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Semiconductor  Analysis  Using  Finite  Elements-Part II: 
IGFET  and BJT Case  Studies 

Semiconductor-like  Applications of Finite Elements  (SAFE),  a  novel, nonlinear, general-purpose  two-dimensionalfinite- 
element  code, is applied to  problems in device  modeling.  Case  studies of contemporary  insulated  gate  Jield effect 
transistor  (IGFET)  and  bipolar  junction  transistor (BJT) structures are  given which demonstrate  the  reliability, 
versatility,  and  eficiency  offinite-element  methods in general and of the  SAFE program in particular. The  user-defined 
SAFEphysical  model is compared with experiments on a  doubly  implanted short-channel IGFET.  Computer  experiments 
are  performed, indicating how to  select  the  type,  distribution,  and  numerical-integration  method  offinite  elements  for 
maximally eficient,  assured-convergence,  engineering-accuracy  analysis, either steady  state  or  transient. 

1. Introduction 
We describe the solution of 2-D (two-dimensional)  semi- 
conductor device problems using SAFE [l], a program 
for Semiconductor-like  Applications of Finite Elements. 
The key features of finite-element [l-151 (vis-d-vis finite- 
difference)  methods [16, 171 for two-dimensional device 
analysis are ease of local  grid  refinement (but see 
[17,  18]), ability to choose basis functions which  closely 
correspond to true solutions, and the smoothing proper- 
ties of an integral, rather than  differential, formulation. 
(See [ll], Chapter 1 and its references.) However, com- 
plete and user-oriented exploitation of these properties 
requires imposing  program  development costs. 

We employ as vehicles in this description finite-ele- 
ment case studies of insulated gate field effect transistor 
(IGFET) and  bipolar junction transistor (BJT) structures. 
Thus we show  how the user can  specify (as in  ASTAP 
[19] analysis of integrated circuit  models) the number of 
equations to be solved and their analytic form ( i .e . ,  type 
of nonlinearities) as well as the specific structure (e.g., 
device  dimensions and doping  profile) to be analyzed. 
Two-dimensional solutions of the Poisson’s (thermal 
equilibrium of BJT or IGFET), Poisson’s  and  electron 
continuity (n-channel IGFET), and Poisson’s and  hole 
and electron continuity (BJT) equations are described. 

The program is so formulated that it would  be a simple 
matter to do simultaneous thermal  analysis [ 14, 201 by in- 
cluding the thermal continuity equation. This  could  be  ac- 
complished by specifying  that  four rather than three equa- 
tions are to be solved, and  giving a subroutine which  de- 
fines  thermal  flux  in  terms  of  temperature  and  its  gradients. 

The reliability and efficiency of the SAFE program (see 
Ref. [l] for details of the computer implementation) are 
documented by a treatment of our basic numerical  algo- 
rithm, which features 1) simultaneous ( i . e . ,  fully  implicit) 
solution of the user-specified PDEs; 2) a quadratically 
convergent Newton’s method (appropriately modified for 
this application class); and 3) linear-equation  solution by 
direct, state-of-the-art sparse-matrix techniques [21-231. 

These are sensible, probably necessary choices for a 
general-purpose program. However, Buturla and  Cottrell 
[5] have shown that specific cases exist for which fast 
convergence can  be obtained solving the three semicon- 
ductor equations [cf. Eq. (4a)] sequentially, thus permit- 
ting certain efficiencies. We further address the critical 
question of how to select the type and distribution of the 
finite elements, as well as the type  and accuracy of the 
basic  numerical integration formula.  Our  goal in this 
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selection is maximally efficient, engineering-accuracy, 
assured-convergence  analysis.  Our  basic Newton’s meth- 
od has been modified to handle the exponential nonlinear- 
ities  typical of the semiconductor  Poisson’s and  transport 
equations. We employ  Newton step-limiting and predic- 
tion [24] for this purpose. 

In Section  2 our  report begins, for completeness, with a 
very brief introduction to  the finite-element methods  used 
in the  SAFE program. The reader is referred to  [Ill  for 
more  detail about finite-element theory, and to [l] for  the 
specific algorithms of the  SAFE program.  Section 3 
describes the  user specification of the  IGFET and BJT 
modeling problems. In Section 4, the computed  solutions 
of the 2-D device are compared to experiment. 

In Section 5 we discuss the selection,  specification,  and 
refinement of finite-element grids. In  Section 6 we sum- 
marize our  experience to date  on  the efficiency-versus- 
accuracy  tradeoff, and in  Section  7 we document our 
particular modifications of Newton’s method. Section 8 is 
devoted to  the problem of transient  analysis. 

In  Sections 6 through 8, the  SAFE  program,  as applied 
to 2-D device analysis, is further compared  with  previous 
work [l-9, 13-17]. 

2. Finite-element  analysis 
The  SAFE program  applies to problems described by a 
set of NSC 2 . 1  semiconductor-like PDEs of the form 

VF(u, VU, X, Y )  - C(U, 6, X, Y )  = 0 ,  

(X, Y )  E , (la) 

where R is the domain over which (la) is to  be satisfied 
subject to the  boundary  conditions 

U(X,  Y )  = M(x, Y M X ,  Y )  + N(x, Y ) V J , U ( X ,  Y ) ,  

(X, Y )  E an , ( Ib) 

where aR is the  boundary of fl and vNu is the  component 
of v u  normal to aR. 

The  SAFE program regards F, c, and u as  sets with NSC 

members, i . e . ,  

Thus (1) constitutes NSC partial differential equations in 
N S c  unknowns. 

