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Semiconductor Analysis Using Finite Elements-Part I: 
Computational Aspects 

We describe the computer implementation of SAFE,  a general-purpose program for finite-element analysis of systems of 
nonlinear,  nonvariationul PDE. The form and nonlinearity of the  PDE, as well as the  domain,  parameters, and  boundary 
conditions of the  problem, are user-specified. We discuss the  problems of numerical  integration in space and in time and 
describe the results of applying sparse-matrix methods  to  some practical problems. A method is given for unijied 
treatment of nonstandard  Jinite  elements such  as bicubic-spline and  “current-continuous” elements.  We give an 
assessment of the  potential  impact and reliability of general-purpose  nonlinear finite-element  programs.  We conclude 
from  out data that as the number of elements  becomes  large, sparse-mutrix  solutions  dominate the overall operation 
count, even though  the  methods used are new-optimal for problems of moderate size. 

1. Introduction 
The  last  decade  has been  marked by significant advances 
in two-dimensional  device  simulation.  Recent literature 
[l-111 shows  that  interest in  this field continues  apace 
with the inexorable scaling down of device  sizes associat- 
ed with the development of VLSI and VHSIC. 

We describe in  this paper  the  computer implementation 
of SAFE, a general-purpose  program for Semiconductor- 
like  Applications of Finite  Elements, [ l ,  121. Our treat- 
ment is analogous to George’s [13] treatment of finite- 
element analysis of linear PDE (partial differential equa- 
tions)  deriving from a variational  principle.  Our  program 
is  novel,  however, in that  it is general-purpose  and solves 
(simultaneously) systems of nonlinear PDE which are not 
required to  derive  from a  variational  principle.  We  em- 
phasize questions of implementation and efficiency which 
are not specifically problem-dependent  but are applicable 
to a specific problem class, i .e.,  semiconductor device 
analysis. Specific case  studies of numerical  solutions for 
this  problem class  are described in a companion paper 
[l]. There  is a voluminous  literature on finite-difference 
(cf. [ 141 and [ 151 and  their references) and finite-element 
[ 16- 181 approaches  to this  problem class,  and  we  describe 

in the sequel our  reasons  for believing SAFE  to  be com- 
paratively efficient,  versatile, and reliable vis-d-vis alter- 
native applicable programs. 

The  SAFE program is “general-purpose” in the  sense 
that it is formulated to solve any set of equations of 
the  form 

v . i ~ ( ~ ,  VU) - ‘c(u, u) = 0, i = 1 ,  2, . . ., N S C ,  

(la) 
where 

1 2  u = ( u ,   u ,  * . 1 ,  4 ,  NSC ( 1b) 

and  the Cartesian vector ‘F stands  for  the flux of some 
generalized flow, the  scalar function ic for  the net rate of 
particle  generation in the flow, and NSC is the  number of 
equations. 

Thus  the generality of the  SAFE program may be 
assessed  as follows.  Typical semiconductor device ap- 
plications may be addressed using default specifications 
of F and c. This task may or may not  be difficult for a 
given problem. However,  the key numerical  portions of 
the program, such  as  the  sparse matrix,  nonlinear  itera- 
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tion, and time integration  algorithms, are general-purpose 
and invisible to  the  user. 

The  reader should be  warned  in  advance  about  the 
notation we have found necessary  for  proper  presentation 
of the material. The problem is  that we must deal with 
vectors in  several different spaces.  First  note  that F is a 
vector in  physical Cartesian  space. We denote  the x and y 
components of F by F, and F,. However, F is also 
considered  to be a vector in the  vector space BNSc. Each 
component ‘F in this  space is itself a vector in Cartesian 
space. Pre-superscripts are  used only for this  purpose. 
The “.’’ notation in (la) (and  throughout the sequel) thus 
denotes inner product  over  the Cartesian space.  That  is, 

Similarly u is a vector in BNSc whose components iu are 
scalars in Cartesian  space. We shall also use the notation 

Wherever possible, we shall omit the  presuperscript. 

SAFE  makes  no  restrictions  on  the algebraic form of 
the  dependence of F and c on u, Vu, and u = duldt, and 
SAFE  does not  require the  existence of a variational 
principle for the equations solved. The form of Eq. (1) is 
characteristic of the  transport  and Poisson’s equations 
customarily  used in modeling semiconductor devices  and 
integrated  circuits [14-181 and  appears  as well in nuclear 
reactor [19], air and  water pollution [20,  211, and  other 
flow problems.  SAFE  solves  the nonlinear PDE simulta- 
neously using a Galerkin’s  principle [22, 231. The result- 
ing nonlinear  algebraic equations  are solved by a modified 
Newton’s method. The resulting  linear  system is solved 
with a sparse-matrix  package  in  which minimal degree 
[24] and nested  dissection [25, 261 ordering heuristics  are 
options. Solutions are obtained by either the variability- 
typed, compiled code method [27], or the indexed fill 
method of the  SL-MATH package [28]. 

The simultaneous solution of the nonlinear equations 
via direct methods ensures fully implicit solution of  (1) 
with a quadratically convergent  Newton’s  method. These 
properties allow us  to  choose relatively gross finite- 
element  approximations with only engineering accuracy 
rather  than having a higher accuracy enforced by numeri- 
cal stability  limitations. 

The  approach  used  for time integration also reflects this 
fully implicit philosophy.  The A-stable “Backward Euler” 
method [29] is therefore employed for time discretion. 
Standard  methods [29] are  also employed for variable 
prediction,  truncation error  estimation, and  time step 

control.  First-order integration is employed, since  our 
concern is for  fast,  approximate, stable  time integration, 
rather  than  for high accuracy. 

Like  the linear  finite-element code of George [13] and 
Speelpenning [30, 311, SAFE permits the  user  to specify 
the type of finite-element  applications used in the  approx- 
imation. However,  SAFE  lacks  some of the desirable 
features of these  other codes: for  example, curved 
boundary elements  and heterogeneous  element  popula- 
tions. 

