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Semiconductor Analysis Using Finite Elements—Part I:
Computational Aspects

We describe the computer implementation of SAFE, a general-purpose program for finite-element analysis of systems of
nonlinear, nonvariational PDE. The form and nonlinearity of the PDE, as well as the domain, parameters, and boundary
conditions of the problem, are user-specified. We discuss the problems of numerical integration in space and in time and
describe the results of applying sparse-matrix methods to some practical problems. A method is given for unified
treatment of nonstandard finite elements such as bicubic-spline and “‘current-continuous’’ elements. We give an
assessment of the potential impact and reliability of general-purpose nonlinear finite-element programs. We conclude
from out data that as the number of elements becomes large, sparse-matrix solutions dominate the overall operation

count, even though the methods used are near-optimal for problems of moderate size.

1. Introduction

The last decade has been marked by significant advances
in two-dimensional device simulation. Recent literature
[1-11] shows that interest in this field continues apace
with the inexorable scaling down of device sizes associat-
ed with the development of VLSI and VHSIC.

We describe in this paper the computer implementation
of SAFE, a general-purpose program for Semiconductor-
like Applications of Finite Elements, [1, 12]. Our treat-
ment is analogous to George’s [13] treatment of finite-
element analysis of linear PDE (partial differential equa-
tions) deriving from a variational principle. Our program
is novel, however, in that it is general-purpose and solves
(simultaneously) systems of nonlinear PDE which are not
required to derive from a variational principle. We em-
phasize questions of implementation and efficiency which
are not specifically problem-dependent but are applicable
to a specific problem class, i.e., semiconductor device
analysis. Specific case studies of numerical solutions for
this problem class are described in a companion paper
[1]. There is a voluminous literature on finite-difference
(cf. [14] and [15] and their references) and finite-element
[16-18] approaches to this problem class, and we describe

in the sequel our reasons for believing SAFE to be com-
paratively efficient, versatile, and reliable vis-a-vis alter-
native applicable programs.

The SAFE program is ‘‘general-purpose’’ in the sense
that it is formulated to solve any set of equations of
the form

V - ‘Fu, Va) — ‘cw, @) =0, i=1,2, -, NSC
(1a)

where
= Cu, %u, - o, w), (1b)

and the Cartesian vector 'F stands for the flux of some
generalized flow, the scalar function ic for the net rate of
particle generation in the flow, and Nsc is the number of
equations.

Thus the generality of the SAFE program may be
assessed as follows. Typical semiconductor device ap-
plications may be addressed using default specifications
of F and c¢. This task may or may not be difficult for a
given problem. However, the key numerical portions of
the program, such as the sparse matrix, nonlinear itera-
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tion, and time integration algorithms, are general-purpose
and invisible to the user.

The reader should be warned in advance about the
notation we have found necessary for proper presentation
of the material. The problem is that we must deal with
vectors in several different spaces. First note that F is a
vector in physical Cartesian space. We denote the x and y
components of F by F, and F,. However, F is also
considered to be a vector in the vector space %", Each
component ‘F in this space is itself a vector in Cartesian
space. Pre-superscripts are used only for this purpose.
The ‘*->’ potation in (1a) (and throughout the sequel) thus
denotes inner product over the Cartesian space. That is,

. a9 a3 'F d'F
Ve F=(—,— | |,5|=—=+—L.
ax ~ oy F, ax ady

Similarly u is a vector in 2" whose components 'u are

scalars in Cartesian space. We shall also use the notation
o'u

U, = (VW) =V, u="—.

Wherever possible, we shall omit the presuperscript.

SAFE makes no restrictions on the algebraic form of
the dependence of F and ¢ on u, Vu, and u = du/dt, and
SAFE does not require the existence of a variational
principle for the equations solved. The form of Eq. (1) is
characteristic of the transport and Poisson’s equations
customarily used in modeling semiconductor devices and
integrated circuits [14-18] and appears as well in nuclear
reactor [19], air and water pollution [20, 21], and other
flow problems. SAFE solves the nonlinear PDE simulta-
neously using a Galerkin’s principle [22, 23]. The result-
ing nonlinear algebraic equations are solved by a modified
Newton’s method. The resulting linear system is solved
with a sparse-matrix package in which minimal degree
[24] and nested dissection [25, 26] ordering heuristics are
options. Solutions are obtained by either the variability-
typed, compiled code method [27], or the indexed fill
method of the SL-MATH package [28].

The simultaneous solution of the nonlinear equations
via direct methods ensures fully implicit solution of (1)
with a quadratically convergent Newton’s method. These
properties allow us to choose relatively gross finite-
element approximations with only engineering accuracy
rather than having a higher accuracy enforced by numeri-
cal stability limitations.

The approach used for time integration also reflects this
fully implicit philosophy. The A-stable ‘‘Backward Euler’’
method [29] is therefore employed for time discretion.
Standard methods [29] are also employed for variable
prediction, truncation error estimation, and time step
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control. First-order integration is employed, since our
concern is for fast, approximate, stable time integration,
rather than for high accuracy.

Like the linear finite-element code of George [13] and
Speelpenning [30, 31}, SAFE permits the user to specify
the type of finite-element applications used in the approx-
imation. However, SAFE lacks some of the desirable
features of these other codes: for example, curved
boundary elements and heterogeneous element popula-
tions.

So far as we know, reports on codes by Buturla and
Cottrell [16], Wilson and Tchon [17], and Barnes and
Lomax [18] comprised the first literature on the applica-
tion of finite-element methods to semiconductor applica-
tions. Buturla and Cottrell [5, 6] and Lomax et al. [2-4]
have followed this up with significant studies of 2-D
device analysis, and Buturla et al. [6-7] of 3-D analysis,
emphasizing convergence of nonlinear iterations, conser-
vation properties, etc.