Note  that  each  member ‘F,  17 = 1,2, . . ., NSC, of the  set 
F represents a  generalized flux, i .e. ,  a flow vector in  a 2-D 
Cartesian space,  whereas “u and ‘c are  scalars. 
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Finite-element methods gain their  special  characteris- 
tics  from  two  key  properties.  First, they  include  subdivi- 
sion of the domain R of the  PDE  into a union of 
subdomains R’, 1 = 1,  2, . . ., NEL (number of elements), 
called “finite elements,” i . e . ,  

NEL 

R =  u R2. (24  
2=1 

The R’ are polygons (usually triangles) with vertices 
called “nodes” of the approximation. Second, finite- 
element methods approximate the  solution, u, of (1) in 
terms of basis functions $,,(X, y ) ,  n = 1, 2, . . ‘, NDOF 

(number of degrees of freedom), each of which are 
polynomials in each finite  element a’, i . e . ,  

NDOF 

U(X7 Y )  = c f fn$ , , (X.  Y )  (2b) 
n=l 

Usually the $,,(x, y )  are  nonzero only on a small subset of 
the a‘. The coefficients an of this expansion  are called 
“generalized coordinates,” and each  is uniquely  associat- 
ed with the unknown  function u, evaluated at a certain 
node of the  approximation, viz., 

U(Xn’ Y,) = f f n  . 

Sometimes more  than  one generalized  coordinate is 
associated with a  given node, and sometimes an stands 
for a spatial  derivative or other function of u, rather  than 
for u itself. The generalized coordinates  are determined 
by the Galerkin conditions 

rn(a) = $,(v . F - c)dR In 
= I, I,, $,F . daR - (v+, . F + #,C)dfl 

= 0 ,  n = 1, 2 , .  . ., NDOF . (2c) 

As NDOF becomes  larger,  the  PDE residual v . F - c is 
annihilated by (2c) in an increasingly larger  function 
space.  In view of the approximation (2b), (2c) represents 
NDOF x NSC nonlinear  equations in NDOF x NSC un- 
knowns, which can  be  expressed in the  vector form 

r(a) = 0 . (34  

Note  that  each  component of the  arrays r and a is thought 
of as  an Nsc-member set in the  sense of (IC).  The 
Galerkin equations (2c) are solved by the  Newton itera- 
tion 

a d 4  
a a  
- ha = -r(a) , (3b) 

cu=a+Aa.  ( 3 4  247 
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Figure 1 Ion-implanted IGFET structure. 

'JB "F 

n+ I 
Figure 2 Buried-collector BJT structure. 
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The Jacobian ar/acu is a sparse matrix because  the  +,,were 
assumed to  have  compact  support, i . e . ,  to  be nonzero 
over a small portion of the finite elements R'. 

3. IGFET and BJT modeling problems 
The specific analytic  forms of F and c are not built into  the 
SAFE program but, as described in [l], are given by user- 
specified program  modules GETF and GETC. For  dc steady 
state (u = 0) IGFET  and BJT modeling problems we shall 
use  the customary (see  for example  [l-10, 14-17, 251) 
forms 

F =  

where $" is  the  potential referenced to  the  valence band 
edge, +p(+n) is the hole  (electron)  quasi-Fermi level,p, n, 
and D are  the  hole,  electron,  and ionized  impurity densi- 
ties  where 

The parameter NSC, which determines  the number of 
equations and unknowns, is set by the  user.  For NSC = 1, 
SAFE solves the 2-D semiconductor Poisson's equations. 
If NSC = 2, the n-channel IGFET  equations  are  used (add 
the  electron continuity  equation), and if NSC is  set  to 3, 
the  BJT equations (also  add  the hole  continuity  equation) 
are solved. The  IGFET  and BJT  device structures  to  be 
analyzed are  shown in  Figs. 1 and 2. The  forms assumed 
for  the doping profile D(x, y) in these  problems  are 
illustrated by the  perspective plots of Figs. 3 and 4. 

Boundary conditions  are user-specified by a program 
module GETBCO, which  essentially  gives U, M, and N for 
each given  point ( x ,  y ) ,  after testing to  see if ( x ,  y) E ail. 
Note  that U, M, and N are Nsc-member sets like F, c, and 
u. On the  source  contact of the  IGFET  structure of Figs. 
1 and 3 we  have specified the Dirichlet conditions 
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where V ,  is the  voltage applied to the source (see  Fig. 1) 
and I), is given by the usual zero  space charge  condition 

P - n + W,, Y J  = 0 ,  (5b) 

with p and n, specified by (4b), considered as functions of 
I),. Similar expressions apply to the drain and  substance 
contact regions of aR. 

On the part of dR not  covered by metal contacts, we 
have specified the  “natural” or “zero-flux’’ conditions 

U =  [ i], M = [  i], N =  [ i]. (5c) Fi re 4 Log-doping BJT structure. DE = 1 X lo2’; DB = - 1 x 
10 *; DBM = - 5  x D,  = 1 x 10””. Y 

At the gate contact, we have  the mixed conditions 

where Tox = I YOXI (Fig. 1), esi and cox are the  appropriate 0.4 

dielectric constants,  and Q,, is the equivalent  charge 
“sheet density” localized at the  interface  between the 0.3 - 
IGFET channel and the gate  oxide. Note that  the  top 
expressions in (5d) are easily derived from Gauss’s law 
applied to  the interface layer, and from the assumption of 
space-independent  electric field  in the oxide. 

- 

0.2 - 

3 
0.1 - 

A similar treatment  (except for  the oxide) has been - 
applied to boundary conditions for  the  BJT structure of -!! 0 

Figs. 2 and 4. 0 1  2 3 4 5 

4. Correlation of 2-D finite-element  models to experi- 
ment Figure 5 Theory versus experiment for first-order mobility 
The usual method of adjusting the parameters of a two- model. v~ = ov; v~ = 0.1 v. 
dimensional IGFET program to match  experimental data 
is to run a series of ZD calculations at drain and substrate 
voltages that are fixed and low (typically 0.1 V and 0 V) 
for values of V,  just  above threshold. The  source is extrapolated to find the threshold voltage of the program. 
grounded, i . e . ,  V ,  = 0. In this region, the voltages are so This program threshold voltage will  in general be offset 
low we expect  to  see no complications due  to  the mobility from  the  device  threshold voltage. The offset exists 
being affected by the field. By plotting Z, as a function of because  the programs do not  include the work-function 
V,  we expect to obtain  a straight line which can  be difference between the  gate metal and the semiconductor 

lv, (V) 
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Figure 6 Correlation of effect  of substrate  voltage. V,, = 0.1 v. 
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Figure 7 Comparison  of  computed and measured ID versus V,, 
IGFET characteristics. V,  = 4.55 V; V, = 0 V; ps  = pD = 
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or  the surface  interface  charge. The offset should be 
consistent with typical  values of these quantities. 

