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Semiconductor Analysis Using Finite Elements—Part Ii:

IGFET and BJT Case Studies

Semiconductor-like Applications of Finite Elements (SAFE), a novel, nonlinear, general-purpose two-dimensional finite-
element code, is applied to problems in device modeling. Case studies of contemporary insulated gate field effect
transistor (IGFET) and bipolar junction transistor (BJT) structures are given which demonstrate the reliability,
versatility, and efficiency of finite-element methods in general and of the SAFE program in particular. The user-defined
SAFE physical model is compared with experiments on a doubly implanted short-channel IGFET. Computer experiments
are performed, indicating how to select the type, distribution, and numerical-integration method of finite elements for
maximally efficient, assured-convergence, engineering-accuracy analysis, either steady state or transient.

1. Introduction

We describe the solution of 2-D (two-dimensional) semi-
conductor device problems using SAFE [1], a program
for Semiconductor-like Applications of Finite Elements.
The key features of finite-element [1-15] (vis-a-vis finite-
difference) methods [16, 17] for two-dimensional device
analysis are ease of local grid refinement (but see
[17, 18]), ability to choose basis functions which closely
correspond to true solutions, and the smoothing proper-
ties of an integral, rather than differential, formulation.
(See [11], Chapter 1 and its references.) However, com-
plete and user-oriented exploitation of these properties
requires imposing program development costs.

We employ as vehicles in this description finite-ele-
ment case studies of insulated gate field effect transistor
(IGFET) and bipolar junction transistor (BJT) structures.
Thus we show how the user can specify (as in ASTAP
[19] analysis of integrated circuit models) the number of
equations to be solved and their analytic form (.e., type
of nonlinearities) as well as the specific structure (e.g.,
device dimensions and doping profile) to be analyzed.
Two-dimensional solutions of the Poisson’s (thermal
equilibrium of BJT or IGFET), Poisson’s and electron
continuity (n-channel IGFET), and Poisson’s and hole
and electron continuity (BJT) equations are described.

The program is so formulated that it would be a simple
matter to do simultaneous thermal analysis {14, 20] by in-
cluding the thermal continuity equation. This could be ac-
complished by specifying that four rather than three equa-
tions are to be solved, and giving a subroutine which de-
fines thermal flux in terms of temperature and its gradients.

The reliability and efficiency of the SAFE program (see
Ref. [1] for details of the computer implementation) are
documented by a treatment of our basic numerical algo-
rithm, which features 1) simultaneous (.e., fully implicit)
solution of the user-specified PDEs; 2) a quadratically
convergent Newton’s method (appropriately modified for
this application class); and 3) linear-equation solution by
direct, state-of-the-art sparse-matrix techniques [21-23].

These are sensible, probably necessary choices for a
general-purpose program. However, Buturla and Cottrell
[5] have shown that specific cases exist for which fast
convergence can be obtained solving the three semicon-
ductor equations [¢f. Eq. (4a)] sequentially, thus permit-
ting certain efficiencies. We further address the critical
question of how to select the type and distribution of the
finite elements, as well as the type and accuracy of the
basic numerical integration formula. Our goal in this
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selection is maximally efficient, engineering-accuracy,
assured-convergence analysis. Our basic Newton’s meth-
od has been modified to handle the exponential nonlinear-
ities typical of the semiconductor Poisson’s and transport
equations. We employ Newton step-limiting and predic-
tion [24] for this purpose.

In Section 2 our report begins, for completeness, with a
very brief introduction to the finite-element methods used
in the SAFE program. The reader is referred to [11] for
more detail about finite-element theory, and to [1] for the
specific algorithms of the SAFE program. Section 3
describes the user specification of the IGFET and BJT
modeling problems. In Section 4, the computed solutions
of the 2-D device are compared to experiment.

In Section 5 we discuss the selection, specification, and
refinement of finite-element grids. In Section 6 we sum-
marize our experience to date on the efficiency-versus-
accuracy tradeoff, and in Section 7 we document our
particular modifications of Newton’s method. Section 8 is
devoted to the problem of transient analysis.

In Sections 6 through 8, the SAFE program, as applied
to 2-D device analysis, is further compared with previous
work [1-9, 13-17].

2. Finite-element analysis
The SAFE program applies to problems described by a
set of NS¢ =-1 semiconductor-like PDEs of the form

VF(U, V“s X, y) - c(u; ﬁy X, }’) = 0,
(x,y) € Q, (1a)

where ) is the domain over which (1a) is to be satisfied
subject to the boundary conditions

Ulx, y) = M(x, yu(x, y) + N(x, y)7u(x, y),
(x, ) €082, (1b)
where () is the boundary of ) and 7 u is the component

of S7u normal to 4{}.

The SAFE program regards F, ¢, and u as sets with NSC
members, i.e.,

1 1
u ‘¢ F
2 2 2
u= u |, ¢= c |ILF = F . (lo)
Y NSC
NSC'u N.SCC F

Thus (1) constitutes Ns¢C partial differential equations in
NSC unknowns.

