Number of Vias: A Control Parameter for Global Wiring

of High-Density Chips

In integrated circuits, components are frequently interconnected by horizontal and vertical wires in respective wiring
planes whether on chip, card, or board. The wire changes direction through ‘‘vias’’ that connect the orthogonal wiring
planes. Because of technology constraints, the arrangement of vias must conform with certain neighborhood restrictions.
We present results on the guaranteed minimum number and maximum possible number of vias in a given wiring cell for
various technology constraints. These numbers provide an early means of control on global wiring routes to further the
success of the exact embedding process that follows global wiring.

1. Introduction

The masterslice or the gate array is a common arrange-
ment of components and wire tracks on LSI or VLSI
chips [1-5]. The logic gates are placed in a rectangular
array, and the terminals of these gates are interconnected
by horizontal and vertical wire tracks on the respective
wiring planes. The group of available wiring tracks in a
row or a column of gates is called the horizontal/vertical
wiring channel. The wires change directions by accessing
the orthogonal wiring plane through ‘‘vias’’ programmed
at the intersections of horizontal and vertical wire tracks.
The intersection of the horizontal and vertical channels,
together with the corresponding gate component, is called
acell.

Wiring of a masterslice chip usually proceeds in two
phases [3, 4]. The first phase is the global routing of nets,
i.e., the connections between terminals that have to be
electrically common. The route of each net wire is
determined in cell resolution. The exact embedding phase
that follows then determines the detailed assignment of
wire segments globally allocated to the cells to the
individual tracks.

The first objective of global wire routing is usually to
avoid violating the channel capacity of any cell boundary
(uniform wiring density, if possible); the second objective

is to produce a near-minimal total wire length. In deciding
upon a particular connection segment, the global wiring
process finds several (or all if exhaustive) feasible routes
and selects a near-minimal-length path that does not
“‘crowd”’ the cell boundaries en route. It usually involves
a cost function reflecting the number of tracks available at
each cell boundary. The path cost is then the sum of all
the boundaries crossed by the path. Of course, some
global algorithms are greedy and choose the first (usually
the shortest) route found to be feasible, with the conse-
quence that the success rate of the global wiring process
may decrease.

2. The via problem and summary of resuits

The wire routing problem arises mainly because there are
a limited number of tracks available. As the number of
components and the proportional number of nets grow in
VLSI, the difficulty is compounded and more is demand-
ed of the global process to ensure the success of overall
wiring. Even when all the nets are routed successfully at
the end of the global phase, some of the wire segments
may not be embeddable in the tracks within the global
route. The resulting overflow wires must be handled by
time-consuming manual re-routing and embedding. One
of the main causes of this problem is the via placement
restriction.
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Figure 1 Via restrictions: (a) 8-neighbor exclusion; (b) 4-neigh-
bor exclusion; (¢) vertical exclusion; (d) horizontal exclusion; (e)
no exclusion.

Because of various technology constraints vias cannot
be placed in certain configurations. Some of the most
prevalent restrictions are shown in Fig. 1. For a given via
position (0), the forbidden neighbor positions (x) for other
vias are shown on the track intersections.

What happens if the vias are not considered at the
global phase can be illustrated by a simple example.
Consider a cell with one wiring track in the horizontal and
one in the vertical direction. The global routing may
assign two bending wires to the cell without violating the
channel capacities. But there is only one via placement
possible at the cell even if there were no via exclusions!
In general, for a given cell of n horizontal and m vertical
tracks (referred to as an n x m cell), there is a maximum
number of vias that can be allowed for each via placement
restriction. Beyond this maximum number, V(n, m), no
clever arrangement of vias can satisfy the restrictions.
Obviously, V(1, 1) = 1 for all restrictions.

On the other hand, there is a minimum number,
v(n, m), of vias that can be placed in a cell such that if any
number less than v(n, m) is embedded in the cell, one can
always find another legal via position, regardless of the
configuration of vias. Therefore, if the vias allocated in a
cell do not exceed v(n, m), it is almost certain that the
exact embedding will not fail in the cell due to the via
placement restrictions.