The  results of efforts to match the  SAFE program 
theory  to  an  experimental  IGFET  characterized by the 
data of Figs. 1 and 3 are shown in Fig. 5 .  The threshold 
voltage of the calculated curves (crosses and triangles) 
was shifted  from 2.1 V to 0.6 V to match the  data.  The 
justification for  this shift is that  the program does not 
include the work-function difference between  the alumi- 
num  gate metal and  the silicon, or the  surface charge 
density.  Also, the  SAFE program uses  the valence band 
in the  semiconductor, instead of midgap, as  its potential 
reference.  This  difference  in  reference level accounts for 
OS4 V of the  shift. The work-function difference could 
account  for  about 1.0 V.  For example Sze ( [26] ,  p. 472) 
gives 0.9 V as  the shift  in  threshold  voltage for aluminum 
on 1 X lof6 uniformly doped n-type silicon with 50 nm 
oxide. A  more  detailed  calculation using 40 nm oxide and 
the actual  implanted profile will be necessary  to  deter- 
mine the specific shift  in the  structure of Fig. 1 caused by 
work-function  difference.  Finally, a surface  charge densi- 
ty of QSJ4 = 1 x 101’/cm2 [Eq. (3c)l would give a 
threshold shift of 0.18 V. Hence  the shift of 1.5 V is not 
unreasonable, 1.54 + 0.18 = 1.7. 

The dashed curve  (crosses in Fig. 5) corresponds  to a 
constant pno value [Eq. (4b)l of 540 cmZ/V-s. Although 
this value is much lower than the value of about 900 cm2/ 
V-s  that is expected in a bulk sample doped at the level of 
1-4 X 10l6 ~ m - ~ ,  as in  the channel region of Fig. 3 ,  it is 
not inconsistent  with the values of “effective mobility” 
commonly quoted in reports  on  IGFET analysis.  Howev- 
er,  the experimental curve bends over  at high gate 
voltages, suggesting that  the “effective mobility” de- 
creases with increasing gate  voltage [16]. 

Having  established the ID versus V,  transfer character- 
istics of the  IGFET,  we  can now check  whether  our 
model displays the  proper dependence of drain current  on 
the drain  and substrate voltages V ,  and V,. Figure 6 
shows  the ID versus V,  characteristics for V ,  = +0.1 V, 
and  for V ,  = 0 V (as in  Fig. 5) and V,  = -5 V. Note  that 
the computed currents  are properly  displaced to  the right 
(crosses in Fig. 6 )  for V, = -5 V, in agreement with 
experiment. Figure 7 shows the  computed  (crosses) and 
experimental ID versus V ,  characteristics  for V,  = 0 V, 
V, = 4.55 V. Again satisfactory  agreement  with  experi- 
ment is obtained. 

5. Finite-element grids and  sample  solutions 
We shall refer to a particular decomposition, Eq. (2a), of 
the domain SZ of a given  problem as a finite-element grid. 
Grid  selection is a key aspect of finite-element analysis of 
semiconductor devices,  just  as it is for finite-difference 
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methods. In semiconductor device analysis it is generally 
necessary (for accuracy, not for stability) to have a finely 
spaced grid wherever extreme values or slopes of doping, 
space charge, current density, or electric field occur. 
IGFET analysis [5-9, 161 is  especially  difficult because of 
the extreme confinement of the conducting channel at 
high gate voltages. Channel widths of 2 nm are typical, 
whereas  channel lengths and source junction depths are 
on the order of micrometers. 

In the SAFE program, the user has two options in 
specifying the finite-element grid, as illustrated in Figs. 8- 
10. The first,  and  most convenient, option  is to specify a 
“rectangular” grid of triangular  finite elements. In this 
case the user specifies N X  and N Y ,  the number of x and y 
subdivisions, and two tables, TABLX and TABLY, giving 
AX(i), i = 1, 2 ,  . . ., N X  and AY(J’), j = 1, 2 ,  . . ., N Y .  Thus 
the domain R is subdivided into rectangular subregions, 
just  as in finite-difference methods. The SAFE program 
then further subdivides each rectangular subregion into 
two triangles. Such “rectangular” finite-element  grids for 
the FET structure of Figs. 1 and 3 and for the BJT 
structure of Figs. 2 and 4 are shown  in Figs. 8 and 9, 
respectively, which are discussed below. 

The second, and most  efficient, user option in the 
SAFE program is to specify the triangular elements 
individually, giving for each element the names of nodal 
points its vertices will lie on. Then, the user specifies a 
list of the intended x and y coordinates of each nodal 
point. Triangulation is obtained  automatically  using the 
so-called  Vornoi diagram, which is valid in the 3-D case 
(and  even  higher-dimensional cases) as well.  (Briefly, the 
Vornoi  diagram  is a geometric construction for locating n 
+ 1 points which are mutually closest in an n-dimensional 
Euclidian space.) In this case, arbitrary local  refinement 
of any  given subregion of R is possible. That is, the grid 
may  be  fine  in  regions of interest and coarse in  regions 
such as charge neutral contact regions, where not much 
electronic action is taking place, thus permitting finite- 
element analysis with a minimum number of elements. 
Such a “special” finite-element grid, defined for the 
IGFET structure of Figs. 1 and 3, is shown in  Fig. 10. 

Note in the “rectangular” grid of Fig. 8 that the grid  in 
the x-direction is uniform, whereas the spacing in the y- 
direction is so fine that the triangles  become  indistin- 
guishable near the gate contact. Our  numerical  experi- 
ments have shown that such hyper-refinement of the grid 
in the IGFET channel is necessary for accurate current 
computation. However, the aspect ratio of the thinnest 
rectangles is (6.35 pm/16) to (0.005 pm), or about 800 to 
1. Since ([Ill,  Chapter 1) the error in  finite-element 
approximation is in some cases inversely proportional to 

Substrate 

r=0 .2  psn 

Figure 8 16 X 14 (NX X N Y )  rectangular  IGFET  grid  (entire 
6.35-pm X 5-pm grid). 

