9. 

0 Lemma 13 
V(9, 9) = 18. 

Proof 
268 See the construction in  Fig. 7. 
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Corollary 14 
V(n, 9) = 2n for n 5 9. 

Proof 
Take a submatrix of dimension n X 9 of the 9 X 9 matrix 
displayed in Fig. 7. Since  each  row has exactly  two 
pebbles, the total is 2n. 

Lemma 15 
V(n, m) = 2 min ( n ,  m),  if max (n,  m) 2 9. (8) 

Proof 
Without loss of generality, we can  assume m 2.12. Thus m 
2 9. 

Case 1 If n < 9, then we  can consider the first 9 
columns  and  apply  Corollary 14. 
Case 2 n 2 9. It suffices to consider the square matrix 
n X n. 

1. n is  odd.  The construction is  similar to the one in Fig. 
7, where n = 9. Specifically,  let us number the rows 
from the bottom up and the columns  from  left to right. 
We use i to index the rows  and j to index the columns. 
Then we place the pebbles one at a time. In general, if 
the last pebble  is in location (i, j ) ,  then we place the 
next  pebble in location (i' , j ' ) ,  where 

i' = (i + 1) mod n, 

j ' = ( j  + 2) mod n. 
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Table 1 Values of u(n, m) under  neighboring  condition (a): 
v(n, m) = v(m, n). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 

1 2  3 4 5 6 7 8 9 10 11  12  13  14  I5  16 

1 1 1 1 1 1 1 1 1 1  1 1  1 1  1 1  
1 1 2 2 2 2 2 2 2  2 2 2 2 2 2 

1 2 2 2 3 3 3 3  3 3 3 3 3 3 
2 3 3 3 4 4 4  4 4 4 4 4 4 

3 3 4 4 4 5  5 5 5 5 5 5 
4 4 5 5 5  6 6 6 6 6 6 

4 5 5 6  6 7 7 7 7 7 
5 6 6  7 7 8 8 8 8 

6 7 7 8 8 9 9 9  
7 8 8 9 9 1 0 1 0  

8 9 9 10  10 11  
9 10  10 11 1 1  

10 1 1  11  12 

The construction has two phases: 
Phase 1-Place a pebble at location  (1, 1) as a starting 
point, and continue the process until n pebbles have 
been placed. 
Phase 2-Place a pebble at location (4, 2) as a new 
starting point, and continue the process until n pebbles 
have been placed. 

Referring to Fig. 7, we have generated in Phase 1 two 
“strings” of pebbles: (I) and (11). String (I) starts at (1,  1); 
string (11) starts at ([n/21 + 1, 2). Phase 2 has generated 
three strings: (III),  (IV), and (V). String (111) starts at (4, 
2). String (IV) starts  at ([d21 + 3, 1). String (V) starts at 
(1, n - 4). It is easy to check that there are exactly two 
pebbles in each row  and two pebbles  in each column,  with 
a total of  2n pebbles. 

It suffices to check that if a pebble  is at (i, j ) ,  then its 
neighboring positions (at most 8) cannot have any  peb- 
bles. First, for any two pebbles at positions ( i ,  j )  and (i’, 
j ’ ) ,  define their distance as max ( l i  - i ’ l ,  Ij - j ’ l ) .  Then it 
suffices to check that for any  two pebbles, their distance 
must  be at least 2. For pebbles  belonging to the same 
string, this condition is true by construction. For pebbles 
belonging to different strings, we only have to look at the 
starting and  second positions of the five strings and to 
check that the distance of any  two of these positions is at 
least 2. For example, the five starting positions are (1, l), 
(rd21 + 1,2),  (4,2), (rd21 + 3, 11, and (1, n - 4). Clearly, 
for n 2 9, the distance between any  two of them  is at least 
2. Similarly, we can check the ten starting and second 
positions for their distances. 

2. n is even. The construction is exactly the same as 
before, except that the starting positions of the five 
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Figure 8 Construction  with n = 10. 
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Figure 9 Placement  achieving V(n, m) for n, m < 9. 

strings are now (1, l), ((d2) + 1, l),  (4,2),  ((d2) + 4,2) 
and (1, n - 4). (See Fig. 8 for n = 10.) 269 
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? +  ! I  4 I m  
1 1  I 

restricted  from having any via  holes. In  this  section, we 
consider  four other  kinds of neighboring constraints  (b, c,  

1 '  C"""""""""" -e d, e of Fig. l),  namely, 

I I  (b) only positions (i + l , j ) ,  (i  - l , j ) ,  ( i , j  + l), ( i , j  - 1) 
I I : I I .  
I '  (c) only (i + 1, j ) ,  ( i  - 1, j )  are  restricted, 

&"""""""""""""""- ~ (e) no restrictions. 

are  restricted, 

(d) only ( i ,  j + l),  ( i ,  j - 1 ) are restricted,  and I 
I 
I 

-e n 

Figure 10 Arrangement of v(n, m) pebbles for conditions (b), Lemma 16 
(c), ( 4 ,  and (e). For  each of the  four neighboring conditions  (b),  (c), (d), 

and (e), we  have v(n, m) = min (n,  m). 