Wilson and Tchon employ the interesting ‘*2-4"" bilin-
ear finite-element approximation in solving only the semi-
conductor Poisson’s equation. Barnes and Lomax solve
the semiconductor Poisson’s and electron continuity
equations using a bicubic spline basis. This basis may be
regarded as a smooth and only slightly more computation-
ally expensive extension of the piecewise linear (e.g., *‘1-
3” finite elements) approximation reported by Buturla
and Cottrell. It is to be noted that the bicubic splines, like
a bi-orthogonal basis [22, 23], require an essentially rec-
tangular grid, as in most finite-difference methods. It is
not yet clear whether the added smoothness of the
bicubic splines versus the piecewise linear basis is ade-
quate compensation for the extra computational expense,
the loss of the capability of arbitrary local refinement, and
the introduction of overshoot problems. We shall include
some results on this interesting open question. However,
emphasis in the present paper is on the general-purpose
algorithms and data structure aspects of the SAFE pro-
gram which allow it, in principle and with appropriate
user input specifications, to perform all the computations
of [2-14, 16-18].

We begin our report in Section 2 with a description of
the sparse Galerkin equations for systems of nonlinear
PDE. Section 3 describes our treatment of numerical
integration problems which are concomitant with nonlin-
ear finite-element problems. In this section we describe
our approach to transient analysis, based on Backward
Euler time integration. In Section 4 we treat the mecha-
nism which permits user specification of the number and
form of the PDE [Eq. (1)],i.e., the definition of F(u, Vu)
and ‘c(u, w),i = 1,2, - - -, NSC.
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Section 5 describes generation of the finite-element
equations and contains no new results but is necessary for
completeness in Sections 6 and 7, which include our main
results. The reader familiar with George’s Dissertation
[13] may skip this section without appreciable loss.
Section 6 describes an extension of George’s method of
generating the finite-element equations which permits a
unified treatment of elements with unusual continuity
properties, e.g., tensor product spaces such as bicubic
splines and current-continuous elements. Section 7 de-
scribes the application and performance of the SAFE
sparse-matrix package. Treated are the effects of grid size
and shape, finite-element type, boundary condition type,
and algorithms used for spare-matrix ordering and solu-
tion.

We conclude in Section 8 with an assessment of the
overall possibilities for general-purpose nonlinear finite-
element programs. Included is a discussion of the exten-
sions of the SAFE algorithms and data structure which
seem both necessary and straightforwardly possible on
the basis of our computing experience to date.

2. Sparse Galerkin equations for nonlinear, nonvaria-
tional systems of PDE
The SAFE program is intended for the class (1) of
nonlinear PDE which do not necessarily derive from a
variational principle. Therefore we employ an approxima-
tion

NDOF

ux, M =a'dp=9¢a= Y agxy), 0))

n=1

in terms of basis functions, ¢,, of an NDOF-dimensional
linear space, where NDOF is the number of degrees of
freedom. The generalized coordinates, «,, are determined
by the Galerkin conditions

J ¢,fc(u, 1, x, y) — 7 - F@u, Zu)}dQ,
0

n=1,2,:--, NDOF , €)]
where Q stands for the domain over which (1) is to be

satisfied.

The program permits boundary conditions of the form
D(x, y(x, y) + N(x, y)F\u(x, y), Valx, y)] = Ulx, y),
x,y€E N, (4a)

where 9{) stands for the boundary of Q, F, is the flux
component normal to the boundary, and D, N, and U are
problem-specific. 8() is to be regarded as the union

a0 =00, U 8Q, , (4b)

where (), is that so-called ‘“‘natural” portion of the
boundary whereon
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ux,y) = D(x,y) =0, x,y€ . (4c)

Then, taking the usual integration by parts to remove one
level of spatial derivatives, we arrive at

r(a) = J {Vo, - Fu, yu) + é,c(u, u, x, y)}dQ
[

~ f ¢ FdoQd =0, n=1,2,--., NDOF.
aqp (58.)

Eq. (5a) gives NDOF equations
ria) =0 (5b)

in the NDOF components of the unknown vector a.
Further, we decompose the domain (1 into finite elements
Qlie.,

L
o=U o, (6
=1

and require that each of the ¢ (x, y) be piecewise polyno-
mials, i.e., different polynomials in @', / = 1,2, - - -, L.
Thus we can express the conditions (5) as a summation
over the finite elements, i.e.,

r, = Z{ J Vo, F + ¢,0d0
nl

=1
—J ¢nF-daQ} =0, o)
8,

which allows us to treat one finite element at a time.
[Note that 3£, # 0 only for elements with an edge on the
non-natural portion of the boundary. In some cases, the
functions ¢, may be defined so that the boundary integral
in (7) vanishes except for functions whose generalized
coordinates are specified a priori so as to satisfy (4a). For
such functions (4a) replaces (7), so the boundary integral
never appears. |

The Galerkin eqs. (5b) are nonlinear in @ if F or ¢ is
nonlinear in u, Y/u, and are solved via a Newton iteration
in which the basic step is

ar

a—a (A = —r(a) . 8)

We now treat the mechanism by which the SAFE pro-
gram permits convenient user specification of F and c,
and, therefore, the residual vector r(«) and its Jacobian
or/da.

The Jacobian 9r/da is a sparse matrix because some of

the ¢ (x, y) are identically zero for x, y € Q. We can
represent this large sparse matrix as a summation of
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small, usually full, matrices by introducing the incidence
relation

o' =Ad, (9a)

where ¢ is the vector of global, piecewise-polynomial
basis functions and ¢’ is a vector of “‘local” basis
functions which are the restriction to Q' of those ¢, which
are nonzero in Q'. A'is a matrix of 0s and 1s with exactly
one nonzero entry in each row, and the d)in, m=1,2,---,
|&'| are polynomials. Thus for x, y € Q', Eq. (2) becomes

u=a'¢= a"¢l, o = Al (9b)

Similarly, we may define a local residual vector

f= J (Vo' F + ¢'0)d — j OF - ), (10a)
al !

aat,

whose Jacobian,

or , 9F , 9¢
R——=j (76" 70 + 9 57 )40
nl

aa Ja a
¢ oF daQ (10b)
a0l aal ’

is a full matrix. It can be shown that
!