Note that each member "F,n = 1,2, - - -, NsC, of the set
F represents a generalized flux, i.e., a flow vector in a 2-D
Cartesian space, whereas "u and "¢ are scalars.
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Finite-element methods gain their special characteris-
tics from two key properties. First, they include subdivi-
sion of the domain Q of the PDE into a union of
subdomains O, [ = 1, 2, - - -, NEL (number of elements),
called ‘‘finite elements,’’ i.e.,

NEL
0= lU o' (22)

=1
The Q' are polygons (usually triangles) with vertices
called ““nodes” of the approximation. Second, finite-
element methods approximate the solution, u, of (1) in
terms of basis functions ¢, (x, ¥), n = 1, 2, - -+, NDOF
(mumber of degrees of freedom), each of which are
polynomials in each finite element o ie.,

NDOF

ux,y) = X ab,xny). (2b)
n=1

Usually the ¢,(x, y) are nonzero only on a small subset of

the Q. The coefficients a, of this expansion are called

“‘generalized coordinates,”” and each is uniquely associat-

ed with the unknown function u, evaluated at a certain

node of the approximation, viz.,

ulx,,y,) =a,.

Sometimes more than one generalized coordinate is
associated with a given node, and sometimes «, stands
for a spatial derivative or other function of u, rather than
for u itself. The generalized coordinates are determined
by the Galerkin conditions

r(a)

J ¢,V - F — )dQ
i)

J ¢ F - doQ — J Vo, F+ ¢,c)dQ
2 1]

=0, n=1,2,--, NDOF . 2¢)

As NDOF becomes larger, the PDE residual 7 - F — cis
annihilated by (2¢) in an increasingly larger function
space. In view of the approximation (2b), (2¢) represents
NDOF X NsC nonlinear equations in NDOF X NSC un-
knowns, which can be expressed in the vector form

rie) =0. (3a)

Note that each component of the arrays r and e« is thought
of as an Nsc-member set in the sense of (Ic). The
Galerkin equations (2¢) are solved by the Newton itera-
tion

or(a)

-a‘a— Aa = —r(a@) , (3b)

a=qa+ Ax. (3¢)
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Figure 1 Ion-implanted IGFET structure.
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Figure 2 Buried-collector BJT structure.
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Figure 3 Log-doping double-implant IGFET. D, = 4 x 10",
Dy, = 4 x 10, Dy = 1.5 x 10% D, = —1 x 10' D, = —4

x 10" D, = —1 x 10 ¥, = 1.7 um.
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The Jacobian dr/da is a sparse matrix because the ¢, were
assumed to have compact support, i.e., to be nonzero
over a small portion of the finite elements Q.

3. IGFET and BJT modeling problems

The specific analytic forms of F and ¢ are not built into the
SAFE program but, as described in [1], are given by user-
specified program modules GETF and GETC. For dc steady
state (i = 0) IGFET and BJT modeling problems we shall
use the customary (see for example [1-10, 14-17, 25])
forms

¥, —gqlp — n + D(x, y)]
u=| ¢, |, ¢= —gqR(p, n)
| ¢ +gR(p, n)
[ <y,
F=| qu,nV¢,
| PV b, (42)

where t, is the potential referenced to the valence band
edge, ¢ (¢,) is the hole (electron) quasi-Fermi level, p, n,
and D are the hole, electron, and ionized impurity densi-
ties where

n=Ngexp [qlp, — &, — Vi, kT ],

p =Ny explg(é, — ¢ kT ],

Bo = Baol/(1+ o V|V ),

Py = yo/(L+ p0 [V /V,0),

R(p,n) = (pn — m)fr,(n + ny) + 7.(p + pp)). (4D

The remaining undefined quantities are appropriate phys-
ical constants taken from Sze [26].

The parameter NSc, which determines the number of
equations and unknowns, is set by the user. For NsC = 1,
SAFE solves the 2-D semiconductor Poisson’s equations.
If Nsc = 2, the n-channel IGFET equations are used (add
the electron continuity equation), and if NSC is set to 3,
the BJT equations (also add the hole continuity equation)
are solved. The IGFET and BJT device structures to be
analyzed are shown in Figs. 1 and 2. The forms assumed
for the doping profile D(x, y) in these problems are
illustrated by the perspective plots of Figs. 3 and 4.

Boundary conditions are user-specified by a program
module GETBCO, which essentially gives U, M, and N for
each given point (x, y), after testing to see if (x, y) € 9Q2.
Note that U, M, and N are Nsc-member sets like F, ¢, and
u. On the source contact of the IGFET structure of Figs.
1 and 3 we have specified the Dirichlet conditions
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e 1 0
Ulxg, v5) = | Vo |s Mxg, y9) = 1 |, Nlxg, ) = | 0|,

v, 1 0

where V. is the voltage applied to the source (see Fig. 1)
and s, is given by the usual zero space charge condition

p—nt D(xS’ yS) =0, (5b)

with p and n, specified by (4b), considered as functions of
. Similar expressions apply to the drain and substance
contact regions of 4().

On the part of 3{) not covered by metal contacts, we
have specified the ‘‘natural’ or “‘zero-flux’ conditions

0 0 1]
U= 0], M=| 0}, N=}|1 (5¢)
o 0 1|
At the gate contact, we have the mixed conditions
T Ve + QuT/e, 1]
U= 0 , M= 01,
_ 0 0
[ - Toeyl€n
N= 1 , (5d)
| 1

where T = |Y, | (Fig. 1), ¢, and ¢, are the appropriate
dielectric constants, and Q is the equivalent charge
‘‘sheet density’’ localized at the interface between the
IGFET channel and the gate oxide. Note that the top
expressions in (5d) are easily derived from Gauss’s law
applied to the interface layer, and from the assumption of
space-independent electric field in the oxide.

A similar treatment (except for the oxide) has been
applied to boundary conditions for the BJT structure of
Figs. 2 and 4.

