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Finite-Element  Analysis of Semiconductor  Devices: 
The  FIELDAY  Program 

The FIELDA Y program simulates  semiconductor devices of arbitrary shape in one,  two, or three  dimensions  operating 
under  transient or steady-state conditions. A wide variety of physical  effects, important in bipolar and $field-effect 
transistors, can be  modeled. The$nite-element method transforms the continuum  description of mobile carrier transport 
in a semiconductor  device ro a simulation model at  a  discrete number of points. Coupled and decoupled algorithms offer 
two  methods of linearizing the differential equations. Direct  techniques are used to solve the resulting matrix equations. 
Pre-  and post-processors  enable users to rapidly generate new models and  analyze results. Specific  examples  illustrate 
the Jlexibility and accuracy of FIELDAY. 

Introduction 
The  use of Computer-Aided Design (CAD) is generally 
recognized as a  productivity  enhancement method,  par- 
ticularly  in the electronics industry. Very Large-Scale 
Integrated (VLSI)  circuits require  computer simulation at 
the  process, device, circuit,  and  system levels to  accu- 
rately predict  cost  and function  prior to fabrication. In 
this paper, we describe  the  FInite-ELement Device Anal- 
ysis program (FIELDAY), which is used  extensively 
throughout IBM to simulate  semiconductor devices. 

FIELDAY is a general-purpose  computer program 
which numerically solves the semiconductor transport 
equations in one,  two, or three dimensions for  steady- 
state or transient operating  conditions.  A  number of 
algorithms for device  simulation have been reported in 
the  literature,  but most have been  designed to simulate  a 
specific device  such  as an Insulated-Gate  Field-Effect 
Transistor  (IGFET), Charge-Coupled  Device  (CCD), or 
bipolar transistor [l-81. Some algorithms do not solve  the 
complete  set of governing equations, while others  assume 
steady-state operating conditions; or, because  they  use a 
finite-difference technique,  have difficulty modeling irreg- 
ularly shaped  structures [9-161. Recently, finite-element 
methods  have  overcome  the  latter limitations [ l l ,  12, 17- 

191. With few exceptions [16, 201, most  algorithms as- 
sume  that  the device can be  described by a  two-dimen- 
sional cross-section.  The  FIELDAY program does not 
have  these restrictions. FIELDAY  can simulate an arbi- 
trary metal-insulator-semiconductor structure  and  can 
model a wide  variety of physical effects which are impor- 
tant  for  the  accurate simulation of bipolar and field-effect 
devices. Applications  range from  the analysis of the effect 
of short and narrow  channels  on  the threshold of IGFETs 
to  the  transient simulation of heavily doped bipolar 
transistors. 

The motivation for this  CAD  tool is easy to  understand 
when  other options for obtaining the same  information 
are  considered.  There  are  two  obvious alternatives: the 
best  is  to  fabricate  and  characterize devices; the  other  is 
to  use simpler  models which are based  either on one- 
dimensional  approximations or on extrapolations of data 
from devices “similar” to those of interest. Both of these 
approaches  have  advantages  and limitations when  com- 
pared  to  FIELDAY. 

Clearly,  fabrication  and testing of actual devices  is  the 
best way to discover all of the implications and limitations 
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of any  new technology. While this is required of any 
technology  seriously considered for development, it is 
probably the most expensive and  time-consuming option. 
A single  lot of devices fabricated for a new VLSI technol- 
ogy  may cost over one million dollars to fabricate and 
may take six  months to complete. Device  simulation is a 
cost-effective method of determining whether a new 
technology  is  worth  developing.  Once that decision has 
been made, simulation  can substitute for many costly 
matrix experiments that are normally  required to opti- 
mize a new process and device structure. This  is especial- 
ly important in VLSI  technologies because of the statisti- 
cal nature of device design. Function must  be guaranteed 
for the large number of devices in modern electronic 
systems. It is impossible to produce enough  experimental 
hardware to test even the most  critical  combinations of 
parameters and structures. Large  numbers of devices and 
significant variations in structure from  device to device 
make a statistical design imperative. Another advantage 
that simulation  offers is certainty of the structure and 
physical parameters of the device; i . e . ,  device design 
information  can  be derived before a new fabrication 
process has been stabilized and the device can be opti- 
mized early in the product development cycle. A final 
advantage is that the internal operation of any device can 
be  easily  examined  through  multidimensional simulation; 
experimental techniques can  do  this  only approximately 
and for very  few parameters. 

Simpler  models  and the extrapolation of data from 
existing device structures cannot accurately predict how 
an entirely new device structure will behave.  This can 
only  be determined by a model  based  on fundamental 
physical assumptions. The modeling  difficulty  is  com- 
pounded by the near-unity  dimensional aspect ratios of 
devices used in VLSI technologies; e.g., a minimum-size 
n-channel IGFET has a length, width,  and depth of 
similar  dimensions. Thus, three-dimensional  modeling is 
required to accurately describe this device. It is also 
necessary to describe the transient behavior of bipolar 
devices, mainly because of three-dimensional  effects as- 
sociated with  small emitters. 