< Tt L T ar 1
Ha) =) A (a), =Y A oA (10¢)
=1

=1

Although we have claimed to be solving Ns¢ = 1
simultaneous PDE, the notation of Eqgs. (1)-(10) has been
established for the case Nsc = 1. The extension to NSC >
1 involves, simply, the implicit understanding that each
vector component a., $,, r,, &y, d.,, or r' stands for a set
of NSC members, i.e.,

a, =col(la,2a, .., ¥SCy 2
al =col (!, %al, -+, "%y, (11a)

and similarly for ¢, r, ¢' and r'. With this in mind Egs.
(1)-(10) still make sense as NsC PDE:

v - {'F@, v} = 'c@, 4, x, ) ,

v - {F@, vw} = *c@, 4, x, y) ,

v - PR, vw} = e, v, x,3) (11b)
in the ~NsC unknown functions

Yu(x, y), fux, y), 0 Pl y) (11¢)

Note that it follows from (11a) that the approximation
(2) represents NS¢ distinct approximations in NSC distinct
NDOF-dimensional spaces. To date, we have approximat-
ed the “u(x, y) in the same NDOF-dimensional linear space,
but this is not basic to the algorithms or data structure of
the SAFE program.
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Time integration can be accomplished by setting
u(r) = Ft, t,_,u),u@_), - u_)] (11d)

for a kth-order, one-step-implicit method. In SAFE we
have chosen the particular case k = 1 (Backward Euler).
In this case (11d) becomes

u(r) = [u(r) — uw(z,_))/At, (11e)
At=1t —1t_, . (11f)

As we shall see in Section 4, implementation of (11e) and
(11f) is quite straightforward. Note that the usual difficul-
ties of transient analysis are avoided by virtue of the fact
that the Backward Euler method is ‘‘A-stable’ [29]. The
only difficulty of implementation involves the control of
At during the transient analysis. We use the same linear-
predictor, Newton corrector scheme described in [29].

3. Numerical volume and surface integrals

Note that (10) requires a volume integral over each finite
element O, and depending on the location of the element,
a surface integral over its boundary a0} as well. Whereas
George ([13], p. 72) was able to give exact formulae for
these integrals because his problem class was linear, the
form of Eq. (1) requires numerical integration. The SAFE
program represents integration formulae in the general-
ized form

NIP
J glx, ydQ = QY Y Wglx,y), (12a)
o i=1
where
[oX ij aa . (12b)
ﬂl

Here NIP is the number of distinct points (x;, y) € o
where the integrand g(x, y) is to be evaluated and added
with weight W, to the integral. In SAFE, the numerical
integration formula chosen by the user (or defaulted) is
modularly imbedded in a subroutine GETXYW. GETXYW
performs (12b) and, given the data structure for Qo
determines the coordinates (x,, y) of the points with
weight W, for the operative integration formulae.

For example, if Qlis a triangle A of area A, and we use
a ‘‘1-point” integration formula, we have nyiP = 1, W, =
1, and

J glx, y)dQ = Aglx,, y)) , (13a)
A

where (x,, y,) is the centroid of A. Similarly, if Qlisa
triangle subdivided at its centroid into the union of three
triangles with centroids (x,,, y,), MP = 3, W, = 1/3, and
A 3

N > glx Yo - (13b)

i=1

J g(x, y)dQ} =
A
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NIP=3
30+ X

200~

10— X

Error (%)

=

I/
Xz

NIP

Figure 1 Percentage error in integrated transverse flux as a
function of number of integration points, with the error at NIP =
19 defined as zero.

Figure 1 shows the dependence of an error measure of the
solutions of (1) on the number of integration points (for a
practical problem for which the Q' were triangles and the
Nsc = 2 PDE were of the ‘‘exponential-nonlinearity”’
type typical of semiconductor modeling problems, cf.
[17], below. The error measure plotted in Fig. 1 is not the
approximation error of (12a), but is the error incurred in
computing the integrated transverse flux or ‘‘current,”

IX = f 'F ('u, *u, ‘u)dy ,
T=x,

crossing the grid line x = x,, which is a global functional
of the L ,- The error in Fig. 1 was defined to be zero for
NIP = 19, and the plot shows that the choice of integration
formula is a crucial step in solving practical nonlinear

PDE with finite-element methods.

Note from (10b) that the sparse Jacobian dr/de may be
expressed as the double summations
NIP

oF
2ot y)+ ¢ o y)

NBIP' F
laﬂ I ZWM[ l (xj’ yj):” (14)

where F,, stands for the component of the generalized flux
vector F(u, syu) which is normal to the boundary a€)".
Note that a separate integration formula, characterized
by (W,,, x, ypi=12, -, NBIP) is required for the
boundary integral in (10b). A similar expression applies to
(10a).
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4. User specification of the form of F (u, Vu) and
c(u, u, x, y)

It may be observed from the double summation form of
Eq. (14) that the particular identity of a given problem
[i.e., the specification of the form of (1)], is completely
determined by the values of F, ¢, 3F/aa’, and ac/da’ which
occur at the integration points x;, y,- To see how the form
of (1) may be user-specified, we note that if ¢ is indepen-
dent of u,

=== == dkxy. (152)
A similar result obtains if ¢ depends on u. Similarly,

oF,
+é, 1, (15b)

Iaa "aa

oF
ve - Py (u, yu) = ¢

where dF, /da’ and oF,/da’ are obtained by the chain rule,

oF, aF, oF, . oF, .
— = —= + — + — . 15¢
oo’ Ju 4 auxd)’ auy¢” (15¢)