4. Correlation of 2-D finite-element models to experi-
ment

The usual method of adjusting the parameters of a two-
dimensional IGFET program to match experimental data
is to run a series of I calculations at drain and substrate
voltages that are fixed and low (typically 0.1 V and 0 V)
for values of V, just above threshold. The source is
grounded, i.e., V, = 0. In this region, the voltages are so
low we expect to see no complications due to the mobility
being affected by the field. By plotting I, as a function of
V., we expect to obtain a straight line which can be
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Figure 4 Log-doping BJT structure. D = 1 X 10D, = -1 x
10%; D, = -5 x 10% D, = 1 x 10™.
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Figure 5 Theory versus experiment for first-order mobility
model. V, =0V; V, =0.1V.

extrapolated to find the threshold voltage of the program.
This program threshold voltage will in general be offset
from the device threshold voltage. The offset exists
because the programs do not include the work-function
difference between the gate metal and the semiconductor
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Figure 6 Correlation of effect of substrate voltage. V,, = 0.1 V.
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Figure 7 Comparison of computed and measured I, versus V,,
IGFET characteristics. V, = 455V; V, = 0V; p, = p, =
(nfi2 x 10*) em™.
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or the surface interface charge. The offset should be
consistent with typical values of these quantities.

The results of efforts to match the SAFE program
theory to an experimental IGFET characterized by the
data of Figs. 1 and 3 are shown in Fig. 5. The threshold
voltage of the calculated curves (crosses and triangles)
was shifted from 2.1 V to 0.6 V to match the data. The
justification for this shift is that the program does not
include the work-function difference between the alumi-
num gate metal and the silicon, or the surface charge
density. Also, the SAFE program uses the valence band
in the semiconductor, instead of midgap, as its potential
reference. This difference in reference level accounts for
0.54 V of the shift. The work-function difference could
account for about 1.0 V. For example Sze ([26], p. 472)
gives 0.9 V as the shift in threshold voltage for aluminum
on 1 X 10 uniformly doped n-type silicon with 50 nm
oxide. A more detailed calculation using 40 nm oxide and
the actual implanted profile will be necessary to deter-
mine the specific shift in the structure of Fig. 1 caused by
work-function difference. Finally, a surface charge densi-
ty of Q. /g = 1 x 10"cm® [Eq. (3c)] would give a
threshold shift of 0.18 V. Hence the shift of 1.5 V is not
unreasonable, 1.54 + 0.18 = 1.7.

The dashed curve (crosses in Fig. 5) corresponds to a
constant g _, value [Eq. (4b)] of 540 cm®V-s. Although
this value is much lower than the value of about 900 cm?%
V-s that is expected in a bulk sample doped at the level of
1-4 x 10" cm™, as in the channel region of Fig. 3, it is
not inconsistent with the values of ‘‘effective mobility”
commonly quoted in reports on IGFET analysis. Howev-
er, the experimental curve bends over at high gate
voltages, suggesting that the ‘‘effective mobility”’ de-
creases with increasing gate voltage [16].

Having established the I, versus V, transfer character-
istics of the IGFET, we can now check whether our
model displays the proper dependence of drain current on
the drain and substrate voltages V,, and V. Figure 6
shows the I versus V characteristics for V; = +0.1V,
and for V; = 0 V (as in Fig. 5) and V; = —5 V. Note that
the computed currents are properly displaced to the right
(crosses in Fig. 6) for V, = —5 V, in agreement with
experiment. Figure 7 shows the computed (crosses) and
experimental I versus V,, characteristics for V, = 0V,
Vi, = 4.55 V. Again satisfactory agreement with experi-
ment is obtained.

5. Finite-element grids and sample solutions

We shall refer to a particular decomposition, Eq. (2a), of
the domain Q of a given problem as a finite-element grid.
Grid selection is a key aspect of finite-element analysis of
semiconductor devices, just as it is for finite-difference
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methods. In semiconductor device analysis it is generally
necessary (for accuracy, not for stability) to have a finely
spaced grid wherever extreme values or slopes of doping,
space charge, current density, or electric field occur.
IGFET analysis [5-9, 16] is especially difficult because of
the extreme confinement of the conducting channel at
high gate voltages. Channel widths of 2 nm are typical,
whereas channel lengths and source junction depths are
on the order of micrometers.

In the SAFE program, the user has two options in
specifying the finite-element grid, as illustrated in Figs. 8-
10. The first, and most convenient, option is to specify a
“‘rectangular’” grid of triangular finite elements. In this
case the user specifies Nx and Ny, the number of x and y
subdivisions, and two tables, TABLX and TABLY, giving
AX(),i=1,2,---,Nxand AY(j),j=1,2,--+,Ny. Thus
the domain Q is subdivided into rectangular subregions,
just as in finite-difference methods. The SAFE program
then further subdivides each rectangular subregion into
two triangles. Such ‘‘rectangular’’ finite-element grids for
the FET structure of Figs. 1 and 3 and for the BIT
structure of Figs. 2 and 4 are shown in Figs. 8 and 9,
respectively, which are discussed below.

The second, and most efficient, user option in the
SAFE program is to specify the triangular elements
individually, giving for each element the names of nodal
points its vertices will lie on. Then, the user specifies a
list of the intended x and y coordinates of each nodal
point. Triangulation is obtained automatically using the
so-called Vornoi diagram, which is valid in the 3-D case
(and even higher-dimensional cases) as well. (Briefly, the
Vornoi diagram is a geometric construction for locating n
+ 1 points which are mutually closest in an n-dimensional
Euclidian space.) In this case, arbitrary local refinement
of any given subregion of () is possible. That is, the grid
may be fine in regions of interest and coarse in regions
such as charge neutral contact regions, where not much
electronic action is taking place, thus permitting finite-
element analysis with a minimum number of elements.
Such a ‘“‘special” finite-element grid, defined for the
IGFET structure of Figs. 1 and 3, is shown in Fig. 10.