Given these two parameters, for each cell on the chip,
most global routing algorithms can be easily modified to
accommodate the via restrictions. That is, when the
selection is to be made from many feasible routes for a
segment, the cost of vias must be added to the cost of
each route. The cost of each via en route can be comput-
ed as follows.

1. It is almost zero if the number of vias assigned in the
cell so far is less than v(n, m);

2. Itincreases exponentially if the number of vias already
used in the cell is between v(n, m) and V(n, m), such
that the cost is infinite if the number used equals
V(n, m).
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The infinite cost means that the route is not a feasible
one, i.e., no additional bending wires can be globally
allocated to the cell. A via cost of this nature can be
adopted for any specific global routing algorithm.

The calculation of the minimum and maximum number
of vias is somewhat involved. We first derive the v(n, m)
and V(n, m) values for the eight-neighbor exclusion case
and then treat the other cases in a similar fashion. For
ease of explanation we cast the problem in terms of a
game on an n X m chess board with pebbles representing
where the vias are placed. Once a pebble, x, is placed at
position (i, j), none of its eight neighboring cells (not the
cells of the chip, which is the whole chess board in this
game) may contain another pebble. We say these exclud-
ed cells are covered by distance to x. Furthermore, each
placed pebble excludes another pebble being placed in
any of the four L-shaped lines bending at the pebble and
extending to the two orthogonal boundaries of the chess
board. We say these cells are covered by the line of the
pebble x. Figure 2 illustrates the four possible coverings
by line.

The values of v(n, m) and V(n, m), the minimum and
maximum number of pebbles placeable on the board
under various conditions, are summarized in the follow-
ing equations. The values for small n and m are listed in
Tables 1-5, shown later.

1. Neighboring condition (a)

vin,n) =n—3, forn = 7. )
vin,n+ 1)=n-2, forn=5. 2)
vin,n+2)=n-2, forn=17. 3)
n,n+3)=n-1, for n = 3. @)
nn,n+4)=n-1, for n = 5. (%)
v(n,n+5) =n, forn=1. ©)
v(n, m) = n, form>n+5,n=1, @)
and

V(n, m) = 2 min (n, m) if max (n, m) = 9. 8

2. Neighboring conditions (b), (c), (d), and (e)
v(n, m) = min (n, m) under conditions (b), (c), (d), and (e).

2 min (n, m) for max (n, m) = 4, under
conditions (b), (¢), and (d);

2 min (n, m) for max (n, m) = 2, under
condition (e).

Vin, m) =

Note that condition (d) just means transposing Table 5.
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Sections 3 and 4 are devoted to the establishment of
values of v(n, m) under condition (a). Section 5 is for the
value of V(n, m) under the same condition. In Section 6,
other conditions are considered.

3. Lower bounds for v(n, m) under condition (a)
We first have the following two obvious lemmas.

o Lemma 1
v(n, m) = V(n, m) < 2 min (n, m).

Proof
It follows from the fact that each row and each column
can have at most two pebbles.

o Lemma 2
v(n, m) < v(n', m"),

Vin, m) < V(n', m'),
forn=n,and m = m'.

Proof
Immediate.

In the following, we first prove the lower bounds for
v(n, m).

® Lemma 3
vin,n+ 1) >n -3, n=S5. &)

Proof
Suppose the assertion is not true. Then there are at least
three empty rows and four empty columns.

1. We first show that the bottom row cannot be empty.
Since there are at least four empty columns, if the
bottom row were empty, the four cells a, b, ¢, and d,
i.e., the intersection of the bottom row and the four
empty columns, must be covered by distance. Assume
that pebble x, covers cells a and b and x, covers cells ¢
and d, as shown in Fig. 3(a). These two pebbles cover
exactly six cells. The remaining (n + 1) ~6=n— 35
cells must be covered by line and require at least n — §
pebbles. Excluding x, and x, we have exactly n — 5
pebbles available. Let us denote the two zones, each
three columns wide, by A, and A,, as shown in Fig.
3(a). Thus, we have the following placement condi-
tions,i.e., we require (a) that the remaining pebbles be
placed outside the zones A and A, and (b) that each
column receive.exactly one pebble. It is easy to see
that, if either of the placement conditions is violated,
we will have a contradiction. Now, due to the place-
ment of two pebbles x, and x, in the same row, there
are at least three more empty rows. Let us consider
the top two empty rows R, and R,, as shown in Fig.
3(b) such that row R, is at least one row apart from R |
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Figure 2 Four possible coverings by line of x.