So far  as we know,  reports  on  codes by  Buturla and 
Cottrell [16], Wilson and  Tchon [17], and  Barnes  and 
Lomax [18] comprised the first  literature on  the applica- 
tion of finite-element methods  to semiconductor  applica- 
tions. Buturla  and Cottrell [ 5 ,  61 and Lomax et al. [2-41 
have followed  this  up with significant studies of 2-D 
device  analysis, and Buturla et  ai. [6-71 of 3-D analysis, 
emphasizing  convergence of nonlinear iterations,  conser- 
vation properties,  etc. 

Wilson and Tchon  employ the interesting “2-4” bilin- 
ear finite-element approximation in solving only the semi- 
conductor  Poisson’s  equation. Barnes and  Lomax solve 
the  semiconductor Poisson’s  and electron continuity 
equations using a bicubic  spline basis. This  basis may be 
regarded as a smooth  and only slightly more  computation- 
ally expensive extension of the piecewise  linear ( e .g .  , ‘‘ 1- 
3” finite elements)  approximation reported by Buturla 
and  Cottrell. It  is  to  be noted that the bicubic splines,  like 
a bi-orthogonal  basis [22, 231, require an essentially  rec- 
tangular  grid, as in  most  finite-digerence methods.  It is 
not yet  clear  whether  the  added  smoothness of the 
bicubic  splines versus the piecewise  linear  basis is  ade- 
quate compensation for  the  extra computational expense, 
the  loss of the capability of arbitrary local refinement, and 
the introduction of overshoot problems. We shall  include 
some results  on this  interesting open question. However, 
emphasis in the  present  paper is on  the  general-purpose 
algorithms and  data  structure  aspects of the  SAFE  pro- 
gram which allow it, in  principle and with appropriate 
user input  specifications, to perform all the computations 
of  [2-14,  16-18]. 

We begin our  report  in  Section 2 with a description of 
the  sparse Galerkin equations  for systems of nonlinear 
PDE. Section  3 describes our treatment of numerical 
integration  problems which are concomitant with nonlin- 
ear finite-element  problems. In  this section we  describe 
our  approach  to transient analysis, based on  Backward 
Euler time  integration. In  Section 4 we treat  the  mecha- 
nism which permits user specification of the  number  and 
form of the  PDE [Eq. (l)], i.e., the definition of ‘F(u, Vu) 
and ‘c(u, u ) , i  = 1, 2, . . ., N S C .  
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Section 5 describes  generation of the finite-element 
equations  and  contains  no  new  results  but is necessary for 
completeness in Sections 6 and 7 ,  which include our main 
results. The  reader familiar with George’s Dissertation 
[13] may skip this section without appreciable loss. 
Section 6 describes  an  extension of George’s method of 
generating the finite-element equations which permits a 
unified treatment of elements with unusual continuity 
properties, e.g.,  tensor product  spaces such as bicubic 
splines  and  current-continuous  elements.  Section 7 de- 
scribes  the application and  performance of the SAFE 
sparse-matrix  package. Treated  are  the effects of grid size 
and shape, finite-element type, boundary  condition type, 
and algorithms used for spare-matrix  ordering  and solu- 
tion. 

We conclude in Section 8 with an  assessment of the 
overall possibilities for  general-purpose nonlinear finite- 
element  programs. Included is a discussion of the exten- 
sions of the  SAFE algorithms and  data  structure which 
seem both necessary  and  straightforwardly  possible  on 
the  basis of our computing experience to  date. 

2. Sparse  Galerkin  equations for nonlinear,  nonvaria- 
tional  systems of PDE 
The  SAFE program  is intended for the class (1) of 
nonlinear PDE which do not necessarily derive from a 
variational principle. Therefore  we employ an approxima- 
tion 

NDOF 

4x9 Y) = aT+ = +Ta = an+&, Y), (2) 
n=l 

in terms of basis functions, +,,, of an NDOF-dimensional 
linear space, where NDOF is the number of degrees of 
freedom. The generalized  coordinates, a,,, are determined 
by the Galerkin conditions 

/nbn{c(u, u, x, Y )  - V . F(u, V W f h  

where R stands  for  the domain over which (1) is to  be 
satisfied. 

n = 1 ,  2, * -, NDOF , (3) 

The program permits  boundary conditions of the form 

D ( x 9  Y)u(x9  Y) + N ( x ,  Y)FN[u(x, y), y)] = u ( x 9  Y)9 

x , y E a n ,  (44 

where an stands  for  the boundary of R, F, is the flux 
component  normal to  the boundary,  and D ,  N ,  and U are 
problem-specific. an is to  be regarded as  the union 

aR = an, U an,, (4b) 

where afl, is that so-called “natural”  portion of the 
234 boundary  whereon 

u(X, y) = D(X,  y) = 0, X, Y E an, . (44 

Then, taking the usual integration by parts  to remove  one 
level of spatial derivatives, we arrive at 

{v4,, . F(u, vu) + +,,c(u, u ,  x, y)}dn 

Eq. (5a) gives NDOF equations 

r(a)  = 0 

in the NDOF components of the unknown vector a. 
Further, we decompose the domain R into finite elements 
R‘, i . e . ,  

L 

n=u a‘, 
1=1 

and  require  that  each of the +,,(x, y )  be piecewise polyno- 
mials, i . e . ,  different polynomials in R1, 1 = 1, 2, . . ., L. 
Thus  we can  express  the conditions (5) as a summation 
over  the finite elements, i . e . ,  

1=1 

which allows us to  treat one finite element at a time. 
[Note that an; # 0 only for elements with an edge on the 
non-natural portion of the boundary. In some cases,  the 
functions +,, may be defined so that the boundary integral 
in (7) vanishes except  for functions whose generalized 
coordinates are specified a priori so as to satisfy (4a). For 
such  functions (4a) replaces (7), so the boundary integral 
never  appears.] 

The Galerkin eqs. (5b) are nonlinear in a if F or c is 
nonlinear in u, v u ,  and are solved via a Newton  iteration 
in which the basic step  is 

We now treat  the mechanism by which the SAFE pro- 
gram permits  convenient  user specification of F and c, 
and, therefore, the residual  vector r(a) and its  Jacobian 
arlaa. 