Emitter Y -  Base 

Figure 9 7 x 10 (NX x N Y )  rectangular  BJT grid. 

I 

200 350 400 450 510 600 800 

Figure 10 Special (locally refined)  IGFET  grid  (entire half- 
grid). 251 
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Figure 11 Log hole density for IGFET  rectangular  grid of Fig. 
8: V, = V, = 0; V, = 0.1 V; V, = 4.55 V. 

Figure 12 Log hole density for IGFET special grid. 

the smallest angle in  the approximation, the numerical 
results for such a grid must be looked at carefully. (See 
Section 6 for a discussion of such  accuracy problems.) 
Also, note  that there  is  no special refinement  around the 
source-substrate and drain-substrate metallurgical junc- 

252 tions [dashed quarter circles in Fig. 81. 
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Emitter &@“ 
2 20 

p E =  (ni/10 ) 

Figure 13 Log hole density for BJT. 

The “rectangular” 7 X 10 BJT grid of Fig. 9 is specially 
refined about the emitter-base  junction  (dashed  quarter- 
oval in Fig. 9). The horizontal  dashed line represents  the 
collector-base junction.  However,  the limitations of the 
rectangular grid are  apparent in the sub-rectangles (cir- 
cled in Fig. 9) defined AY3., and AX,,. The refinement of 
the elements in these sub-rectangles  is unnecessary, since 
the refinement in  the y-direction was  needed only to 
resolve the emitter-base sidewall injection. 

The “special” IGFET grid [Fig. 101 illustrates  an 
attempt  to endow the finite-element grid with an  IGFET 
personality.  Figure 10 shows  a half-grid with x-symmetry 
around the  center line x = 3.175 pm.  The nodes of the 
grid are located at integer  coordinates I X ,  I Y  with I X  = 300 
corresponding to x = 3.175 pm, I Y  = 10 000 to y = 5 pm. 
The dashed lines in Fig. 10 show the edges of the source- 
channel-drain to  substrate space  charge  layer. This grid 
has 123 nodes and 207 elements, as compared with 255 
nodes and 448 elements  for the  “rectangular” grid of Fig. 
8. Nevertheless, the special grid shows  essentially equal 
refinement in the channel region and  greater refinement in 
the  space charge layer delimited by the dashed  lines.  This 
economy  is  gained at  the  expense of a very  coarse grid 
[see upper right of Fig. 101 in the charge  neutral substrate 
region and, as will be discussed  below,  is well worth the 
price. 

Figure 1 1  shows  a  computer  perspective plot of 
loglo p(x ,  y ) ,  where p stands  for  the hole  density of (4b). 
The flat corners of the bottom of the plot represent  the 
essentially negligible hole  density in the n-type charge- 
neutral source  and drain contact regions. The  dashed 
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bow-shaped curve in the middle shows the  contour of the 
p = n, = 2 X 10” cm-3 line, i.e., the  substrate  edge of the 
IGFET depletion  region. The computation  employed the 
“rectangular” grid of Fig. 8 and  was for applied  voltages 
above threshold of V ,  = V,  = 0, V ,  = 0.1, and V,  = 4.55. 
Note  the  extensive  charge neutral substrate region where 
p = p B  = 1.5 x 10’5cm-3, except on  the charge  neutral 
substrate  implant,  where p ( x ,  y )  follows the doping pro- 
file. It may be  seen  that  the grid of Fig. 8, although  quite 
accurate in the channel  region,  exhibits a “coarse grid” 
overshoot along the x = 0 and x = 6.35-pm  lines. That  is, 
there  is  inadequate resolution of the  source-substrate  and 
drain-substrate space  charge layers.  Figure 12 illustrates 
computed results  for  the  same  IGFET  bias  case  as Fig. 
11, but with the special finite-element grid of Fig. 10. The 
only difference between Figs. 11 and 12 is  the choice of 
grid. Figure 11 shows  an  accurate  representation of the 
holes in the physically  important  channel  region. It  has 
some  “coarse grid” overshoot  on  the  sides. Figure 12, 
computed using a grid with  increased  resolution on  the 
sides,  has less “coarse  grid”  overshoot  at  the  cost of 
reduced accuracy in the channel. 

Figure 13 shows a similar  computed hole density  plot 
for  the BJT structure of Figs.  2 and 4 and  the grid of Fig. 
9. The bias  condition was emitter- and base-grounded and 
the collector at 0.4 V. 

Figure 13 shows  some roughness in the emitter-base 
space charge region (dashed  quarter-oval in Fig. 9) but, 
overall,  compares nicely with the npn BJT doping profile 
of Fig. 4. Note  the  hump in the  hole  distribution corre- 
sponding  directly to  the out-diffused nature of the  base 
diffusion, which shows  that a substantial  portion of the 
BJT base region is  charge neutral. 

6. Accuracy  and  computer  resource  requirements 
for  finite  elements 
We attempt in this section  to convey an overall picture of 
the cost-effectiveness of the finite-element method, i .e . ,  
the quantity of computer  resource required for analysis of 
a specified accuracy. To this  end we  have compiled in 
Table 1 a set of case  study  data  for  various grids  and 
finite-element types, mainly for  the numerically more 
ditficult IGFET  structure but also  for  the  expensive (NSC 

= 3 for BJT versus 2 for  IGFET analysis)  BJT structure. 
After  discussing the notation of Table  1,  we  present in 
Figs. 14 and 15 a reduction of data which explicitly shows 
the cost/accuracy  tradeoff.  Finally, in Fig. 16, we discuss 
the effect of the  formula used for  the numerical  integra- 
tion of (2c). 

Some of the  FET  data in  columns 10-14 in Table  1 are 
repeated,  for  ease of reference,  from [l]. The  case 
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Figure 14 Computed ID versus V, curves. 
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Table 1 Accuracy  and  computer  resource data. 