in which x, and x, lie. Consider then the four designat-
ed cells of R, and R, in zones A, and A,, respectively
[Fig. 3(b)]. These designated cells must be covered by
distance. Since each row can have at most two peb-
bles, to cover these eight cells while satisfying place-
ment condition (a) we will be forced to place two
pebbles in a column, violating condition (b).

2. Suppose that the bottom i rows are nonempty, i = 1,
and the (i + 1)th row is empty. We prove that none of
these i nonempty rows can be occupied by two peb-
bles. To show this let us assume that the jthrow, 1 <j
= i, is occupied by two pebbles x and y and that all the
rows below j are occupied by one pebble. Observe that
the pebbles in rows below j cannot cover by distance
any cells in rows above the jth row. Although the
pebble in the (j — 1)th row can cover by distance some
cells of the jth row, these cells, in fact, all the cells of
the jth row, are covered by pebbles x and y. We can
therefore remove the j — 1 pebbles below the jth row
and the columns occupied by them without affecting
the ‘“‘coverability’’ of the remaining pebbles covering
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Figure 3 Illustration for the proof of Lemma 3.
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the remainder of the board with n — (j — 1) rows and
(n+ 1) = (j — 1) columns. That is, if » — 3 pebbles are
sufficient to cover a board of size n by n + 1, with the
removal of j — 1 pebbles, the remaining pebbles (n — 3)
— (j — 1) must be able to cover the remainder of the
board. But by induction, v(n — (j — 1), (n + 1) —
G-)>n—-(G-—-1)-3,i.e.,n—(j— 1) — 3pebbles
are not sufficient to cover a board of size n — (j — 1) by
n—(—-1+1,and we conclude that n — (j - 1) - 3
+ (j— 1) = n — 3 pebbles are not sufficient, a
contradiction.

. We therefore can assume that if row R is the first

empty row from the bottom, then there exists at least

one nonempty row below it and, furthermore, these

nonempty rows are each occupied by one pebble.

Similar results hold for the first empty row from the

top. Now let us distinguish two cases: (a) R is covered

by distance by two pebbles, and (b) R, is covered by
distance by three pebbles. (Recall that the row below

R, is occupied by only one pebble.)

(2) R, is covered by distance by two pebbles, x, and
x,. If x, and x, cover by distance only five or fewer
cells of R, then the remaining cells must be
covered by line and require at least n — 4 pebbles,
a contradiction. Thus, x, and x, must cover six
cells of R,. Let us denote the two zones induced by
pebbles x, and x, by A and A, [Fig. 3(c)]. These

©

(b

®

two zones may or may not be adjacent. Since the
remaining n + 1 — 6 = n — 5 cells of R  are to be
covered by line and we have n — 5 pebbles
available, we have the same placement conditions
as in case (1). Recall now that we have two more
empty rows, R, and R,, above R,. Consider the
four designated cells a, b, c, and d of R, and R, in
zone A, [Fig. 3(c)]. In order to cover these four
cells without violating the placement conditions,
rows R, and R, must be one row apart, and two
pebbles, x, and x,, must be placed in the row
between R, and R, and in the columns adjacent to
zone A,, as shown. Due to the placement of two
pebbles in one row, we can find an additional
empty row, R,. To cover the two cells of R, in zone
A,, we will need to place pebbles in the same
columns as x, and x,, violating condition (b).