The Jacobian arlaa is a sparse matrix because some of 
the +,,(x, y) are identically zero  for x, y E 0‘. We can 
represent this large sparse matrix as a summation of 
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small, usually full,  matrices by  introducing the incidence 
relation 

4' = A'+ , (94  

where 4 is the  vector of global, piecewise-polynomial 
basis  functions and 4' is a vector of "local" basis 
functions which are  the restriction to R1 of those 6, which 
are nonzero in a'. A' is a matrix of Os and 1s with  exactly 
one  nonzero  entry in each  row, and the m = 1 ,2 , .  . ., 
14'1 are polynomials. Thus  for x, y E R', Eq. (2) becomes 

u = aT+ = (y' 5 Ala. 

Similarly, we may define a local  residual vector 

y 1  5 la( ( ~ 4 ' .  F + 4 ' c ) d a -  

whose  Jacobian, 

is a full matrix. It  can  be shown that 

Although we have claimed to be  solving NSC 2 1 
simultaneous PDE,  the notation of Eqs. (1)-(10) has been 
established for  the  case NSC = 1. The  extension  to NSC > 
1 involves,  simply, the implicit understanding that  each 
vector component a,, +,, r,, a,, +,, or r1 stands  for a set 
of NSC members, i.e., 

1 1  

a, = col (la,, 'a,, . ' ., a,) , 

a:, = col ( a,, a,, . . ., a,) , 

NSC 

1 1  2 1  NSC 1 (1 la) 

and similarly for 4, r, 4' and d .  With this in mind Eqs. 
(1)-(  10) still make sense  as NSC PDE: 

v . {'WU, VU)} = 'c(u, U, x, Y )  , 

v m u ,  vu)} = 2c(u, U, x ,  Y )  , 
0 . {NSCF(~, VU)} = N s c ~ ( ~ ,  U, X, y )  , (1 1b) 

in the NSC unknown  functions 

' U b ,  Y ) ,  2u(x, Y ) ,  ' . *, u(x ,  Y )  . NSC (1W 

Note  that it follows  from (lla) that  the approximation 
(2) represents NSC distinct  approximations in NSC distinct 
NDoF-dimensional spaces. To date, we have approximat- 
ed  the "u(x, y)  in the same NDoF-dimensional linear  space, 
but this is not basic to the algorithms or  data  structure of 
the  SAFE program. 

Time integration can  be accomplished  by  setting 

u(tJ = F[t,, f T " l ,  u(tJ, 4 t T - J ,  . . . 9  ~ ( f ~ - , J l  (1 Id) 

for a kth-order, one-step-implicit  method. In SAFE  we 
have chosen the  particular  case k = 1 (Backward  Euler). 
In this case (1 Id) becomes 

U(tJ = b(tJ - ~ ( f ~ - , ) l / A f  , (1W 

At E t, - tT-l . (1 If) 

As we shall see in Section 4, implementation of (1 le) and 
(1 If) is quite  straightforward. Note  that  the usual difficul- 
ties of transient  analysis are avoided by virtue of the  fact 
that  the  Backward  Euler method is "A-stable" [29]. The 
only difficulty of implementation  involves the control of 
A t  during the  transient analysis. We use  the  same linear- 
predictor,  Newton  corrector  scheme  described in [29]. 

3. Numerical  volume  and  surface  integrals 
Note that (10) requires a volume  integral over  each finite 
element R1, and depending on the location of the  element, 
a surface  integral over  its boundary aR1 as well. Whereas 
George ([13], p. 72) was  able  to give exact formulae for 
these integrals because his  problem class  was linear, the 
form of Eq. (1) requires numerical integration. The  SAFE 
program represents integration  formulae  in the general- 
ized form 

NIP 

g(x ,  y)dR 3 la1l 1 Wig(xi,  Y J  W a )  
i = l  

where 

lR1l = I d o  . ( 12b) 

Here NIP is the  number of distinct points (x i ,  yi) E R' 
where  the integrand g(x ,  y )  is to be evaluated  and added 
with weight Wi to  the integral. In  SAFE,  the numerical 
integration formula  chosen by the  user (or  defaulted) is 
modularly imbedded in a subroutine GETXYW.  GETXYW 
performs (12b) and, given the  data  structure  for R1, 
determines the coordinates (x i ,  yJ of the points  with 
weight Wi for  the  operative integration  formulae. 

a' 

For example, if R1 is a triangle A of area A ,  and  we  use 
a "1-point" integration  formula, we have NIP = 1, W ,  = 
1,  and 

g(x ,  y)dR = A&,, Y,) (13a) 

where (x,, y,) is the centroid of A. Similarly, if C l l  is a 
triangle subdivided at  its centroid into  the union of three 
triangles with centroids (xci,  y ,J ,  NIP = 3, W i  = 1/3, and 

g(x ,  y )dR 3 3 2 g(xCi9 Y,J . (13b) 
A 3  

1=1 235 
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Figure 1 Percentage error  in  integrated  transverse flux as a 
function  of number of integration  points,  with  the  error at NIP = 
19 defined as zero. 

Figure  1  shows the  dependence of an error measure of the 
solutions of  (1) on  the number of integration  points (for a 
practical  problem for which the nl were  triangles and the 
NSC = 2 PDE were of the "exponential-nonlinearity'' 
type typical of semiconductor modeling problems, cf. 
[17], below. The  error measure  plotted in Fig.  1 is not the 
approximation error of (12a), but is the error incurred in 
computing the integrated  transverse flux or "current," 

ZX = 'F,('u, ' u ,  ' u J d y  , 

crossing the grid line x = xl, which is a global functional 
of the ku(x,y). The  error in Fig. 1 was defined to  be  zero  for 
NIP = 19, and  the plot shows that the choice of integration 
formula  is a crucial step in solving practical nonlinear 
PDE with finite-element methods. 

I ,=x, 

Note from (lob)  that  the  sparse Jacobian artam may be 
expressed  as  the double  summations 

where FN stands  for  the component of the generalized flux 
vector F(u, vu) which  is normal to the  boundary an'. 
Note that a separate integration  formula,  characterized 
by (W,,, x,, y,, j = 1, 2, a ,  NBIP)  is  required for  the 
boundary  integral in (lob). A similar expression  applies to 

236 (loa). 