Accuracy  and  time  data2  Sparse-matrix  data3 

IGFET Element NY x NX  NEL  Nodes N I& Slope4  Iteration  NDOF N2,Jil ls  Mults  Storage  Setup 
type (mA) error (%) time (s) ( X  1OOO) (X 1OOO) (“bytes) time 

(SI 

U quad 14 X 16 448 957 30  30.36 - 49 1914 38.2,  112 5068 1.2 458 
S quad 7 X 16 224 495 21 29.8 1.7 22 990 18.4,  30.3 856 0.6 50 
V quad 7 X 32 448 975 30  29.9 2.5 33 1950 37.8,  84.8 3015 1.2 186 
C lin 14 X 32 8% 495 21 31.6 3.5 33.6 990 11.6,  32.5 738 0.4 54 

W 
M 
E 
F 
D 
B 
Q 
E 

quad 
quad 
quad 
quad 
lin 
lin 
quad 
lin 

7 x 8  
spec 

14 X 8 
spec 

14 X 16 
7 X 16 
4 x 4  
spec 

152 
112 
170 
224 
448 
224 
76 

152 

339 
255 
377 
493 
255 
136 
179 
94 

17  31.5 6 24 678  12.9,  18.2 
15  32 6.1 14 510  8.7 
18 31.7 6.4 15.5 754  14.6,  29.2 
21 32.6 7.1 22.1 986 
15  31.6 8.1 16.3 510  5.6,  11.7 
11 31.2 10.3 7.5 272  2.7,  3.3 
12  36.8 13 6 358 
12  33.9 21 5.1 188  1.9,  1.8 

478  1.2  62 
245  0.28  14 
940 0.4  33 

49 
225  0.4  14 

49.1  0.4 7 
8 

25.6  0.4  4 

BJT 

BIPO lin 10 x 20 400 231 20 
BIP lin  spec 95 146 9.7 

53 693 12.3,  32.6 114.2 0.3 79 
12.1 285 4.6,  3.5 72.8 0.3 54.1 

’Obtained  for 19 intepation points per triangle. 
‘IGFET drain  current for V ,  = V ,  = 0, V ,  = 0.1, V ,  = 5 V. 

’For  the SLMATH [22] Program. 
‘Slope = JI,/JV,. Error is average of error at V ,  = 3.4 and 5 V, V ,  = 0.1, V ,  = V ,  = 0 (compared to Case U) 

identification letters  in  the first column of Table 1 have 
the same meaning as in [l]. 

The N Y  X N X  column of Table 1 contains the number of 
y and x subdivisions of the grid if “rectangular,” but 
contains the notation “spec” if the finite-element grid is 
“special,” i . e . ,  locally refined. The next three columns of 
data give the number of elements (NEL)  and  nodes 
(Nodes), plus the number of subdivisions, N ,  of an 
equivalent square grid, given by 

NEL x NDEG’ 
No = 2 

where NDEG is the  degree of the  polynomial in a given 
element, i . e . ,  1 for linear  or  2  for  quadratic  elements. The 
factor 2  is present  because  the purpose of (6)  is to provide 
comparison with well-known finite-element data [27] 
which have been  compiled for rectangular, rather than 
triangular (two triangles = one rectangle),  elements. 

The seventh column in Table 1 gives ZDM, the drain 
current corresponding to V, = V, = 0,  V, = 0.1 and V, = 
5.0 V. Case U at  the  top of the  column gives what  we 
believe to  be  the  “best” answer. Next  to Z,, is  the error 
(relative to  Case U) in  the slope (or transconductance) 
az,/av, for Vs = V, = 0,  V, = 0.1,  but averaged over V, 

254 = 3,4, and 5 V. 

The ninth column gives the time in seconds required for 
one  pass through the Newton  iteration (3), on an IBM 
System 370/168 operated  under the VM (CMS) timeshar- 
ing system. All data  are  for a 19-point integration  formula 
[28] applied to  the Galerkin integrals of (2c). That  is,  the 
integrands of (2c) were evaluated at 19 selected  points 
inside  each  element and were  summed with appropriate 
weights according to  standard numerical integration  for- 
mulae. As discussed  below,  the  iteration  times are dispro- 
portionally large where  the element  count  is  large,  but to 
a good approximation the times are strongly dominated 
by the time required to solve the  sparse  system of NDOF 

linear  equations (3b). 

Solution of the sparse-matrix  equations  was  carried out 
with the SL-MATH  package [22]. The right-hand portion 
of Table 1 begins with NDOF, the rank of the Jacobian 
matrix ar/acu. N Z  [nonzero  count in arhcu of (3b)], fills 
[extra  nonzeros created in Gauss elimination of (ar/acu)], 
and Mults (multiplication count) are tabulated at  the right 
of NDoF. The  numbers shown should be multiplied by 
lo00 to get actual  counts. Thus Case U has a sparse (1914 
X 1914) matrix with 32  200 nonzeros. The LU factors of 
(ar/acu) have 38 200 + 112 000 = 150  200 nonzeros in 
Case U, representing a sparsity of  150 000/(1914 X 1914) 
X 100 = 4% in the Gaussian elimination. While still quite 
sparse, comparison with sparse-matrix data [19] for IC 
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circuit model simulation shows  that finite-element analy- 
sis of device  PDEs  leads  to substantially denser  sparse 
matrices. 

The  storage  required is quoted in megabytes. These 
data  represent nominal dimensioning. The  SL-MATH 
package would still work, but less efficiently, if less 
storage  were  provided [22]. 

The rightmost  column  gives the  sparse-matrix  prepro- 
cessing  time for ordering and symbolic factorization of ar/ 
aa. When,  as in Case U, the storage  provision is inade- 
quate,  the  preprocessing, or setup, time is disproportion- 
ally large, as was the  case in the  Newton iteration  time 
discussed above. 

To  show  more explicitly the  cost/accuracy tradeoff, we 
present in  Fig. 14 the computer ID versus V,  curves  for 
the  cases  described in Table 1 ,  and  have  plotted in Fig. 15 
the slope error of these  curves  and  the  Newton iteration 
time versus the equivalent  size parameter Nu. 