R, is covered by distance by three pebbles x, x,,
and x, (n = 6). In this case we have two pebbles in
the row above R, and one below R, and we have
n — 6 pebbles available and three more empty
rows R, R,, and R,. Assume that R, is the topmost
empty row. Note that the row R;, which is above
R,, must be occupied by exactly one pebble by the
same arguments given in (2). We distinguish sever-
al cases depending on the number of cells of R
that are covered by distance by x,, x,, and x,. In
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fact, we only need to consider four cases, i.e., they
cover by distance 7, 8, and 9 cells of R,.
i Case 1. Nine cells [Fig. 3(d)]. There are n — 8

designated cells of R, and will have to
place two pebbles in the row above R,
which is not allowed. On the other hand,

cells of R, remaining, and we need to reserve

n — 8 pebbles to cover them by line. That is,

we have two extra pebbles. If j pebbles (0 < j

=2)areinthe zones A, A,, and A,, then we

have the following placement conditions: (a)

the remaining n — 8 + (2 — j) pebbles must

be placed outside zones A, A,, and A_; (b)

exactly 2 — j columns receive two pebbles,

and the rest receive one pebble each. We
further distinguish three subcases depending

on the value of j.

Subcase 1: j = 0. That is, the remaining n —
8 + 2 pebbles are placed outside A, A,,
and A,. Consider the six designated cells
of R, in zones A, A,, and A, [Fig. 3(d)].
Since R, can receive one pebble, we
cannot cover these six cells entirely.

Subcase 2: j = 1. Call the pebble x. Note
that x cannot be in the middle zone A,
Otherwise, the four cells of R, in zones
A, and A, cannot be covered. Suppose
that x is in zone A . The case when x is in
zone A, is similar. To cover the four cells
of R, in zones A, and A,, we need to
place two pebbles in the row below R,
and one pebble in the row above R, and
they must be placed in columns adjacent
to zones A, and A_. [See Fig. 3(d).] As a
consequence, zones A, and A, must be
one column apart. (Otherwise, we have a
contradiction immediately.) Due to the
placement of x, and x, in the same row,
we can find an additional empty row R.
Together with R, and R, we have three
empty rows. Assume that R is the middle
of the three empty rows. Thus, R must
be at least two rows apart from R, and R
so that its cells cannot be covered by
distance by pebbles x,, x,, x_, and x,. To
cover the four designated cells a, b, c,
and d of R, we will be placing pebbles in
columns adjacent to zones A, and A, and
violating condition (b), which allows
only one column to receive two pebbles.

Subcase 3: j = 2. Call these two pebbles x
and y. In this case we cannot place two
pebbles in the same column outside the
zones A, A,, and A . Note that both x
and y cannot be placed in rows adjacent
to R,; otherwise, we will need at least
two more pebbles to cover the remaining
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if both x and y are not placed in rows
adjacent to R,, we can always find at
least three cells among the six designated
cells of R, which are not covered by x
and y. These three uncovered cells re-
quire at least three pebbles x', y', and z’,
and two of them must be placed in the
row below R, and in columns adjacent to
the corresponding zones. Because of
these two pebbles being in the same row,
we can find another empty row R. That
is, we have three empty rows R, R,, and
R,. Suppose R is the middle of these
three empty rows. Since there are three
zones A, A,, and A, we can find at least
one zone, say A, such that it does not
contain X or y. To cover the two desig-
nated cells of R in this zone, A, we have
to place two pebbles in columns adjacent
to zone A, one of which is occupied by
x', y', or ', and violates condition (b)
that no two pebbles occupy the same
column.

Case 2. Eight cells are covered by distance. In

this case we have two zones, as shown in
Fig. 3(e). We remark that in zone A, of Fig.

" 3(e) the two pebbles covering five cells of R,

need not be in the same row. We must
reserve n + 1 — 8 = n — 7 pebbles to cover
by line the remaining cells of R . In other
words, we have one extra pebble. But since
cell d as shown cannot be covered by peb-
bles outside the zones, the extra pebble must
be placed in zone A, to cover it. Thus we
have the same placement conditions that the
remaining pebbles are to be placed outside
the zones and no two pebbles outside the
zones occupy the same column. Let us call
the extra pebble x. If x is used to cover the
three designated cells in zone A,, then to
cover the remaining designated cells we need
to place two pebbles in the row below R,
thereby creating an additional empty row.
Thus, we have three empty rows, and cell d’
of the middle empty row R in zone A, cannot
be covered, a contradiction. But if x is used
to cover by line, it must be used to cover cell
d. To cover the designated cells of R, we
have to place two pebbles in the row below
R.. Following the same line of reasoning, we
will find two pebbles placed in a column
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Figure 4 [Illustration for the proof of Lemma 7.

adjacent to the zones, which violate the
placement condition.