Note in the “‘rectangular’’ grid of Fig. 8 that the grid in
the x-direction is uniform, whereas the spacing in the y-
direction is so fine that the triangles become indistin-
guishable near the gate contact. Our numerical experi-
ments have shown that such hyper-refinement of the grid
in the IGFET channel is necessary for accurate current
computation. However, the aspect ratio of the thinnest
rectangles is (6.35 um/16) to (0.005 wm), or about 800 to
1. Since ([11], Chapter 1) the error in finite-element
approximation is in some cases inversely proportional to
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Figure 8 16 X 14 (NX x NY) rectangular IGFET grid (entire
6.35-um X 5-um grid).

Emitter Yot Base

"J Collector

Figure 9 7 X 10 (NX x NY) rectangular BJT grid.
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Figure 10 Special (locally refined) IGFET grid (entire half-
grid).
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Figure 11 Log hole density for IGFET rectangular grid of Fig.
B Vy=V;=0;,V,=01V; V., =455V,

Figure 12 Log hole density for IGFET special grid.

the smallest angle in the approximation, the numerical
results for such a grid must be looked at carefully. (See
Section 6 for a discussion of such accuracy problems.)
Also, note that there is no special refinement around the
source-substrate and drain-substrate metallurgical junc-
tions [dashed quarter circles in Fig. 8].
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Figure 13 Log hole density for BJT.

The “‘rectangular’’ 7 x 10 BJT grid of Fig. 9 is specially
refined about the emitter-base junction (dashed quarter-
oval in Fig. 9). The horizontal dashed line represents the
collector-base junction. However, the limitations of the
rectangular grid are apparent in the sub-rectangles (cir-
cled in Fig. 9) defined AY, _ and AX, .. The refinement of
the elements in these sub-rectangles is unnecessary, since
the refinement in the y-direction was needed only to
resolve the emitter-base sidewall injection.

The ‘‘special”” IGFET grid [Fig. 10] illustrates an
attempt to endow the finite-element grid with an IGFET
personality. Figure 10 shows a half-grid with x-symmetry
around the center line x = 3.175 um. The nodes of the
grid are located at integer coordinates Ix, IY with 1x = 300
corresponding to x = 3.175 um, 7y = 10 000 to y = 5 um.
The dashed lines in Fig. 10 show the edges of the source-
channel-drain to substrate space charge layer. This grid
has 123 nodes and 207 elements, as compared with 255
nodes and 448 elements for the ‘‘rectangular’’ grid of Fig.
8. Nevertheless, the special grid shows essentially equal
refinement in the channel region and greater refinement in
the space charge layer delimited by the dashed lines. This
economy is gained at the expense of a very coarse grid
[see upper right of Fig. 10] in the charge neutral substrate
region and, as will be discussed below, is well worth the
price.

Figure 11 shows a computer perspective plot of
log,, p(x, y), where p stands for the hole density of (4b).
The flat corners of the bottom of the plot represent the
essentially negligible hole density in the n-type charge-
neutral source and drain contact regions. The dashed
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bow-shaped curve in the middle shows the contour of the
p=n=2x 10" cm ’line, i.e., the substrate edge of the
IGFET depletion region. The computation employed the
“rectangular’’ grid of Fig. 8 and was for applied voltages

!
B

|

H
above threshold of Vy = V, =0, V, = 0.1, and V,, = 4.55. 0ok —[C \1%
Note the extensive charge neutral substrate region where [‘S{I F
p = py = 1.5 x 10" cm™, except on the charge neutral v
substrate implant, where p(x, y) follows the doping pro-
file. It may be seen that the grid of Fig. 8, although quite
accurate in the channel region, exhibits a ‘‘coarse grid”’

20

overshoot along the x = 0 and x = 6.35-um lines. That is,
there is inadequate resolution of the source-substrate and
drain-substrate space charge layers. Figure 12 illustrates
computed results for the same IGFET bias case as Fig.
11, but with the special finite-element grid of Fig. 10. The
only difference between Figs. 11 and 12 is the choice of 10’—
grid. Figure 11 shows an accurate representation of the
holes in the physically important channel region. It has
some ‘‘coarse grid’’ overshoot on the sides. Figure 12,

Threshold voltage
spread =200 mV

<
computed using a grid with increased resolution on the g
. “ (O LE) 2
sides, has less ‘‘coarse grid’’ overshoot at the cost of = 0 1 i
reduced accuracy in the channel. 0 ! 2 3 4 3
Vo (V)

Figure 13 shows a similar computed hole density plot
for the BJT structure of Figs. 2 and 4 and the grid of Fig. Figure 14 Computed I, versus V curves.
9. The bias condition was emitter- and base-grounded and
the collector at 0.4 V.