Figure 14 shows  that  the  top  four  cases in  Table 1 
produce ID versus V ,  curves which would be virtually 
indistinguishable if the  proper translation  adjustment 
were made (Section 4). The  other  cases, in good correla- 
tion to  the relative coarseness of their finite-element grid, 
show various errors in  either slope or displacement. 
Since,  as  stated in Section 4, the  absolute translation 
along the V, axis is not a critical parameter,  we  have 
chosen  the  slope  or  “transconductance”  error, averaged 
over  the 3-5 V interval,  as  the  accuracy  parameter in 
Table 1.  

Figure 15 shows  slope  error (left ordinate  scale, circled 
data points)  plotted versus the equivalent  size parameter 
No. Also plotted (right ordinate  scale) is  Newton itera- 
tion time. The time data  have been adjusted  to  remove  the 
effect of excess time spent on numerical  integration in 
cases  where  the  element  count  is large  (see  discussion of 
Fig. 16 below). The  time  data  are  compared with a plot of 
N b  seconds. The  comparison is favorable,  since it has 
been shown [23] that  the time  required to  solve  the linear 
finite-element equations  for a square grid  must increase  at 
least  as  fast  as KNm where K is a constant determined  by 
the sparse-matrix method and the computing  environ- 
ment.  Figure 16 shows  the slope error  decreasing with an 
approximately Nb dependence  also,  and suggests that 
engineering accuracy solutions  (error 4%) require 
somewhat  less  than 20 s per  Newton  iteration in the 
SAFE program. 

For  comparison,  Buturla and  Cottrell [29] have report- 
ed  an IBM  System/370 Model 165 time of 2 s each  for  the 
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Figure 16 IGFET drain current versus number of numerical 
integration points. V ,  = V ,  = 0; V ,  = 0.1; V,  = 5 V. 

Poisson’s and  continuity  equations.  However,  these 
equations  are  solved sequentially, rather  than simulta- 
neously, so several  passes through each equation are 
equivalent to  one simultaneous pass.  Convergence in 
fewer than ten  passes would be necessary  for  their 
program to  surpass  the  SAFE program in execution 
speed. This comparison is possible since  both programs 
employ the  SL-MATH [22] sparse-matrix  package.  How- 
ever,  the  SAFE  program  has  the option of using the 
compiled-code GNSO  package, which is two  to  four 
times faster  than  SL-MATH but requires twice the  stor- 
age.  Also, the  SAFE program has  the  advantage of 
offering the  option of quadratic  as well as linear  elements. 
As expected  from  the discussion of Section 6, the  data of 
Table 1 show  that  for a given  grid of nodes (compare Case 
D with Cases M and C  with Case S) quadratic elements 
are more accurate. 

Figure 16 shows  the effect of the numerical  integration 
formula [28] employed  for  the Galerkin  integrals of (2c). 
The ordinate is  the  computed drain current  for V, = V,  = 
0, V, = 0.1, V,  = 5.0 V, and  the  abscissa  is N I P ,  the 
number of points  at which the integrands of (2c) are 
evaluated.  Case U of Table 1 (448 quadratic  elements)  is 
regarded as  the  standard,  and shows about a 10% error 
for NIP = 3,  decreasing  to  the  standard  value  for NIP = 19. 
Case C (896 linear elements)  shows  an  almost  constant 
error of about 1%, indicating that integration error  is  not 255 
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Figure 17 (a) Quadratic  convergence of Newton iteration. (b) 
Effect of prediction on convergence of Newton iteration. 

the dominant error in case C. Thus the 448 quadratic 
elements of case U, with N = 31, give greater  accuracy 

256 but  require  more  accurate integration than  the linear case 

1 C. Figure 16 also  shows  that  cases with fewer elements 
(quadratic cases M and W, linear case  E)  show more 
dependence  than  the  accurate  cases C and U. 

7. The  modified Newton  iteration 
The  Newton  iteration  stated briefly in (3b) and (3c) 
converges  quadratically. That  is, if the solution to (3a) 
is a* [ i . e . ,  ifr(a*) = 01 and if I /a - a*l I equals,  say, 
on the uth pass through (3b), we should have 1 la - a*/ i < 
lo-* on  the (U + 1)st pass if u is sufficiently large.  This is 
an important feature with  regard to program  reliability, 
because  convergence  is  not only fast  but definite. With 
the sequential method discussed above, not  only is con- 
vergence  linear, but it is sometimes difficult to decide 
whether convergence has  occurred or not.  However, 
quadratic  convergence  is  ensured only if a can somehow 
arrive within a certain neighborhood of a*. The  SAFE 
program  has two safeguards to  ensure this  arrival. First, 
the full Newton  step Aa = -(ar/aa)-'r(a) is not added  as 
shown  in (3c) but a scaled Newton  step DAa is added 
instead,  where D is a diagonal matrix for which 

1, if lAanl I DALIM,, n = 1 ,  2, . . ., NDOF , 

DALIM, X SZGN(A~,) ,  if Aan > DALIMn , (7) 
D n n  = 

and the quantities D A L I M ~  are user-specified. In  the IG- 
FET problem we have  used DALIM = 0.5 for  odd values of 
n (for odd n, the an correspond  to  the  electron quasi- 
Fermi potential) and D A L Z M ~  = 2.0 for  even values of n 
(for even n, the an correspond  to  the  electrostatic poten- 
tial). 

The second  safeguard  involves  prediction of u(x, y )  for 
a new bias  condition  based on converged results  for 
previous bias conditions.  For  example,  suppose  an I ,  - 
V ,  characteristic is being generated  by the  SAFE pro- 
gram  and u(x, y )  has already  been computed  for  two 
values of V,, say, V ,  = 0 and V ,  = 0.001 V. Then if u is 
desired,  say,  at 1 V,  we  set 

i . e . ,  we perform  linear  extrapolation. As has been  demon- 
strated in [24], such linear, or even  quadratic (requiring 
three known values of u(x, y ) ,  prediction can  reduce  the 
total number of Newton iterations  required  in sweeping a 
dc I-V characteristic by a factor of 2 or more. 