Consideration of the elementary expressions (15) will
confirm to the reader that specification of the form of Eq.
(1) for a user’s chosen problem may be accomplished by
user provision of subroutines

GETC (X, Y, U, C, DCDU) , (16a)
GETF (X, Y, U, UX, FX, DFXDU, DFXFUX, DFXDUY, UY, FY,

DFYDU, DFYDUX, DFYDUY) . (16b)

The datax,, y,, u;, u,,, and u_, (the X, Y, and U) are input to
the argument list of subroutines GETC and GETF and the
results ¢, dc/ou, F,, 3F,/du, oF /u_, oF,/au,, F, oF,/ou,
oF, /éu_, and 3F,/du, are returned in the remaining data
fields of the argument lists. For example, if we are solving
the heat equation ¥/ - {7u = 1, GETC and GETF would be of
the form (in FORTRAN)

SUBROUTINE GETC(X, Y, U, C, DCDU, UOLD, DELT)
= (U - UOLD)DELT

DCDU = I/DELT

RETURN

END

SUBROUTINE GETF(X, Y, U,

UX, FX, DFXDU, DFXDUX, DFXDUY,

UY, FY, DFYDU, DFYDUX, DFYDUY)

FX = UX

DFXDUX = 1

DFXDUY = 0

FY = UY

DFYDU = 0

DFYDUX =0

DFYDUY = 1

RETURN

END.

(16¢)
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In this way, surprisingly simple user-supplied FORTRAN
subroutines of the form (16c) suffice to specify even
complicated nonlinear PDE of the form (1).

It is to be noted that the arguments DCDU and DFXDU,
DFXDUX, - - - of subroutines GETC and GETF are matrices
in the most general case. Thus if we have the normalized
semiconductor equilibrium equations [1], where

u = col (W, ¢, $,), p = Nye* ™, n= Ne'™,  (172)

—-p+n—Dlx,y) e VY
c= 0 JF=| wp ve, | (7
0 pn Vo,
then, ( o, ¢.]
[(p+n p  (n ]
DCDU = 0 0 0 = —qc—,
ou
| o 0 0o (17c)
-0 0 0 ]
aF,
DFXDU =|—p,pVe, pn,pVe¢, 0 =’
| wnvs, 0 —ueve, | ar9)
B € 0 0 T
F
DFXDUX = 0 P 0 =
qu,
|0 0 pn (17¢)

Note that the SAFE routines which call GETC and GETF
expect and are prepared to receive NSC X NSC matrices,
when applicable.

5. Generation of the finite-element equations

From Egs. (10), (14), and (15) it can be seen that once
evaluation of the d)i" at the integrand evaluation points (x,,
¥;) is understood, the reader may become fully aware of
how SAFE generates the finite-element equations. We do
not evaluate the qbin directly but instead determine, from
the definitions of the d)in and of the local generalized
coordinates o, the coefficient vector

!
Y = col g Voo 0 55 yNDOFL(Z)) (18a)
of the polynomial representation
U VREG £ 14 () ) YY) INT o 1
= X (14 vy _
Pu(x, ) Eﬂ Vé,"oown Ly @)W, (18b)

2
of dz'm in O'. Here NDOFL(l) is the number of degrees of
freedom associated with ', and ~NDEG is the highest
power of x or y in (18b) and the monomial exponent
arrays Y X and Y usually take the cumulative form (as
noted below, for representation of tensor product spaces
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such as bicubic splines, yX and Y take on a slightly
different form):

NDEG = ( 1 2 3
yX = (0) (10 210 3210
WY = (0) 01 ©012) 0123)

(19a)
Thus it can be seen that the binomial vector

l’ll — COI [(XWX(I)y'IIY(l)) (xlllX(Z)y'l‘Y@)) .. _] (lgb)
constitutes an alternative local basis for u in Q.

The data structure which characterizes the ¢, (and
therefore determines the coefficient vector y) is custom-
arily (¢f. George [13]) referred to as the ‘‘stencil’’ of the
finite element. In SAFE, the stencil is represented by four
NDOFL(l)-dimensional arrays, which constitute the four
rows of the INDex of Local Generalized Coordinates
array INDLGC. Thus for m = 1, 2, - - -, NDOFL(]),

INDLGC[1, m] = Order of x-differentiation associated
with mth degree of freedom of ',

INDLGC[2, m] = Order of y-differentiation of mth de-
gree of freedom of O,

INDLGC[3, m] = Node of ' associated with mth degree
of freedom of ',

INDLGC[4, m] = Index at INDLGC[3, m]th node of Q' of
mth degree of freedom of (.

The mth degree of freedom of Q' is thought to reside at
a particular node or nodal coordinate point (x,,, y,), m =

1,2,- - -, NDOFL(l). The ‘‘degree of freedom™’ is represent-
ed by a generalized coordinate,
Lty W) 4 1
al =_a_u_(w_=al i_&(x y.) (20a)
m ax“ay’ ™ axtay” mIm”
where

u = INDLGC[1, m],

v = INDLGC[2, m],
u= ale)l ,

and basis function ¢, ,for which
/._L=y.,17=v,rh=m,

a(ﬁ+a) d’l 1
7 17m (x,;p }’,;,) = .

ax 9y 0 |otherwise. (20b)

We collect the nodal coordinate points x,,, y,, into arrays

~ex [1, INDLGC(3, m)] = x,,, NCY [I, INDLGC(3, m)] = y, .

The INDLGC arrays of typical linear, quadratic, cubic,
bilinear, and bicubic elements are shown in Fig. 2, where
DOFL stands for the index set 1, 2, - - -, NDOFL(]).

The simplest case, Fig. 2(a), shows a linear element
where the three generalized coordinates represent the
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DOFL

INDLGC =

(a)

DOFL

INDLGC =

DOFL

INDLGC =

DOFL

INDLGC =
@

DOFL

INDLGC =

Figure 2 Stencils of typical finite elements: (a) linear; b)

values of u (circles in Fig. 2) at the three nodes (dots in
Fig. 2). Figure 2(c) shows a cubic case wherein the x- and
y-directed arrows represent first x- and y-derivatives of u
at the nodes 1, 2, and 3. Figure 2(d) shows a bilinear case
which illustrates that the Q' are not required to be
triangular.