Figure 13 shows some roughness in the emitter-base
space charge region (dashed quarter-oval in Fig. 9) but,
overall, compares nicely with the npn BJT doping profile
of Fig. 4. Note the hump in the hole distribution corre-
sponding directly to the out-diffused nature of the base
diffusion, which shows that a substantial portion of the
BJT base region is charge neutral. 3

6. Accuracy and computer resource requirements ©
for finite elements

We attempt in this section to convey an overall picture of
the cost-effectiveness of the finite-element method, i.e.,
the quantity of computer resource required for analysis of 20k ® 430
a specified accuracy. To this end we have compiled in @
Table 1 a set of case study data for various grids and
finite-element types, mainly for the numerically more 20

20
difficult IGFET structure but also for the expensive (NSC \
= 3 for BJT versus 2 for IGFET analysis) BJT structure. M
®®W

ETv] o ~140

A
Elongated grid

After discussing the notation of Table 1, we present in
Figs. 14 and 15 a reduction of data which explicitly shows
the cost/accuracy tradeoff. Finally, in Fig. 16, we discuss
the effect of the formula used for the numerical integra-
tion of (2c).

10~ -10

2ly,/2V error (%)
Time per iteration (s)

0 10 20 30

N
Some of the FET data in columns 10-14 in Table 1 are °
repeated, for ease of reference, from [1]. The case Figure 15 The accuracy/iteration-time tradeoff. 253
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Table 1 Accuracy and computer resource data.

Accuracy and time data®

Sparse-matrix data®

IGFET Element NY x NX NEL Nodes N I}, Slope* Iteration NDOF NZ,fills Mults  Storage  Setup
type (mA) error (%) time (s) (x1000) (x1000) (M-bytes) time
. . (s}
U quad 14 X 16 448 957 30 30.36 —_ 49 1914 38.2, 112 5068 1.2 458
S quad 7 % 16 224 495 21 29.8 1.7 22 990 18.4, 30.3 856 0.6 50
\'% quad 7 % 32 448 975 30 29.9 2.5 33 1950 37.8,84.8 3015 1.2 186
C lin 14 x 32 896 495 21 31.6 3.5 33.6 990 11.6,32.5 738 0.4 54
w quad spec 152 339 17 31.5 6 24 678 12.9, 18.2 478 1.2 62
M quad 7x8 112 255 15 32 6.1 14 510 8.7 245 0.28 14
E quad spec 170 377 18 31.7 6.4 15.5 754 14.6, 29.2 940 0.4 33
F quad 14 x 8 224 493 21 32.6 7.1 22.1 986 49
D lin 14 X 16 448 255 15 31.6 8.1 16.3 510 5.6, 11.7 225 0.4 14
B lin 7 X 16 224 136 11 31.2 10.3 7.5 272 2.7,3.3 49.1 0.4 7
Q quad 4 X 4 76 179 12 36.8 13 6 358 8
E lin spec 152 94 12 339 21 5.1 188 1.9, 1.8 25.6 0.4 4
BIJT
BIPO lin 10 x 20 400 231 20 53 693 12.3, 32.6 114.2 0.3 79
BIP lin spec 95 146 9.7 12.1 285 4.6,3.5 72.8 0.3 54.1

'IGFET drain current for Vy = V, =0,V = 0.1,V =5V,
2Qbtained for 19 integration points per triangle.
3For the SL-MATH [22] Program.

“Slope = 91,,/aV . Error is average of errorat V, = 3.4and 5V, V = 0.1, V, = V, = 0 (compared to Case U).

identification letters in the first column of Table 1 have
the same meaning as in [1].

The NY X NX column of Table 1 contains the number of
y and x subdivisions of the grid if ‘‘rectangular,” but
contains the notation ‘*spec’’ if the finite-element grid is
‘“‘special,” i.e., locally refined. The next three columns of
data give the number of elements (NEL) and nodes
(Nodes), plus the number of subdivisions, N, of an
equivalent square grid, given by

NEL X NDEG®
No= "2 ©
where NDEG is the degree of the polynomial in a given
element, i.e., 1 for linear or 2 for quadratic elements. The
factor 2 is present because the purpose of (6) is to provide
comparison with well-known finite-element data [27]
which have been compiled for rectangular, rather than
triangular (two triangles = one rectangle), elements.

The seventh column in Table 1 gives I, the drain
current correspondingto V=V, =0,V ,=0.1and V, =
5.0 V. Case U at the top of the column gives what we
believe to be the “‘best’” answer. Next to I, is the error
(relative to Case U) in the slope (or transconductance)
al,/aV,for Vg =V, =0, V, = 0.1, but averaged over V
=3,4,and 5 V.
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The ninth column gives the time in seconds required for
one pass through the Newton iteration (3), on an IBM
System 370/168 operated under the VM (CMS) timeshar-
ing system. All data are for a 19-point integration formula
[28] applied to the Galerkin integrals of (2c¢). That is, the
integrands of (2c) were evaluated at 19 selected points
inside each element and were summed with appropriate
weights according to standard numerical integration for-
mulae. As discussed below, the iteration times are dispro-
portionally large where the element count is large, but to
a good approximation the times are strongly dominated
by the time required to solve the sparse system of NDOF
linear equations (3b).

Solution of the sparse-matrix equations was carried out
with the SL-MATH package {22]. The right-hand portion
of Table 1 begins with NDOF, the rank of the Jacobian
matrix dr/d«. NZ [nonzero count in or/da of (3b)], fills
[extra nonzeros created in Gauss elimination of (dr/oa)),
and Mults (multiplication count) are tabulated at the right
of NDOF. The numbers shown should be multiplied by
1000 to get actual counts. Thus Case U has a sparse (1914
X 1914) matrix with 32 200 nonzeros. The LU factors of
(dr/da) have 38 200 + 112 000 = 150 200 nonzeros in
Case U, representing a sparsity of 150 000/(1914 x 1914)
x 100 = 4% in the Gaussian elimination. While still quite
sparse, comparison with sparse-matrix data [19] for IC
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circuit model simulation shows that finite-element analy-
sis of device PDEs leads to substantially denser sparse
matrices.