G. D. HACHTEL ET AL. 

4. User  specification  of the form  of F (u, Vu) and 

It may be  observed  from  the double  summation form of 
Eq. (14) that  the particular  identity of a given problem 
[ i .e . ,  the specification of the form of (l)], is completely 
determined by the values of F ,   c ,  aFlam', and a c t a d  which 
occur  at  the integration points xi ,  yi. To  see how the form 
of  (1) may be user-specified,  we  note that if c is indepen- 
dent of ti, 

c(u, 0,  x ,  Y) 

A similar result obtains if c depends on ti. Similarly, 

where aFxlam' and aFJad  are obtained by the chain rule, 

Consideration of the elementary  expressions (15)  will 
confirm to  the  reader  that specification of the form of Eq. 
(1) for a user's  chosen problem may be accomplished by 
user provision of subroutines 

GETC ( x ,   Y ,  u, c, DCDU) , 

GETF (X,  Y, U,  UX,  FX, DFXDU,  DFXFUX,  DFXDUY,  UY,  FY, 

DFYDU,  DFYDUX,  DFYDUY) . 

The  data xi ,  yi, ui,  uXi,  and uui (the X,  Y ,  and U) are input to 
the argument list of subroutines GETC and GETF and the 
results C, actau, F,, aF,lau, aFxIaux, aF,lau,, F u ,   a q l a u ,  
aF, tau,, and a q l a u ,  are returned in the remaining data 
fields of the argument  lists. For example, if we are solving 
the heat  equation v . v u  = ti, GETC and GETF would be of 
the form (in FORTRAN) 

SUBROUTINE GETC(X, Y, U ,  C,  DCDU,  UOLD,  DELT) 

C = (U - UOLD)/DELT 

DCDU = IIDELT 
RETURN 
END 

SUBROUTINE GETF(X, Y, U, 
UX,  FX, DFXDU,  DFXDUX,  DFXDUY, 

UY,  FY, DFYDU,  DFYDUX, DFYDUY) 

FX = UX 

DFXDUX = 1 

DFXDUY = 0 

FY = UY 
DFYDU = 0 
DFYDUX = 0 

DFYDUY = 1 

RETURN 

END. 
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In this way, surprisingly  simple user-supplied FORTRAN 
subroutines of the form (16c)  suffice to specify  even 
complicated nonlinear PDE of the form (1). 

It is to  be noted that the arguments DCDU and DFXDU, 
DFXDUX, . . . of subroutines GETC and GETF are matrices 
in the most general case. Thus if  we have the normalized 
semiconductor equilibrium equations [l], where 

Note that the SAFE routines which  call GETC and GETF 
expect and are prepared to receive NSC X NSC matrices, 
when applicable. 

5. Generation of the finiteelement equations 
From Eqs. (lo), (14),  and (15) it can be seen that once 
evaluation of the 4; at  the integrand evaluation points (xi ,  
y , )  is understood, the reader may become  fully aware of 
how SAFE generates the finite-element equations. We do 
not evaluate the 4; directly but instead determine, from 
the definitions of the 4; and of the local  generalized 
coordinates a’, the coefficient vector 

Y’ = C O ~ ( Y ~ ,  . . ‘ 7  Y N D O F L ( ~ ) )  (184 

of the polynomial representation 

L 

of 4; in R’. Here NDOFL(I) is the number of degrees of 
freedom associated with R’, and NDEG is the highest 
power of x or y in  (18b)  and the monomial exponent 
arrays +X and +Y usually take the cumulative form (as 
noted below, for representation of tensor product spaces 
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such as bicubic splines, +X and +Y take on a slightly 
different  form): 

NDEG = 0 1 2 3 . . .  
+x = (0) (1 0) (2 10) (3 2 10)  . . . 
+Y = (0) (0 1) (0 1 2) (0 1 2 3) . * * . 

( 194 
Thus it can be seen that the binomial vector 
+’ = col [(x’x(l)y*Y(l) *XX(2) *Y(Z) ) , ( x  Y ) , . . . I  (19b) 

constitutes an alternative local  basis for u in 0’. 

The data structure which characterizes the 4; (and 
therefore determines the coefficient vector 7)  is custom- 
arily (cf. George [13] referred to as the “stencil” of the 
finite  element. In SAFE, the stencil is represented by four 
NDoFL(I)-dimensional arrays, which constitute the four 
rows of the INDex of Local Generalized Coordinates 
array INDLGC. Thus for m = 1,  2, . . ., NDOFL(I), 

INDLGC[ 1, m] = Order of x-differentiation associated 
with rnth degree of freedom of R‘, 

INDLGC[2, m] = Order of y-differentiation of rnth de- 
gree of freedom of RL, 

INDLGC[3,  m] = Node of 0’ associated with mth degree 
of freedom of R‘, 

INDLGC[4,  m] = Index at INDLGC[3,  m]th node of a‘ of 
mth degree of freedom of 0‘. 

The mth degree of freedom of R’ is thought to reside at 
a particular node or nodal coordinate point (x,, y d ,  m = 
1,2, .  . ., NDOFL(I). The “degree offreedom” is represent- 
ed  by a generalized coordinate, 

where 

p = INDLGC[ 1,  m], 

v = INDLGCf2, m], 

u = , 

and  basis function 4;, for which 
acfi+v, 1 

a X a y c  
- 4rn 1 b = p , i r = v , m = m ,  (x*, Ym) = 0 otherwise. 

We collect the nodal coordinate points x,, y ,  into arrays 

NCX [I, INDLGC(3, m)] = X,, NCY [ I ,  INDLGC(3, m)] = y,. 