Case 3. Seven cells are covered by distance.
Since we have n — 6 cells to be covered by
line, we do not have extra pebbles. We
therefore have the placement condition that
the remaining pebbles are placed outside
zones A, and A,, and no two pebbles are in
one column. Considering the four designated
cells of row R, [Fig. 3(f)] and following the
arguments given earlier, we will be forced to
violate the placement condition.

o Corollary 4
vin,m+2)>n-3, n=17.

Proof
By Lemma 2, v(n, n + 2) =-v(n,n + 1) > n — 3.

® Corollary 5
v(5,7) > 3.

Proof

By contradiction. Suppose three pebbles are sufficient.
There are at least two empty rows, R and R,. Consider
row R,. It must be covered by distance by two pebbles, x,
and x,. Pebbles x, and x, cover six cells of R,, and the
remaining cell is covered by line by the last pebble. Thus,
we can find an empty cell in row R, which is left
uncovered—a contradiction.

® Corollary 6
v(6, 8) > 4.

Proof
Similar to the proof of Corollary 5.

® Lemma 7
vin,n+3)>n-—2, n=3. 10)
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Proof

By contradiction. Suppose n — 2 pebbles are sufficient.
There are at least two empty rows and five empty
columns. By arguments similar to those used in proving
(1) and (2) of Lemma 3, we conclude that

1. The bottom row cannot be empty, and

2. If the bottom i rows are nonempty and the (i + 1)th
row is empty, then none of these i nonempty rows
receives more than one pebble.

3. Now, we consider the first empty row from the
bottom, R,. If R is covered by distance by only two
pebbles, then there are at least (n + 3) — 6 =n — 3
cells of R, to be covered by line. It is rather obvious
that n — 2 pebbles will never be sufficient. In fact, all
the empty rows must be covered by distance by at
least three pebbles. For n = 3 or 4, we have at most
two pebbles available, and a contradiction results.

Thus, assume that we have a configuration as shown in
Fig. 4 and that these three pebbles, x , x,, and x_, cover
by distance nine cells of R . We therefore need to reserve
n+ 3~ 9= n— 6 pebbles to cover by line the remaining
cells of R, and there is only one extra pebble. Since we
have at least two more empty rows, let us consider the
topmost empty row R’o, and its six designated cells. It is
easy to show that when the remaining n — 5 pebbles are
placed outside the zones A, A,, A, we cannot cover
these six cells of R'0 by using three pebbles. We therefore
assume that the extra pebble is inside the zones. The
extra pebble can cover at most two cells of R;, sowe need
to place two pebbles in the row below R; and one (which
is the only possibility) pebble above R'0 to cover the
remaining four cells of R'o. As aresult wehave at leasttwo
more empty rows, R and R,. Notice that the pebble
placed in the row above R'o must be in a column adjacent
to the zones A, A,, or A,. Without loss of generality
assume that it is placed in a column to the left of zone A ,
as shown in Fig. 4. Now consider the empty row R,,
which is the first empty row below R'o, and the cell ¢ as
shown. To cover cell ¢ we must place a pebble in the
column occupied by x, thus violating the placement
condition that no two pebbles outside the zones are
placed in the same column. In the case when the three
pebbles x, x,, and x, cover fewer than nine cells of R,
we can easily argue that a contradiction will result.

o Corollary 8
vin,n+4)>n-2, n=>35. (11)

® Remark

By L.emma 7, we can in fact prove that v(n, n + 4) > n — 2
for n = 3. But for n = 3, 4, we have a better bound as
follows.
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® Corollary 9
v(3,7 > 2,

Proof
Similar to Lemma 7.

v(4, 8) > 3.