The storage required is quoted in megabytes. These
data represent nominal dimensioning. The SL-MATH
package would still work, but less efficiently, if less
storage were provided [22].

The rightmost column gives the sparse-matrix prepro-
cessing time for ordering and symbolic factorization of or/
da. When, as in Case U, the storage provision is inade-
quate, the preprocessing, or setup, time is disproportion-
ally large, as was the case in the Newton iteration time
discussed above.

To show more explicitly the cost/accuracy tradeoff, we
present in Fig. 14 the computer I, versus V,, curves for
the cases described in Table 1, and have plotted in Fig. 15
the slope error of these curves and the Newton iteration
time versus the equivalent size parameter N[.

Figure 14 shows that the top four cases in Table 1
produce I, versus V curves which would be virtually
indistinguishable if the proper translation adjustment
were made (Section 4). The other cases, in good correla-
tion to the relative coarseness of their finite-element grid,
show various errors in either slope or displacement.
Since, as stated in Section 4, the absolute translation
along the V, axis is not a critical parameter, we have
chosen the slope or ‘‘transconductance’’ error, averaged
over the 3-5 V interval, as the accuracy parameter in
Table 1.

Figure 15 shows slope error (left ordinate scale, circled
data points) plotted versus the equivalent size parameter
N Also plotted (right ordinate scale) is Newton itera-
tion time. The time data have been adjusted to remove the
effect of excess time spent on numerical integration in
cases where the element count is large (see discussion of
Fig. 16 below). The time data are compared with a plot of
NaD seconds. The comparison is favorable, since it has
been shown [23] that the time required to solve the linear
finite-element equations for a square grid must increase at
least as fast as KNBD where K is a constant determined by
the sparse-matrix method and the computing environ-
ment. Figure 16 shows the slope error decreasing with an
approximately N:’D dependence also, and suggests that
engineering accuracy solutions (error <5%) require
somewhat less than 20 s per Newton iteration in the
SAFE program.

For comparison, Buturla and Cottrell [29] have report-
ed an IBM System/370 Model 165 time of 2 s each for the
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Figure 16 IGFET drain current versus number of numerical
integration points. V, =V, =0; V;=0.1; V,=5V.

Poisson’s and continuity equations. However, these
equations are solved sequentially, rather than simulta-
neously, so several passes through each equation are
equivalent to one simultaneous pass. Convergence in
fewer than ten passes would be necessary for their
program to surpass the SAFE program in execution
speed. This comparison is possible since both programs
employ the SL-MATH [22] sparse-matrix package. How-
ever, the SAFE program has the option of using the
compiled-code GNSO package, which is two to four
times faster than SL-MATH but requires twice the stor-
age. Also, the SAFE program has the advantage of
offering the option of quadratic as well as linear elements.
As expected from the discussion of Section 6, the data of
Table 1 show that for a given grid of nodes (compare Case
D with Cases M and C with Case S) quadratic elements
are more accurate.

Figure 16 shows the effect of the numerical integration
formula [28] employed for the Galerkin integrals of (2¢).
The ordinate is the computed drain current for V, = vV =
0, V, =0.1, V, = 5.0V, and the abscissa is NP, the
number of points at which the integrands of (2c) are
evaluated. Case U of Table 1 (448 quadratic elements) is
regarded as the standard, and shows about a 10% error
for NIP = 3, decreasing to the standard value for N1P = 19,
Case C (896 linear elements) shows an almost constant
error of about 1%, indicating that integration error is not
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Figure 17 (a) Quadratic convergence of Newton iteration. (b)
Effect of prediction on convergence of Newton iteration.

the dominant error in case C. Thus the 448 quadratic
elements of case U, with N = 31, give greater accuracy
but require more accurate integration than the linear case
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C. Figure 16 also shows that cases with fewer elements
(quadratic cases M and W, linear case E) show more
dependence than the accurate cases C and U.

7. The modified Newton iteration

The Newton iteration stated briefly in (3b) and (3¢)
converges quadratically. That is, if the solution to (3a)
is ot [i.e., if r(a*) = 0] and if | |« — a*| | equals, say, 107
on the vth pass through (3b), we should have | ja — ax| | <
107 on the (v + 1)st pass if v is sufficiently large. This is
an important feature with regard to program reliability,
because convergence is not only fast but definite. With
the sequential method discussed above, not only is con-
vergence linear, but it is sometimes difficult to decide
whether convergence has occurred or not. However,
quadratic convergence is ensured only if @ can somehow
arrive within a certain neighborhood of ax. The SAFE
program has two safeguards to ensure this arrival. First,
the full Newton step Aa = —(r/da) r(a) is not added as
shown in (3¢c) but a scaled Newton step DA« is added
instead, where D is a diagonal matrix for which

1,2, +, NDOF ,

[1, if |Aa,| = DALIM , h =

DALIM, X SIGN(Aw,), if Aa, > DALIM, , @)

and the quantities DALIM , are user-specified. In the IG-
FET problem we have used pALiM = 0.5 for odd values of
n (for odd n, the a, correspond to the electron quasi-
Fermi potential) and paLim, = 2.0 for even values of n
(for even n, the a, correspond to the electrostatic poten-
tial).