This paper discusses the FIELDAY algorithm  and 
describes the associated interactive pre-processor and 
post-processor programs  which provide a comprehensive 
device-design package. The following sections describe 
the physical model and the numerical  algorithm utilized, 
and outline the interactive pre- and post-processing capa- 
bilities.  Also presented are specific  examples of applica- 
tions of the FIELDAY program, including the analysis of 
short and  narrow IGFETs, VMOS (Vertical  Metal  Oxide 
Silicon) transistors, and  bipolar transistors. 

Physical model 

Semiconductor  transport  equations 
The characteristics of a semiconductor device are mod- 
eled by three coupled, nonlinear partial  differential equa- 
tions [2 l ,  221. These semiconductor transport equations 
consist of Poisson’s equation, Eq. (l), and the equations 
of electron and hole current continuity, Eqs. (2) and (3): 

V - J p + q ( Z  + R,) =O;where 

The three unknown quantities are the space-charge po- 
tential ($) and the electron (n) and  hole ( p )  mobile  charge 
densities at each instant of time. ND and N A  are  the donor 
and acceptor impurity densities, N ,  is the density of fixed 
charged particles, the constant q is the magnitude of 
electronic charge, E is the dielectric permittivity, and J, 
and J, are the electron and  hole current densities. R, and 
R, are the electron and  hole  recombination rate densities, 
k,, and pLn are the electron and  hole  mobilities, AVc and 
AVv are changes in the conduction and valence band 
edges [23] of heavily  doped semiconductors, and 0, and 
0, are  the electron and  hole  diffusion  coefficients. 

Poisson’s equation relates the space-charge potential to 
mobile  and  fixed charges, with  mobile charge densities 
given by Boltzmann statistics. The flow  of mobile  charge 
carriers is described by the equations of electron and  hole 
current continuity. The electron and  hole  mobilities that 
appear in these equations are functions of electric field 
strength [V+1 and impurity density [24]. The diffi- 
sion  coefficients 0, and 0, are related to the electron and 
hole mobilities  by the Einstein relationship. 

In the FIELDAY model, the recombination-generation 
mechanisms  include carrier generation due to avalanche 
multiplication [25], photo-generation, and  Auger  and 
Shockley-Read-Hall recombination [26-281. These re- 
combination-generation  mechanisms  couple the two cur- 
rent continuity equations and introduce strong  nonlineari- 
ties, particularly for the case of avalanche multiplication. 

Boundary conditions 
The  three semiconductor transport equations  with three 
unknowns require three boundary conditions. Boundary 21 9 

IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1 9 8 1  E. M.  BUTURLA ET AL. 



conditions are specified at contacts and  along  the entire 
edge of the semiconductor device model. At contacts, the 
space-charge potential  and the electron and  hole densities 
are required. At  ohmic contacts, thermal  equilibrium  and 
space-charge neutrality determine charge-carrier densi- 
ties. Carrier concentrations at Schottky contacts are 
either set to fixed values [29] or modulated  by a thermion- 
ic recombination  velocity [30]. 

At the noncontact  boundaries of the semiconductor, 
the normal  components of the electron  and  hole current 
densities and  the  electric-field  strength are all equal to 
zero. In insulator regions,  only the space-charge  potential 
and its normal derivative are considered. 

Bipolar,  unipolar,  and  no  current flow 
Many devices can be accurately simulated  without  mod- 
eling the current flow  of one or both  mobile carriers. Hole 
current can be ignored in the simulation of an n-channel 
IGFET under  most  operating conditions. In this case, the 
equation for hole current continuity  is  not used. If the 
flow  of both carrier types can be  ignored, as in the 
simulation of the capacitance of a reverse-biased p-n 
junction, only  Poisson’s equation is  solved. 

The FIELDAY model  may operate in one of three 
modes. The first assumes bipolar current flow,  and three 
unknown  quantities ($I, n, and p )  must  be determined. 
The second assumes unipolar current flow  with  two 
unknowns ($I and n), and the third  assumes no current 
flow and  uses  only one unknown ($I). In insulator regions, 
there are no  mobile  charge carriers and  only Poisson’s 
equation is needed. 

Numerical  approach 
The solution of the  governing nonlinear, coupled partial 
differential  equations by classic techniques, i . e . ,  integra- 
tion  and  application of boundary conditions, is  impossible 
for any except the  most  basic  problems. Instead, an 
approximation  technique is necessary to transform the 
continuum  problem to  a discrete one.  The  unknown 
variables are determined at  a large  but  finite number of 
points in both  space  and  time so that an accurate solution 
of the equations is obtained. In FIELDAY, the finite- 
element  method transforms Poisson’s equation, and a 
hybrid  finite-difference  finite-element  technique trans- 
forms the current continuity equations [14]. Euler’s  meth- 
od approximates the rate of change of mobile  charge 
density with time. These equations are then  linearized by 
one of two methods. The first  decouples  the three dis- 
crete equations and solves them  iteratively [31]. The 
second, more  involved, approach solves  the equations 

220 simultaneously  using Newton’s method [12, 321. Either 

approach results in large, sparse matrix  equations which 
must  be  solved  numerous  times to obtain  the final solu- 
tion. 