Proof 
Table 2 Values of V(n, m) under neighboring condition (a): We first prove  that v(n, m) 2 min (n,  m). Assume 
V(n, m) = V(m,  n). otherwise; then v(n, m) < min (n ,  m). Further  assume n 5 

m. Thus, v(n, m) < n 5 m. We  shall derive a contradic- 
A m 1 2 3 4 5 6 7  8 9 tion for  each neighboring  condition. 
- 

1 

2 

3 

4 

5 

6 

1 1 2 2 2 2  2 2 2 

1 2 2 3 3  4 4 4 

1. Condition (b).  Since v(n, m) < n, there must  exist an 
empty  row. By the  same  token, v(n, m) < m implies 
the existence of an  empty column. Let  the intersection 

4 4 5 5  6 6 6 position of the  empty row and empty  column be a. 
4 6 6  8 8 8 Clearly,  a cannot  be  covered by line or by  distance 

2. A similar proof  applies to conditions (c),  (d),  and (e). 
7 8 9 10 10 

9 11 12 12 

with the existing pebbles, a contradiction. 

We  next give an explicit  construction to  prove  that  the 
lower bound is  achievable.  Indeed,  just  place  the n 
pebbles along the diagonal as shown in Fig. 10, and  the 
result follows. 

Table 3 Values of o(n, m) under neighboring conditions (b),  (c), 
( 4 ,  and (e). 

1 2 3 4 5 

1 

1 2 3 4 4 4 

1 2 3 3 3 3 

1 2 2 2 2 2 

1 1 1 1 1 

For n, m < 9, we  have explicit constructions displayed 
in Fig. 9. In  each  case  one can prove  that indeed the 
figure contains  the maximum number of pebbles. The 
results  are  shown in Table 2. 

6. Other  neighboring  conditions 
So far,  we  assume  that  when a via  hole exists  at position 

1 270 (i, j ) ,  then all its neighboring  positions (at most 8) are 

, 

The values of v(n, m) are presented in Table 3. 

0 Lemma 17 
For  each of the neighboring  conditions (b), (c), and (d), 
V(n,  m) = 2 min (n ,  m) for  max (n,  m) 2 4. For (e), 
V(n,  m) = 2 min (n,  m) for max (n ,  m) 2 2. 

Proof 

1. Conditions (b),  (c), (d) .  Without loss of generality, 
assume n 5 m. In general,  place the  pebbles  one by 
one starting  with  position  (1, l), i . e . ,  the lower left 
corner. If the last pebble is at position ( i ,  j ) ,  then the 
next one  is  at ( i f ,  j ' ) ,  where i' = ( i  + 1) and j '  = 

( j  + l), until n pebbles  have been placed.  Then  start 
with  position (1, 3), and  repeat  the  process until 
another n pebbles  have been  placed. (See Fig. 11.) It  is 
easy  to  check  that  these 2n pebbles indeed satisfy all 
the conditions. 

2. Condition ( e ) .  Just place two pebbles  in each  row. 

For n,  m such  that  max (n,  m) < 4, under condition (b), 
the  above  construction also works,  but  now V(n,  m) < 2 
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Table 4 Values of V(n, m) under neighboring condition (b): 
V(n, m) = V(m,  n). 

1 2 3 4 5 6 

1 

8 8 8 4 

5 6 6 6 3 

2 3 4 4 4 2 

1 I 2  2  2  2 

I 

5 

12 6 

10  10 

Table 5 Values of V(n,  m) under neighboring condition (c). 

l 1  2  3 4 4 4 

l 2  4 5 6 
6 6 

l 2  4 6 
8 8 8 

4 6 8 10 10 

6 2  4 6 8 10 12 

1 2  ... rn 

0 0 

0 e 

0 0 

0 0 
I I 

Figure 11 One  maximum pebble arrangement. 
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min (n, m) except for n = 1 ,  m = 3. In  that  case, v(1,3) = 2. K. H. Khokhani and A. M. Patel, “The Chip Layout F’rob- 
2. The results are given in Table 4. The same  can be done lem: A Placement Procedure for LSI,” Proceedings of the 

for condition (C). Note  that in this case v(2, 3) = 3 but 3. K. A. Chen, M. Feuer, K. H. Khokhani, N. Nan, and S. 
14th  Design Automation Conference, 1977, pp. 291-297. 

V(3, 2) = 4 (Fig. 12). Schmidt, “The Chip Layout Problem: An Automatic Wiring 
Procedure,” Proceedings of the 14th Design Automation 

The results are  shown in Table 5 .  Also note that 4. H. Shiraishi and F. Hirose, “Efficient Placement and Routing 
Conference, 1977, pp. 298-302. 

condition (d) just means transposing the table. Techniques for Master Slice LSI,” Proceedings of the 17rh 
Design Automation Conference, June 2, 1980, pp. 458-464. 
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Figure 12 Maximum number of pebbles for condition (c). 