The INDLGC arrays of typical linear, quadratic, cubic, 
bilinear, and bicubic elements are shown in Fig.  2,  where 
DOFL stands for the index set 1, 2, . . ., NDOFL(~). 

i (20b) 

The simplest case, Fig.  2(a),  shows a linear element 
where the three generalized coordinates represent the 



a 1 4 2  

1 2 

roooooo l  
L l l l l l l j  

DOFL 1 2 3 4 5 6 7 8 9 1 0  

I 0 0 0 0 1 0 1 0 1 0  
0 0 0 0 0 1 0 1 0 1  

INDLGC= 1 2  3 4 1 1 2 2 3 3 
L 1 1 1 1 2 3 2 3 2 3 J  

DOFL 1 2 3 4  

0 0 0 0  

INDLGC = [ 
1 1 1 1  

DOFL 1 2  3 4 5 6 7 8 9 10111213141516  

[ 1 1 1 1 2 3 4 2 3 4 2 3 4 2 3 4  I 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1  
0 0 0 0 0 1 1 0 1   1 0 1 1 0 1 1  

INDLGC= 1 2 3 4 1 1 1 2 2 2 3 3 3 4 4 4  

Figure 2 Stencils of typical  finite  elements:  (a)  linear;  (b)  quadratic; (c) cubic;  (d)  bilinear; and (e) bicubic. 

values of u (circles in Fig. 2) at the three nodes (dots in approximation (2) is  determined by the properties (20) of 
Fig. 2). Figure  2(c) shows a cubic case wherein the x- and the definitions of a and 4. p h e  bicubic  element of Fig. 
y-directed arrows represent first x- and  y-derivatives of u 2(e) is  different, but we  shall  discuss  this  element in the 
at the nodes 1,2, and 3. Figure 2(d) shows a bilinear  case next section.] Further, these same properties determined 
which illustrates that the are  not  required to be the y-vector of (18) through the NDOFL(~ ) equations 
triangular. a PJX,, YA - a +(xnt, Y,)~ 

axpay” axFay’ 

P+V 1 P + V  1 

- y = am, (2 1) 
For most  element types, including those of Figs. 
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trix I " T  [here we use the notation r-T for (r-l)'], such 
that 

(Y' = r T Y ,  or y = rTd , (22) 

It may be further  shown (cf. George [I33  that 

y )  = r-l+'(x, y ) ,  4' = rJi' . (23) 

Equation (23) above  represents a key step because it 
can now be easily shown  that (2) and (10) can be written 

= = a'*r+l = y T ~ '  , (24a) 

There  are many terms in (24) but the point to  grasp is that 
given r, it is only necessary  to  evaluate  the binomial 
vector Ji and its derivatives $x and +D at  the NIP points (x i ,  
y i )  implied by the integration  formula (12a). Then, by 
appropriately calling the subroutines GETC and GETF of 
Section  4, every  term in (24) can  be  computed as required 
by (12a). The only step in this procedure which depends 
on the element type,  size,  or location is the determination 
of the matrix r. 

6. Mappings  for  associative  elements-tensor  prod- 
uct  space  and  current-continuous  cases 
In Section 5 we treated  the generation of the finite- 
element  equations for elements  whose  generalized  coor- 
dinates a: were associated by Eqs. (20) with a specific 
generalized derivative of u(x, y )  evaluated at a specific 
node of the element. We introduce in this  section the 
notion of an "associative" finite element, i.e., one  whose 
generalized coordinates p' are not associated with a 
specific derivative of u at a given  node of the element. 
Such elements  require special  treatment because without 
(211, the  SAFE mechanism of evaluating r and ar /aa  
through the polynomial  representation (18) fails  through 
lack of a r matrix. We handle  this difficulty by defining a 
one-to-one onto mapping 

whose  inverse 

can be used to map the generalized coordinates m' of an 
associative element  onto transformed coordinates a' 
which do satisfy property (20). Once this is accomplished, 
(20)-(23) may be applied,  and all the  terms in (24) 
evaluated.  This  yields the local  residuals 

r'(a') = r'[p-'(m')] , (26a) 

and their  Jacobians 

We now give two examples of the map p(a'), i .e. ,  1) for 
natural  bicubic  splines and 2) for current-continuous 
elements. [The treatment applies as well to  any  other 
tensor  product  space, e . g . ,  biquintic splines (cf. [13], pp. 
14, 15) . ]  

The bicubic-spline stencil of Fig. 2(e) shows y and Ji of 
(18) being determined  from  values of u, ux, u,, and uxy 
[45" arrows in Fig. 2(e)], at  each  corner of a (necessarily) 
rectangular element.  The problem is  that if the approxi- 
mation (2) is written in terms of the so-called B-splines 
(cf. [32] or [33], p. 89), y and Ji are partially  determined 
by  generalized coordinates associated with nodes ( x ,  y )  6 
R'. This  situation is indicated in Fig. 3. Suppose  the 
approximation  in terms of cubic B-splines is written 

I J  

u = c c Pii = q x ;  Xn, X1' . . * f  x,)BY,(y; Y o ,  Y, ,  . . - 9  Y J )  , 
i=o j=o (27) 

where Z and J stand  for  the number of x and y subdivisions 
of the necessarily rectangular grid. Figure 3(a) shows that 
BXi(x; xo, xl, . . ., xI) is associated with the ith grid line x = 

xi and is supported only on elements  with  nodes on  the 
grid lines x = xi"2, xi- , ,  . . ., xi+2. Also, in elements 
bracketed by x - xi-l and x i ,  BXi-2,  BXi-', . . ., BXi+, are 
supported. Similar  arguments apply to  the y direction, 
and Fig. 3(b) shows  that if R' has nodes on x = xi-', xi and 
y = yi-l and yi (shaded), then it is precisely the 16 
generalized coordinates [circles in Fig. 3(b)], 

mr = (pi-2,j-z' P+1,j-29 . ' '9 Pi+l,J-2' Pi--p,J-,' . . .  9 

Pi+l,j+l) 9 (28) 

which combine to  determine y and JI of  (18). The 
required mapping of  (28) onto  the bicubic  stencil of Fig. 
2(e) is linear in this case,  and is given by 2391 
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. . .  x i - 2  x i - ,  xi 
X ~ + I  Xi+2 

(b) 

Figure 3 Bicubic  B-splines  and  their  region of support: (a) 
cubic  B-splines  associated  with  x-grid  lines  and (b) 16 basis 
functions  supported  in C! '. 

where all the  summations  are  over  the  range indicated  by 
circles  in Fig. 3(b). Equations (29), plus  four similar 
equations written at  the  other three nodes of a', uniquely 
determine  the  inverse mapping cy' = p"(m') = M-'m'. In 
this case  the  components of M-' are just  the coefficients 
of pi, in (29). 