0 Poisson’s  equation 
The finite-element  method transforms Poisson’s  equation 
from a continuous to a discrete form. Computationally 
convenient piecewise approximations over arbitrary re- 
gions or elements are constructed. Using appropriate 
energy conservation principles, an  elemental expression 
is obtained which relates the unknown $I to element 
properties and  charge density. 

The following  functional  is used to approximate  Pois- 
son’s equation [33]: 

-J, q$I(p - n + N ,  - N A  + N J d v  , (6) 

where V is the volume of the domain.  The functional 
represents the energy of the system and  may be ex- 
pressed as the sum  of a large but finite number of energies 
for all of the elements. Equation (6) is  then  applied to a 
single  element over which a linear  variation of J, with 
respect to position  is assumed. At equilibrium  the  energy 
is a minimum,  and the first variation with respect to I/I is 
zero. By taking  the  first variation and integrating over 
space, the following expression is  obtained: 

The matrix [A] is  symmetric  and its terms are afunction 
of the  element  geometry  and permittivity. The number of 
nodes in an  element is the order of [A]. For two- 
dimensional  triangular,  and for three-dimensional tetrahe- 
dral  and  right-prismatic elements, the order is 3 , 4 ,  and 6 ,  
respectively. The vectors {J,} and { p  - n + ND - NA + 
N,} represent the space-charge potential  and  charged- 
particle densities at each  node of the  finite element. 

The matrix [B] is the element  volume distribution 
matrix, which relates the portion of area or  volume to  a 
particular node of an element. The form of the distribu- 
tion  matrix is extremely important. The  traditional proce- 
dure, common in structural analysis and  usually denoted 
as the lumped  method, assumes equal portions of area or 
volume associated with each  node.  The consistent meth- 
od assumes the  same  approximation for charge density as 
for the potential, in this case a linear  variation [34]. Either 
scheme  usually results in anomalous  oscillations of poten- 
tial with respect to position. In the semiconductor  prob- 
lem, this effect  is  compounded  by  the  exponential  rela- 
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tionship between  mobile charge density and potential 
[35]. To avoid these anomalies, FIELDAY uses a unique 
approach. Within an element, the area or volume closest 
to  a node is associated with that node. For a two- 
dimensional  triangular element, the area is  defined  by the 
perpendicular bisectors of the sides of the element. For  a 
three-dimensional prismatic element, the volume associ- 
ated with  each  node is the appropriate portion of the 
triangular face times  one-half the altitude of the element. 
For a three-dimensional tetrahedral element, the volume 
associated with each node is described by the intersec- 
tions of the planes that are perpendicular bisectors of the 
edges of the element. It should  be  noted that use of 
tetrahedra should  be  limited since they produce asymmet- 
ric results; they  should  be  used  only  where prismatic 
elements cannot adequately describe the geometry of the 
problem. 

The elemental matrix, Eq. (7), is  applied to each 
element of the domain and all contributions are combined 
into a global  matrix. The order of the global  matrix  is the 
total number of nodes approximating the domain. Bound- 
ary conditions are then applied  and solution of the 
modified  global  matrix equation will then  yield the value 
of JI at each nodal point. 

0 Current continuity equations 
The current continuity equations are solved  using a 
hybrid scheme. The finite element division of space is 
used  along with a difference  approximation to describe 
current flow  between nodes. The electron continuity 
equation is transformed using  Gauss' theorem: 

Here, the surface S encloses the volume V .  Constant 
current density is assumed within each element. The 
current flowing between two  nodes is the product of the 
current density and its flux cross-section. The flux cross- 
sections are lines or areas defined  by the perpendicular 
bisectors of the edges of the elements. Note that this 
scheme is consistent with the discrete approximation of 
Poisson's equation. The electron particle current flowing 
from node i to node j along  side k is 

where d, and I, are the flux cross-section and length of 
side k,  and p, is the electron mobility for the element. The 
Bernoulli function is defined by 

where Arc is the potential difference  along the kth side. 
Evaluation of the Bernoulli function about the point Arc = 

0 requires special attention. 

With the use of Euler's method to approximate the rate 
of change of mobile carrier density with respect to time, 
the discrete elemental electron current continuity equa- 
tion  becomes 

1 
([Cl + [BIZ) { n ( t  + At)}  = [B] 

Note that [C] and R, are evaluated at time t. The matrix 
[C] is nonsymmetric and  its  coefficients are of the form 
p ( W Z ( A ) .  

The global form of the electron current continuity 
matrix equation is assembled  on  an element-by-element 
basis. The total number of unknowns may be less than the 
Poisson matrix equation, since current flows  only  in the 
semiconductor. A similar development is followed for the 
hole current continuity equation. The following is the 
discrete representation of the governing  differential equa- 
tions: 

- [Bl 
n ( t )  - - R,] , and At 

Linearization scheme 
Since the discrete equations are nonlinear and coupled, a 
linearization scheme is  required to solve them. Two 
algorithms  have been implemented in FIELDAY. Both 
require an  initial guess of the solution  followed by an 
adjustment of the guess according to certain criteria until 
Eqs. (12)-(14) are satisfied to an acceptable degree of 
accuracy. The first method, described by Gummel, de- 
couples the three equations and  solves them serially. The 
second technique uses Newton's method to linearize the 
three equations and solves them simultaneously. Each 
approach has its own merits. 