The second safeguard involves prediction of u(x, y) for
a new bias condition based on converged results for
previous bias conditions. For example, suppose an I, —
V,, characteristic is being generated by the SAFE pro-
gram and u(x, y) has already been computed for two
values of V,, say, V;, = 0 and V, = 0.001 V. Then if u is
desired, say, at 1 V, we set

_ oo ~ Yo
u,(x, y) = uy 40,00, ¥) + —-——(0'001 ~0) (1 - 0.001), 8)
i.e., we perform linear extrapolation. As has been demon-
strated in [24], such linear, or even quadratic (requiring
three known values of u(x, y), prediction can reduce the
total number of Newton iterations required in sweeping a
dc I-V characteristic by a factor of 2 or more.

The quadratic convergence of the Newton iteration, as
well as the role of the step limitation (DALIM) and predic-
tion mechanisms, is illustrated in Fig. 17. Note in Fig.
17(a) that the convergence is slow and linear for the first
ten Newton steps, because of the restraint of the DALIM
parameters. The case shown ranges from 0 to 1 V on the
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gate, with V, = V, = V| = 0. At the eleventh iteration,
enters the neighborhood of a* and quadratic convergence
commences. A noise level of | @ — ax||is reached around
107", corresponding to the 12-13-decimal-place accuracy
of a 370 machine in double precision. Figure 17(b) shows
the advantageous effect of linear prediction for a higher
bias case (V;, = 5, V; =0, V, = 2, V, = 0). Note that the
curve for prediction is considerably below the curve for
the no-prediction case. However, both curves show non-
quadratic convergence due to the effects of the pALIM
restriction.

8. Transient analysis

In this section we illustrate our treatment [1] of the
transient case, using a first-order backward difference
scheme in the time domain. The method is particularly
compatible with our dc steady state program and requires
only slightly increased storage. Since we solve the three
equations for carriers and potential simultaneously by
Newton’s method, we achieve quadratic convergence for
small changes in bias conditions.

The transient analysis mechanism, involving storage of
the solution at the previous time step, has enabled us to
also implement a linear prediction feature into the pro-
gram. Use of this linear prediction as a starting guess for
the Newton’s iteration has enabled us to achieve a
significant reduction in CPU time for some cases, namely
a) accurate transient analysis, and b) the sweeping out of
computed dc I-V characteristics.

The set ¢ of scalar functions is computed in terms of the
unknown potentials

u= (¢p’ 'l’v’ ¢n)’ ®

by a subroutine GETC (¢f. [1], Section 4) which can be
user-supplied or defaulted by the user to a built-in ver-
ston. The transient analysis capability is achieved by
providing in GETC for the computation of dp/dt and dn/dt.
The default version of GETC uses the relations

dpldt = (3plaL) - (db,/dt — dy/d1)
= (g/kT) (do fdt — dy /db) ,
dn/dt = (ap/ag,) - (dy,/dt — do /dt)
= (g/kT) (dy,/dt — do /dr) (10)

for this purpose. Here {, and { stand for the chemical
potentials. If Fermi statistics are desired it is only neces-
sary to redefine in GETC the functional dependence of p
and n on the chemical potentials.

We handle the time differentiation in (4) by means of
the first-order backward differentiation formula

dgJdt = (p, — ¢, )/At, an

Poid
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and use similar relations for y, and ¢,. This required
provision for the storage of ¢pold’ Wy and b, At each
point of the finite-element grid, and addition of the
calculations implied by (9) and (10) into the default
subroutine GETC. It is to be noted that the difference
approximation (11) is fully implicit, i.e., A-stable [24].
Consequently, the incorporation of transient analysis
places no restriction on the maximum allowable size of
the finite elements. Also, since with or without the time
domain we solve the semiconductor finite-element equa-
tions simultaneously, we obtain quadratic Newton con-
vergence for any size time step. In particular, with this
formulation the dc steady state calculations become a
special transient case for which At — oo,

The storage of the solutions at one backward time point
gives us the opportunity to predict the solutions at the
next time point. To do this we assume that the solution is
varying linearly with time in the neighborhood of the
current time step. We call the current time ¢,, the new
(i.e., next to be computed) time step ¢, ,, and the
backward time step ¢,_,. Due to our linearity assumption
we may rewrite (8) as

(1,1 = ,(1) + [$,(2) — &,(2,_)])/Az,
Ar=1 -1 _ . (12)

As we show below, we have found that prediction is
useful for accurate transient analysis and for sweeping
out dc I-V characteristics. Of course, one must be careful
not to use prediction during highly nonlinear portions of
the transient response unless the time step is suitably
small. If this rule is not followed, the exponential nonlin-
earities are likely to cause overflows and/or nonconver-
gence of the Newton’s iteration.

Note that when sweeping out a dc I-V characteristic,
the potentials in the vicinity of the ohmic contacts of
typical semiconductor devices will vary linearly with the
sweeping parameter, i.e., ‘‘track’’ the applied biases. If
the time variable is used for the sweeping parameter, the
condition just stated for effective prediction will usually
be met.

We have used a device like the simple device structure
of Fig. 2 (except that the base contact is on the top
horizontal surface) as a model problem for demonstrating
the transient results. The structure is two-dimensional,
and the base current I, is flowing in the y-direction, i.e.,
normal to the direction of flow of the emitter and collector
currents I, and [.. The overall dimensions of this npn
structure were 4.8 um (length) by 0.025 um (width). For
simplicity, we have assumed a one-dimensional doping
profile typical of bipolar technology. The emitter and
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Table 2 Summary of numerical results.

t qVy/kT I I, I v, /v
0.00 28.00 1.68 1.68 0.00 —_
0.25 28.25 1.97 1.74 0.23 4/5
0.50 28.50 2.22 1.86 0.35 4/4
0.75 28.75 2.47 2.00 0.45 4/4
1.00 29.00 2.68 2.14 0.55 3/4
1.25 29.00 2.50 2.23 0.27 4/5
1.50 29.00 2.49 2.30 0.18 4/5

®© 29.00 2.38 2.38 0.00 3/4

collector junctions were at x,; = 2.27 um and x,, = 3 um,
and the peak base doping was D, = 1.3 x 10 cm™.