For most element types, including those of Figs.
2(a-d), it may be shown that the continuity class of the

G. D. HACHTEL ET AL.
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quadratic; (c) cubic; (d) bilinear; and (e) bicubic.

approximation (2) is determined by the properties (20) of
the definitions of & and ¢. [The bicubic element of Fig.
2(e) is different, but we shall discuss this element in the
next section.] Further, these same properties determined
the y-vector of (18) through the NDOFL(! ) equations

3 T
3 I,y
ax*ay” YT

utv_ |

P Vi)
ax"“ay”

@n

which, when appropriately assembled, determine a ma-
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trix I'"” [here we use the notation I'"” for (I'"'%)"), such
that

a = F_T'y, ory=TI". 22)

It may be further shown (¢f. George [13]) that

U, y) =T '¢x,y), ¢'=Ty¢'. (23)
Equation (23) above represents a key step because it

can now be easily shown that (2) and (10) can be written

u= alT T _ alTFllll — 'YT‘I’I , (243)

v = r[ J v - F + ¢lo)dQ — f YF - daﬂ} ,  (24b)
nl

',
ar' ' oF oF oF
— =T 1 = Lp — g —T
A MR
oF oF aF
+ !l v l+ v { +_y )
Y ou W du, lp’ du, 1[111

¥ q;’( ’j‘; \b’)JdQ

_J ,:q‘l(a_FN ‘l’l+ éﬂ‘l‘pl
aal Ju ou, °*

ok r
* o, lpu)JdaQ}r . (240)

There are many terms in (24) but the point to grasp is that
given I', it is only necessary to evaluate the binomial
vector ¥ and its derivatives y, and y, at the N7P points (x,,
y,) implied by the integration formula (12a). Then, by
appropriately calling the subroutines GETC and GETF of
Section 4, every term in (24) can be computed as required
by (12a). The only step in this procedure which depends
on the element type, size, or location is the determination
of the matrix T.

6. Mappings for associative elements—tensor prod-
uct space and current-continuous cases

In Section 5 we treated the generation of the finite-
element equations for elements whose generalized coor-
dinates a:n were associated by Egs. (20) with a specific
generalized derivative of u(x, y) evaluated at a specific
node of the element. We introduce in this section the
notion of an “‘associative’’ finite element, i.e., one whose
generalized coordinates B' are not associated with a
specific derivative of u at a given node of the element.
Such elements require special treatment because without
(21), the SAFE mechanism of evaluating r and Jr/da
through the polynomial representation (18) fails through
lack of a I' matrix. We handle this difficulty by defining a
one-to-one onto mapping
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am' o
1 _ n 9 _
m' = pla), —

o !
Py M(a) ,
whose inverse
o' = p7'(m’) e =M (25b)
K > om'

can be used to map the generalized coordinates m' of an
associative element onto transformed coordinates o
which do satisfy property (20). Once this is accomplished,
(20)-(23) may be applied, and all the terms in (24)
evaluated. This yields the local residuals

ri(a)) = r{u"'m)], (26a)
and their Jacobians

ort Lo aa’ 1
oml ra e RM . (26b)

We now give two examples of the map u(a’), i.e., 1) for
natural bicubic splines and 2) for current-continuous
elements. [The treatment applies as well to any other
tensor product space, e.g., biquintic splines (¢f. [13], pp.
14, 15).]

The bicubic-spline stencil of Fig. 2(e) shows vy and 1 of
(18) being determined from values of w, »,, u, and u_,
[45° arrows in Fig. 2(e)], at each corner of a (necessarily)
rectangular element. The problem is that if the approxi-
mation (2) is written in terms of the so-called B-splines
(cf. [321 or [33], p. 89), v and ¥ are partially determined
by generalized coordinates associated with nodes (x, y) &€
Q. This situation is indicated in Fig. 3. Suppose the
approximation in terms of cubic B-splines is written

M~
M~

u= By BX,(x; X X5 - * S X)BY (3 ¥, s " 5 ¥) s

’ @7n

[
[}

i=0

where 7 and J stand for the number of x and y subdivisions
of the necessarily rectangular grid. Figure 3(a) shows that
BX(x; x,, x,,* - *, x,) is associated with the ith grid line x =
x, and is supported only on elements with nodes on the
grid lines x = x,_,, x,_,, " X, Also, in elements
bracketed by x — x,_, and x,, BX,_,, BX,_,, - - -, BX,,, are
supported. Similar arguments apply to the y direction,
and Fig. 3(b) shows that if Q' has nodes on x = x,_,, x,and
y = y,, and y, (shaded), then it is precisely the 16
generalized coordinates [circles in Fig. 3(b)],

l = .. RIS
m’ = col {Bi—z,j—z’ Bi—l,j—z’ ’ Bi+1,j—2’ Bi—Z,j—-l’ ’

Bi+1,i+1} ’ (28)
which combine to determine vy and ¥ of (18). The

required mapping of (28) onto the bicubic stencil of Fig.
2(e) is linear in this case, and is given by
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Figure 3 Bicubic B-splines and their region of support: (a)
cubic B-splines associated with x-grid lines and (b) 16 basis
functions supported in Q'
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i.j
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i
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@, = u.ry(xi—l’ yj-l) = z Bij ax (xi—l;) —67 (yl—l;)’
b 29

where all the summations are over the range indicated by
circles in Fig. 3(b). Equations (29), plus four similar
equations written at the other three nodes of £, uniquely
determine the inverse mapping &' = #”(m’) = M'm’. In
this case the components of M~ are just the coefficients
of g, in (29).