The decoupled approach, which solves F,, F,, and F3 
serially [31], is attractive since portions of the  program 
can  be  written and tested independently. The disadvan- 
tage of the approach is  possible  slow convergence, since 
for many applications the equations are strongly coupled. 221 
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Parasitic  base  resistor 

4 

Emitter 

Base 

t t ? 
p+ isolation  Substrate n+ subcollector 

Figure 1 POINTS-generated  finite-element  mesh used to simu- 
late  a  bipolar  transistor.  The  parasitic  base  resistor  models  the 
flow of base current  around the  end of the  emitter in the third 
dimension,  which is not  simulated. 

Substrate 

Figure 2 TRIM-generated  finite-element  model of width cross- 
section of an IGFET.  This  model is used to simulate  the  narrow 
channel  in devices with recessed-oxide field  regions. 

The coupled method, which solves F,, F,, and F, 
simultaneously [12, 361, first  expands the discrete equa- 
tions in Taylor-series expansions in terms of $, n, and p .  
The higher-order terms are neglected  and an elemental 
equation is obtained  which  relates the elemental  function 
derivatives in the Jacobian matrix to the increments of 
unknowns  and the homogeneous equations F,, F,, and F,. 
Evaluation of the Jacobian matrix requires computing 
derivatives of a large  number of complex terms. As a 
result, program  development is more  difficult  and  time- 
consuming. 222 
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Matrix  solution  method 
With either linearization  scheme,  matrix  equations  must 
be solved.  The matrices are moderately  large  and  their 
order is  usually between 100 and 4000. They are also 
relatively sparse since the number of nonzero terms is 
usually  less  than  five percent. The  solution of the matrix 
equations accounts for most of the  computational  effort, 
and so a judicious choice of technique  is  very important. 

A direct-matrix-solution  technique  was chosen rather 
than an iterative technique since the solving  time for 
iterative methods  strongly depends on the numerical 
conditioning of the matrix  and may  fail to converge in 
some situations. Direct  methods require much more 
storage, but  the  solution  time for different  problems of the 
same order will not vary  drastically  and will always yield 
a set of results. The approach in FIELDAY is to use a 
symbolic  and  numeric factorization procedure for  direct 
solution of the appropriate matrix equations [37]. 

The decoupled approach requires the solution of three 
matrix equations of the order N by N. The coupled 
approach requires the solution of a single  3N-by-3N 
equation. Since the computational  work  is  proportional to 
the square of the order of the matrix, the coupled 
approach requires more  computational  effort  per  itera- 
tion. However, the decoupled approach may require 
more iterations. The question of  which approach should 
be  used has been addressed in a previous work, where  it 
was  shown  that the decoupled  approach  was  more effi- 
cient for “weakly” nonlinear  problems  and the coupled 
approach  more  efficient for “highly”  nonlinear  and  tran- 
sient  problems [36]. 

Three-dimensional  problems  require much more  com- 
putational resource than  two-dimensional problems. For 
a mesh of the same degree of accuracy, the three- 
dimensional  solution requires of order N more CPU time 
and  storage  where N is  the  number of planes in the three- 
dimensional  model. Since N may typically  be  equal to or 
greater than 10, the three-dimensional analyses are signif- 
icantly more expensive. 

Modified  Newton’s  method 
A simple  modification of the Newton technique can 
dramatically reduce the amount of time spent solving the 
matrix equations. In the modified  method, the Jacobian 
matrix  is  computed  and factored only  every mth iteration. 
The factor m is  determined  internally  within FIELDAY 
and  is  adjusted as the solution  proceeds.  Significant 
computational  savings result. In a series of six test 
problems, total computation  time  was  cut in half. In  fact, 
the savings are greatest for larger  problems since a 
greater part of their execution time  is spent solving the 

IBM J. RES. DEVELOP. VOL. 25 NO. 4 JULY 1981 



matrix equations. There  are additional savings that result 
when using the modified Newton  approach  for a sequence 
of similar problems.  This occurs  for transient or steady- 
state  analyses with similar boundary conditions. In  these 
cases,  the Jacobian  from  the  preceding  problem can  be 
reused, which again saves computational effort. 

Pre-  and  post-processing 
Significant time and cost benefits are achieved by using 
interactive graphics. A  package of interactive  programs 
has been designed to execute  on the IBM 3277 Display 
Station  Graphics  Attachment. These programs are used 
to  generate complex finite-element models and to analyze 
results. For pre-processing, the model-generation pro- 
grams fall into three  categories: model definition, impuri- 
ty  concentration  designation, and input verification. 

Model definition consists of generating  a finite-element 
mesh, assigning material properties  to each  element,  and 
designating contact nodes.  The  FIELDAY  user  has sev- 
eral  options available for model definition. POINTS is a 
semiautomatic  generation  scheme.  A  rectangular grid 
work is defined with uniform spacings, which are changed 
as required. The model is synthesized from rectangular 
regions,  each with a constant permittivity, and then 
scaled to  the problem dimensions. The user also supplies 
information indicating the element material type  and 
contact position.  A  bipolar mesh generated with POINTS 
is shown in Fig. 1. To  create this mesh by hand takes 
about one month; to  generate it with POINTS  and its 
interactive  graphics capability requires  no  more  than a 
few  hours of the user’s time. POINTS  generates, dis- 
plays,  and stores  the mesh for  later use by FIELDAY. 
During mesh display, the contact  nodes are indicated,  and 
interactive windowing and node and  element numbering 
may be utilized. 