Our numerical results are summarized in Table 2. The
first column of Table 2 gives the simulation time in ns,
and the second column gives the emitter voltage, normal-
ized to units of k7/q, which is seen to be a truncated ramp
function of time. V, and V_ are set to 0, i.e., grounded,
throughout. The next three columns give the convention-
al terminal currents in mA. The last column shows the
effect of the prediction mechanism on the required num-
ber of Newton iterations at each time step. Here v, stands
for the number of Newton iterations with the help of
prediction and v for the number required without predic-
tion.

Three aspects of the data are to be emphasized.

1. Current conservation

The first and last rows of Table 2 correspond to dc
steady states. Note that in these cases I, = I, and I is
small, indicative of current conservation in the pres-
ence of very low bulk recombination rates. Note that
current conservation holds to within acceptable accu-
racy throughout the transient response, i.e., I, = I, ~
1. Note that I, peaks when the emitter voltage hits its
up level and decays to zero at ¢ — «. This indicates
that base current flows primarily to supply the extra
hole density required to support the increased value of
collector current, in keeping with well-established
“‘charge-control”’ principles of device operation.

2. Accuracy of transient response
Note that the currents are smooth functions of time.
This reflects the fact that throughout most of the
device the hole quasi-Fermi potential ¢, is rising
linearly, essentially tracking the collector current.
According to the depletion layer theory of pn junc-
tions, this implies that the other potentials are chang-
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ing smoothly as well. This suggests that the time steps
are sufficiently small to ensure the accurate current
computation. This has been verified by retaking the
data of Table 2 using twice the time step, i.e., At =
0.5 ns. The results (not shown) were essentially the
same, which verifies the accuracy of Table 2. Note
that in the last row of Table 2 the infinite time step was
taken with no effect on the accuracy or stability of the
numerical solution. This is the favorable result of
choosing a fully implicit (A-stable) difference operator
for the time derivatives. Similarly, it follows that at
any point of a transient analysis, the dc steady state
may be reached in effectively one more time step.
Also, for problems which have convergence difficul-
ties, the transient analysis mechanism can be incorpo-
rated into a ‘‘continuations’’ method of dc solution
[24], which converts the given problem into a se-
quence of easier subproblems.

3. Effect of prediction

Note in the last column of Table 2 that the prediction
mechanism has had a significant effect on the number
of Newton iterations required for the transient analy-
sis. Summing the numbers in this column leads to the
conclusion that since 26 iterations were required with
prediction, and 31 without, about a 25% improvement
is due to the prediction mechanism.

9. Conclusions

We have described the application of the SAFE finite-
element program to field effect and bipolar transistor
modeling problems. We have studied the problem of
numerical integration inside the finite elements and have
concluded that although relatively accurate numerical
integration (e.g., up to 19 point formulae) is sometimes
required, the integration time is almost always out-
weighed in the overall computation by the sparse-matrix
code for the solution of the linear Newton equations.

We have shown that a properly modified Newton’s
method, along with adequate grid refinement and an
appropriate initial guess, reliably provides definite and
quadratic convergence of the nonlinear iteration (usually,
20-30 iterations or less will suffice).

The physical model built into the SAFE program can be
regarded as a default option for user-specified physics.
The default physical model, coupled with appropriate
specification of the finite-element grid, constitutes the
SAFE device model. This model has been satisfactorily
correlated with experiment for the short-channel IGFET
device structure of Fig. 1. That is, terminal characteris-
tics (I versus V;, V,, and V,) are satisfactorily predicted,
including voltage ranges above as well as below thresh-
old.
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The tradeoff between accuracy and computer resource
requirements has been studied for two alternative sparse-
matrix implementations, i.e., 1) SL-MATH and 2) the
compiled-code approach. Our main conclusion is that,
although the full cost-effectiveness potential for the finite-
element approach has not yet been realized, finite ele-
ments offer a major improvement over comparable finite-
difference methods. We believe (¢f. Fig. 5 of Ref. 1) we
have achieved near-optimal efficiency when the com-
piled-code approach is used in a large dedicated partition
of core. We believe, however, that storage requirements,
which are substantial in our current sparse-matrix imple-
mentation, can be significantly reduced.

Implementation and testing of a first-order backward
difference operator for time differentiation and prediction
have been discussed. Higher-order methods, ¢f. [1], are
sometimes advantageous for these purposes. The imple-
mentation would be identical for higher-order differentia-
tion and prediction, except that it would then be neces-
sary to store more than one backward time value of the
finite-element solutions.

We believe several avenues of profitable future work
offer themselves. The main memory requirement of the
sparse-matrix code could be substantially improved with-
out increasing computer time requirements. The general-
ized element method of B. Speelpenning [30] offers hope
for such an improvement. Other possibilities are de-
scribed in [31]. Finally, there is much work that could be
done toward practical automatic grid selection, coarsen-
ing or refinement, either dynamically or by implementa-
tion of computer graphics aids, or both. It would be useful
to develop an automatic scheme which evaluates the
Jacobian only when necessary to retain quadratic conver-
gence [31].
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