Note  that  the  computations of M-' for  use in (26) 
require only the  evaluation of the Z + 3 (cf. [34]) cubic B- 
splines  and their x-derivatives on  the  points x-1, xo,  xl, 

coordinates  xVl, x ~ + ~ ,  Y - ~ ,  xJ+l are  determined  from  the 
given xi, yi, i = 0, 1, . . ., Z, j = 0, 1, . . ., J ,  as described in 

240 [33]. This can  be  done efficiently and without round-off 

. . .  , x,+~ (similarly for y). Note  that  the  extra grid lines at 

error using the divided difference B-spline representation 
described in [21]. Note also that  only I + 3 + J + 3 such 
calculations are  required  and that these may be  done  once 
only and  stored  for  each element if desired.  The specifica- 
tion of the bicubic-spline  basis is completed by giving the 
binomial exponent  array JI x and JI y. Here  the binomial 
form (19) is replaced by the  tensor  product  form 

+ x  = 0 10 210 3210 321 32 3, 

+ y  = 0 01 012 0123 123 23 3. (30) 

Finally, note  that if nodes are laid out  on a regular 
rectangular  grid, the bicubic-spline elements  have almost 
the  same total number, i . e . ,  

of degrees of freedom  as  the linear [Fig. 2(a)] or bilinear 
[Fig. 2(d)] elements. This  means that  at  the  price of some 
extra sparse-matrix operations (17 nonzeros  per row of 
ar/acy versus 7 for  linear elements on a regular  rectangular 
grid) the bicubic splines  give a smooth  approximation of 
continuity  class C2 (cf. [B], [34J).  Of course,  the linear 
and bilinear elements give  continuity class C o .  However, 
it is not yet clear whether  the  added  smoothness  is worth 
the price paid, i . e . ,  more sparse-matrix operations, over- 
shoot problems (cf. [ll]),  and sacrifice of the option of 
arbitrary local  refinement of the grid. 

A second "associative"  element is motivated by the 
flux conservation [ 1,  3, 1 11 and  lack of continuity of finite 
elements of the standard  type of Figs. 2(a)-(d) which are 
all of continuity class Co. To obtain an approximation (2) 
of continuity class C' @ . e . ,  first derivatives continuous 
everywhere in C!) requires  at least a fifth-degree finite 
element with 21 generalized coordinates [35]! Since the 
normal derivative vNu of  (2) is discontinuous, it follows 
that FJu, vu) is discontinuous  across  the  edges of a'. It 
follows that  the  total  current 

leaving the side afli of a' is different from the  current -1;' 
entering the  same side of adjacent element fl" (Fig. 4). As 
described in [36], the  quadratic element of Fig. 2(b) can 
be modified so that  the  currents 1; are  continuous by 
introducing the mappings 

mi = ai , (334 ' I  

Equations (33) constitute a mapping p(cy') whose  Jacobi- 

G. D. NACHTEL ET AL. IBM J. RES. DEVELOP. VOL. 2J NO. 4 JULY 1981 



an aplaa = M can be determined  by the methods of 
Sections 3 and 4 of this paper. 

7. Sparsematrix  considerations  and  program effi- 
ciency 
We now present an analysis of the sparse-matrix data we 
have compiled to  date in applications of the SAFE 
program. The data  are displayed graphically  in  Fig. 5. 
Numerical  values of the same data are given  in  Table  1. 
At the end of the section, this analysis is  applied to a brief 
overview of overall program  efficiency. The data of Fig. 5 
express the dependence of the  multiplication count of LU 
factorization upon the following factors: 

1. Number (NSC) of simultaneous equations, 
2. Grid size; i . e . ,  number of elements (NEL)  andor de- 

grees of freedom (NDOF), 
3.  Grid  elongation; i . e . ,  ratio of x-subdivisions ( N X )  to y- 

subdivisions ( N Y ) ,  
4. Element type; i . e . ,  linear (NDEG = I), quadratic (NDEG 

= 2), etc., 
5 .  Boundary conditions; i . e . ,  natural, mixed, or Dirich- 

let, 
6. Type of ordering algorithm; i . e . ,  Markowitz  (minimum 

degree heuristic [24n or George (nested dissection 
heuristic [25,  26]), 

7.  Solution  method  (in SAFE, the options are compiled 
code; i x . ,  123 GNSO [27] or indexed fill code; i .e . ,  
SL-MATH [28]). 

The method of presentation of Fig. 5 is chosen for easy 
comparison to an important result about finite-element 
matrix  ordering [25]. This result, obtained by J. A. 
George, states that nested dissection ordering for a 
square grid  of  bilinear elements [Fig. 2(d)]  gives  an 
asymptoticdly optimal  multiplication count, MLDLT, and 
factorized nonzero count, SLDLT, for Gauss elimination 
(assuming symmetry of arlaa). These counts are asymp- 
totically proportional to powers of a grid parameter, No, 
defined  below. In fact,  as No -+ m, 

MLDLT + 9 S N h  , (344 

SLDLT + 7.75 N b  In No . (34b) 

Figure 5 gives ( M L D L T I N ~ )  for nested dissection ordering 
of bilinear elements (solid  line),  minimal degree ordering 
of bilinear elements (dashed line), and, for comparison, 
minimal degree ordering of a square grid derived from the 
conventional “five-point’’ finite  difference approximation 
of the Laplacian operator (dot-dash line). These three 
curves have  been obtained by Duff, Erisman, and Reid 
[261* 

The abscissa of Fig. 5 is either No or the number of 
subdivisions Nu on the side of an “equivalent square 
grid,” defined by 

Figure 4 Current discontinuity across element edges. 