The  quadratic  convergence of the  Newton  iteration,  as 
well as  the  role of the  step limitation (DALZM) and predic- 
tion  mechanisms, is illustrated in Fig. 17. Note in Fig. 
17(a) that  the  convergence is slow and  linear  for  the first 
ten Newton steps,  because of the restraint of the DAWM 

parameters.  The  case  shown ranges  from 0 to 1 V on  the 
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gate, with V, = V ,  = V ,  = 0. At the  eleventh  iteration, a 
enters  the neighborhood of a* and  quadratic convergence 
commences.  A noise level of I /a - a*/ I is reached around 

corresponding to  the 12- 13-decimal-place accuracy 
of a 370 machine in double precision. Figure 17(b) shows 
the advantageous effect of linear  prediction for a higher 
bias case (V, = 5 ,  V,  = 0, V ,  = 2, V, = 0). Note  that  the 
curve  for prediction is considerably  below the  curve  for 
the no-prediction case.  However, both curves show non- 
quadratic  convergence  due  to  the effects of the DALIM 

restriction. 

8. Transient  analysis 
In this  section we illustrate our  treatment [l] of the 
transient case, using a first-order  backward difference 
scheme in the time domain.  The method is particularly 
compatible with our  dc  steady  state program and requires 
only slightly increased storage.  Since we solve the  three 
equations  for  carriers  and potential  simultaneously by 
Newton’s method, we achieve  quadratic convergence for 
small changes in bias  conditions. 

The transient analysis mechanism,  involving storage of 
the solution at  the  previous time step,  has enabled us  to 
also implement  a linear prediction feature  into the pro- 
gram. Use of this  linear  prediction as a starting guess  for 
the  Newton’s iteration has enabled us  to achieve a 
significant reduction  in CPU time for  some  cases, namely 
a) accurate  transient analysis, and b) the sweeping out of 
computed dc I-V characteristics. 

The  set c of scalar functions is computed in terms of the 
unknown  potentials 

” = (4p, $v, 4J9 (9) 

by a subroutine GETC (cf. [I], Section 4) which can be 
user-supplied or defaulted by the  user  to a built-in ver- 
sion. The  transient analysis  capability is achieved  by 
providing in GETC for  the computation of dpldt and dnldt. 
The default  version of GETC uses the relations 

dpldt = (ap/a{,) . (d+,/dt - d$,jdt) 

= (qlkT) (d+,,/dt - d$Jdt) , 

dddt  = (aplag,) . (d$,,/dt - d+,ldt) 

(q/kT) (d$Jdt - d4Jdt) ( 10) 

for this purpose.  Here and & stand  for  the chemical 
potentials.  If  Fermi statistics  are desired it  is only  neces- 
sary  to redefine in GETC the functional dependence of p 
and n on the chemical  potentials. 

We  handle the time differentiation in (4) by means of 
the first-order  backward differentiation formula 

d+p/dt = GPP - 4pPo,d)/At 9 (1 1) 

and  use similar relations for $v and +,,. This required 
provision for  the  storage of 4po,d, t,bvOld, and  at  each 
point of the finite-element grid, and  addition of the 
calculations implied by (9) and (10) into  the default 
subroutine GETC. It is to  be noted that  the difference 
approximation (1 1) is fully implicit, ; .e . ,  A-stable [24]. 
Consequently,  the incorporation of transient analysis 
places no restriction on the maximum allowable  size of 
the finite elements. Also, since with or without  the time 
domain we solve  the semiconductor finite-element equa- 
tions simultaneously, we obtain quadratic  Newton  con- 
vergence for any size time step.  In  particular, with this 
formulation the  dc  steady  state calculations  become  a 
special  transient case  for which At + m. 

The storage of the solutions at  one backward time point 
gives us  the  opportunity  to predict the solutions at  the 
next time  point. To  do this we assume that  the solution is 
varying linearly with  time in the neighborhood of the 
current time step. We call the  current time t,, the new 
( i x . ,  next to  be computed) time step tn+l, and the 
backward  time step tn-l. Due  to our  linearity  assumption 
we may rewrite (8) as 

As we show  below, we have found that prediction is 
useful for  accurate  transient analysis and  for sweeping 
out  dc I-V characteristics. Of course,  one must be careful 
not  to  use prediction  during highly nonlinear portions of 
the transient response  unless  the time step  is suitably 
small. If this  rule is not  followed,  the  exponential nonlin- 
earities are likely to  cause overflows andor  nonconver- 
gence of the  Newton’s iteration. 

Note that when sweeping out a dc I-V characteristic, 
the potentials in the vicinity of the  ohmic  contacts of 
typical semiconductor devices will vary  linearly with the 
sweeping parameter, ; .e . ,  “track”  the applied  biases. If 
the time  variable is used  for  the sweeping parameter,  the 
condition just  stated  for effective prediction will usually 
be  met. 

We have used a device like the simple device  structure 
of Fig. 2 (except  that  the  base  contact  is on the  top 
horizontal  surface) as a model problem for demonstrating 
the transient results.  The  structure  is two-dimensional, 
and  the  base  current I ,  is flowing in the  y-direction, i .e . ,  
normal to  the  direction of flow of the  emitter  and collector 
currents IE and I,. The overall  dimensions of this npn 
structure were 4.8 pm (length) by 0.025 pm (width). For 
simplicity, we have  assumed a one-dimensional  doping 
profile typical of bipolar  technology. The  emitter and 257 
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Table 2 Summary of numerical results. 

t qV,lkT IE 4 I B  v,Iv 

0.00 28.00 1.68 1.68 0.00 - 
0.25 28.25 1.97 1.74 0.23 415 
0.50 28.50 2.22 1.86 0.35 414 
0.75 28.75 2.47 2.00 0.45 414 
1.00 29.00 2.68 2.14 0.55 314 
1.25 29.00 2.50 2.23 0.27 415 
1.50 29.00 2.49 2.30 0.18 415 

m 29.00 2.38 2.38 0.00 314 

collector junctions  were  at xJE = 2.27 pm  and xJc = 3 pm, 
and  the  peak  base doping was DBM = 1.3 X 10l6 ~ m - ~ .  