Note that the computations of M™' for use in (26)
require only the evaluation of the I + 3 (¢f. [34]) cubic B-
splines and their x-derivatives on the points X_ys Xy Xps

-+, X, (similarly for y). Note that the extra grid lines at
coordinates x_,, x,,,, ¥_,, X 1+, are determined from the
givenx,y,i=0,1,--,1,j=0,1,-- -, J, as described in
[33]. This can be done efficiently and without round-off
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error using the divided difference B-spline representation
described in [21]. Note also that only 7 + 3 + J + 3 such
calculations are required and that these may be done once
only and stored for each element if desired. The specifica-
tion of the bicubic-spline basis is completed by giving the
binomial exponent array ¥ x and ¥ y. Here the binomial
form (19) is replaced by the tensor product form

¥x=0 10 210 3210 321 32 3,
Py=0 01 012 0123 123 23 3. 30

Finally, note that if nodes are laid out on a regular
rectangular grid, the bicubic-spline elements have almost
the same total number, i.e.,

(I + 3) x ( J+ 3)bicublc = (I + 1) x ( I+ 1)linear,billnear (3 1)

of degrees of freedom as the linear [Fig. 2(a)] or bilinear
[Fig. 2(d)] elements. This means that at the price of some
extra sparse-matrix operations (17 nonzeros per row of
ar/dacversus 7 for linear elements on a regular rectangular
grid) the bicubic splines give a smooth approximation of
continuity class C* (cf. [18], [34]. Of course, the linear
and bilinear elements give continuity class C  However,
it is not yet clear whether the added smoothness is worth
the price paid, i.e., more sparse-matrix operations, over-
shoot problems (¢f. [11]), and sacrifice of the option of
arbitrary local refinement of the grid.

A second ‘‘associative’’ element is motivated by the
flux conservation [1, 3, 11] and lack of continuity of finite
elements of the standard type of Figs. 2(a)-(d) which are
all of continuity class C°. To obtain an approximation (2)
of continuity class C' (i.e., first derivatives continuous
everywhere in ) requires at least a fifth-degree finite
element with 21 generalized coordinates [35]! Since the
normal derivative 7 u of (2) is discontinuous, it follows
that F (u, Yu) is discontinuous across the edges of QL 1t
follows that the total current

I = f F(u, yu)daQ (32
a0y
leaving the side an of Q'is different from the current —/ ;l
entering the same side of adjacent element Q" (Fig. 4). As
described in [36], the quadratic element of Fig. 2(b) can
be modified so that the currents 7 j are continuous by
introducing the mappings

m = al, (33a)

m’H—S =J FNi(us V“)da-Q ) (33b)
[: 109

i=1,23. (33¢)

Equations (33) constitute a mapping p(a’) whose Jacobi-
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an dp/da = M can be determined by the methods of
Sections 3 and 4 of this paper.

7. Sparse-matrix considerations and program effi-
ciency

We now present an analysis of the sparse-matrix data we
have compiled to date in applications of the SAFE
program. The data are displayed graphically in Fig. 5.
Numerical values of the same data are given in Table 1.
At the end of the section, this analysis is applied to a brief
overview of overall program efficiency. The data of Fig. S
express the dependence of the multiplication count of LU
factorization upon the following factors:

1. Number (Ns¢) of simultaneous equations,

2. Grid size; i.e., number of elements (NEL) and/or de-
grees of freedom (NDOF),

3. Grid elongation; i.e., ratio of x-subdivisions (NX) to y-
subdivisions (NY),

4. Element type;i.e., linear (NDEG = 1), quadratic (NDEG
= 2), etc.,

5. Boundary conditions; i.e., natural, mixed, or Dirich-
let,

6. Type of ordering algorithm; i.e., Markowitz (minimum
degree heuristic [24]) or George (nested dissection
heuristic (25, 26]),

7. Solution method (in SAFE, the options are compiled
code; i.e., 123 GNSO [27] or indexed fill code; i.e.,
SL-MATH [28)).

The method of presentation of Fig. 5 is chosen for easy
comparison to an important result about finite-element
matrix ordering [25]. This result, obtained by J. A.
George, states that nested dissection ordering for a
square grid of bilinear elements [Fig. 2(d)] gives an
asymptotically optimal multiplication count, MLDLT, and
factorized nonzero count, sLDLT, for Gauss elimination
(assuming symmetry of or/da). These counts are asymp-
totically proportional to powers of a grid parameter, N,
defined below. In fact, as ND — o,

MLDLT — 9.5N 3,:, , (34a)
SLDLT = 7.75 N*D in N . (34b)

Figure S gives (MLDLT/N f‘:]) for nested dissection ordering
of bilinear elements (solid line), minimal degree ordering
of bilinear elements (dashed line), and, for comparison,
minimal degree ordering of a square grid derived from the
conventional *‘five-point’’ finite difference approximation
of the Laplacian operator (dot-dash line). These three
curves have been obtained by Duff, Erisman, and Reid
[26].

The abscissa of Fig. 5 is either NEI or the number of
subdivisions N— on the side of an “‘equivalent square
grid,”’ defined by
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Figure 4 Current discontinuity across element edges.
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Figure 5 Normalized multiplication counts for various finite-
element grids.

IVD = NDEG? - NEL/2 . (352)

The factor of 2 accounts for the use of triangular [Figs.
2(a)-(c)] rather than rectangular [Fig. 2(d)] elements.
Thus, for an Nx = 14, NY = 16 grid of rectangles
subdivided into two linear [Fig. 2(a)] finite elements each,

N = V(1) @8)/2 = V24 =15. (35b)

Similarly for an ¥x = 7, NY = 8 grid of quadratic finite
elements,

N =V4-(112))2 =V224=15. (35¢)

By this measure, the grids of (35b) and (35¢) are equiva-
lent, which is appropriate since the two grids have the
same number of nodes (.e., 225).