20 c 

Figure 5 Normalized  multiplication  counts  for  various  finite- 
element  grids. 

No = NDEG . NEL/2 . (35a) 

The factor of 2 accounts for the use of triangular [Figs. 
2(a)-(c)] rather than rectangular [Fig.  2(d)] elements. 
Thus, for an N X  = 14, N Y  = 16 grid of rectangles 
subdivided into two linear [Fig.  2(a)]  finite elements each, 

Nm = d(1) * (448)/2 = a ”= 15 . (35b) 

Similarly for an N X  = 7, N Y  = 8 grid  of quadratic finite 
elements, 

= v/4 * (112)/2 = a s  I5 . (35c) 

By this measure, the grids of (35b) and  (3%) are equiva- 
lent, which  is appropriate since the two grids have the 
same number of nodes ( i .e. ,  225). 

The data points represent LU factorization multiplica- 
tion counts, M L U ,  normalized for comparison to (34a), 
t . e . ,  

MLU I (MLU’/IC130))/2 NSC3) , (36) 

where MLU’ represents unnormalized data, and  where the 
factor of 2 accounts for the asymmetry of ar/aa and the 241 
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Table 1 Numerical  values of data in Fig. 5 .  

NX N Y  NSC NEL  Nodes  NDOF NDIRt NZ (E] Fill-in Mults Solution Storage  Setup 
(LU) time (kb) time 

(SI (SI 

Linear 
B 7 16 2 224 136 272 58 2 694 3  336 49  126 6  7 
C 14  32 2 8% 495 990 110 11  694 32  528 737  934 23  54 
D 14  16 2 448 255 510 78 5 654 11  6% 224 750 10  14 
E (special) 2 152 94 188 14 1 926 1 840 25  622 4  4 
4 12  12 1 288 169 169 0 * * 22  935 * 75.6 * 

2 12 3 1 72 175 72 0 * * 21 804 * * * 
3 6 6 1  72 169 72 0 * * 28812 * 87.5 * 
5  9  9 1 162 361 361 0 * * 124  878 * 350 * 

F (special) 2 170 377 754 62 14606 29215 939 809 15 33 
M 7  8 2 112 255 510 78  8 742 ? 245  054 1 I .5 14 
N 7 4 2  56 135 270 62 3  894 ? 47  566 5.5 5 
S 7 16 2 224 995 990 110 18  438 30  320 856  974 19 50 
U 14  16 2 448 957 1914 150 38 190 111 550 5 068 214 45 458 
V 7 32 2 448 975 1950 174  37 830 84 728 2 893  937 29 186 
W (special) 2 152 339 678 62  12  918 23  714 478  414 13 24 

Quadratic 

6  9 9 1 162  361  36 1 53 * * 101 394 * 288 * 

*Cf. Ref. [ 121. 
t"NDIR' stands for the  number of generalized coordinates specified a priori by Dirichlet B.C. [rf. (411. 

factor N S C 3  accounts for the fact that in  most cases the We now discuss items 1-7; it is to  be understood that  in 
NSC unknowns present at each nodal point can be  thought the sequel  all data points are the result of Markowitz, i . e . ,  
of as a single  block  of NSC unknowns (cy. the Hypermatrix minimum degree, or locally minimum multiplication 
method of [37n, represented by a NSC x NSC block  in the count  ordering of the finite-element equations (8). 
Jacobian d a a .  In this case one  block  multiplication  is 
equivalent to N S C 3  real multiplications. 

Number of simultaneous equations 

In Fig. 5 ,  the dashed curve is  labeled MD9 since, for 
NSC = 1 ,  it derives from minimal degree ordering of a 
matrix  with 9 NZ (nonzeros) in each row of arlaa which 
represents an interior (i .e. ,  nonboundary) node.  Similar- 
ly,  the other two curves are labeled MD5 and ND9 
(nested dissection, 9 NZ per row). The data points have 
labels with four fields. A first field  of 7 indicates linear 
finite elements [Fig.  2(a), 7 NZ per row] and 19 indicates 
quadratic elements [Fig.  2(b),  19  NZ per  row, represent- 
ing a vertex rather than a midpoint of the triangular 
element). The second field  (D  or  N) represents boundary 
conditions, with N signifying all natural boundary condi- 
tions [D(x, y )  = 0 in (la)], and D signifying that D(x, y )  # 
0 for x, y E an,. The third field  signifies the values of 
N S C ,  and the fourth field, if present, signifies either a 
special (nonrectangular, locally  refined) or elongated (NX 
2 - 2  N Y ) .  If the fourth field is absent, an essentially square 
grid is signified. Finally, the characters in parentheses at 
the bottom of the graph in  Fig. 5, distinguished by their 
vertical alignment, cross-reference the plotted data to the 

242 numerical data of Table 1. 

First, note that all linear  element cases with NSC = 2 
(7-2- labels)  lie  well  beneath the MD9 line as they 
should, since for a given No, and, hence, for a given  total 
number of unknowns, 7 signifies a sparser matrix  than 9. 
Of course, it must  be  remembered that the Dirichlet 
boundary conditions replace many  matrix rows with  row 
singletons, so finding the linear data near the MD5 line is 
not  surprising. It is clear, however, that if the multiplica- 
tion count had a dependency on NSC stronger than N S C 3 ,  

the NSC = 2 cases would  be  higher  on the  chart. Thus we 
may conclude that the assumed proportionality between 
multiplication count and NSC3 is appropriate. 

Grid size 
Notice that as No + 00 , the ND9  line  is quite flat  (since it 
asymptotically approaches the value 9.5). In contrast, the 
experimental data points display a pronounced upward 
trend, suggesting that  the multiplication count might have 
an N b component, which supports the conjecture of 
Duff, Erisman, and  Reid [26]. The MD9 line  (from  [26]) 
reaches a value of 19.9 at No = 64 and shows no  sign  of 
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saturation. Note  that  the high data  points at No = 12, 18, 
and 30 (Cases 3,  5,6,  M, and  U of Table 1) indicate  that a 
rectangular grid of quadratic [Fig. 2(b)] elements  has a 
dependence  quite similar to  the MD9 line. Of course,  the 
data may ultimately be discovered to  reach a level 
asymptote  for large Na, but if it exists, this asymptote 
must have a value  much larger than 9.5. It may be 
concluded that minimal degree  ordering  with “first en- 
counter” tie-breaking is inferior to  nested dissection for 
squarish grids, even  for  other  than  the bilinear elements 
for which George’s result [Eq. (34)] was  obtained.  Clear- 
ly, it would be worthwhile  to find a way to combine the 
generality of minimal  degree  ordering  with the global, 
efficient properties of nested dissection. 