Another option  for model definition is TRIM (TRIangu- 
lar Mesh generator). Here, the user specifies the bound- 
ary of a region and selects a mathematically regular  grid, 
such as a rectangular  mesh.  TRIM  generates  a  conformal 
map of that mesh onto  the user’s model. The same mesh 
may be mapped onto geometrically similar models; thus 
the  user need  not respecify the mesh-generation informa- 
tion  but only a  few  details  relative to his model. Contact 
designation, mesh storage, and display features are simi- 
lar to  those available for  POINTS. Figure 2 shows a 
mesh, with an unusual  semi-recessed  oxide shape, gener- 
ated by TRIM. Note  the varying density of elements over 
the model.  This increases the accuracy of solution at 
points  where  the fields are rapidly changing. 

A  library of FIELDAY models  exists  for  frequently 
modeled devices with well-defined structure. With these 

Channel 

Silicon - Structure A 
---- Smcture B 

(a)  

field  region 

StNCtUtE A Structure B 

(C) 

Figure 3 (a) Structure of a short  and  narrow  IGFET device. 
Oxide  thicknesses  are 50 and 800 nm for the active and  field 
devices, respectively. The source and  drain  are  abrupt,  cylindri- 
cal  junctions 0.5 pm deep. The  channel  doping  may be described 
by C = C, exp [-( Y - R)2/2S2]2 + C, , where C,, = 2.5 x 
10l6  cm?, S = 0.2 pm, C, = 1.0 X 1015 ~ m - ~ ,  and R = 0.0 pm. 

(b)  The  finite-element  mesh used to simulate a 1.5-by-1.5-pm 
short  and  narrow  IGFET  containing 13 planes of 164 nodes each. 

(c) Modeled  surface  potential  for  Structures A and B at a drain- 
to-source  bias of 5.0 V and a source-to-substrate  bias of 1.0 V. 
The device length  and  width is 1.5 pm. 

models,  the user supplies  various  parameters such  as 
oxide  thickness and junction depth, and the model is 
stretched  to reflect the given parameters. Again, mesh 
storage and display are possible. For three-dimensional 
simulations, a two-dimensional model is created using 
one of the previously described  techniques  and is repli- 
cated in the third  dimension to produce a mesh of right- 
triangular  prisms. The  user  can then  delete elements, 
change their material properties, or re-assign contacts. 
Figure 3 shows a short and narrow  IGFET and the mesh 
used  for simulation. 

Impurity  concentration  is  designated by assigning an 
electrically active impurity ion density to each  node of the 223 
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(b) 

Figure 4 (a) Perspective plot of the log INA - NJ for a bipolar 
transistor. (b) Perspective  plots of log (n) following a base 
voltage step. The  gradual increase of electron  density  under  the 
emitter  shows  that  base  “pinch”  resistance is limiting the 
device’s  switching speed. 

finite-element  mesh. This  is accomplished by specifying 
measured  values, employing a process  simulator, or 
describing a profile as  the sum of analytic expressions. 
The pre-processing program,  DOPING, allows viewing of 
the impurity concentration profile prior to FIELDAY 
execution  to  ensure  that  the  device being modeled is  the 
desired  one.  The impurity concentration can be displayed 
with contour  plots, line graphs, or perspective  plots. 
Figure 4(a) shows a perspective plot of the doping profile 
for a bipolar transistor. 

Input verification consists of mesh  checking and input 
consistency checking.  During  mesh  checking, the finite- 
element  mesh is examined for  errors  and poorly shaped 
elements.  The  areas of the  mesh in which problems occur 
are highlighted, and  the  user  can interactively  window to 
determine  how  to modify the mesh. The  types of errors 
that  can  arise include  overlapping elements  and dangling 
nodes. Poorly  shaped elements  are  obtuse triangles or 
elements with  large aspect  ratios.  Other  input  is  examined 
for  completeness  and  consistency. 

For post-processing,  a  program called FEMPLOT  per- 
224 mits  rapid interpretation of the  FIELDAY  analysis with 
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the ability to interactively  view the results. FEMPLOT 
will display  nodal  values of potential, electron density, or 
hole density with contour  plots, line graphs, or perspec- 
tive plots.  The elemental  values of electric field and 
current density may also  be displayed. Contour  plots  are 
a means of displaying nodal data values. Lines of equal 
value  are  drawn through points of equal  value interpolat- 
ed along the sides of the  elements. Perspective graphs  are 
a means of displaying all the nodal data from a two- 
dimensional surface of a model.  Figure 4(b) shows a 
series of perspective plots of the log of the  electron 
concentration  at various times during the  transient re- 
sponse.  The gradual increase of electron density  under 
the  emitter  shows  that  base  “pinch” resistance is limiting 
the  device’s switching speed. 