Our numerical results  are summarized in Table 2 .  The 
first  column of Table 2  gives the simulation  time  in ns, 
and  the  second column  gives the emitter  voltage, normal- 
ized to units of kTlq, which is seen  to be  a truncated ramp 
function of time. VB and V, are  set  to 0 ,  i . e . ,  grounded, 
throughout. The next three columns  give the convention- 
al terminal currents in  mA. The last  column shows  the 
effect of the prediction mechanism on  the required num- 
ber of Newton  iterations  at each  time step.  Here up stands 
for  the number of Newton iterations  with the help of 
prediction  and v for  the number  required  without  predic- 
tion. 

Three  aspects of the  data  are  to  be emphasized. 

I .  Current conservation 
The first and  last  rows of Table  2 correspond  to  dc 
steady  states.  Note  that in these  cases I ,  = I, ,  and I ,  is 
small,  indicative of current  conservation in the pres- 
ence of very low bulk  recombination rates.  Note  that 
current  conservation holds to within acceptable accu- 
racy throughout  the transient response, i . e . ,  IB = IE - 
Z,. Note  that ZB peaks when the  emitter voltage  hits its 
up level and decays  to  zero  at t + 00. This  indicates 
that  base  current flows primarily to supply the  extra 
hole  density  required to  support  the increased  value of 
collector current, in keeping with well-established 
“charge-control’’  principles of device  operation. 

2 .  Accuracy of transient response 
Note  that  the  currents  are smooth functions of time. 
This reflects the  fact that  throughout  most of the 
device the  hole quasi-Fermi  potential 4p is rising 
linearly,  essentially  tracking the collector current. 
According to  the depletion  layer theory of pn junc- 

258 tions, this  implies that  the  other  potentials  are chang- 

ing smoothly as well. This  suggests that  the time steps 
are sufficiently small to  ensure  the  accurate  current 
computation. This  has been verified by retaking the 
data of Table 2 using  twice the  time  step, i . e . ,  At = 
0.5 ns. The  results  (not shown) were essentially the 
same, which verifies the  accuracy of Table 2. Note 
that in the  last  row of Table 2 the infinite time step was 
taken with no effect on  the accuracy or stability of the 
numerical solution. This is  the  favorable result of 
choosing  a fully implicit (A-stable) difference operator 
for  the time derivatives. Similarly, it follows that  at 
any point of a transient analysis,  the dc  steady  state 
may be reached in effectively one  more time step. 
Also,  for  problems which have  convergence difficul- 
ties, the  transient analysis  mechanism can be  incorpo- 
rated into a “continuations” method of dc solution 
[24], which converts  the given  problem into a se- 
quence of easier  subproblems. 

3 .  Effect of prediction 
Note in the  last column of Table 2 that  the prediction 
mechanism has  had a significant effect on  the number 
of Newton iterations required for  the  transient analy- 
sis. Summing the  numbers in this  column  leads to  the 
conclusion that  since 26 iterations  were  required with 
prediction,  and 31 without, about a 25% improvement 
is due  to  the prediction  mechanism. 

9. Conclusions 
We have  described  the application of the  SAFE finite- 
element  program to field effect and bipolar  transistor 
modeling problems.  We have studied the problem of 
numerical  integration  inside the finite elements and have 
concluded that although relatively accurate numerical 
integration (e .g. ,  up  to 19 point  formulae) is sometimes 
required,  the integration  time is  almost always  out- 
weighed in the  overall computation  by the sparse-matrix 
code  for  the solution of the linear Newton  equations. 

We have shown that a properly modified Newton’s 
method, along with adequate grid refinement  and an 
appropriate initial guess, reliably provides definite and 
quadratic  convergence of the nonlinear iteration (usually, 
20-30 iterations or less will suffice). 

The physical  model built into  the  SAFE program  can be 
regarded as a  default  option for user-specified  physics. 
The default  physical  model,  coupled  with appropriate 
specification of the finite-element grid,  constitutes  the 
SAFE device  model.  This model has been  satisfactorily 
correlated with experiment  for  the short-channel IGFET 
device structure of Fig. 1. That  is, terminal  characteris- 
tics (1,versus V,, V,, and V,) are satisfactorily predicted, 
including voltage ranges  above  as well as below  thresh- 
old. 
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The tradeoff between accuracy and  computer  resource 
requirements has been studied for  two  alternative  sparse- 
matrix  implementations, i . e . ,  1) SL-MATH and 2) the 
compiled-code approach. Our main conclusion is that, 
although the full cost-effectiveness  potential for  the finite- 
element approach  has not  yet  been  realized, finite ele- 
ments offer a major  improvement over  comparable finite- 
difference methods. We believe (cf. Fig. 5 of Ref. 1) we 
have achieved  near-optimal efficiency when the com- 
piled-code approach  is  used in a large dedicated partition 
of core. We believe, however,  that  storage  requirements, 
which are substantial in our current sparse-matrix imple- 
mentation,  can be significantly reduced. 

Implementation and testing of a first-order  backward 
difference operator  for time differentiation and prediction 
have been discussed. Higher-order methods, cf. [l],  are 
sometimes advantageous  for  these  purposes.  The imple- 
mentation would be identical for higher-order differentia- 
tion  and  prediction, except that it would then  be neces- 
sary  to  store more than  one backward  time  value of the 
finite-element solutions. 

We believe several  avenues of profitable future work 
offer themselves. The main memory requirement of the 
sparse-matrix code could  be  substantially  improved with- 
out increasing computer time requirements.  The general- 
ized  element  method of B. Speelpenning [30] offers hope 
for such an  improvement. Other  possibilities are de- 
scribed in [31]. Finally, there is much  work that could be 
done  toward practical automatic grid selection,  coarsen- 
ing or refinement, either dynamically or by  implementa- 
tion of computer  graphics  aids, or both. It would be useful 
to  develop  an  automatic  scheme which evaluates  the 
Jacobian only when necessary  to retain quadratic conver- 
gence [31]. 
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