® Lemma 10
vin,n+ S5 >n—-1forn=1. (12)

Proof

By contradiction. Suppose n — 1 pebbles are sufficient.
There exists at least one empty row, R, and six empty
columns. By similar arguments we have

1. The bottom row must not be empty;

2. If the bottom i rows are nonempty and the (i + Dth
row is empty, then none of these i rows receives more
than one pebble.

The proof of the lemma follows.

Suppose R is the first empty row from the bottom and
is covered by three pebbles x,, X,, and x,, as shown in

Fig. 5. These three pebbles must cover exactly nine cells -

of R,; otherwise we will have a contradiction immediate-
ly. Since we have n — 4 pebbles available and exactly
n — 4 cells of R to be covered by line, the remaining
pebbles must be placed outside A , A,, and A,, and each
column receives exactly one pebble. Due to the place-
ment of two pebbles in the row above R, we have at least
one more empty row, R'o. Assume that it is the topmost
empty row. As before, consider the six designated cells of
R'jin zones A, A,, and A,. First note that R, cannot be
one row apart from R, Otherwise the two designated
cells in zone A require that two pebbles be placed in the
row above R'o, which is not allowed for the same reason
that we cannot have two pebbles in the row below R
Note that R'0 is not one row apart from R and the rows
adjacent to R'0 can receive at most three pebbles; it is easy
to see that the three pebbles cannot cover the six desig-
nated cells of R,

® Corollary 11
vin,m)>n—1form>n+5. 13)

Proof

By Lemma 2.

® Lemma 12

vin,n)>n—4, n=17. (14)

Proof
By induction. Assume that it is true for n. Then we have

vin+ 1, n+ 1) > ov(n, n+ 1) by Lemma 2.
vin,n+1)>n—-3=(nm+1 — 4 by Lemma 3.

Thus, v(n, n) > n — 4.
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Figure 5 Illustration for the proof of Lemma 10.

4. Realization of lower bounds for v(n, m) under
condition (a)

Next, we show how these lower bounds can be achieved
by exhibiting explicit construction rules.

For example, by Lemma 3, we have v(n, n + 1) >
n—3,ie.,v(n,n+ 1) =n—2for n=-73. It suffices to give
a placement for an n X (n + 1) board requiring exactly
(n — 2) pebbles. To do this, we start with a specific
construction for n = 5 [Fig. 6(a)]. Inductively, if we
already have a placement for an n X (n + 1) board
requiring (n — 2) pebbles, then we can put this in one of
the four corners of an (n + 1) X (n + 2) board and one
more pebble in one of the three remaining corner cells so
that this new pebble is not in conflict with the (n — 2)
pebbles already placed. An example is given in Fig. 6(b).
Consequently, we have a placement for an (n + 1) X
(n + 2) board with (» — 1) pebbles.

Similar construction works for all the other lemmas

[Figs. 6(c)-6(h)].

Finally, we display the building blocks for «(n, n), - - -,
v(n, n + 4) for small values of n in Figs. 6(i) through 6(m).
For all these cases, it is easy to check that the number of
pebbles placed is indeed minimum.

All these results are shown in Table 1.