The data points represent LU factorization multiplica-
tion counts, MLU, normalized for comparison to (34a),
ie.,

MLU = (MLU'INE)/2 NsC?) (36)

where MLU' represents unnormalized data, and where the
factor of 2 accounts for the asymmetry of dr/da and the
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Table 1 Numerical values of data in Fig. 5.

NX NY NSC NEL Nodes NDOF NDIR' NZ (ﬂ) Fill-in Mults  Solution Storage Setup
da LU time (kb)  time
(s) (s)
Linear
B 7 16 2 224 136 m 58 2 6% 3336 9126 6 7
C 14 32 2 8% 495 90 110 11694 32528 737934 23 54
D 14 16 2 448 255 510 78 5654 11696 24750 10 14
E (special) 2 152 94 188 14 192 1840 25622 4 4
4 2 12 1 288 169 169 0 * - 295 o« 756
Quadratic
2 2 3 1 72 175 72 0 . . 21804 . .
3 6 6 1 72 169 7 0 * * 8812 * 87.5 =
5 9 9 1 162 361 361 0 * . 124878« 350 .
6 9 9 1 162 36l 361 53 . . 101394 = 288 .
F (special) 2 170 377 754 62 14606 29215 939809 15 33
M 7 8 2 112 255 510 78 8 742 ? 245054 11.5 14
N 7 4 2 56 135 270 62 3 894 ? 47566 5.5 5
s 7 16 2 24 995 990 110 18438 30320 856 974 19 50
U 4 16 2 448 957 1914 150 38190 111550 5068214 45 458
v 7 3% 2 448 975 1950 174 37830 84728 2893937 29 186
w (special) 2 152 339 678 62 12918 23714 478414 13 24
*Cf. Ref. [12).

+**NDIR”’ stands for the number of generalized coordinates specified a priori by Dirichlet B.C. [cf. (4)].

factor Nsc® accounts for the fact that in most cases the
Nsc unknowns present at each nodal point can be thought
of as a single block of Ns¢ unknowns (cf. the Hypermatrix
method of [37]), represented by a NsC X NSC block in the
Jacobian ar/da. In this case one block multiplication is
equivalent to Nsc® real multiplications.

In Fig. 5, the dashed curve is labeled MD?9 since, for
Nsc = 1, it derives from minimal degree ordering of a
matrix with 9 NZ (nonzeros) in each row of dr/6a which
represents an interior (i.e., nonboundary) node. Similar-
ly, the other two curves are labeled MDS5 and ND9
(nested dissection, 9 NZ per row). The data points have
labels with four fields. A first field of 7 indicates linear
finite elements [Fig. 2(a), 7 NZ per row] and 19 indicates
quadratic elements [Fig. 2(b), 19 NZ per row, represent-
ing a vertex rather than a midpoint of the triangular
element). The second field (D or N) represents boundary
conditions, with N signifying all natural boundary condi-
tions [D(x, y) = 0 in (1a)], and D signifying that D(x, y) #
0 for x, y € 3£),,. The third field signifies the values of
nsc, and the fourth field, if present, signifies either a
special (nonrectangular, locally refined) or elongated (vx
=2 NY). If the fourth field is absent, an essentially square
grid is signified. Finally, the characters in parentheses at
the bottom of the graph in Fig. 5, distinguished by their
vertical alignment, cross-reference the plotted data to the
numerical data of Table 1.
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We now discuss items 1-7; it is to be understood that in
the sequel all data points are the result of Markowitz,i.e.,
minimum degree, or locally minimum multiplication
count ordering of the finite-element equations (8).

& Number of simultaneous equations

First, note that all linear element cases with ns¢ = 2
(7__2_ labels) lie well beneath the MD9 line as they
should, since for a given N, and, hence, for a given total
number of unknowns, 7 signifies a sparser matrix than 9.
Of course, it must be remembered that the Dirichlet
boundary conditions replace many matrix rows with row
singletons, so finding the linear data near the MD35 line is
not surprising. It is clear, however, that if the multiplica-
tion count had a dependency on Nsc stronger than NsC®,
the NS¢ = 2 cases would be higher on the chart. Thus we
may conclude that the assumed proportionality between
multiplication count and Nsc® is appropriate.

& Grid size

Notice that as N7 — o, the ND9 line is quite flat (since it
asymptotically approaches the value 9.5). In contrast, the
experimental data points display a pronounced upward
trend, suggesting that the multiplication count might have
an N 4D component, which supports the conjecture of
Duff, Erisman, and Reid [26]. The MD9 line (from {26])
reaches a value of 19.9 at N = 64 and shows no sign of
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saturation. Note that the high data points at ND =12, 18,
and 30 (Cases 3, 5, 6, M, and U of Table 1) indicate that a
rectangular grid of quadratic [Fig. 2(b)] elements has a
dependence quite similar to the MD9 line. Of course, the
data may ultimately be discovered to reach a level
asymptote for large ND’ but if it exists, this asymptote
must have a value much larger than 9.5. It may be
concluded that minimal degree ordering with ‘‘first en-
counter’’ tie-breaking is inferior to nested dissection for
squarish grids, even for other than the bilinear elements
for which George’s result [Eq. (34)] was obtained. Clear-
ly, it would be worthwhile to find a way to combine the
generality of minimal degree ordering with the global,
efficient properties of nested dissection.

® Grid elongation

The data show that problems with elongated grids (with
““E” in the fourth label field) are generally cheaper for a
given number of unknowns, and, in addition, have a
weaker growth with N Compare, for example, Case 3
with Cases 4 and 2, and Case U with Case V. As has been
variously observed (see, for example, Rose and Whitten
[38], the nested dissection heuristic is inapplicable to
very elongated grids, so it is not surprising that all “‘E”’
data points (remember that all data were obtained with
minimal degree ordering) lie below the ND?9 line.