Model definition using interactive graphics replaces  the 
time-consuming task of meticulously defining every  node 
and  element in the finite-element mesh, which formerly 
took 65-70% of the total analysis time. FEMPLOT mini- 
mizes the time the  FIELDAY  user  spends searching 
through results  on a node-by-node or element-by-element 
basis.  Device  designers are  able  to optimize designs by 
rapidly viewing simulation results and noting activity 
within the device that  cannot  be measured  experimental- 
ly. Therefore,  the  use of interactive graphics results in 
higher  engineering  productivity  by  reducing development 
time, lowering development  costs,  and making more 
resources available for  product optimization. 

Device  simulation  results 
In  this  section, several  applications of the  FIELDAY 
program  are described which illustrate  its  features,  accu- 
racy,  and flexibility. First, a model of the effect of short 
and  narrow channels on  IGFET thresholds is presented. 
Separate two-dimensional  models  simulate the  short- 
channel effect for wide devices  and  the narrow-channel 
effect for long devices.  The  accuracy of these simulations 
is demonstrated by the close agreement between  the 
model and experimental data. A three-dimensional model 
of an  IGFET  is  also  presented. Comparisons of two- and 
three-dimensional results  show  the need for this approach 
for  short  and  narrow  devices. A  VMOS transistor  was 
optimized using the program. In this case simulation 
showed  that a superior  device could be designed.  Simula- 
tion of the  transient  response of a bipolar transistor is 
described,  and again  excellent agreement  between  data 
and model is demonstrated. Three-dimensional transient 
capability of the program is illustrated by simulation of 
reverse  recovery of an ellipsoidal junction. 

Short-  and narrow-channel effects in ZGFETs 
The  FIELDAY program has  been frequently used  to 
model short- and  narrow-channel effects in IGFETs 
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[20, 32, 38-41]. The  short-channel effect reduces  the 
threshold of an n-channel IGFET. As the drain approach- 
es  the  source, its  positive bias raises  the surface  potential 
near  the  source  and  thus  increases  the  amount of current 
flow in the device at a given gate voltage. Narrow 
channels  have  the  opposite effect. The  threshold in- 
creases as the edges of the high-threshold field region 
move toward  the  center of the lower-threshold active 
device. Since channel length and width vary  from device 
to  device  across a VLSI  chip,  and  to a larger extent  from 
chip to  chip, a  statistical  analysis of the effect of these 
parameters  on threshold is required. Variation in channel 
length may contribute more than 50% to  the  total  thresh- 
old tolerance of a well-designed IGFET. 

These competing  effects are modeled independently for 
long and  narrow, or for short  and wide, devices by 
simulation of mid-channel two-dimensional cross-sec- 
tions. Short  and narrow devices must be simulated  by a 
three-dimensional model. Here, applications of the model 
to devices as short as 0.7 pm  and  as narrow as 1.5 pm  are 
discussed. 

The effect of short  channels was modeled and mea- 
sured  on wide devices  designed for a process with mini- 
mum feature sizes of 1.0 pm.  The oxide thickness  and 
doping profile of a capacitor with the same structure  as 
the FET device were measured by a pulsed capacitance 
technique. This capacitor was  simulated with a one- 
dimensional  transient  model.  Figure  5  shows the agree- 
ment between measured capacitance values for this  de- 
vice and  those derived  from the displacement current 
density  predicted by simulation. The simulated  capaci- 
tance  has  been adjusted  by a constant value of gate bias. 
This  shift is the sum of the voltage equivalent of the 
charge found in the  insulator  and  the work function 
difference  between the  actual  gate material and  that 
assumed in the model. The excellent  agreement between 
the model and  the  data confirms the  accuracy of the 
model and reinforces the validity of the  transient  capaci- 
tance measurement technique. 

Devices with the  above  structure were  simulated for 
channel  lengths of 10.0, 2.0, 1.3, 1.0, and 0.7 pm with a 
two-dimensional model having 1620 nodes. Also modeled 
was the inversion  charge of the  capacitor  as a function of 
gate voltage.  Figure 6 shows  the modeled and actual 
threshold as a function of source-to-substrate bias for a 
10.0-pm-long device. The effect of decreasing channel 
length on threshold is illustrated in Fig. 7 .  

The narrow-channel effect was  investigated for the 
SAMOS (Silicon and Aluminum Metal Oxide Semicon- 
ductor)  transistor [39, 41, 421. The threshold of this de- 

- 0  

G - .  
B 

Gate bias-flat band (V)  

Figure 5 Measured (0) and  simulated (0) capacitance versus 
gate-to-substrate bias. The simulated results have been shifted 
by -0.56 V to account for work function and oxide charge 
differences. The channel doping  parameters  are C, = 5.24 x 
10l6 ~ m - ~ ,  C,, = 1.2 x l O I 5  ~ m - ~ ,  S = 15.3 nm, and R = 
-24.0 nm. The oxide thickness is 27.8 nm. 