5. The number V(n, m)

We prove that V(r, m) = 2 min (n, m) if max (n, m) = 9.
Recall that V(n, m) < 2 min (n, m) is always true. Thus,
as long as we can give a construction where the number of
pebbles is equal to 2 min (n, m), it is maximum.
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3 I -3—o oIt dlm
+ 4 I * *
» -Sp—f—————- J—-‘ (g) Building block for (h) Building block for
(e) Building block for v ¥ v(n,n+5)=nfornz1 v(n,m)=nform>n+5n21
v(in,n+3)=n—1fornz3
(f) Building block for
v(in,n+4)=n=1forn25
123 123 1?2345 12134 12345
! 1 1 I i—— D
2 lp—- - 2@—» -1 —4 o—1» * *
3l 3 !
& v H (1) Building block for (m) Building block for
(i) Building block for v vinn+3) =nforn=1,2  olnn+4) =nforlSn<5
(i) Building block for v(m,n+l)=n—1for2sn<$§ (k) Building block for
v(mn)=n—2for3sn<7 v(n,n+2)=n—1for3<n<7
Figure 6 Construction rules and building blocks for specific realizations.
aw o Corollary 14
/ /(u) V(n,9) = 2nfor n <9.
1 2 3 4 5 6 1 8 9 Proof
9 x x Take a submatrix of dimension n X 9 of the 9 X 9 matrix
am displayed in Fig. 7. Since each row has exactly two
8 | x x / pebbles, the total is 2n.
7 X X
® Lemma 15
6 x x /(D V(n, m) = 2 min (n, m), if max (n, m) = 9. 8
5 X X Proof
. R Without loss of generality, we can assume m = n. Thus m
* * / =9,
3 .
x x Case 1 If n < 9, then we can consider the first 9
2 X X columns and apply Corollary 14.
Case 2 n = 9. It suffices to consider the square matrix
1 X X nxn

1. nis odd. The construction is similar to the one in Fig.
7, where n = 9. Specifically, let us number the rows
from the bottom up and the columns from left to right.
We use i to index the rows and j to index the columns.
Then we place the pebbles one at a time. In general, if

Figure 7 Construction with n = 9.

® Lemma 13 the last pebble is in location (i, j), then we place the
V(9, 9) = 18. next pebble in location (i’, j), where
Proof i=3G+10 mod n,

268 See the construction in Fig. 7. i=(+2 modn.
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Table 1 Values of v(n, m) under neighboring condition (a):
v(n, m) = vo(m, n). :

No|123 4567891011 1213 1415 16
! t1 11111111 1 1 1 1 11
2 112222222 2 2 2 2 2 2
3 12223333 3 3 3 3 3 3
4 2333444 4 4 4 4 4 4
5 334445 5 5 5 5 5°5
6 44555 6 6 6 6 6 6
7 4556 6 7 7 7 7 7
8 56 6 7 7 8 8 8 8
9 67 7 8 8 9 9 9
10 7 8 8 9 910 10
1 8 9 910 10 11
12 9 10 10 11 11
13 10 11 11 12

The construction has two phases:

Phase 1—Place a pebble at location (1, 1) as a starting
point, and continue the process until n pebbles have
been placed.

Phase 2—Place a pebble at location (4, 2) as a new
starting point, and continue the process until n pebbles
have been placed.

Referring to Fig. 7, we have generated in Phase 1 two
“‘strings’’ of pebbles: (I) and (II). String (I) starts at (1, 1);
string (II) starts at ([n/2] + 1, 2). Phase 2 has generated
three strings: (III), (IV), and (V). String (III) starts at (4,
2). String (IV) starts at ([n/2] + 3, 1). String (V) starts at
(1, n — 4). It is easy to check that there are exactly two
pebbles in each row and two pebbles in each column, with
a total of 2n pebbles.

It suffices to check that if a pebble is at (i, j), then its
neighboring positions (at most 8) cannot have any peb-
bles. First, for any two pebbles at positions (i, j) and (7,
J"), define their distance as max (i - i'{, [J— j'|). Then it
suffices to check that for any two pebbles, their distance
must be at least 2. For pebbles belonging to the same
string, this condition is true by construction. For pebbles
belonging to different strings, we only have to look at the
starting and second positions of the five strings and to
check that the distance of any two of these positions is at
least 2. For example, the five starting positions are (1, 1),
(n21+1,2),4,2), (n/2]1+ 3, 1), and (1, n — 4). Clearly,
for n = 9, the distance between any two of them is at least
2. Similarly, we can check the ten starting and second
positions for their distances.

2. n is even. The construction is exactly the same as
before, except that the starting positions of the five

IBM ;. RES. DEVELOP. & VOL. 25 & NO. 4 ¢ JULY 1981
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Figure 8 Construction with n = 10.
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Figure 9 Placement achieving V(n, m) for n, m < 9.

strings are now (1, 1), (n2) + 1, 1), (4, 2), (n/2) + 4,2)
and (1, n — 4). (See Fig. 8 for n = 10.) 269
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Figure 10 Arrangement of v(n, m) pebbles for conditions (b),
(), (d), and (e).