® Type of finite element

The paired data near the MDS5 line at ND = 10.6, 15, and
21.2 show the surprisingly weak dependence of multipli-
cation count on original matrix sparsity (7 NZ per row
versus 19), all other factors being equal. The culprit [cf.
Table 1 for cases (B versus N), (M versus D), and (S
versus C)]is of course fill-in, and it is apparent that after a
few eliminations the matrices remaining for original row
counts of 7 and 19 are quite similar. This effective
equivalence is important because it signifies that the finite
elements should be chosen primarily for their ability to
approximate the true solutions; i.e., a priori sparsity
considerations seem to be secondary.

o Type of boundary condition

As pointed out above and in {12], when certain general-
ized coordinates are fixed a priori instead of by the
Galerkin conditions (3), the corresponding rows and
columns of ar/da created by (10) are overwritten by
singletons. Thus, for sufficiently small N, dr/da ends up
much sparser with Dirichlet boundary conditions than it
does with natural or ‘‘Neumann’’ boundary conditions,
so data points with D in the second label field are
generally lower than corresponding data with N in the
second field. However, the high data point 19D2 shows
that elementary volume-to-surface-ratio considerations
weaken the effect of the boundary for large NG
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® Effect of ordering method

Overall, the preponderance of data points below the ND9
line indicates that our multiplication counts are fairly near
optimal. Thus, we are satisfied with minimal degree
ordering for all but large effectively square grids. Unfor-
tunately, as discussed in [11], these cases are very
important in most applications we have encountered, so it
must be concluded that improvements to Markowitz are
necessary.

An important aspect of the ordering method is the
ordering (setup) time (last column of Table 1). The nested
dissection method, which does not, in contrast to the
minimal degree methods, require a symbolic factoriza-
tion, would improve substantially on the ordering times
listed. Note, however, that it can be expected that the
basic Newton step [Eqs. (8)] will be executed many times
for each set of boundary values [Egs. (4)]. Thus, the
‘“‘ordering time overhead’’ is usually a worthwhile expen-
diture.

e Effect of solution method

Figure 5 relates only to the ordering of the finite-element
equation (8). When solving (8), the solution method
chosen determines the CPU time and storage required for
a given matrix and concomitant operations count. In
SAFE the options are the compiled code approach, i.e.,
123 GNSO [27] and the indexed fill approach, i.e., SL-
MATH [28]. Proper comparison of these methods de-
pends strongly on the computer environment, but Gus-
tavson has shown [39] that compiled code is two to four
times faster and requires about one and one-half to three
times as much storage. The data of Table 1 generally
support Gustavson’s conclusions. Note that the storage
requirements are quite large and even in the virtual
memory environment of an IBM VM/370, the slower
method is generally chosen.

Keeping in mind the considerations of the section on
simultaneous equations, we conclude that some combina-
tion of the generalized element [31] and Hypermatrix
methods [37] would be needed to obtain something close
to the speed of the compiled code at storage requirements
even smaller than those of indexed fill methods.

Recently, McMullen, Gustavson, and Buturla investi-
gated alternative sparse-matrix methods, including gener-
alized elements, Cholesky-conjugate gradients, and quo-
tient-tree implicit block factorization [40]. They have
discovered that for certain problems significant improve-
ments could be made over the SL-MATH approach [28].

® Overall program efficiency
Note that there exist applications when as many as 19
volume integration points [¢f. Fig. 1 and Eq. (10), NIP =
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19] can be required for engineering accuracy results. We
have performed timing breakdowns which show that
the time required to evaluate dr/de and r(e) is much
smaller than that required to solve linear egs. (8).

However, many problems exist for which matrix evalu-
ation dominates linear equation solution {40]. We suspect
that problems of this type might be more typical, although
in the limit of very large problem size we believe the
linear equation solution time will dominate. The results of
[40] also show that by not updating the matrix values
except when necessary for convergence, a significant
savings in overall solution time can be obtained.

In fact, for moderate-sized problems such as the ND =
15 data of Fig. 5, even ~iPp = 19 integrand evaluation
points requires only 1.5 seconds evaluation time for NSC
= 2, NEL = 112, Nx = 7, NY = 8 (which was the case in
Fig. 1). In contrast, the SL-MATH matrix solution time
was 11.5 seconds for the same problem. If the number of
finite elements NEL increases, NIP may be decreased, so
the solution of the linear equations is generally the
dominant factor in SAFE program efficiency. [It is to be
noted that the PDEs used to obtain the data in Figs. 1 and
5 represented practical semiconductor applications [1],
with complicated expressions for F and ¢ which involved
exponential nonlinearities, ¢f. (17).]

8. Conclusions

We have discussed the computer implementation of a
general-purpose program for finite-element analysis of
nonlinear, nonvariational PDE. Methods for automated
problem specification (i.e., type and form of nonlinearity,
boundary conditions, etc.) have been described. Accura-
cy requirements and computational expense of numerical
integration methods have been discussed. A unified treat-
ment of nonstandard ‘‘associative’’ elements such as
‘‘current-continuous’’ and bicubic-spline finite elements
has been given and it has been shown how such elements
are consistent with the SAFE input language and data
structure. Numerical pros and cons of such elements
were assessed.

We have shown that despite the stringent numerical
integration requirements, overall operation counts are
dominated by the sparse-matrix solution of the linear
Newton’s iteration equations. We have underscored this
result by showing (via comparison to nested dissection
[25, 26]) that for small to moderate problems (<1000
unknowns) our elimination orderings (Markowitz) are
near-optimal. However, we have shown that marked
excursions from optimality occur for very large problems.
Most of our data were obtained using the indexed fill
solution method of the SL-MATH program [28]. The
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compiled code method [27] is substantially faster but has
been shown to require prohibitive time and storage during
setup and prohibitive storage during execution. Thus, we
have concluded that research leading to some combina-
tion of nested dissection and Markowitz for ordering, and
*‘generalized element’” [31] and Hypermatrix [37] meth-
ods for solution, is required.
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