1.6 

1.4 I 

lo 1 2 3 4 5 6 

(Gate-to-source bias ( V )  

Figure 6 Measured (0) and modeled (0 capacitor model, X 

IGFET model) long-channel threshold. The simulated threshold 
has been adjusted  by -0.56 V to account for work function and 
effective oxide charge difference between the actual devices and 
the model. The threshold of the 1O.O-gm device  is defined at 
40 nA of normalized source current. The threshold of the IGFET 
as modeled by the capacitor is defined at 10" electrons of 
inversion charge per square cm. The vertical and  lateral junction 
depths are 0.25 and 0.15 wm, respectively. 
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Figure 7 Measured (0, X ,  0) and modeled (-) re- 
duction in threshold with channel length at source-to-substrate 
biases of 0.0, 1.0, and 4.0 V and a drain bias of 4.0 V. The 
simulated threshold has been adjusted by -0.56 V to account for 
work function and effective oxide charge difference between the 
actual devices and the model. 
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.a 
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Figure 8 Measured ( 0 , O )  and modeled (-) increase in thresh- 
old  with decreasing device width for a long-channel SAMOS 
transistor. 

vice was determined  by  modeling the width cross-section 
of the  transistor.  The  threshold was  calculated by linearly 

226 extrapolating  the variation of inversion with gate  bias  to 

zero  charge. Figure 8 shows  the agreement between  the 
empirical and modeled threshold at two substrate  biases 
for long devices. 

A three-dimensional  simulation [20]  of the threshold of 
a short  and  narrow  device was made on two  devices with 
structures defined in Fig. 3. The difference between  the 
two  structures  is  the  shape of the diffused source and 
drain.  In  Structure A these diffusions extend  under  the 
field oxide, while in Structure B they are  terminated  at 
the  edge of the thin-oxide  region.  Figure 3(b) shows  the 
2132-node finite-element mesh  used to model these de- 
vices.  Simulated  subthreshold characteristics  were used 
to define the threshold of a device 1.5 pm long and wide. 
The sensitivity of this threshold to increasing source-to- 
substrate  bias  is  shown in Fig. 9. Also shown is  the 
threshold  as predicted by a composite of separate, two- 
dimensional, short- and narrow-channel  models. For  the 
composite model, the  threshold  is defined as  the algebraic 
sum of the threshold changes predicted by the  indepen- 
dent  short-  and narrow-channel  models  and the  threshold 
of a long and wide  device. In this case,  the width and 
length cross-sections were taken  at mid-channel. The 
composite model is inadequate  because it fails to predict 
the effect of relatively  minor  differences  between Struc- 
tures A and B. In addition, the result of the  composite 
model produces a threshold dependence  on  source-to- 
substrate  bias  that  bears little  functional  resemblance to 
the  actual  characteristics. 

The different behavior of Structures A and B can  be 
easily explained. The  extension of the diffusions raises 
the  surface potential in the field-oxide region near  the 
active device.  This reduces  the impact of the  narrow- 
channel effect and  results in a lower threshold for  the 
device  with Structure A. Figure 3(c) shows a perspective 
plot of the  surface potential for  Structures A and B.  Here, 
the influence of the  extensions of the  source  and drain 
under  the field oxide can  be readily seen. 

Separate analysis of the  short-  and narrow-channel 
effects of a device  over a range of sizes and  operating 
conditions takes  several  weeks of work and approximate- 
ly 20 CPU hours  on  an  IBM  Systed370 Model 168. This 
expense  results in about 800 values of current  as a 
function of bias and device size.  These can be  reduced  to 
80 values of threshold.  It  is well worth  the  cost  and effort, 
as  it could take up to six months to obtain similar results 
empirically, at  over 100 times the cost. 

Simulation of VMOS field-effect transistors 
VMOS transistors  are being  investigated for  use in one- 
device  random  access memories [43, 441. A VMOS mem- 
ory cell uses devices  which have  the  shape of inverted 
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pyramids to charge and discharge the buried-diffusion 
storage capacitor. A typical  cell structure is shown in Fig. 
10. The threshold of this transistor must  be  high  enough 
to prevent discharge of the capacitor when the surface 
diffusion is grounded  and  low  enough to adequately 
charge the capacitor when the surface diffusion and the 
gate are positively biased. 

Meeting these criteria with a VMOS device is difficult 
because of its asymmetric structure. The p-type region 
above the buried n+ diffusion raises the threshold of the 
device when  charging the capacitor. This reduces the 
stored charge. The  doping  level in this p-type region 
cannot be reduced because the decreased capacitance of 
the buried  diffusion  would also reduce the stored charge. 
The presence of this layer has an additional  effect. It 
causes the threshold of the transistor to decrease rapidly 
with increasing voltage on the buried  diffusion. This 
requires an additional increase in the nominal threshold 
so that the capacitor will not discharge, when the surface 
diffusion is grounded, and further degrade the stored 
charge. These effects can be described by a single  figure 
of merit  defined as the sum of a holding  and a charging 
loss. As shown in Fig. Il(a), the charging loss is the 
increase in threshold with increasing surface-diffusion-to- 
storage-capacitor bias. The holding loss, shown  in  Fig. 
1 l(b), is the decrease in threshold with  increasing storage- 
capacitor-to-surface-diffusion bias. This loss represents 
the inefficiency of the transistor caused by dependence of 
the threshold on source and drain  bias. 