Grid  elongation 
The  data  show  that problems with elongated  grids (with 
“E” in the  fourth label field) are generally cheaper  for a 
given number of unknowns,  and, in addition,  have a 
weaker  growth  with No. Compare, for example,  Case 3 
with Cases 4 and  2,  and  Case U with Case V. As has been 
variously observed  (see,  for example, Rose  and Whitten 
[38]), the nested dissection heuristic is inapplicable to 
very  elongated grids, so it is not  surprising that all “E” 
data points  (remember that all data  were  obtained with 
minimal degree  ordering) lie below the  ND9 line. 

Type  offnite  element 
The paired data  near  the MD5 line at No = 10.6,  15, and 
21.2 show  the surprisingly weak dependence of multipli- 
cation count  on original matrix sparsity (7 NZ per row 
versus 19), all other  factors being equal. The culprit [cf. 
Table 1 for  cases (B versus N), (M versus D),  and (S 
versus C)] is of course fill-in, and it is  apparent  that  after a 
few eliminations the matrices remaining for original row 
counts of 7 and 19 are quite  similar. This effective 
equivalence is  important  because it signifies that  the finite 
elements should be  chosen primarily for  their ability to 
approximate the  true solutions; i .e . ,  a priori sparsity 
considerations seem  to  be secondary. 

Type of boundary  condition 
As  pointed out  above  and in  [12], when certain general- 
ized coordinates  are fixed a priori instead of by the 
Galerkin  conditions (3), the corresponding rows  and 
columns of a d a a  created by (10) are overwritten by 
singletons. Thus,  for sufficiently small Nu, adaa ends  up 
much sparser with Dirichlet  boundary  conditions than it 
does with natural or “Neumann”  boundary conditions, 
so data points  with D in the  second label field are 
generally  lower than corresponding data with  N in the 
second field. However,  the high data point 19D2 shows 
that elementary  volume-to-surface-ratio  considerations 
weaken the effect of the boundary for large No. 
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Effect of ordering method 
Overall, the  preponderance of data  points below the  ND9 
line  indicates that  our multiplication counts  are fairly near 
optimal. Thus,  we  are satisfied with minimal degree 
ordering for all but large effectively square grids.  Unfor- 
tunately,  as  discussed in [ll],  these  cases  are very 
important in most applications we  have  encountered, so it 
must be  concluded that improvements to Markowitz are 
necessary. 

An important aspect of the ordering method is the 
ordering  (setup) time (last  column of Table 1). The nested 
dissection method, which does  not, in contrast  to  the 
minimal degree  methods, require a symbolic  factoriza- 
tion, would improve substantially on  the ordering  times 
listed. Note,  however,  that it can be  expected  that  the 
basic  Newton  step [Eqs. (8)] will be executed many  times 
for  each  set of boundary values [Eqs. (4)]. Thus,  the 
“ordering  time overhead” is usually a worthwhile  expen- 
diture. 

Effect of solution  method 
Figure 5 relates only to  the ordering of the finite-element 
equation (8). When solving (8), the solution  method 
chosen  determines  the  CPU time and  storage required for 
a given  matrix and concomitant operations count. In 
SAFE  the options are  the compiled code  approach, i .e . ,  
123 GNSO [27] and  the indexed fill approach, i . e . ,  SL- 
MATH [28]. Proper comparison of these  methods de- 
pends strongly on  the  computer  environment, but  Gus- 
tavson  has  shown [39] that compiled code  is  two  to  four 
times faster  and  requires  about  one  and one-half to  three 
times  as much storage.  The  data of Table 1  generally 
support  Gustavson’s conclusions. Note  that  the storage 
requirements are  quite large and  even in the virtual 
memory environment of an IBM VM/370, the slower 
method is generally chosen. 

Keeping in mind the considerations of the section on 
simultaneous equations,  we conclude that  some combina- 
tion of the generalized  element [31] and  Hypermatrix 
methods [37] would be needed to obtain  something  close 
to  the speed of the compiled code  at  storage requirements 
even smaller than  those of indexed fill methods. 

Recently,  McMullen, Gustavson,  and  Buturla investi- 
gated  alternative sparse-matrix  methods, including gener- 
alized elements, Cholesky-conjugate gradients, and  quo- 
tient-tree implicit block  factorization [40]. They  have 
discovered  that  for  certain problems significant improve- 
ments could be  made  over  the  SL-MATH  approach [28]. 

Overall program  eficiency 
Note  that  there  exist applications  when as many as 19 
volume  integration points [cf. Fig. 1  and Eq. (IO), NIP = 



191 can  be required  for engineering accuracy results. We 
have performed timing breakdowns  which show  that 
the time  required to  evaluate ar/aa and r(a)  is much 
smaller  than that required to  solve linear eqs. (8). 

However, many problems exist for which matrix  evalu- 
ation dominates  linear  equation solution [40].  We suspect 
that problems of this type might be more  typical, although 
in the limit of very  large  problem size we believe the 
linear  equation  solution  time will dominate. The results of 
[40] also  show  that by not updating the matrix  values 
except when necessary  for convergence, a significant 
savings in overall  solution  time can be obtained. 

In  fact, for moderate-sized  problems such  as  the Nm = 

compiled code  method [27] is substantially faster but has 
been  shown to require prohibitive  time and storage during 
setup  and prohibitive storage during execution.  Thus, we 
have concluded that  research leading to  some combina- 
tion of nested  dissection and Markowitz for ordering, and 
“generalized element” [31] and Hypermatrix [37] meth- 
ods  for solution, is required. 
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