Table 2 Values of V(n, m) under neighboring condition (a):
Vin, m) = V(m, n).
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Table 3 Values of v(n, m) under neighboring conditions (b), (c),
(d), and (e).

m 1 2 3 4 5
n
1 1 1 1 1 1
2 1 2 2 2 2
3 1 2 3 3 3
4 1 2 3 4 4

For n, m <9, we have explicit constructions displayed
in Fig. 9. In each case one can prove that indeed the
figure contains the maximum number of pebbles. The
results are shown in Table 2.

6. Other neighboring conditions
So far, we assume that when a via hole exists at position
(i, j), then all its neighboring positions (at most 8) are

D. T. LEE ET AL.

restricted from having any via holes. In this section, we
consider four other kinds of neighboring constraints (b, c,
d, e of Fig. 1), namely,

(b) only positions (i + 1,), (i — 1,/), (i, j+ 1D, G, j— 1D
are restricted,

(©) only (i + 1, j), (i — 1, j) are restricted,

(d) only (i, j + 1), (i, j — 1) are restricted, and

(e) no restrictions.

® Lemma 16
For each of the four neighboring conditions (b), (c), (d),
and (e), we have v(n, m) = min (n, m).

Proof

We first prove that v(n, m) = min (n, m). Assume
otherwise; then v(n, m) < min (n, m). Further assume n <
m. Thus, v(n, m) < n < m. We shall derive a contradic-
tion for each neighboring condition.

1. Condition (b). Since v(n, m) < n, there must exist an
empty row. By the same token, v(rn, m) < m implies
the existence of an empty column. Let the intersection
position of the empty row and empty column be a.
Clearly, a cannot be covered by line or by distance
with the existing pebbles, a contradiction.

2. A similar proof applies to conditions (c), (d), and (e).

We next give an explicit construction to prove that the
lower bound is achievable., Indeed, just place the n
pebbles along the diagonal as shown in Fig. 10, and the
result follows.

The values of v(n, m) are presented in Table 3.

o Lemma 17

For each of the neighboring conditions (b), (c), and (d),
V(n, m) = 2 min (n, m) for max (n, m) = 4. For (e),
V(n, m) = 2 min (n, m) for max (n, m) = 2.

Proof

1. Conditions (b), (c), (d). Without loss of generality,
assume n < m. In general, place the pebbles one by
one starting with position (1, 1), i.e., the lower left
corner. If the last pebble is at position (i, j), then the
next one is at (i, j), where i/ = (i + 1) and j' =
(j + 1), until n pebbles have been placed. Then start
with position (1, 3), and repeat the process until
another n pebbles have been placed. (See Fig. 11.) It is
easy to check that these 2n pebbles indeed satisfy all
the conditions.

2. Condition (e). Just place two pebbles in each row.

For n, m such that max (n, m) < 4, under condition (b),
the above construction also works, but now V(n, m) <2
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Table 4 Values of V(n, m) under neighboring condition (b):
V(n, m) = V(m, n).

m 1 2 3 4 5 6
n
1 I I 2 2 2 2
2 2 3 4 4 4
3 5 6 6 6
4 8 8 8
5 10 10
6 12

Table 5 Values of V(n, m) under neighboring condition (¢).

m i 2 3 4 5 6
n
1 1 2 2 2 2 2
2 1 2 3 4 4 4
3 2 4 5 6 6 6
4 2 4 6 8 8 8
5 2 4 6 8 10 10
6 2 4 6 8 10 12

min (n, m) except for n = 1, m = 3. In that case, V(1,3) =
2. The results are given in Table 4. The same can be done
for condition (c). Note that in this case V(2, 3) = 3 but
V@3, 2) = 4 (Fig. 12).

The results are shown in Table 5. Also note that
condition (d) just means transposing the table.
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