Various transistor designs  were  investigated  using the 
FIELDAY program [45]. It was found that the transistor 
characteristics were  very sensitive to the variation of the 
doping level and position of the p-type  region. A very 
steep profile,  along  with an additional implanted p-type 
region under the gate oxide, produced a nearly  optimum 
device. The loss-versus-signal characteristics of this im- 
planted VMOS device, a conventional VMOS transistor, 
and a planar device  with  similar  oxide thickness and 
channel length are shown  in  Fig. 12. With a 5-V power 
supply, the conventional VMOS device can store only 
75% of the charge of a planar device, while the implanted 
device can store 90%. Thus, a 20% increase in efficiency 
was predicted through simulation. This may  be translated 
directly into increased memory  performance or reduced 
chip area and cost. 

Transient simulation of bipolar transistors 
In most cases the performance and  function of IGFET 
devices can  be predicted from their steady-state behav- 
ior. The intrinsic speed of these devices exceeds the 
speed at which practical IGFET integrated circuits can 
operate. This is because IGFETs are majority-carrier 

1.6 ""i 

I Source-to-substrate voltage (V) 

Figure 9 Three-dimensional (0, 0) and composite (+) model 
threshold versus source-to-substrate bias for a device 1.5 pm 
long and wide with Structures A (0) and B (0). The device 
structure is described in  Fig. 3. The drain-to-source bias is 5.0 V. 

n+ storage capacitor 

p-typesubstrate 

Figure 10 VMOS dynamic memory cell structure. 

devices with no significant minority-carrier injection. On 
the other hand, bipolar devices are minority-carrier de- 
vices and their performance in an integrated circuit 
depends on the transient response of individual devices. 
Thus, transient simulation of bipolar devices is most 
important. 227 
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Figure 11 Schematics of (a) charging loss and (b) holding loss of a one-device  memory  cell.  The  charging loss is  caused by the  increase 
of threshold  with source-to-substrate  bias.  The holding loss is caused by the  reduction in threshold  with drain-to-source  bias. 
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Figure 12 Total  holding plus charging loss versus stored volt- 
age for a conventional VMOS transistor  (Curve A), an implanted 

228 
VMOS transistor (Curve B), and an implanted  planar transistor 
(Curve C). 

An npn  bipolar transistor  was simulated in two  dimen- 
sions with the  FIELDAY program [46]. The  response of 
the collector current  to a rapidly increasing base voltage 
was measured and modeled.  Figure 13 shows  the predict- 
ed  and actual transient  response of the collector  voltage. 
Good  correlation is  shown between  experimental  and 
modeled characteristics. 

The  transient three-dimensional capability of FIEL- 
DAY is  demonstrated with the simulation of the  reverse 
recovery of an ellipsoidal junction. A structure similar to 
that  shown in Fig. 14 may be  found at the  four  corners of 
every integrated  bipolar transistor.  The  reverse  recovery 
of this structure will play an important  role in the per- 
formance of bipolar devices  as  the  area of emitters  is 
reduced.  The  results  are  shown in Fig. 14. To first order, 
the  recovery time is in agreement with that predicted by 
classical theory: 

T = Wi/2D,, = 0.45 ns . 

Although  detailed transient  analysis of three-dimen- 
sional structures is presently  quite  costly, this example 
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illustrates the feasibility of such a capability and  serves  to 
guide further development of algorithms which should 
allow routine  use. 

Summary  and  conclusions 
The capabilities and  methods of the  FIELDAY program 
have been  described in this work.  Several specific exam- 
ples of one-, two-, and three-dimensional steady-state  and 
transient applications have been presented  to illustrate 
the flexibility of the program.  Close  correlation of simula- 
tion results  and experimental data illustrate the  accuracy 
of the model  and the credibility of its underlying assump- 
tions  and computational methods.  Pre-processors  speed 
the  creation of new models  through  interactive  mesh 
generation. Post-processing  programs allow rapid  exami- 
nation of the internal operation of devices  and subsequent 
improvement of design. 

These capabilities  form  a  comprehensive  device CAD 
tool which allows  prediction of the characteristics of new 
devices  and rapid response  to problems affecting device 
function and reliability. In  its predictive role,  FIELDAY 
can be used  to  evaluate new  device concepts  and  to 
optimize  device design prior  to fabrication.  This is ex- 
tremely  important because of the time and  cost involved 
in evaluating new ideas for integrated  devices. FIEL- 
DAY,  and similar programs, fill a gap in the  development 
of integrated  circuits. This gap is between the  generation 
and design of new device  concepts  and the  simulation of 
circuits using those  devices.  This  role  is important for  any 
CAD tool  because significant changes  and improvements 
in design  can  often  be  made  only at  the early stages of 
development.  In addition, these tools can replace costly 
matrix experiments and allow device design and  process 
stabilization to  occur simultaneously. Careful simulation 
can  avoid disastrous  and costly  mistakes  that  often  plague 
new product  development. 

In a responsive role, FIELDAY can offer rapid and 
definitive analysis of device  phenomena  that limit circuit 
function or affect the reliability of a product. In this case, 
a hypothesis  can be  proposed and  tested without fabricat- 
ing devices,  thus reducing by an  order of magnitude the 
time  required to solve  this type of problem.  Simulation 
allows  examination of the internal  operation of devices, 
and the resulting insights often spark innovative solu- 
tions. 
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